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ABSTRACT
Several recent works consider the personalized route planning
based on user profiles, none of which accounts for human trust.
We argue that human trust is an important factor to consider when
planning routes for automated vehicles. This paper presents the first
trust-based route planning approach for automated vehicles. We
formalize the human-vehicle interaction as a partially observable
Markov decision process (POMDP) and model trust as a partially
observable state variable of the POMDP, representing human’s hid-
den mental state. We designed and conducted an online user study
with 100 participants on the Amazon Mechanical Turk platform to
collect data of users’ trust in automated vehicles. We build data-
driven models of trust dynamics and takeover decisions, which
are incorporated in the POMDP framework. We compute optimal
routes for automated vehicles by solving optimal policies in the
POMDP planning. We evaluated the resulting routes via human sub-
ject experiments with 22 participants on a driving simulator. The
experimental results show that participants taking the trust-based
route generally resulted in higher cumulative POMDP rewards and
reported more positive responses in the after-driving survey than
those taking the baseline trust-free route.
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1 INTRODUCTION
Recent years have witnessed significant advances in the develop-
ment of automated vehicle, which have already been tested over
millions of miles on public roads [4]. However, fully autonomous ve-
hicles that do not require human intervention are still decades away
due to technology, infrastructure, and regulation limitations [18].
The majority of automated vehicles available to the general pub-
lic nowadays are Level 2 and Level 3 of automation [12], which
allow the driver to turn attention away from the primary task of
driving; but the driver must still be prepared to take over control
of the vehicle when necessary. Human’s decision on whether or
not to rely on the automation is guided by trust. Prior studies have
found that distrust is a main barrier to adoption of automated vehi-
cles [27]; in addition, users with lower trust levels take over control
of the vehicle more frequently [28]. On the other hand, overtrust
in automation can lead to catastrophic outcomes (e.g., fatal Tesla
autopilot crashes [3]). Therefore, in order to improve safety and
user experience, there is a need for taking into account human trust
in the system design of automated vehicles.

In this paper, we consider the design of route planning system
for the navigation of automated vehicles. Existing route planning
methods (e.g., [7, 19, 26]) mostly focus on computing routes that
optimizemetrics such as distance, travel time, and fuel consumption.
Several recent works (e.g., [9, 13, 41]) consider the personalized
route recommendation based on user profiles (e.g., mobility options,
frequently visited places). However, none of the existing route
planning methods explicitly account for human trust. We argue
that human trust is an important factor to consider when planning
routes for automated vehicles. For example, if the driver has lower
trust in the automated vehicle’s capability for safely navigating
urban streets with pedestrians constantly crossing as opposed to
freeways, the driver may prefer a freeway despite longer distance.

To the best of our knowledge, this paper presents the first work
of trust-based route planning for automated vehicles. There are sev-
eral challenges in developing this work. First, how to measure and
model human trust in automation, which is a hidden mental state
influenced by many factors and changes over time [38]. Second,
how to incorporate the trust model into the route planning while
accounting for the human-vehicle interaction (e.g., takeover de-
cisions). Finally, how to evaluate the proposed trust-based route
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planning approach. In the following, we provide an overview of
how we address these challenges in this work.

We follow the notion of trust in automation defined in [34],
which views human trust as delegation of responsibility for actions
to the automation and willingness to accept risk (possible harm),
while the decision to delegate is based on a subjective evaluation
of the automation’s capability for a particular task. To concretize
the problem, we consider a motivating example where the auto-
mated vehicle may encounter three types of typical road incidents
(i.e., pedestrian, obstacle, and oncoming truck). Trust is therefore
affected by human’s takeover decision and the vehicle’s capability
of handling an incident. We adopt the commonly used method of
measuring the subjective belief of trust via user questionnaires.
Specifically, we designed and conducted an online user study with
100 participants on the Amazon Mechanical Turk platform. We
asked users to watch various driving videos recorded in the driver’s
view and answer questions about their trust in the automated vehi-
cle’s capability of safely handling the incident shown in the video
in a 7-point Likert scale, as well as whether they would like to take
over control of the vehicle imaging that they were the driver sit-
ting inside the automated vehicle. We model the evolution of trust
dynamics (i.e., how trust changes over time) as a linear Gaussian
system using the data collected from the online user study. We also
build data-driven models to predict human’s takeover decisions.

We formalize the human-vehicle interaction as a partially observ-
able Markov decision process (POMDP), which is a general model-
ing framework for planning under uncertainty [24]. We model trust
as a partially observable state variable of the POMDP, representing
human’s hidden mental state. In addition, there are three observ-
able state variables representing the vehicle position, incident type,
and the success/failure of the vehicle handling an incident. The
estimated trust dynamics model informs the probabilistic transition
function of the trust variable in the POMDP. There are two actions:
human’s takeover decision and the vehicle’s route choice. Since the
vehicle does not know about human’s actual takeover decision in
advance, it assumes that human follows the data-driven takeover
decision models estimated using the online user study data. The
goal of POMDP planning is to compute an optimal policy that
makes route choices to maximize the expectation of the cumulative
reward, with a reward function designed to promote better safety
and user experience of automated vehicles.

We applied the proposed trust-based route planning approach to
themotivating example and obtained two routes: a trust-based route
where human makes takeover decisions based on trust dynamics
and incidents, and a trust-free route (as a baseline for comparison)
where human’s takeover decisions only depend on incidents. We
evaluated and compared the performance of these two routes via
human subject experiments on a driving simulator. We conducted
experiments with 22 participants, who were randomly assigned
to two equal-sized groups for the between-subject study (each
group has 11 participants, who took one of the two routes). The
experimental results show that participants taking the trust-based
route generally resulted in higher cumulative POMDP rewards and
reported more positive responses in the after-driving survey than
those taking the trust-free route.

Contributions. We summarize the major contributions of this
work as follows.

• We developed the first trust-based route planning approach
for automated vehicles, which is based on a POMDP frame-
work and uses data-driven models of trust dynamics and
takeover decisions.

• We designed and conducted an online user study with 100
participants on the Amazon Mechanical Turk platform to
collect data about users’ trust in automated driving.

• We designed and conducted human subject experiments
with 22 participants on a driving simulator to evaluate the
proposed approach, which showed encouraging results.

Paper organization. The rest of the paper is organized as follows.
We discuss the related work in Section 2, describe the motivating
example in Section 3, present the trust-based route planning ap-
proach in Section 4, describe the driving simulator experiments in
Section 5, and draw conclusions in Section 6.

2 RELATED WORK
In this section, we survey the related work in two topics: (1) route
planning for vehicles, and (2) trust in automation. For each topic,
we identify gaps in the state-of-the-art and discuss the connection
with this paper.

2.1 Route Planning for Vehicles
The goal of route planning is to compute the optimal routes for
vehicles. The most commonly used metrics include distance, travel
time, and fuel consumption. Graph search algorithms such as Dijk-
stra’s algorithm [14] and 𝐴* algorithm [21] can be applied to find
the shortest distance path between any two locations. Computing
the fastest route (i.e., with the least travel time) is more challeng-
ing than finding the shortest distance route. Kanoulas et al. [26]
extended 𝐴* algorithm by considering the speed change at differ-
ent time of the day to compute the fastest route. Gonzalez et al.
[19] developed an adaptive fastest route planning method based
on information learned from the historical traffic data, account-
ing for various factors (e.g., road quality, weather condition, area
crime rate) that may influence vehicle speed patterns. Andersen
et al. [7] proposed to find the most eco-friendly route by assigning
eco-weights based on GPS and fuel consumption data.

There are several recent studies considering personalized route
recommendation for various users. Campigotto et al. [9] developed
a method for the personalized route planning by using Bayesian
learning to update users’ profile such as home location, work place,
andmobility options. Dai et al. [13] recommended a personalized op-
timal route considering user preferences encoded as a ratio between
different metrics such as distance, travel time, and fuel consumption.
Zhu et al. [41] proposed a personalized and time-sensitive route
planning method, in which they inferred users’ preferences with
locations and visiting time through historical data.

None of the aforementioned route planning methods considers
human trust. In this paper, we aim to fill this gap by developing a
trust-based route planning approach.
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2.2 Trust in Automation
Trust in the context of human-technology relationships can be
roughly classified into three categories: (1) credentials-based, which
is used mainly in security and determines if a user can be trusted
based on a set of credentials [25]; (2) experience-based, which in-
cludes reputation-based trust in peer-to-peer and e-commerce ap-
plications, determines an agent’s trust value based on its own ex-
perience in predicting the probability of the execution of a certain
action by another agent [30]; and (3) cognitive trust, which explicitly
account for not only the human experience, but also subjective judg-
ment about preferences and mental states [17]. In this paper, we are
interested in human’s trust in automated vehicles, and therefore
consider cognitive trust that captures the human notion of trust.
Specifically, we follow the notion of trust in automation proposed
in [34], which indicates human’s willingness to rely on automation.

Studies have found that human trust changes over time during
the interaction with automation, affected by various factors such as
the automation’s reliability, predictability, and transparency [20, 38].
Studies have also shown that trust can influence human’s reliance
on automation and the system is likely to be under-utilized if human
mistrust the automation [16]. For example, a recent study found that
users with lower trust tended to take over control from automated
vehicles more frequently [28]. Inspired by insights drawing from
these prior studies, we develop a data-driven trust dynamics model
to represent the evolution of human trust in automated vehicles, and
a takeover decision model to associate the likelihood of human’s
takeover decision with trust.

Different method to measure trust have been proposed. User
questionnaires are commonly used to evaluate the subjective belief
of trust [36, 40]. For example, the study in [11] asked questions
about users’ trust in automated vehicles in a 7-point Likert scale. In
addition, various sensing technologies have been used for the con-
tinuous measurement of human trust in real-time, including gaze
tracking [22], gestures (e.g., face touching and arms crossed) [35],
and biometrics (e.g., electroencephalogram and galvanic skin re-
sponse) [23]. We measure human trust in a 7-point Likert scale via
questionnaires in the online user study, and via continuous user
control input (i.e., pressing buttons mounted on the steering wheel)
in the driving simulator study.

Existing works about trust in automated vehicles include in-
vestigating factors that influence users’ adoption of automated
vehicles [32, 33, 39], studying the effect of alarm timing on dri-
ver’s trust [5], designing forward collision warning system [29] and
cruise control system [8] to improve users’ trust. By contrast, this
paper develops a route planning approach that accounts for trust
to improve user experience of automated vehicles.

Several recent works have explored the idea of modeling trust
with POMDPs. For example, a POMDP model for trust-workload
dynamics in Level 2 driving automation was developed in [6], and
a POMDP-based method for human-robot collaboration in table
cleaning tasks was proposed in [10]. Our work is inspired by these
methods. We focus on trust-based route planning for automated
vehicles, which requires different POMDP modeling.

Figure 1: An examplemapwith three types of road incidents
(pedestrian, obstacle, and oncoming truck).

3 MOTIVATING EXAMPLE
We describe a motivating example of route planning for automated
vehicles. Figure 1 shows an example map, where three types of
typical incidents that may occur on the road are considered: (1)
a pedestrian crossing the road, (2) an obstacle ahead of the lane,
and (3) an oncoming truck in the neighboring lane. We can easily
generalize to more complex examples with a richer set of incidents.
For simplicity, we assume that each road segment may have up
to one incident at a time. We also assume that the vehicle has
information about the potential incident that it may encounter in
the next road segment. Such information can be easily obtained, for
example, via sensing and crowd sourcing traffic monitoring apps.

Figure 2 shows a schematic view of the automated vehicle trav-
eling from one location to another. Suppose that the vehicle is
approaching an incident in the autopilot mode. Due to safety con-
cerns, the driver may decide to take over control of the vehicle and
switch to manual driving. Such takeover decisions can be influ-
enced by the driver’s trust in the automated vehicle’s capability of
handling different types of incidents: the driver with lower trust
is more likely to take over. In addition, the driver’s trust evolves
over time depending on the takeover decision and the vehicle’s
capability of handling an incident.

The goal of this work is to develop a trust-based route planning
approach that computes an optimal route for the automated vehicle
(e.g., navigating from A to K in the example map) while taking into
account human trust dynamics and takeover decisions.

4 TRUST-BASED ROUTE PLANNING
We present a trust-based route planning approach for automated
vehicles. The key idea is to model the human-vehicle interaction
as a POMDP and compute the optimal vehicle route by solving the
optimal policy of POMDP planning.

4.1 The Proposed POMDP Framework
Formally, a POMDP is denoted as a tuple (𝑆,𝐴,T , 𝑅,𝑂, 𝛿,𝛾), where
𝑆 is a finite of state,𝐴 is a set of actions, T is the transition function
representing conditional transition probabilities between states,
𝑅 : 𝑆 × 𝐴 → R is the real-valued reward function, 𝑂 is a set
of observations, 𝛿 is the observation function representing the
conditional probabilities of observations given states and actions,
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Figure 2: A schematic view of an automated vehicle navigating from one location to another. When approaching an incident,
the driver may decide to take over and switch to manual driving. The takeover decision can be influenced by the driver’s trust
in the automated vehicle, which evolves over time.

Figure 3: The POMDP graphical model for trust-based route
planning. (Each node represents a state variable. Shadowed
nodes are partially observable variables. Squares represent
actions. Arrows represent transition functions.)

and 𝛾 ∈ [0, 1] is the discount factor. At each time step 𝑡 , given an
action 𝑎𝑡 ∈ 𝐴, a state 𝑠𝑡 ∈ 𝑆 evolves to 𝑠𝑡+1 ∈ 𝑆 with probability
T (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ). The agent receives a reward 𝑅(𝑠𝑡 , 𝑎𝑡 ), and makes an
observation 𝑜𝑡+1 ∈ 𝑂 about the next state 𝑠𝑡+1 with probability
𝛿 (𝑜𝑡+1 |𝑠𝑡+1, 𝑎𝑡 ). The goal of POMDP planning is to compute the
optimal policy that chooses actions to maximize the expectation of
the cumulative reward E[∑∞

𝑡=0 𝛾
𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )].

Figure 3 illustrates a graphical model of the proposed POMDP
framework for trust-based route planning. We factor the state 𝑠𝑡
at time 𝑡 into four variables: 𝑣𝑡 represents the vehicle position, 𝑖𝑡
represents the road incident, 𝑦𝑡 represents the automated vehi-
cle’s capability of safely handling the incident, and 𝑢𝑡 is a partially
observable variable representing human’s trust in the automated
vehicle (because trust is a hidden human mental state that cannot
be directly observed by the vehicle agent). We factor the action
𝑎𝑡 at time 𝑡 into two variables: the vehicle route choice 𝑐𝑡 and the
human’s takeover decision ℎ𝑡 . Given the vehicle’s current position
𝑣𝑡 and the route choice action 𝑐𝑡 , we can determine the next vehicle
position 𝑣𝑡+1 by the transition functionT (𝑣𝑡+1 |𝑣𝑡 , 𝑐𝑡 ). The potential
incident 𝑖𝑡 that the vehicle may encounter is determined by the vehi-
cle position with probability T (𝑖𝑡 |𝑣𝑡 ), and the automated vehicle’s
capability of safely handling the incident 𝑖𝑡 is given by T (𝑦𝑡 |𝑖𝑡 ).
As discussed in Section 2, trust in automation can be influenced by
many factors. Here, we model the evolution of trust dynamics with
a probabilistic transition function T (𝑢𝑡+1 |𝑢𝑡 , 𝑦𝑡 , 𝑖𝑡 , ℎ𝑡 ), based on a

simplified assumption that trust evolves depending on the takeover
decision and the vehicle’s capability of handling an incident. The
intuition is that trust may increase when the human chooses to
not take over and witnesses the automated vehicle successfully
handling an incident, and the trust may decrease if the automated
vehicle fails to handle an incident.

The vehicle agent does not know about human’s actual takeover
action in advance, and it computes the optimal POMDP policy 𝜋∗
of route choices 𝑐𝑡 based on a model that predicts human’s takeover
decision ℎ𝑡 . We consider two different takeover decision models for
comparison: (1) trust-free model, denoted by 𝜋ℎ (ℎ𝑡 |𝑖𝑡 , 𝑦𝑡 ), where
human decides whether to takeover depending on the incident
and a fixed belief on the automated vehicle’s capability to handle
certain types of incidents; and (2) trust-based model, denoted by
𝜋ℎ (ℎ𝑡 |𝑖𝑡 , 𝑦𝑡 , 𝑢𝑡 ), where human make takeover decisions based on
the incident and trust, indicating that human’s belief on the au-
tomated vehicle’s capability changes over time depending on the
trust dynamics.

Considering the motivating example described in Section 3. The
vehicle position 𝑣𝑡 is one of the locations {𝐴, 𝐵, . . . , 𝐾} shown in
the map (Figure 1). The incident 𝑖𝑡 can take one of the four values:
null, pedestrian, obstacle, and truck. The vehicle’s capability 𝑦𝑡 of
handling incidents has binary outcomes: success, and failure. Since
human’s trust is a partially observable variable 𝑢𝑡 representing the
hidden mental state, we use an observation variable 𝑢𝑡 to represent
the subjective trust in a 7-point Likert scale (1 and 7 indicate the
lowest and highest levels of trust, respectively) measured via user
questionnaires. The available route choices 𝑐𝑡 are given by the map.
For example, in location 𝐴, the vehicle may choose one of the three
routes colored in yellow, red and green to navigate to 𝐵, 𝐶 and 𝐷 ,
respectively. The human takeover decision ℎ𝑡 is a binary choice of
whether or not to take over control of the vehicle and resume man-
ual driving. We can define the transition functions T (𝑣𝑡+1 |𝑣𝑡 , 𝑐𝑡 )
and T (𝑖𝑡 |𝑣𝑡 ) based on the map. We can estimate T (𝑦𝑡 |𝑖𝑡 ) based on
the historical testing logs of the automated vehicle safely handling
incidents. For the motivating example, we assume that the auto-
mated vehicle can always safely handle incidents (but the human
driver has no prior knowledge about this assumption).

We design a reward function shown in Table 1 for the motivating
example. Intuitively, we want to reward for better safety and user
experience of automated vehicles. If the automated vehicle handles
an incident successfully, we assign positive rewards based on the
difficulty of driving tasks. When approaching a pedestrian incident,
the automated vehicle needs to stop before the crosswalk and wait
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Figure 4: Screenshots of driving videos used in the online user study, covering three types of incidents: (a) a pedestrian crossing
the road, (b) an obstacle (a stopped truck) ahead of the lane, (c) an oncoming truck in the neighboring lane. Each sub-figure
shows: (top) the driver’s view when the automated vehicle is approaching the incident, (middle) the view of autonomous
driving if the driver chooses to not take over, (bottom) the view of manual driving if the driver chooses to take over.

Table 1: Reward function for the motivating example

Pedestrian Obstacle Truck
Autopilot (Success) 3 2 1
Autopilot (Failure) -9 -6 0
Manual driving 0 0 0

until the pedestrian crossing the road. When approaching an obsta-
cle incident, the automated vehicle needs to perform lane changing
in order to avoid collision with the obstacle. When there is an on-
coming truck in the neighboring lane, the automated vehicle needs
to keep driving in the same lane. Thus, we rank the pedestrian
incident as the most difficult task and assign the highest reward
value of 3, followed by the obstacle incident with a reward value
of 2 and the truck incident with a reward value of 1. On the other
hand, if the automated vehicle fails to handle an incident safely,
we assign rewards based on the severity of incidents (e.g., striking
a pedestrian can cause more serious damages than colliding with
an obstacle). We assign zero reward to manual driving, because
we want to promote better user experience and let the driver to
enjoy non-driving tasks (e.g., reading or using mobile devices) in
the automated vehicle. In addition, we assign a reward value of 5 to

empty road (i.e., no incident thus no failure or takeover) to indicate
this as the most favorable choice.

For the rest of this section, we describe the design of an online
user study for data collection in Section 4.2; we present a data-
driven method to estimate trust dynamics T (𝑢𝑡+1 |𝑢𝑡 , 𝑦𝑡 , 𝑖𝑡 , ℎ𝑡 ) and
the observation function 𝛿 (𝑢𝑡 |𝑢𝑡 ) in Section 4.3; we describe the
data-driven modeling of trust-free takeover decision 𝜋ℎ (ℎ𝑡 |𝑖𝑡 , 𝑦𝑡 )
and the trust-based takeover decision 𝜋ℎ (ℎ𝑡 |𝑖𝑡 , 𝑦𝑡 , 𝑢𝑡 ) in Section 4.4;
and finally, we apply the proposed approach to the motivating
example and present the computed optimal routes in Section 4.5.

4.2 Online User Study for Data Collection
We designed and conducted an online user study1 with 100 anony-
mous participants on the Amazon Mechanical Turk platform. The
objective of this study is to collect data about human’s trust on
automated vehicles. In particular, we investigated how trust evolves
with respect to different incidents on the road and how human’s
takeover decisions are affected by incidents and trust. We created
a set of driving videos using the PreScan driving simulation soft-
ware [1]. Figure 4 shows the screenshots of example videos covering
three types of incidents (i.e., pedestrian, obstacle, and oncoming
truck) used in the motivating example.
1This study was approved by the Institutional Review Board at the University of
Virginia.
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During the online user study, we first established the baseline
by asking participants about their trust in automated vehicles in a
7-point Likert scale (i.e., trust ranges from 1 to 7). Then, we showed
a video of the automated vehicle approaching an incident on the
road from the driver’s view, and asked participants if they would
like to takeover control of the vehicle and switch to manual driving,
imaging that they were the driver siting inside the automated vehi-
cle. Depending on the participant’s response of takeover or not, we
showed the next video of either the vehicle is driven autonomously
or manually to handle the incident. After that, we asked partici-
pants to fill in a questionnaire which estimates their updated trust
in automated vehicle. We adapted the Muir’s questionnaire [37]
and asked participants to answer the following questions in 7-point
Likert scale:

(1) To what extent can you predict the automated vehicle’s be-
havior from moment to moment?

(2) To what extent can you count on the automated vehicle to
do its job?

(3) What degree of faith do you have that the automated vehicle
will be able to cope with similar incidents in the future?

(4) Overall how much do you trust the automated vehicle?
We averaged a participant’s responses to these four questions into a
single rating between 1 and 7 to represent the participant’s updated
trust. We repeated the above process nine times (three times per
incident type) with a randomized order of incidents.

We did not include any vehicle crash video in this study, because
we assume that the automated vehicle is capable of handling all
incidents safely. For example, the vehicle would automatically stop
and wait for the pedestrian to cross the lane, or change the lane
to avoid the obstacle. However, participants are not aware of such
information in advance. They make takeover decisions based on
their trust beliefs about the automated vehicle’s capability to safely
handle certain incident, and the trust levels may change based on
their experience of watching prior incident videos.

The data we collected from each participant has the following
format: D = {𝑢0, 𝑖0, ℎ0, 𝑢1, . . . , 𝑖8, ℎ8, 𝑢9}, where 𝑢𝑡 is the measured
user trust, 𝑖𝑡 is the incident type, ℎ𝑡 is the user decision of takeover
or not, at each time step 𝑡 . In order to guarantee the data quality, our
study recruitment criteria required that participants must be able
to read English fluently and have an above 95% approval rate on
the Amazon Mechanical Turk platform. We also inserted questions
for attention checks during the user study.

4.3 Data-Driven Trust Dynamics Model
As described in Section 4.1, the proposed POMDP framework for
trust-based route planning represents human trust as a partially
observable variable 𝑢𝑡 at time step 𝑡 , which evolves to 𝑢𝑡+1 over
time depending on human’s takeover decisionℎ𝑡 and the automated
vehicle’s capability𝑦𝑡 to handle incident 𝑖𝑡 . Using the data collected
from the online user study described in Section 4.2, we model the
trust dynamics and the POMDP observation function as a linear
Gaussian system:

T (𝑢𝑡+1 |𝑢𝑡 , 𝑦𝑡 , 𝑖𝑡 , ℎ𝑡 ) = N(𝛼𝑡𝑢𝑡 + 𝛽𝑡 , 𝜎2𝑡 )

𝑢𝑡 ∼ N(𝑢𝑡 , 𝜎2𝑢 )

Figure 5: Visualization of probabilistic transition matrices
of the learned trust dynamics model, where 𝑢𝑡 and 𝑢𝑡+1 are
shown as trust before and trust after values ranging from 1
to 7, and each matrix corresponds to a pair of incident and
takeover decision.

whereN(𝜇, 𝜎2) represents the Gaussian distribution with the mean
𝜇 and the variance 𝜎 ; 𝛼𝑡 and 𝛽𝑡 are linear coefficients of trust
dynamics given 𝑦𝑡 , 𝑖𝑡 and ℎ𝑡 ; and 𝑢𝑡 represents the observations
of trust measured via subjective questionnaires in the online user
study. We estimate these parameter values using full Bayesian
inference with Hamiltonian Monte Carlo sampling algorithm [15].

Figure 5 illustrates a visualization of the learned trust dynamics
model. There are six probabilistic transition matrices, correspond-
ing to all combinations of three road incidents and binary human
takeover decisions. Each transition matrix indicates the probability
of changing from 𝑢𝑡 (trust before value) to 𝑢𝑡+1 (trust after value).
We observe that trust values are more likely to increase when hu-
man decides to not take over (top row of Figure 5), while trust
values tend to be constant or decrease when there is a takeover de-
cision (bottom row of Figure 5). These observations are consistent
with the insight from the prior studies (see Section 2) that takeover
decisions are often correlated to trust.

4.4 Data-Driven Takeover Decision Models
In the POMDP framework, we use the variableℎ𝑡 to denote human’s
takeover decisions (i.e., whether or not to take over control of
the vehicle) when approaching an incident 𝑖𝑡 at time step 𝑡 . Such
takeover decisions may also be influenced by human trust 𝑢𝑡 . In
the following, we present two takeover decision models based on
whether or not to consider trust as an influencing factor.
Trust-free takeover decision model. Let 𝑏𝑖 denote human’s be-
lief on the automated vehicle’s capability of safely handling an
incident 𝑖 , which remains constant in the trust-free model. Let 𝑝𝑡
denote the probability of human deciding to not take over at time
step 𝑡 . We define 𝑝𝑡 = S(𝑏𝑖𝑟 s,𝑖 + (1 − 𝑏𝑖 )𝑟 f,𝑖 ), where S(𝑥) = 1

1+𝑒−𝑥
is the sigmoid function, 𝑟 s,𝑖 and 𝑟 f,𝑖 are rewards of the automated
vehicle handling the incident 𝑖 with success and failure (see Table 1),
respectively. We model the takeover decision with a Bernoulli dis-
tribution, denoted by ℎ𝑡 ∼ B(𝑝𝑡 ).
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Figure 6: Predictions of takeover likelihood with respect
to trust and incidents, using trust-based and trust-free
takeover decision models.

Trust-based takeover decision model. Let 𝑏𝑖𝑡 denote human’s
belief on the automated vehicle’s capability of safely handling an
incident 𝑖 at time step 𝑡 , which evolves over time depending on the
human trust𝑢𝑡 . Thus, wemodel the belief as a sigmoid function𝑏𝑖𝑡 =
S(𝜅𝑖𝑢𝑡 +𝜆𝑖 ), where 𝜅𝑖 and 𝜆𝑖 are linear coefficients associated with
the incident 𝑖 .We assume that the human trust𝑢𝑡 follows a Gaussian
distribution, denoted by 𝑢𝑡 ∼ N(𝑢𝑡 , 𝜎2𝑢 ) where 𝑢𝑡 are the measured
trust values from the online user study. We define the probability
of human deciding to not takeover as 𝑝𝑡 = S(𝑏𝑖𝑡𝑟 s,𝑖 + (1 − 𝑏𝑖𝑡 )𝑟 f,𝑖 ),
which is defined similarly to the trust-free model, but using the
dynamic belief 𝑏𝑖𝑡 instead of the constant 𝑏𝑖 . Finally, the takeover
decision is given by the Bernoulli distribution ℎ𝑡 ∼ B(𝑝𝑡 ).
Data-driven modeling results.We applied the full Bayesian in-
ference with Hamiltonian Monte Carlo sampling algorithm [15] to
estimate parameters in both the trust-free and trust-based models,
using the data collected from the online user study. The results of
log-likelihood show that the trust-based model (-359.37) fits bet-
ter to the collected data as opposed to trust-free model (-446.83).
The difference in log-likelihood results shows that accounting for
trust in the takeover decision model can achieve better prediction
performance, which supports our assumption that human takeover
decisions is influenced by trust. Figure 6 shows model predictions
of takeover probability with respect to trust and incidents. With the
trust-free model, since the takeover decision does not depend on hu-
man trust, we observe three straight lines for three incidents. With
the trust-based model, we observe the general trends of decreas-
ing takeover likelihood with increasing trust, which are consistent
with findings in the prior studies (see Section 2). Furthermore, we
observe from the results of both models that it is more likely for
human to decide to take over with riskier incidents: pedestrian with
the highest takeover probability, followed by obstacle and truck.

4.5 Planning for the Motivating Example
We applied the Approximate POMDP Planning (APPL) Toolkit [2],
which is an implementation of the point-based SARSOP algorithm
for efficient POMDP planning [31], to compute the optimal policies
of the proposed POMDP framework. For the motivating example,

Figure 7: Driving simulator setup. The top zoomed-in view
shows the GUI displaying the driver’s current trust value,
along with other information such as driving mode, veloc-
ity, gear, incident alarm, vehicle action. The bottom zoomed-
in view shows the steering wheel with buttons for takeover
commands and user trust input.

depending on the use of trust-based and trust-free takeover decision
models, we obtained two optimal routes:

• trust-based route: A-D-G-J-K
• trust-free route: A-C-E-H-K

Note that the main difference between these two routes is the order
of road incidents. In the trust-based route, the ordered incidents
occurring in each road segment are oncoming truck (A-D), null (D-
G), obstacle (G-J), and pedestrian (J-K). In the trust-free route, the
incidents follows the order of pedestrian (A-C), null (C-E), obstacle
(E-H), and oncoming truck (H-K). We evaluate and compare the
performance of these two routes via human subject experiments2
on a driving simulator, as described in the next section.

5 DRIVING SIMULATOR EXPERIMENTS
We describe the design, procedure, and results of our driving simu-
lator experiments as follows.

5.1 Experiment Design
Apparatus. Figure 7 shows the driving simulator setup used for the
experiments. The hardware platform is based on the Force Dynam-
ics 401CR driving simulator, which is a four-axis motion platform
that tilts and rotates to simulate the experience of being in a vehicle.
The platform includes the seat, interlocked seat belt, interlocked
doors, display screen, steering wheel, brake, paddle shifters, and
throttle. There are two buttons mounted on the steering wheel (bot-
tom zoomed-in view in Figure 7). We programmed the simulator’s
control input such that the driver can switch between automated
and manual driving by pressing the two buttons simultaneously. In
addition, we used the same set of buttons to measure participants’
trust in automated vehicles during the experiments. The driver can

2This human subject study was approved by the Institutional Review Board at the
University of Virginia.
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press the left (resp. right) button to decrease (resp. increase) the
trust value ranging from 1 to 7.
Driving scenario. We created a driving scenario based on the
motivating example described in Section 3, using the PreScan driv-
ing simulation software [1]. We also programmed an autopilot
controller for the simulated automated vehicle, which has the ca-
pability of leveraging the integrated sensors (e.g., radar, Lidar, and
GPS) in PreScan for various driving tasks such as lane keeping,
detecting and handling incidents.
Manipulated factor.We manipulate a single factor: the route that
the autopilot controller follows. As stated in Section 4.5, the two
conditions are: trust-based route and trust-free route.
Dependent measures. We are interested in studying the route
which brings more cumulative reward. We recorded the partici-
pants’ takeover decisions and calculated the cumulative POMDP
reward using the reward function defined in Table 1.
Hypothesis. We hypothesize that participants taking the trust-
based route can obtain higher cumulative POMDP rewards than
those taking the trust-free route.
Subject allocation.We recruited 22 participants (average age: 23.7
years, SD=4.3 years, 31.8% female) from the university community.
Each participant was compensated with a $20 gift card for com-
pleting the experiment. The recruitment criteria required all par-
ticipants to have a valid driver license, at least one year of driving
experience, and normal or corrected-to-normal vision. To avoid
participants’ bias, we adopted a between-subject study design: we
randomly allocated 11 participants to take the trust-based route
and the other 11 participants to experience the trust-free route.

5.2 Experiment Procedure
Upon arrival, a participant was instructed to read and sign a consent
form approved by the Institutional Review Board. We conducted a
five-minute training to help the participant get familiar with the
driving simulator setup. Then, the participant was instructed to
drive through the trust-based or trust-free route with the simu-
lated automated vehicle, depending on the assigned study group.
The journey started in the autopilot mode. When the vehicle ap-
proached an incident (i.e., pedestrian, obstacle, or truck), it alerted
the participant by issuing an auditory alarm and displaying textual
information about the incident type in the GUI. If the participant
decided to not takeover, the vehicle would continue in the autopilot
mode to handle the incident. The participant can take over control
of the vehicle and switch to manual driving at any point during
the experiment. If the participant did takeover, he was required to
switch back to the autopilot mode after the vehicle passing that
incident. We asked the participant to periodically record their trust
in the automated vehicle using the buttons on the steering wheel
(see bottom left in Figure 7). After the driving session, we asked
the participant to answer the following survey questions in 7-point
Likert scale (1 means strongly disagree, 4 is neural, 7 means strongly
agree).

Q1 I believe that the automated vehicle can get me to the desti-
nation safely.

Q2 I find the route easy to drive.
Q3 I find it easy to take over control of the automated vehicle.

Figure 8: The cumulative rewards of participants taking
trust-based and trust-free routes.

Figure 9: Participants’ average takeover likelihoodwhen the
vehicle approaching different incidents in the trust-based
and trust-free routes.

Q4 I have concern about using the automated vehicle to drive
through this route.

Q5 I believe that the selected route is not dangerous.
Q6 I think the selected route fits well with the way I would like

to drive.
Q7 I can depend on the reliability of the automated vehicle.

It took about 40 minutes for each participant to complete the entire
experiment.

5.3 Results
We calculated the cumulative POMDP rewards (using the reward
function defined in Table 1) for each participant, based on their
takeover decisions when approaching incidents along the route.
Figure 8 shows the box plot of cumulative rewards of all participants.
We observe that participants taking the trust-based route tend to
achieve higher cumulative rewards than participants taking the
trust-free route, which is consistent with our study hypothesis. We
also performed one-way analysis of variance (ANOVA) to evaluate
this hypothesis, i.e, comparing the observed 𝐹 -test statistics with
𝐹 (𝑑1, 𝑑2) (𝐹 -distribution with between-group degree of freedom 𝑑1
and within-group degree of freedom 𝑑2). The observed statistics
𝐹 (1, 20) = 9.14 is greater than the critical value at significance level
0.01. Thus, our study hypothesis is supported by ANOVA results
statistically.

Figure 9 shows the average takeover likelihood of all participants,
for different incidents along the two routes. It is not surprising to
find that participants are more likely to take over in the trust-free
route than the trust-based route.With both routes, participants have
higher probabilities to take over when approaching a pedestrian
than an obstacle, while none of them choose to take over the control
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Figure 10: The evolution of participants’ average trust along
the trust-based and trust-free route. (The shadow represents
the 95% confidence interval.)

Figure 11: After-driving survey results. (Each box plot shows
the maximum, the first quartile, the median, the third quar-
tile, and the minimum. Each dot represents an outlier.)

when there was an oncoming truck in the neighboring lane. A
possible explanation is that participants are more likely to take over
when approaching incidents that are more challenging to handle or
can cause more severe damages. These trends are consistent with
the takeover predictions computed using the online user study data
(see Figure 6).

Figure 10 shows how participants’ average trust in the automated
vehicle evolves as they were driving through different locations
along the two routes. For the trust-based route, we observe that the
average trust increases in the route segment A-D, this may result
from the automated vehicle successfully handling the incident of
oncoming truck in this segment. The trust continues to increase
in the segment D-G, which is an empty road without any incident.
However, the trust decreases in the next segment G-J where the
vehicle needs to change lane to avoid an obstacle, and the trust
further decreases in the last segment J-K where the vehicle needs to
stop and wait for a pedestrian to cross the road. The decreasing of
average trust may be explained by the occurring of more challeng-
ing and riskier incidents. For the trust-free route, we observe that
the average trust drops sharply in the first route segment A-C with
an pedestrian incident. However, the trust continues to increase
slowly for the rest of the route. The average trust of participants
taking the trust-based route is generally higher than taking the
trust-free route.

Figure 11 summarizes the participants’ responses to the after-
driving survey questions. The results of Q1 indicate that partici-
pants experienced the trust-based route had higher belief in the

automated vehicle’s capability of driving safely than participants
experienced the trust-free route. The results of Q2 show that partic-
ipants found the trust-based route easier to drive than the trust-free
route. The results of Q3 illustrate that participants driving through
the trust-based route found it easier to take over control of the vehi-
cle than those driving through the trust-free route. The results of Q4
show that participants experienced the trust-based route had less
concern about the automated vehicle than those experienced the
trust-free route. The results of Q5 indicate that participants tended
to have a neutral opinion about how dangerous the routes are. The
results of Q6 show that participants thought the trust-based route
fits to the way they would like to drive better than the trust-free
route in general. The results of Q7 find that participants driving
through the trust-based route perceived higher reliability of the
automated vehicle than those experienced the trust-free route. In
summary, our human subject experimental results show that

• Participants taking the trust-based route generally resulted
in higher cumulative POMDP rewards (where the reward
function was designed to promote better safety and user
experience of automated vehicles) than those taking the
trust-free route.

• Participants were more likely to take over in the trust-free
route than in the trust-based route; and riskier incidents led
to higher takeover likelihood.

• Participants’ trust in the automated vehicle evolved over
time during the driving experience and was influenced by
different types of incidents.

• Participants experienced the trust-based route had more
positive responses in the after-driving survey than those
driving through the trust-free route.

6 CONCLUSION
In this paper, we present a trust-based route planning approach for
automated vehicles. We model the human-vehicle interaction as a
POMDP and compute optimal routes for the vehicle by solving the
POMDP planning. In order to incorporate trust into the route plan-
ning, we build data-driven models of trust dynamics and takeover
decisions using data collected from an online user study with 100
participants on the Amazon Mechanical Turk platform. We applied
the proposed trust-based route planning approach to a motivating
example and obtained a trust-based route and a trust-free route (as a
baseline for comparison). We evaluated these two routes via human
subject experiments with 22 participants on a driving simulator.
The results show that participants taking the trust-based route
generally resulted in higher cumulative POMDP rewards (where
the reward function was designed to promote better safety and
user experience of automated vehicles), were less likely to take
over control of the vehicle, and reported more positive responses
in the after-driving survey than those taking the trust-free route.
In addition, we observed that participants’ trust changed over time
during the study and was influenced by different road incidents.
These observations are consistent with the findings of prior studies.

This work makes the first step towards incorporating human
trust into route planning for automated vehicles. There are a few
directions for future work. First, we would like to evaluate the
scalability of the proposed approach. We believe that the proposed
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POMDP-based approach can be applied to larger route planning
problems (e.g., larger maps, more locations, and more route choices).
However, the bottleneck lies in the evaluation. We will need to de-
sign and conduct new human subject experiments to evaluate the
resulting routes of each problem, which can be costly and time
consuming. Second, we would like to consider a richer set of inci-
dent types to reflect the complex road conditions that automated
vehicles may encounter in the real-world. We will need to design
and conduct new online user studies to collect data about trust
in the automated vehicle’s capability of safely handling these new
incident types and build new data-driven trust dynamics model. Fur-
thermore, we would like to explore the POMDP modeling of other
factors that may influence human’s trust in automated vehicles,
such as the system transparency and predictability.
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