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Figure 1: ProtoSound is a technique to customize a sound recognition model using very few recordings, enabling the model to 
scale across contextual variations of sound (e.g., water fowing on a stainless steel vs. a porcelain sink) and support new user-
specifc sound classes (e.g., a piano). Images show some example sound categories that were trained and recognized during our 
feld evaluation using an experimental mobile app built of ProtoSound. See our supplementary video for details. 
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However, these tools use pre-trained, generic sound recognition 
models, which do not meet the diverse needs of DHH users. We 
introduce ProtoSound, an interactive system for customizing sound 
recognition models by recording a few examples, thereby enabling 
personalized and fne-grained categories. ProtoSound is motivated 
by prior work examining sound awareness needs of DHH people 
and by a survey we conducted with 472 DHH participants. To eval-
uate ProtoSound, we characterized performance on two real-world 
sound datasets, showing signifcant improvement over state-of-the-
art (e.g., +9.7% accuracy on the frst dataset). We then deployed 
ProtoSound’s end-user training and real-time recognition through 
a mobile application and recruited 19 hearing participants who 
listened to the real-world sounds and rated the accuracy across 
56 locations (e.g., homes, restaurants, parks). Results show that 
ProtoSound personalized the model on-device in real-time and ac-
curately learned sounds across diverse acoustic contexts. We close 
by discussing open challenges in personalizable sound recognition, 
including the need for better recording interfaces and algorithmic 
improvements. 
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1 INTRODUCTION 
Sound recognition can provide important information about the 
environment, human activity, and situational cues to people who 
are d/Deaf and hard of hearing (DHH) [5, 14, 23]. Recent advances 
in machine learning and signal processing have enabled automatic 
sound recognition—a feature now available on both major mobile 
platforms: Google Android [74] and Apple iOS [43]. However, prior 
sound recognition systems for DHH users [25, 26, 33] use generic 
models that are trained on large sound corpora and do not support 
end-user personalization—such as training on new sound categories 
(e.g., a new custom home appliance) or a specifc sound (e.g., my 
child’s voice or pet’s dog bark) [5, 14]. 

In this paper, we present ProtoSound, an interactive system that 
allows users to personalize a sound recognition engine by recording 
custom sounds (Figure 1 ). Unlike traditional data-intensive machine 
learning approaches, users can customize a model using only a few 
sample recordings (e.g., fve for each sound). While prior machine 
learning work (e.g., [58, 66]) has performed algorithmic experiments 
of “few-shot” sound recognition, we contribute the frst useable 
system by integrating user-centric features such as: (1) on-the-fy 

training for difcult-to-produce sounds (e.g., fre alarms, sirens) 
and (2) handling contextual soundscape variations (e.g., homes vs. 
outdoors). In contrast, traditional few-shot approaches require the 
full training set to be available beforehand [15, 60] and do not 
generalize well across contexts [8]. 

To guide ProtoSound’s evaluation, we conducted a large-scale 
survey with 472 DHH participants, which uncovered key personal-
ization preferences such as the minimum number of custom sounds 
to support and the maximum desired recording efort. We then used 
these insights to design three experiments: quantitative evaluations 
on two real-world datasets and a feld study. On a dataset of sounds 
recorded by hearing people in multiple contexts, ProtoSound out-
performed the best baseline model by a 9.7% accuracy margin (88.9% 
vs. 79.2%). The average accuracy (88.9%) was close to the ground 
truth obtained by manual human labeling (91.3%). On an additional 
dataset of sounds recorded by DHH people in and around their 
homes, ProtoSound’s average accuracy was 90.4%. In comparison, 
the dataset’s label accuracy rated by a hearing person was 94.5%. 

While the above results are promising, they do not refect an 
actual system use. Thus, we deployed ProtoSound’s end-user train-
ing and real-time recognition through a mobile application and 
conducted a feld evaluation with 19 hearing participants—to our 
knowledge, the frst evaluation of few-shot sound recognition in 
the feld. While our ultimate goal is a long-term study with DHH 
users, demonstrating real-world efcacy and improving the system 
is an important step before deployments with the target popula-
tion; hence, we recruited hearing users who could reliably listen to 
the real-world sounds and evaluate ProtoSound’s recognition accu-
racy. Results show that ProtoSound trained the model on-device 
through low end-user efort and accurately learned sounds in a 
range of acoustic environments (e.g., homes, restaurants, grocery 
store, parks, and streets). However, errors arose due to recording 
mistakes (e.g., incorrect labels, overlapping sounds), pointing to a 
need to develop better user interfaces in the future. 

In summary, our work contributes: (1) a real-time, personalized 
sound recognition system for DHH users, (2) results from a suite 
of evaluation experiments providing insight into the feasibility of 
few-shot sound recognition in the feld, (3) fndings from a large-
scale survey identifying personalization preferences of 472 DHH 
participants, and (4) two open-source artifacts: a Python-based im-
plementation of the ProtoSound pipeline deployable to any device, 
and an Android-specifc on-device implementation. 

2 BACKGROUND AND RELATED WORK 
We provide background on and contextualize our work within 
sound awareness needs and systems for DHH users, acoustic signal 
processing algorithms, and relevant machine learning approaches. 

2.1 Sound Awareness Needs of DHH users 
ProtoSound is informed by the diverse sound awareness needs of 
the DHH community. A person belonging to the DHH community 
may identify as Deaf (capital ‘D’), deaf (small ‘d’), or hard of hearing 
[6, 73]. Individuals who identify as Deaf follow an established set 
of norms, behaviors, and language (called ‘Deaf culture’ [6, 32, 
45]). In contrast, deaf or hard of hearing individuals connect to 
deafness audiologically and refrain from membership to a particular 
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community [6, 45]. These individuals do not have a distinct cultural 
identify of their own and may choose to interact with either Deaf 
or hearing people based on comfort. These cultural diferences may 
infuence sound awareness preferences. For example, two large-
scale surveys with DHH participants [5, 14] found that hard of 
hearing users may be more interested in some sounds (e.g., phone 
ringing, speech) than d/Deaf users. 

While accounting for diversity of preferences, prior work also 
highlights several general sound awareness needs among DHH 
people [5, 14, 24, 40]. For example, within the sound characteristics 
such as volume or duration, sound identity is the most desired, 
with all DHH sub-groups generally ranking urgent sounds (e.g., 
fre alarm, siren) as most important, followed by sounds indicating 
human activities (e.g., doorbell, footsteps) and appliance alerts (e.g., 
microwave beep, kettle boiling) [5, 14]. Additionally, the relevance 
of sound information may vary with social contexts (e.g., family vs. 
strangers) [14, 25] and physical locations (e.g., at home vs. while 
mobile) [5, 14, 20]. This points to the need for the DHH users to be 
able to personalize their sound awareness systems. 

2.2 Sound Awareness Systems for DHH users 
Commonly used technologies by DHH users include fashing door-
bells and vibratory wake-up alarms that provide visual and haptic 
alternatives to specifc auditory information. While useful for their 
specifc applications, these devices do not ofer a general alternative 
to environmental sounds. 

In pioneering work, Matthews et al. [40] built a desktop-based 
prototype that used sound visualizations (e.g., spectrograph, rings) 
to convey basic sound information (e.g., pitch, source location) in 
an ofce setting. The same team later developed a Personal Digi-
tal Assistant (PDA) app for DHH users to request human-assisted 
transcription of speech and non-speech sounds in the last 30 sec-
onds of audio [39]. More recent work aimed to provide broader 
sound recognition support with pre-trained deep-learning models 
[25, 26, 59]. For example, Sicong et al. [59] leveraged convolutional 
neural networks (CNNs) to build and evaluate a smartphone-based 
app that sensed and classifed nine environmental sounds (e.g., door 
knock, bell ringing). Jain et al. [25] conducted feld deployments of 
a smarthome sound awareness system that recognizes 19 sounds 
(e.g., microwave beeps, water running) in the homes of DHH users. 
Participants found the system useful for knowing about home ac-
tivities but expressed a desire to personalize the system to sounds 
specifc to their homes (e.g., children and pets). 

In terms of personalizable systems, Bragg et al. [5] developed a 
mobile app to recognize sounds that were recorded by DHH partic-
ipants in a user study. However, this preliminary Gaussian Mixture 
Model (GMM)-based approach classifed only two sounds in an 
ofce setting with limited accuracy, and is unlikely to represent 
varied use cases, sound, and environmental noise in the daily life of 
DHH users. Jain et al. [26] built a smartwatch-based sound recog-
nition app that allowed DHH end-users to flter notifcations for 
undesired sounds. This sound fltering, however, was performed 
on the interface after prediction from a generic model and did not 
support adding or modifying sound classes through user-provided 
recordings. In a user evaluation, participants found the app useful 

in general, but less accurate in noisy environments, and wanted to 
add custom sounds (e.g., footsteps). 

We build on the work above by examining a personalized sound 
recognition system that can support custom sounds in a diversity 
of contexts. 

2.3 Acoustic Signal Processing Algorithms 
Acoustic signal processing involves extracting meaningful informa-
tion from the time or frequency domain of an audio signal [7, 36]. 
Easy-to-compute information such as zero-crossing rate (ZCR), 
short-time energy (STE), and spectral fux (SF) [12, 44, 49, 52] per-
form reasonably well on clean sound fles, but fail to account for real-
world acoustic variations [36]. Thus, autoregression-based features 
(e.g., Linear Prediction Coefcients (LPCs) [38]) were developed 
to capture variations in speech and music. For sound recognition 
specifcally, cepstral features that model the human auditory system 
such as Mel-frequency cepstral coefcients (MFCCs) or Harmonic 
Cepstral Coefcient (HCC) [7, 11] are common. For example, in 
Bragg et al.’s work detailed above [5], MFCC features were fed to 
a GMM-based classifer. Lu et al. [35] trained a two-step classifer 
and used ZCR and SF features to distinguish pre-defned sound 
events (music, speech, and ambient noise) and MFCCs to identify 
new sounds. 

The above stationary features, while providing a good represen-
tation of psychoacoustic properties (e.g., loudness, pitch, timbre), do 
not model the temporal variation in real-world sounds. Hence, non-
stationary methods based on wavelets [10], sparse-representations 
[9], or power-spectrum [29] are often used in combination with 
stationary features to encode temporal variation on a frequency 
spectrum. Of these, deep-learning architectures have shown the 
most promise by modeling the subtleties and non-linearities in 
acoustic data, distinguishing a large variety of real-life sound events. 
ProtoSound uses a lightweight CNN model commonly used for im-
age classifcation on mobile devices [57], but fne-tuned on online 
sound efect libraries. 

2.4 Relevant Machine Learning Training 
Paradigms 

Traditional supervised training paradigms are useful for specifc 
tasks such as gunshot detection [16] or intruder alerts [3] but re-
quire a large amount of in-situ data to work in diverse contexts 
[15]. For more modest training set sizes, relevant machine learning 
approaches include transfer learning [63], a supervised training 
method that uses limited training examples to fne-tune a model 
previously trained on large datasets from a diferent domain (e.g., 
image classifcation). Likewise, co-training approaches [47, 64] use 
a small number of examples and a large unlabeled set to create 
a model with better classifcation performance. Our system uses 
meta learning [65], a learning approach that allows models to recog-
nize previously unseen classes or adapt to new environments with 
very few labelled training instances. This approach has recently 
been explored in many domains, including computer vision [15, 53], 
acoustic event detection [58, 66], and natural language processing 
[50, 72]. 

Most similar to our work is ListenLearner [68], which provides a 
platform for learning new classes through one-shot user labelling. 
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Figure 2: Our ProtoSound few-shot sound recognition pipeline. For the desired sound classes, users either record a few samples 
of sounds on their own or select from our online library of difcult-to-produce sounds (e.g., for fre alarms, sirens) (A). To 
accommodate contextual shifts, these sound samples are then mixed with the ambient soundspace of a place, leading to the 
support set (B). This support set is then fed into our pre-trained sound recognition model (C) to generate class prototypes, 
which is the representation of each sound class in the feature space (D). During prediction, a query sound is then compared 
with these stored class prototypes using a nearest neighbor distance metric (i.e., N-N classifer) (E). When our confdence 
threshold is passed (F), the nearest class is outputted as the prediction (G). 

ListenLearner starts with a pre-defned set of classes that it uses to 
learn representations of new sounds by recording a large number of 
samples and prompting the user for labelling (e.g., “what sound was 
that?”). However, this semi-supervised approach requires longitudi-
nal deployments for recording many samples, while our approach 
allows for quicker adaptation to new environments through fewer 
training examples. Furthermore, by prompting users for feedback 
at unspecifed times, ListenLearner assumes that users have domain 
knowledge (i.e., they can listen to and identify a recently occur-
ring sound)—an assumption that may not hold for DHH users. Our 
intentional recording approach may enable users to leverage vi-
sual and contextual cues for recording (e.g., by seeing that a faucet 
is turned on). Finally, unlike ProtoSound, ListenLearner does not 
support customizing existing classes (e.g., my dog vs. a generic 
dog). Acoustic distribution of sound classes may vary widely across 
acoustic contexts [37] and using existing class representations may 
not generalize well. 

3 THE PROTOSOUND SYSTEM 
ProtoSound is an interactive system for personalizing a sound recog-
nition model in real-time using few custom recordings. ProtoSound 
uses prototypical networks [60], one of the most efcient algo-
rithms for few-shot classifcation and extends the traditional train-
ing pipeline to incorporate user-centric features for real-world 
deployment—such as a technique to accommodate varying con-
texts of use, and a library of difcult-to-produce sounds preferred 
by DHH people. Throughout the design of ProtoSound, we worked 
with individuals of the DHH community, including the lead author 
who is DHH, and a co-author, who is an ASL interpreter. 

3.1 System Design 
ProtoSound’s sound-sensing pipeline involves two phases: model 
personalization and prediction. Model personalization includes per-
sonalizing the model from a set of user recordings (Figure 2B ). 
During this phase, log-mel spectrograms [22] of user recordings in a 
context, or samples from our library of difcult-to-produce sounds 
are fed into the model to extract feature embeddings (Figure 2C ) We 

use log-mel spectrogram input features since they have historically 
shown better performance than other alternatives (e.g., MFCCs) 
with CNN architectures [34]. The extracted embeddings for each 
class are averaged, resulting in class prototypes, which are repre-
sentations of each class in feature space (Figure 2D ). These class 
prototypes are used for predicting a new sound using a nearest-
neighbor classifer—that is, we output the class nearest to a query 
sample by calculating the Euclidean distance in the feature space 
(Figure 2E —G). In addition, to aid real-world use, ProtoSound con-
tains several user-centric features: context generalization, a library 
of difcult-to-produce sounds, and open-set classifcation. 

3.1.1 Context Generalization. Ideally, the users should record 
sounds for model personalization in each context. However, in real-
life, users may move across auditory contexts (e.g., inside homes 
to outdoors), and may reuse a model trained in one context in 
another—for example, a model trained on sounds such as water 
running in the home could also be used outdoors. Such context shift 
often introduces novel acoustics conditions (e.g., background noise, 
changing data distributions) and a model may not generalize well. 
This is particularly an issue with meta-learning approaches which 
tend to overft the model on context specifc data [58]. Cross-setting 
generalization methods increase the robustness of classifcation al-
gorithms by adapting them to a target context [19]. 

ProtoSound uses a custom, data-driven cross-setting general-
ization technique [19]: augmenting the samples procured from a 
source domain that the model was previously trained on (e.g., a 
home) with the ambient soundscape of the target domain (e.g., an 
outdoor location), using the following equation: 

Target sample = (1 − α) ∗source sample + α 
∗ (target soundscape − source soundscape) 

To determine α , we performed iterative experiments on two bench-
mark sound datasets (ESC-50 [51] and UrbanSound8k [56]) and 
selected an optimum value of 0.3. Although we chose a single α 
value to reduce the number of tunable parameters, it can be set to 
change based on a particular auditory context shift (e.g., homes-to-
outdoors may have a diferent value than outdoors-to-restaurant). 
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Note that while the soundscape may vary across samples recorded 
from one context, our context generalization scheme only needs 
an estimate of the background noise to determine the bounds of a 
feature space in a context. Beyond accommodating context shifts, 
cross-setting generalization could also help mitigate other possible 
acoustic variations, such as those caused by diferent recording 
devices (e.g., a model created on a laptop may be used on a phone). 

3.1.2 Existing Library of Dificult-to-Produce Sounds. ProtoSound 
requires sound recordings for personalization. However, in real-life, 
there may be sounds that are highly desired by DHH users but do 
not occur spontaneously for recording (e.g., fre alarms, sirens). To 
support training for these difcult-to-produce sounds, ProtoSound 
contains samples of 10 sound categories preferred by DHH people 
[5, 26] (e.g., fre/smoke alarms, babies crying, sirens, bird chirps), 
procured from a high-quality online library, FreeSound. These sound 
samples were manually cleaned (removing noise, deleting silences) 
by three hearing authors and are available in ProtoSound’s reposi-
tory. During training, these sounds are augmented with the ambient 
soundscape of the target domain. 

3.1.3 Open Set Classification. Most sound classifcation tools as-
sume a closed-set classifcation scenario, with a fxed set of pre-
defned classes to distinguish [1]. In real-world, however, the un-
derlying data distributions of soundscapes are often unknown and 
can change over time with new classes becoming relevant [1, 27]. 
To accommodate this issue, researchers have introduced open-set 
classifcation approaches (e.g., [42]), where an algorithm can also 
classify a given sound as “unknown”. ProtoSound uses the following 
open-set classifcation algorithm adapted from Júnior et al. [27]: 

Let d1 and d2 be the respective Euclidean distance of a query 
sample from the nearest and the second nearest class prototype in 
feature space. Then, we calculate the ratio: 

d1
R = 

d2 

If R is less than or equal to a specifed threshold T, the query sample 
is classifed as the same label as the nearest class. Otherwise, it is 
ignored. Following our internal experiments, we used a T value of 
0.6. 

In addition to the above algorithm, ProtoSound uses an end-
user tunable loudness threshold (default value: 45dB, equivalent to 
an AC hum). During prediction, any query with average loudness 
below this value is ignored. 

3.2 System Implementation 
3.2.1 Model Architecture and Pre-training. We implemented Proto-
Sound using a MobileNetV2 architecture [54]—a state-of-art CNN 
for mobile devices, measuring about 8MB. Past few-shot learning 
work (e.g., [55]) did not fnd improvements from using bigger net-
works like ResNets [60] due to the risk of overftting on sparse 
data [55, 59]. We pre-trained the model using a train set compiled 
from six online sound efect libraries—-Freesound [17], BBC [75], 
Network Sound [76], UPC [77], TUT [41] and TAU [2]—each of 
which provide a collection of high-quality, pre-labeled sounds. We 
selected sound categories for which we found more than 1000 clips, 
which included a total of 35 common sounds from diferent contexts 
(e.g., homes, urban, outdoors, see Table 1 ). Clips were downloaded, 

converted to a single format (16KHz, 16-bit, mono), and silences 
greater than one second were removed, resulting in 38.8 hours of 
sound data. 

We segmented each clip into one second audio segments and 
computed short-time Fourier Transforms using a 25ms sliding win-
dow and 10ms step size (frequency range from 20Hz to 8000Hz), 
which yielded a 96-length spectrogram. We then converted our 
linear spectrogram into a 64-bin log-scaled Mel spectrogram and 
generated a 100 X 64 input frame for every one second of audio. To 
these log-mel spectrograms, we applied Cepstral Mean and Vari-
ance Normalization (CMVN) [61] before inputting into the model. 
For training, we used a cross entropy loss function with an Adam 
optimizer [30]. 

3.2.2 Selection of the Prototypical Networks Algorithm. We selected 
prototypical networks as our base algorithm following our perfor-
mance comparison experiment with fve state-of-the-art few-shot 
learning approaches: MAML [15], FoMAML [15], Reptile [46], ANIL 
[54] and Prototypical Networks [60]. For our experiments, we used 
three benchmark sound datasets: AudioSet [18], ESC-50 [51], and 
UrbanSound8k [56]. Results refect past work [58, 66] with prototyp-
ical networks performing the best (avg. accuracy=95.6%) followed 
by ANIL (avg. accuracy= 93.4%), Reptile (avg. accuracy=91.7%), Fo-
MAML (avg. accuracy=90.8%), and MAML (avg. accuracy=90.6%). 
Prototypical Networks also had the lowest training time. 

3.2.3 Open-Source Release. For researchers and practitioners to 
build on our work, a PyTorch-based implementation of Proto-
Sound with our pre-trained MobileNetV2 model is available at 
https://github.com/makeabilitylab/ProtoSound. The code can sup-
port any number of classes and can run on any device with a Python 
interpreter. The sound samples can be supplied from live micro-
phone or fle input. For live prediction, our code samples the mi-
crophone at 16KHz and segments the input into 1-second bufers, 
which serve as query samples. 

4 SURVEY: PERSONALIZED SOUND 
RECOGNITION (472 DHH PEOPLE) 

While past studies have shown that personalized sound recognition 
is generally desired among DHH people [5, 25, 26], the specifc 
customization preferences are as yet unknown (e.g., how many 
custom sound classes are desired in a context, maximum recording 
efort users are willing to put). We conducted an online survey with 
DHH participants to better understand these preferences and to 
shape ProtoSound’s evaluation (e.g., the number of classes to use 
in our experiments). 

4.1 Participants 
We used Google surveys [78], which targets users of the Google 
Opinion Rewards Android app [79]. Due to our institutional policy, 
we could not ask about identity (e.g., deaf vs. Deaf) or hearing loss 
levels. Instead, we relied on a DHH assistive technology screener, 
and targeted respondents who indicated use of “TDD, TTY, or closed 
captions” (58% of the selected 472 participants), “Hearing aid” (19%), 
“Real-time captions (e.g., CART)” (29%), “Android Live Transcribe & 
Sound Notifcations” (18%), and/or “Other hearing assistive devices” 
(9%) in a survey question. 511 respondents satisfed this criterion, 

https://github.com/makeabilitylab/ProtoSound
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but we excluded 39 who misunderstood our survey (e.g., confused 
sound events with calendar notifcations) or provided invalid re-
sponses. The remaining 472 participants were adults (18 and older) 
across US states and territories with 55% men, 43% women, and 2% 
of unknown gender. All participants used Android smartphones 
and were compensated up to $1 USD. 

4.2 Survey Design 
The 10-question survey took about 3 minutes to complete (avg.=2 
min 47 s, SD=3 min 52 s) and asked about the use of the current 
Android sound recognition feature [74], its usefulness, interest in 
recording sounds for a future personalized system, and the number 
of sounds a personalized system should support. For the complete 
survey questionnaire, see Appendix A1. 

4.3 Results 
About 34% (162) of the 472 participants used Android sound recogni-
tion multiple times a week (22% used it daily). Of these weekly/daily 
users, 89% rated it useful (40%: extremely useful). Among the re-
maining 310 participants, the majority (71%) rated its usefulness as 
neutral and 24% indicated they were not aware of the feature. 

Participants were also able to select from a list of options for 
what prevented them from using sound recognition more frequently. 
Among the weekly/daily users, 81% were concerned about system 
accuracy (47%: too many notifcations, 17%: incorrectly recognized 
sounds, 22%: missed sounds, 18%: false alerts) and 33% felt that the 
recognition was too generic (21%: “might not recognize some sounds I 
care about”, 15%: “can’t select the sounds I want” ), pointing to a need 
for personalization. Indeed, 73% of the weekly/daily users indicated 
that they would be interested in recording sounds to personalize 
the system. 

When asked to select the minimal number of sounds a sound 
recognition technology needs to support in each context (e.g., 
kitchen, bedroom, restaurant) to be useful, a majority (74%) se-
lected 6 sounds or less (35%: 1-3, 39%: 4-6), indicating that a few 
medium-to-high priority sounds are desired in a location. 

In two open-ended questions, participants specifed how much 
efort (number of sounds and time) they were willing to spend 
on recording their personal sounds in each context (e.g., kitchen, 
bedroom). 71% were not willing to record more than 15 sounds and 
wanted to spend less than 25 minutes for each context. 

4.4 Discussion 
Our fndings suggest that nearly a third of our DHH participants 
use sound recognition multiple times a week and most of those 
users fnd it useful (89%). Our results also suggest that ProtoSound 
could increase usage and value with personalized models, and help 
users become aware of sounds that are specifc to them or their 
environment. The majority (74%) of our participants indicated that 
6 sounds or less could sufce in each context and expressed a desire 
to not spend signifcant recording time or efort. These fndings 
suggest that a few medium-to-high priority sounds could cover the 
needs of a majority of DHH users, and that a low-efort, few-shot 
experience is important. 

5 EXPERIMENT 1: ON REAL-WORLD SOUNDS 
COLLECTED BY HEARING RESEARCHERS 

Our frst experiment evaluated ProtoSound on sounds recorded by 
hearing researchers in real-world settings. 

5.1 Experimental Setup 
Test Dataset: Since commonly used ‘synthetic’ sound classifca-
tion benchmarks (e.g., ESC-50 [51], UrbanSound8k [56]) do not 
mimic the real-world conditions (e.g., background noise, overlap-
ping sounds), we created a ‘naturalistic’ test set by compiling 
datasets of real-life sound recordings from two prior HCI works 
[25, 26]. It contains samples for 22 common sounds preferred by 
DHH people [5, 24] and ambient soundscapes recorded by hearing 
researchers in a total of 21 locations (e.g., homes, university labs, 
lounges, parks, and urban streets) Thirteen sound classes also exist 
in the dataset used to pre-train the model; nine are new (Table 1 ). 
These recordings were converted to the same format as the train 
set (16KHz, mono), resulting in 4.5 hours of data. 

Tasks: In a meta-learning paradigm, a model successfully learns 
to learn [15] on a set of few-shot tasks sampled from a labelled 
dataset. Each meta-learning task [15] includes a support set, con-
taining a few examples for model training, and a query set, consist-
ing of examples for accuracy evaluation. In algorithmic terms, a 
meta-learning task is defned as: 

Given a support set of N classes (called N-way) and K-
samples for each class (called K-shot, where K is small, 
usually < 10), the aim is to classify samples on a query 
set along the N classes. 

For our experiments, we used the 5-way, 5-shot setting for two 
reasons. First, it aligns with past evaluations of generic-model sys-
tems [5, 25, 26] where DHH users found 3-5 medium-to-high pri-
ority sounds per context to be sufcient. Second, a low number 
of classes and samples per class will reduce the user’s recording 
time—in our survey, 74% participants desired six or fewer classes 
and 71% wanted to spend less than 25 minutes recording. 

Baseline Algorithms: Beyond evaluating our ProtoSound 
pipeline, we also compared its performance with two baseline ap-
proaches: the traditional prototypical networks pipeline [60], which 
is the current state-of-the-art in few-shot classifcation [58, 66] and 
a fully supervised method used in commercial systems [26, 43, 74]. 
For the supervised method, we pre-trained the model with our 
train set (Table 1 ). After pre-training, we replaced the last layer 
by a randomly initialized linear layer with output dimension of 5 
(number of ways) and fne-tuned on the test tasks described in our 
experiments below. 

5.2 Specifc Experiments and Results 
5.2.1 Overall Accuracy. To calculate the overall accuracy, we ran-
domly sampled 100 tasks from our real-life test set, each of batch 
size 100 containing 25 support samples (5 shot × 5 way) and 75 query 
samples (15 samples per way). After passing data through the model, 
we performed a clip-level prediction by aggregating the probabili-
ties for each second of data and outputting the most likely predic-
tion. On average, ProtoSound achieved 88.9% accuracy (SD=5.6%), 
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Table 1: Sound classes in our train (online libraries) and test (real-life recordings) sets. Bolded classes appear in both sets. 

Train dataset Test dataset 

Fire/smoke alarm, Alarm clock, Door knock, Typing, Door open/close, 
Vacuum cleaner, Toothbrush, Toilet fush, Water running, Hair dryer, Wood 
creak, Sawing, Hammering, Drilling, Dog bark, Cat meow, Cricket, Bird chirp, 
Engine idling, Vehicle running, Car horn, Footsteps, Breathing, Cough, Snore, 
Speech, Laugh, Clap, Wind, Train, Helicopter, Aircraft, Gunshot, Glass 
breaking, Fireworks 

Fire/smoke alarm, Alarm clock, Door knock, 
Doorbell, Door open/close, Microwave, Cutlery, 
Dishwasher, Water running, Kettle Whistle, Phone 
ringing, Washer/dryer, Dog bark, Cat meow, Bird 
Chirp, Baby crying, Vehicle running, Car horn, Siren, 
Cough, Snore, Speech 

Figure 3: (a) Context-specifc accuracies of ProtoSound and two state-of-the-art baseline approaches: prototypical networks 
and simple supervised fne-tuning. Error bars represent 95% confdence intervals. (b) Snapshot of a web-app we built to collect 
human labels on our real-life test set. 

which was signifcantly higher than the baselines: traditional pro-
totypical networks achieved 79.2% (9.7% less than ProtoSound, pair-
wise t-test was signifcant: t99=8.8, p<.001) and supervised fne-
tuning achieved 70.6% (18.3% less, t=15.7, p<.001). Improvement 
over supervised fne-tuning approach is expected since, unlike them, 
few-shot recognition approaches tend to work well with limited 
data [58]. Regarding the traditional prototypical networks—the 
state-of-the-art in few-shot recognition—ProtoSound performed 
better since it can better handle the soundscape variations (e.g., 
background noise) in each context, owning to our context gen-
eralization scheme. This is better demonstrated in the following 
context-specifc accuracy experiment. 

5.2.2 Context-Specific Accuracy. Our test set contains samples 
from three contexts: homes (kitchen, bedroom, and living room), of-
fces (university labs and lounge), and outdoors (parking lots, parks, 
and streets). As sound quality may vary across context, we also cal-
culated the context-specifc accuracies of ProtoSound and the two 
baselines. As expected, for all three approaches, the accuracy was 
higher in quiet environments of homes and ofces compared to out-
doors (Figure 3 a). However, the accuracy diference between quiet 
and noisy environments (homes vs. outdoors) was much lower for 
ProtoSound (3.6%) than the baselines (13.8% and 16.0% respectively), 
suggesting that ProtoSound can better generalize across contexts. 
Figure 4 shows the low-dimensional projections of embeddings 
obtained from the three approaches in an outdoor context. 

Note that we did not calculate per-class accuracies due to the 
limitation of the few-shot evaluation—each individual test includes 
a random combination of fve classes from our dataset. The accu-
racy of each class depends heavily on which other four classes are 

chosen for a specifc test (e.g., doorbells perform poorly with phone 
rings), hence aggregating class performance across multiple tests 
is counterintuitive. 

5.2.3 Comparison to Manual Labels. To obtain ground truth per-
formance, we recruited people to label our test set. Humans ofer 
an excellent gold standard as they can utilize contextual knowledge 
from a lifetime of real-world experiences. Similar to Ubicoustics [33], 
we created a web-app (Figure 3 b) that mimicked our ProtoSound 
model personalization and testing task. The app randomly sampled 
5 sounds and 20 samples for each sound from our test set (total 100 
samples) which were divided into support (25 samples) and query 
set (75 samples). 

We then recruited six hearing participants from our research 
group. Each participant listened to the support samples for “learn-
ing” and categorized the samples from the query set among the 5 
classes (Figure 3 b). Similar to our open-set classifcation approach, 
participants could also select an “unsure” option if they thought a 
sample did not belong to any of the listed classes. Each participant 
analyzed three batches, resulting in 6 participants × 3 batches × 75 
= 1350 evaluations. 

Average accuracy of participants’ labels was 91.3% (SD=4.8%). 
Participants revealed two factors that made it challenging to cor-
rectly classify some samples: (1) noise (e.g., silence, or too much 
background noise) and (2) interclass similarities—that is, sounds 
that were very similar (e.g., doorbells and phone rings). In compari-
son, our model achieved 92.9% average accuracy for the same setup 
(SD=4.3%), which is close to human performance; a paired t-test 
was not signifcant (t17=0.8, p=0.4). On further investigation, we 
found that, like humans, the errors were most prominent for similar 
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Figure 4: A visualization of t-SNE projections of embeddings obtained from ProtoSound and the two baselines: traditional pro-
totypical networks and supervised fne-tuning for samples of fve sounds in an outdoor context. Note that even for overlapping 
sounds “car horn” and “siren”, the clusters from ProtoSound are reasonably separated in contrast to the highly overlapping 
clusters of the two baselines. 

Figure 5: (a) DHH participants’ recorded sound class counts with examples. Note that many of these classes are highly specifc 
to participants’ use cases (e.g., ficking light switch, hearing aid whistle) and thus, require model personalization. (b) Proto-
Sound’s average accuracy for 3-class, 5-class, and 10-class evaluations on DHH participants’ recorded sounds. 

sounding events (e.g., alarm clock and phone ringing), which were 
often confused. 

6 EXPERIMENT 2: ON REAL-WORLD SOUNDS 
COLLECTED BY DHH PEOPLE 

While the experiment above was necessary to contextualize Pro-
toSound within prior work, the dataset was collected by hearing 
people and could lead to representation bias [67]. To combat this, 
we also evaluated ProtoSound’s performance on sounds recorded 
by DHH participants in a prior study [21]. 

This data was collected and labelled by 14 DHH participants in 
locations in and around their home over a one-week period (677 
recordings of 243 sound classes, avg. duration=11.5 s). To construct 
a dataset relevant to our evaluation, we chose participants that 
had recorded at least 10 classes and at least three recordings per 
class—resulting in nine participants (P1-P9). The samples were 
converted to 16Hz mono and silences greater than one second were 
removed. As this dataset was less balanced than in our experiment 
above, we could not perform similar granular experiments (e.g., 
context-specifc accuracies). 

Class counts per participant, including example classes, are 
shown in Figure 5 a. Many of the classes are highly personalized to 
participants’ use cases (e.g., ficking light switch, hearing aid whis-
tle) and indicate that a pre-trained model would not scale well for 
these individuals. Moreover, existing sound datasets do not contain 
the requisite samples for several of these classes (e.g., seatbelt alarm) 
to train a fully supervised model. These characteristics highlight 
the drawbacks of generic-model systems and reinforce the need for 
personalization. 

For our experiment, we evaluated three settings: 3-way (3 
classes), 5-way, and 10-way. We trained the model using one ran-
domly selected recording per class for each participant (equivalent 
to a real-world use case) and used a clip-level prediction. See Figure 
5 b for results. For the 5-way setting—the most desired by DHH 
people—the overall accuracy was 90.4% (SD=4.4%). In comparison, 
the accuracy of the dataset’s labels as rated by a hearing team mem-
ber was 94.5%. Per-participant accuracies and per-class accuracies 
for the lowest performing participant (P8) are shown in Figure 
6. Results were poor for participants P6, P7, and P8 due to two 
sources of errors: frst, similarity among some sound classes led to 
confusion (e.g., water draining in the bathtub vs. in a sink, laundry 
room fan vs. foor fan); second, some recordings did not appear to 
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Figure 6: (a) Average accuracy per DHH participant for the 5-way setting. (b) Accuracy per-class for the lowest performing 
case: P8. Note that ‘egg cooker” performed poorly due to user recording errors in some samples (missing sound). ‘Bathwater 
drain’ and ‘sink water drain’ performed poorly since they were very similar sounding and were confused with each other. 

contain the labeled sounds (e.g., egg cooker, car running for P8). 
More detailed analysis of user errors can be found in the original 
work [21]. 

We also compared performance with a supervised baseline, fnd-
ing a signifcant increase in accuracy: for a 5-way setting, the perfor-
mance diference was 19.7%, pairwise t-test yielded t=16.2, p<.001. 
Overall, our analysis showed ProtoSound has the potential to ac-
commodate a wide variety of sounds from our target population. 

7 EXPERIMENT 3: FIELD EVALUATION 
Our third evaluation was a feld study with 19 hearing participants. 
While our ultimate goal is a long-term evaluation with DHH users, 
demonstrating real-world efcacy and improving our pipeline is 
important before deployments with the target population. Thus, we 
deployed our ProtoSound technique through an interactive mobile 
application and recruited hearing participants who were able to 
evaluate the real-world performance by reliably listening to the 
sounds and providing feedback on recognition. To our knowledge, 
our study is the frst evaluation of few-shot sound recognition in 
the feld. 

7.1 ProtoSound Mobile Application 
Our Android-based smartphone app, shown in Figure 7 , contains 
an experimental user interface to enable hearing users to train 
and evaluate a sound recognition model using our ProtoSound 
technique. We restricted to a 5-way, 5-shot setting (5-classes and 
5-samples per class) in each location to reduce our participants’ 
recording time and efort, but ProtoSound can support any setting. 
Each location uses a separate sound recognition model; for training, 
users frst enter the name of a location (e.g., kitchen, restaurant) 
and then select the fve sound classes for recording in two ways: (1) 
by entering the name of their own custom sound (e.g., “dog bark”, 
“doorbell” in Figure 7 b), or (2) selecting a sound from a predefned 
list (e.g., “baby cry” in Figure 7 b). For each custom-defned sound, 
users record the fve required sound samples, each of one second du-
ration. Additionally, they can play back the recording and re-record 
to correct any errors. For a predefned sound, the app randomly 
selects fve samples from ProtoSound’s existing library of sounds 

(see Section 3.3.2). Finally, users record an ambient soundscape of 
the location and submit the samples for training (Figure 7 c). 

After training, the app saves the model, which can be used for 
evaluation at any time by opening the app and clicking on the 
evaluate tab (Figure 7 d). For evaluation, the app samples the audio 
every four seconds (an estimation of average length of all sounds 
from our test set) and outputs a prediction (Figure 7 e). 

Implementation. To preserve user privacy and support ofine 
use, the mobile app uses a pyTorch-mobile implementation of our 
ProtoSound pipeline and can run fully on-device. However, for the 
study specifcally, the app interfaced with a socket.io server located 
at our institution, and, with each recognized sound, it displayed 
a binary rating form (correct, incorrect) for users to evaluate the 
recognition accuracy. These ratings along with other study data 
(user recordings, system logs) were uploaded to the server for analy-
sis (and deleted after the analysis was complete). The entire app code 
is open sourced at https://github.com/makeabilitylab/ProtoSound. 

7.2 Participants 
We initially recruited 20 hearing participants through various social 
media platforms, but one quit early due to app installation issues. 
The remaining 19 participants (10 women, 9 men) were on average 
38.9 years old (SD=14.0, range=21-61), resided in 14 diferent US 
cities, and used an Android phone. Participants were compensated 
$35. 

7.3 Procedure 
The study was conducted remotely due to the COVID-19 pandemic. 
We emailed step-by-step instructions, with an option to ask for 
clarifcations through email, text message, or online chat. After a 
link to a short demographic questionnaire, the instructions outlined 
how to install the app, followed by a short usage tutorial. Then, the 
participants chose three locations in and outside their home for app 
evaluation, such that: (1) each location had at-least fve "naturally" 
occurring sounds and (2) at least one location was outdoors (e.g., 
parking garage, park). Participants completed the recording and 
the evaluation tasks for fve sounds in each chosen location. 

https://github.com/makeabilitylab/ProtoSound
https://socket.io
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Figure 7: User interface of our ProtoSound Android application. 

For the recording task, participants could choose a predefned 
sound or record samples for their own sound, although, to ensure 
that they do not rely heavily on the existing list, they were asked to 
defne at least one custom-defned sound in each location. During 
recording, the acoustic activity did not have to be naturally occur-
ring; participants could produce the sounds themselves (e.g., by 
deliberately knocking or turning a faucet on). This ensured high-
quality recordings since it may be difcult to get an isolated single 
class sound sample in real-life settings. To incorporate inter-class 
disparity, participants were also encouraged to add everyday varia-
tions in their recordings when possible (e.g., by recording diferent 
kinds of dog barks or vacuuming on diferent surfaces). 

For the evaluation, participants rated 100 app recognitions (by 
thumbing up or down, see Figure 7 e) in each location. Contrary to 
the recording task—where participants were allowed to produce the 
sounds themselves—the evaluations were performed in “natural” 
acoustic settings (e.g., during meal preparation for a kitchen loca-
tion, or during busy weekends in a park). Our criterion was that at 
least one of the fve sounds had to be spontaneously occurring in a 
location. The app saved the state and displayed a notifcation when 
100 ratings were complete. Participants could then end the test 
or optionally, rate a few more recognitions. The total evaluation 
time in a location was about 15 minutes, but it was not necessarily 
continuous—e.g., participants could evaluate for 5 minutes each dur-
ing breakfast, lunch, and dinner based on convenience and presence 
of natural acoustic activity. 

After completing all the three locations, participants completed a 
short questionnaire to provide open-ended feedback on their experi-
ence and document examples of any sounds that were consistently 
correctly/incorrectly recognized or missed altogether during their 
evaluations. 

7.4 Findings 
We detail our mobile app’s usage summary, ProtoSound’s overall 
and context specifc accuracy, sources of errors, and comparison to 
prior approaches. 

7.4.1 Usage summary. All participants completed three locations, 
except P4 who could not evaluate an outdoor location due to quar-
antine requirements, resulting in a total of 56 locations (5769 sample 
evaluations). Figure 8 a shows the locations with some example 
sounds. In homes, the common locations were kitchen, bedroom, 
and bathroom. Outdoors, participants selected parks, parking lots, 
and streets. Other locations included restaurants, cafes, and grocery 
stores. A total of 171 unique sound classes were recorded. 

The total recording time per context (including set-up time, con-
text switch time, and recording time for 25 samples of one sec-
ond duration each) was on average 10.2 minutes (SD=3.6 minutes, 
range=6.1-18.7 minutes). This falls safely below the suggested max-
imum recording time from our survey (25 minutes), confrming 
that ProtoSound requires low-efort end-user training. The average 
model training time (time between submitting samples and obtain-
ing a new model) on the users’ phones was 2.4 seconds (SD=0.9 
seconds, range=1.3-4.9 seconds), indicating that ProtoSound sup-
ports real-time on-device model personalization. The median total 
time gap between training and evaluation was 4.0 hours (IQR=12.8 
hours, range=0.1-30.9 hours) and the median total evaluation span 
was 5.4 hours (IQR=18.7 hours, range=0.2-51.6 hours). Since the 
evaluations could be discontinuous, 16/56 evaluations spanned mul-
tiple days. This open-ended discontinuous evaluation allowed us 
to study the real-world applicability of ProtoSound. 

7.4.2 Overall and context-specific accuracies. The average accuracy 
of our app across all locations was 87.4% (SD=6.3%). When compar-
ing locations, the accuracy was highest in Bedrooms (avg.=92.6%, 
SD=3.8%) and lowest in Restaurants (avg.=82.2%, SD=7.9%), poten-
tially due to diferences in noise levels and sound types. Figure 8 b 
shows location-specifc accuracies. 

Note that since participants only rated the sounds that were 
recognized by our app, our accuracy does not account for false 
negatives (i.e., any unrecognized sounds). Indeed, in the feedback 
form, most participants (14/19) self-reported examples of sounds 
that were sometimes missed by our app with two participants 
indicating examples of “frequently” missed sounds (keys jingling 
and bird chirp). At the same time, participants also indicated events 
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Figure 8: (a) Location for our feld evaluation with the participant counts and recorded sound examples, and (b) Accuracy of 
our mobile app in each location. Error bars = 95% confdence intervals (no CI shown for grocery since it only had one count). 

Figure 9: Mel-spectrograms of some similar sounding events that were confused with each other: knocking vs. chopping, barks 
of two diferent pet dogs, and kitchen vs. bathroom sink draining. Note the striking similarities in the spectrograms. 

that were consistently recognized correctly, such as microwave 
beeps, door knocks, furniture sliding, door open/close, dog barks, 
vehicle, cart rolling, and water running, many of which are desired 
by DHH people [5, 26]. 

7.4.3 Sources of Errors. To determine the sources of errors, we did 
manual analysis on user recorded samples (through listening, mak-
ing visualizations), fnding that about 10% of the samples contained 
user errors (this justifes ProtoSound’s 87.4% accuracy). Specifcally, 
we found two types of errors. First, a majority of these 10% samples 
did not contain the labelled sound or contained another sound of 
interest beyond the labeled sound, thus reducing accuracy. Second, 
in some cases, samples belonging into diferent sound categories 
were too similar (e.g., knocking and chopping, see Figure 9 ) and 
were understandably confused with each other. This points to the 
need to develop better user interfaces for recording and annotating 
sound samples. We return to this point in the Discussion. 

7.4.4 Efect of Pre-training and In-Situ Personalization. We also 
calculated the diference in performance between the sound cate-
gories that our model was pre-trained on (e.g., alarm clock, door 

knock in train set (Table 1 ), total 2613 samples) and the sounds 
that were “unseen” by the model (e.g., furniture sliding, children 
swinging, total 3156 samples). The average accuracy on pre-trained 
sound categories (91.6%, SD=4.7%) was higher than the new sounds 
(84.0%, SD=7.5%), suggesting that pre-training the model with the 
expected classes that a system may encounter in real-life will in-
crease accuracy 

For only the pre-trained sound classes, we also compared per-
formance with state-of-the-art sound recognition systems such as 
HomeSound [25], SoundWatch [26], and Ubicoustics [33], which use 
a generic pre-trained VGG16 model [22]. We trained this model 
on our trainset and evaluated on the feld samples, fnding that 
that the accuracy was signifcantly lower than ProtoSound (71.3%, 
a diference of 20.3%) a paired t-test yielded t29=9.1, p<.001. This 
indicates that, while allowing for new, personalized sound classes, 
in-situ few-shot customization also signifcantly improves accuracy 
on existing sound classes by accounting for contextual variations 
of sounds. 
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8 DISCUSSION 
In summary, our work makes contributions in the felds of hu-
man computer interaction (HCI) and machine learning (ML) felds. 
Within HCI, we contribute the frst personalizable sound recog-
nition system for DHH users. Prior sound recognition systems 
[25, 26, 59] use generic pre-trained models, which do not support: 
(1) sounds unique to a DHH person’s use case (e.g., children play-
ing), (2) variations of real-world sounds (e.g., my dog vs. a generic 
dog), and (3) sounds with insufcient samples in existing sound 
datasets to train generic models (e.g., footsteps). Our fndings show 
that ProtoSound can accommodate variations in existing classes 
and support a variety of new, personalized classes in a diversity of 
contexts through low-efort end-user training. 

Compared to prior ML work (e.g., [58, 66]) which only performed 
algorithmic experiments, we contribute the frst deployable few-
shot sound recognition system by incorporating several user-centric 
features in the traditional few-shot learning pipeline, such as: (1) 
on-the-fy training for difcult-to-produce sounds (e.g., fre alarms, 
sirens) and (2) generalization across contexts. Our experiments 
show that ProtoSound signifcantly outperforms the best state-of-
the-art few-shot baseline, yielding an accuracy improvement of 
9.7% on a dataset of real-life sounds. 

We also contribute fndings from a large-scale survey (472 DHH 
users) on personalized sound recognition, insights from the frst 
evaluation of few-shot sound recognition in the feld, as well as an 
open-source plug-and-play system code that can be deployed on 
any device and a specifc Android app implementation. Below we 
detail further implications of our work and state key limitations. 

8.1 Graphical User Interface 
Recording and annotation interface. Our work focused largely 
on building a backend pipeline for few-shot sound recognition. 
However, the user interface is equally important, especially for 
DHH users who may not be able to verify the contents of their 
recordings by listening to them—a challenge we observed in sam-
ples captured by DHH users. Thus, intuitive sound visualizations 
are essential for DHH users to better record and label their training 
samples. Spectrograms and waveform visualizations may be a good 
place to start; however, these low-dimensional features may not 
sufciently represent the sample’s quality [21]. Furthermore, our 
system expects sufcient separation among classes and enough vari-
ation among interclass samples. Failing to meet these requirements 
led to classifcation errors in our feld study, which we expect will 
increase more when DHH users are unable to recognize auditory 
similarities among sounds during the training process [21]. Thus, 
in a parallel project, our team is researching cause-and-efect visu-
alizations (e.g., showing cluster visualization of NN-classifer) with 
an aim to make end-users really understand how their recorded 
samples may shape the model. A well-designed user-interface may 
even further increase our system’s accuracy by improving training 
sample quality and reducing user errors. 

Human-in-the Loop applications. ProtoSound is an example 
of Human-in-the-Loop (HITL) systems, which leverage end-user 
input in the model building and refning pipeline to improve per-
formance [13, 55]. However, user agency in our pipeline is limited 
to providing training examples. The training process itself is still a 

black box. Through providing more information about the training 
pipeline (e.g., by visualizing intermediate model layers, showing 
measures of uncertainty in model prediction), we hope to support a 
greater user agency. Our pipeline can also be extended to incorpo-
rate reinforcement learning techniques [31] to gradually adapt the 
model by taking user feedback on the recognition output, for exam-
ple, using the user interface explored in ListenLearner [68]. Such 
techniques could capture even greater contextual and temporal 
variations of real-world acoustic events beyond that is accommo-
dated by limited samples in ProtoSound (e.g., varying cries of a 
baby or diferent piano notes). However, while DHH users may be 
able to validate this output in a familiar location (e.g., in a kitchen) 
with the help of visual cues, they may fnd it challenging to do in 
unpredictable contexts. 

8.2 Algorithmic Improvements 
Acoustic event detection. ProtoSound processes data frame-by-
frame using a fxed sampling window. While this worked for our 
purposes, sound classes vary considerably in length—from short-
lived (e.g., a gunshot) to longer events (e.g., thunder)—and selecting 
an optimal window is challenging. If the window is too small, long-
term variations may not be captured. Conversely, if the window is 
too long, detecting boundaries between consecutive sound events is 
difcult. Thus, future work should explore acoustic event detection 
techniques (e.g., sub-frame processing [28] or sequential learning 
[69]) to automatically segment real-life sound events. 

Collaborative learning. Another area of exploration is feder-
ated (or collaborative) learning [70], where multiple mobile devices 
collaboratively learn a shared model while keeping all training data 
local. This technique is useful for drastically improving model per-
formance without compromising user’s data privacy, such as in the 
Google Keyboard (GBoard) [71] where the gesture typing technique 
is improved over time by averaging locally personalized models 
collected from billions of users [80]. Our ProtoSound pipeline is 
well suited for this task since the generated low-resolution class-
prototypes from the model personalization process can be directly 
uploaded to the cloud, without compromising privacy. 

Simultaneous events. While ProtoSound only conveys the 
most probable sound, our pipeline can also be modifed to output 
multiple simultaneous events. Indeed, in past work [26], DHH users 
preferred the idea of showing multiple sound events in low con-
fdence situations. However, this could easily lead to information 
overload, so future systems need to be carefully designed. Similar-
ity detection techniques (e.g., [4]) can be used to group multiple 
similar events together (e.g., show “appliances” instead of “could be 
a microwave beep or a dishwasher”). Likewise, systems leveraging 
contextual information (e.g., location of deployment) can ignore 
some detected events in a similar way a human understands that a 
car honk is unlikely to originate from a kitchen. 

8.3 Socio-Cultural Implications 
Deaf culture. While our sound recognition technology is heavily 
informed by DHH perspectives and past work [25, 26], we do not 
assume it is universally desired or that it will necessarily work, 
as designed, for all users. Some DHH people may feel negatively 
towards this technology, especially those who identify as part of 
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the Deaf culture [6, 32]. However, our survey aligns with prior 
work [5, 14] and suggests that many DHH individuals fnd sound 
recognition valuable, and even more so if it is personalized. Such 
a tool can be constrained to detect only a small subset of sounds 
(e.g., a child’s cry) to provide essential situational awareness while 
otherwise avoiding the hearing world. Still, more work is needed 
with the DHH population to evaluate the accessibility of our system, 
given diverse preferences and interests. 

Privacy. To preserve privacy, our pipeline can run locally on de-
vices without the need to transmit audio data to the cloud. However, 
uploading data has other benefts such as using it for interactively 
improving the classifcation model. Our technique can also support 
privacy-preserving cloud-based computation since we compute 
low-resolution mel-spectrograms of input data, which, while read-
ily identifying speech, make the spoken content challenging to 
recover. 

8.4 Limitations 
Our work has the following primary limitations. 

Five-class setting. First, though ProtoSound can support any 
number of classes, for two of our three experiments, we used a 
fve-way (fve-class) implementation since this most closely resem-
bles what DHH people wanted in past work and in our survey. 
Specifcally, in evaluations of generic-model sound recognition sys-
tems [25, 26], DHH users enabled only 3-5 medium-to-high priority 
sound classes in each location to avoid being overwhelmed by no-
tifcations. Furthermore, we wanted our feld study participants 
to spend a minimum time recording. ProtoSound’s implementa-
tion is location-specifc—that is, users train a separate model for 
each location, which can be switched manually, or in the future, 
automatically through a location-aware design (e.g., [26]). Such an 
implementation can support, for example, 15-25 classes in a home 
by using a separate model for each room. Nevertheless, while few-
shot learning has not yet reached a stage to support more than a few 
classes [48, 62], ProtoSound (and its open-source implementation) 
can support any setting and we report on performance of diferent 
class sizes in our Experiment 2. We also encourage future work to 
experiment with larger class confgurations while using other ways 
to improve performance (e.g., by constraining to very specifc types 
of sounds, or increasing the number of training samples per class). 

Survey recruitment bias. Second, by relying on assistive tech-
nology use to identify DHH users (per institute policy), our online 
survey may have excluded participants who are less likely to use 
these technologies (e.g., sign language users). We, however, refer-
ence a past survey [14] which showed that more than 75% of those 
who preferred sign language were interested in sound recognition 
support. 

Dataset constraints. Third, we evaluated performance on a 
real-life dataset complied from two HCI works [25, 26] instead of 
standard machine learning benchmarks (e.g., ESC-50 [51], Urban-
Sound8k [56]) since these benchmarks use clean sound fles and 
do not mimic many real-world conditions (e.g., background noise, 
overlapping sounds, context shifts). A notable exception is Google’s 
AudioSet [18], but the labelling accuracy of this publicly released 
dataset is very poor [81]. Nevertheless, we believe we efectively 
contextualized ProtoSound’s performance by implementing and 

comparing accuracy with multiple state-of-the-art few-shot base-
lines on our compiled test set, which contains sound recordings 
from 21 real-world locations. Future work should collect and extend 
our experiments with larger, more varied datasets. 

Short technical evaluation. Finally, participants in our feld 
study used the app briefy in each location, which while demon-
strating promising potential for few-shot sound recognition, does 
not account for a longitudinal use where a user could be moving 
through a range of acoustic contexts over time (e.g., home to out-
doors to ofce). While our approach should theoretically handle 
these contextual shifts, long-term deployments across contexts are 
needed to quantify the performance over a longer use period. 

9 CONCLUSION 
Sound recognition can provide important environmental, situa-
tional, and safety-related cues to people who are d/Deaf or hard 
of hearing (DHH). Existing sound recognition systems, however, 
do not support personalization to users’ specifc desired sounds. In 
this work, we presented the design and evaluation of ProtoSound, 
an interactive system to personalize a sound recognition engine 
using only a few custom recordings. ProtoSound was motivated 
by the prior work with DHH users, the experiences of our DHH 
authors, and a survey we conducted with 472 DHH participants. 
Evaluations on two real-life datasets and with an interactive mo-
bile application in the feld suggest that ProtoSound can support 
highly personalized sound categories through low end-user efort, 
can train the model on-device in real-time, and can handle contex-
tual variations in a variety of real-world contexts. Beyond sound 
recognition, our personalization technique also has the potential 
to support applications in other domains such as context-aware 
assistants, personalized speech recognition, and home automation. 
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A APPENDICES 
A A.1 QUESTIONNAIRE: DHH SURVEY ON 

PERSONALIZED SOUND RECOGNITION 
1. The survey will ask about medical or health topics 
⃝ Ok, got it. 
⃝ No, thanks. 

2. Do you use any of the assistive technologies below on a daily 
or near daily basis? 
Select all answers that apply 
□ Hearing aid 
□ TDD, TTY, or closed captions 
□ Real-time captions (e.g., CART) 
□ Android Live Transcribe & Sound Notifcation 
□ Other hearing assistive devices 
□ None of the above 

3. How often do you use Sound Event Notifcations on your An-
droid phone (e.g., dog barking, doorbell ringing, microwave 
beeping)? 
⃝ Multiple times a day 
⃝ Once a day 
⃝ Multiple times a week 
⃝ A few times a month 
⃝ Once per month or less frequently 
⃝ Never 

4. How helpful are the Android Sound Event Notifcations for 
you? 
⃝ 3: Extremely helpful 
⃝ 2 
⃝ 1 
⃝ 0: Neither helpful nor unhelpful 
⃝ -1 
⃝ -2 
⃝ -3: Extremely unhelpful 

5. What are the reasons that you don’t use Android Sound 
Event Notifcations more often (or not at all)? 
Select all answers that apply 
□ Might notify me when no sounds are occurring 
□ Might miss sounds 
□ Might recognize sounds incorrectly 
□ Might not recognize some sounds I care about 
□ Doesn’t allow me to select the sounds I want 
□ Might trigger too many notifcations 
□ Other (please specify): _________________ 

6. If you could defne and record your own sounds for notifca-
tions, how interested will you be in doing so? 
⃝ 3: Extremely interested 
⃝ 2 
⃝ 1 
⃝ 0: Neutral 
⃝ -1 
⃝ -2 
⃝ -3: Extremely uninterested 

7. What is the minimal number of sounds that a sound recog-
nition technology needs to support in each context (e.g., 
kitchen, bedroom, restaurant) to be useful for you? 
⃝ 1-3 (safety sounds only, e.g., fre alarm) 
⃝ 4-6 (plus appliance alerts, e.g., kettle) 
⃝ 7-9 (plus mundane sounds, e.g., vacuum) 
⃝ > 10 (practically almost all sounds) 

8. If recording your own sounds could improve recognition a 
lot, what is the maximum number of sounds would you be 
willing to record in each context (e.g., kitchen, bedroom)? 
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9. If recording your own sounds could improve recognition, ⃝ 3: Extremely interested 
what is the maximum number of minutes would you be ⃝ 2 
willing to spend recording in a context (e.g., kitchen, bed- ⃝ 1 
room)? ⃝ 0: Neutral 
___________________ ⃝ -1 

10. How interested will you be in anonymously contributing ⃝ -2 
your recorded sounds to make better sound recognition tech- ⃝ -3: Extremely uninterested 
nology? 
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