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a b s t r a c t

In this paper, we compute finite sample bounds for data-driven approximations of the solution to
stochastic reachability problems. Our approach uses a nonparametric technique known as kernel
distribution embeddings, and provides probabilistic assurances of safety for stochastic systems in a
model-free manner. By implicitly embedding the stochastic kernel of a Markov control process in a
reproducing kernel Hilbert space, we can approximate the safety probabilities for stochastic systems
with arbitrary stochastic disturbances as simple matrix operations and inner products. We present
finite sample bounds for point-based approximations of the safety probabilities through construction
of probabilistic confidence bounds that are state- and input-dependent. One advantage of this approach
is that the bounds are responsive to non-uniformly sampled data, meaning that tighter bounds are
feasible in regions of the state- and input-space with more observations. We numerically evaluate the
approach, and demonstrate its efficacy on a neural network-controlled pendulum system.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

In expensive, high risk, or safety-critical systems, tools for
erification are important for ensuring correctness before testing,
mplementation, or deployment. As autonomy grows in preva-
ence, and systems continue to grow in size and complexity, there
s a need to extend such tools to accommodate learning-enabled
omponents in autonomous systems that resist traditional model-
ng. Stochastic reachability is an established tool for model-based
erification and probabilistic safety (Abate, Prandini, Lygeros, &
astry, 2008; Summers & Lygeros, 2010) that has been applied to
afety-critical problems in a variety of domains, including space-
raft rendezvous and docking (Lesser, Oishi, & Scott Erwin, 2013),
obotics and path planning (Malone, Chiang, Lesser, Oishi, & Tapia,
017), and vehicle control (Kariotoglou, Kamgarpour, Summers,
Lygeros, 2017). Safety refers to the ability of trajectories of

he system to respect known constraints on the state space, with
t least a desired likelihood, despite bounded control authority.
n this paper, we characterize confidence bounds on a data-driven
pproach for stochastic reachability, enabling rigorous assurances of
afety in a model-free manner.

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Alessandro
Abate under the direction of Editor Ian R. Petersen.
∗ Corresponding author.

E-mail addresses: ajthor@unm.edu (A.J. Thorpe), kendric@unm.edu
K.R. Ortiz), oishi@unm.edu (M.M.K. Oishi).
ttps://doi.org/10.1016/j.automatica.2021.110146
005-1098/© 2021 Elsevier Ltd. All rights reserved.
Model-based stochastic reachability has received considerable
ttention, with methods and tools specific to Markov decision
rocesses (Cauchi & Abate, 2019; Soudjani, Gevaerts, & Abate,
015), polynomial dynamical systems (Prajna & Jadbabaie, 2004;
rajna, Jadbabaie, & Pappas, 2007), and linear dynamical systems
ith log-concave disturbances (Vinod, Gleason, & Oishi, 2019;
inod, HomChaudhuri, & Oishi, 2017; Vinod & Oishi, 2021), as
ell as the development of various benchmarks for compar-

sons (Abate et al., 2019, 2020, 2018). Additional work has been
one in the model checking community to develop tools for
robabilistic, bounded-time reachability problems on parametric
tochastic systems which provide interval-based assurances on
he safety probabilities (Shmarov et al., 2020; Shmarov & Zuliani,
015). However, far less work has been done on data-driven
tochastic reachability. Methods for statistical verification (Roohi,
ang, West, Dullerud, & Viswanathan, 2017; Wang, Roohi, West,
iswanathan, & Dullerud, 2019; Zarei, Wang, & Pajic, 2020), for-
ard reachable set estimation (Lew & Pavone, 2020; Thorpe,
rtiz, et al., 2021), and data-driven interval-based methods based
n adaptive sampling and Gaussian processes (Devonport & Ar-
ak, 2020) have been explored, with application to powertrains,
ipedal robots, and learning-enabled cyber–physical systems.
We focus in particular on a framework for stochastic reacha-

ility that is based in dynamic programming (Abate et al., 2008;
ummers & Lygeros, 2010). In contrast to model checking ap-
roaches, methods based on this framework are amenable to
imultaneous controller synthesis, and the underlying theory ac-
ommodates a wide range of dynamical systems that can be
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aptured as a Markov decision process with both discrete- and
ontinuous-valued variables. This approach is general, in that it
ncompasses formulations for the terminal-hitting time prob-
em (Abate et al., 2008; Summers & Lygeros, 2010), as well as for
he first-hitting time problem, which is far more computationally
omplex (Summers & Lygeros, 2010). We employ a point-based
ormulation, in which we seek to find the likelihood of main-
aining desirable time-varying state constraints over a finite time
orizon, from a known initial condition. In contrast to set-based
ethods (Devonport & Arcak, 2020; Gleason, Vinod, , & Oishi,

2017; Gleason, Vinod, & Oishi, 2021), we do not seek to compute
he stochastic reachable set, the largest set of states for which the
esired likelihood of safety can be maintained.
We draw in particular on tools based in reproducing ker-

el Hilbert spaces (RKHS), a family of machine learning tech-
iques which enable an implicit approximation of the underlying
tochastic kernel. In our previous work (Thorpe & Oishi, 2019),
e integrated the RKHS framework with dynamic programming-
ased approaches for stochastic reachability, to facilitate a data-
riven approach to stochastic reachability (Thorpe & Oishi, 2019;
horpe, Sivaramakrishnan, et al., 2021). Key to the utility of this
pproach are bounds on the approximation error associated with
he RKHS methods. In Thorpe and Oishi (2019), we described
he existence of an upper bound on the asymptotic convergence
ate, which can be used to infer the existence of a confidence
ound on the stochastic reachability probability. However, these
ounds are difficult to compute, and hence are not practica-
le for ascertaining the quality of the result. In this paper, we
resent computable confidence bounds that are state- and input-
ependent. The benefit of this approach is that it enables higher
ccuracy bounds in regions of the state- and input-space for
hich more training data exists.
Kernel methods have long been used in probability and statis-

ics, (Berlinet & Thomas-Agnan, 2004; Parzen, 1961), and more
ecently applied to Markov models (Grünewälder, Lever, Bal-
assarre, Pontil, & Gretton, 2012b), partially observable systems
Nishiyama, Boularias, Gretton, & Fukumizu, 2012; Song, Boots,
iddiqi, Gordon, & Smola, 2010a), and policy synthesis (Lever &
tafford, 2015) in the context of optimal control. Finite sample
ounds for conditional distribution embeddings in these contexts
re presented in Grünewälder et al. (2012, 2012b), Kanagawa
nd Fukumizu (2014), Song et al. (2010a), Song, Gretton, and
uestrin (2010b), Song, Huang, Smola, and Fukumizu (2009),
hich show that the estimated expectation converges in prob-
bility to the true expected value with a known, asymptotic
onvergence rate. The main drawback of kernel-based approaches
s the tradeoff that can occur between computability and accu-
acy. Higher volumes of data are required to ensure an accurate
esult, which inevitably increases the computational burden as-
ociated with inversion of a matrix whose size is proportional to
he sample size (Muandet, Fukumizu, Sriperumbudur, Schölkopf,
t al., 2017; Rahimi & Recht, 2008). Fortunately, several methods
ave been developed to significantly reduce the computational
verhead (Le, Sarlós, Smola, et al., 2013; Rahimi & Recht, 2008;
horpe, Sivaramakrishnan, et al., 2021).
In this paper, we construct finite sample bounds for ker-

el embedding-based computation of the stochastic reachability
robability, that are specific to the stochastic reachability prob-
em. Our main contribution is the construction of computable
tate- and input-based upper and lower bounds, obtained via
oncentration inequalities (McDiarmid, 1989) and tools from sta-
istical learning theory (Vapnik, 1998). Our proposed approach
ccommodates the fact that the gathered data may not be avail-
ble uniformly through the state and input space. That is, the
ound is dependent upon the sample set from which the kernel

mbedding is inferred.

2

The paper is organized as follows. In Section 2, we formulate
he problem and provide relevant background information. In
ection 3, we derive the finite sample bounds. We discuss im-
lications of the proposed bounds in Section 4, and the problem
f parameter selection. In Section 5, we numerically validate the
ounds on a stochastic chain of integrators, and demonstrate its
tility on a nonlinear pendulum system and a nonlinear cart–pole
ystem with black-box neural network controllers. Concluding
emarks are provided in Section 6.

. Preliminaries

We employ the following notational conventions. Let E be an
rbitrary nonempty space. The indicator function 1A : E → {0, 1}
f A ⊆ E is defined such that 1A(x) = 1 if x ∈ A, and 1A(x) = 0
f x /∈ A. Let E denote the σ -algebra on E. If E is a topological
pace (Çinlar, 2011), the σ -algebra generated by the set of all
pen subsets of E is called the Borel σ -algebra, denoted by B(E).
et (Ω,F,P) denote a probability space, where F is the σ -algebra
n Ω and P : F → [0, 1] is a probability measure on the
easurable space (Ω,F). A measurable function X : Ω → E is
alled a random variable taking values in (E, E). The image of P
nder X , P(X−1A), A ∈ E is called the distribution of X . Let T be
n arbitrary set, and for each t ∈ T , let Xt be a random variable.
he collection of random variables {Xt : t ∈ T } on (Ω,F) is a
tochastic process.

.1. System model & stochastic reachability problem

Consider a discrete-time stochastic dynamical system described
y a Markov control process as defined in Summers and Lygeros
2010).

efinition 1 (Markov Control Process). A Markov control process
is defined as a 3-tuple, H = (X ,U,Q ), consisting of: a Borel

pace X ⊆ Rn representing the state space, a compact Borel space
⊂ Rm representing the control space, and Q : B(X ) × X ×

→ [0, 1], a Borel-measurable stochastic kernel which assigns a
robability measure Q (· | x, u) to every x ∈ X and u ∈ U on the
orel space (X ,B(X )).

The system evolves from an initial condition x0 ∈ X over
finite time horizon t = 0, 1, . . . ,N , N < ∞. The con-

rol inputs are chosen according to a Markov control policy
= {π0, π1, . . . , πN−1}, which is a sequence of universally-

easurable (Bertsekas & Shreve, 1978) maps πi : X → U ,
= 0, 1, . . . ,N − 1.
For simplicity, we assume that the policy π is stationary,

eaning π (x) = π0(x) = π1(x) = · · · = πN−1(x) for all x ∈ X .
his is a simplifying assumption for the purpose of analysis, and
he extension to non-stationary policies is trivial.

We consider a probabilistic reach/avoid problem known as the
erminal-hitting time problem where the objective is to determine
he likelihood that the system starting at an initial condition
0 ∈ X will remain in a pre-defined safe set and reach a target
et at the final time instant. Let K, T ∈ B(X ), denote the safe set
nd target set, respectively. From Summers and Lygeros (2010),
he terminal-hitting time safety probability rπx0 (K, T ) is defined as
he probability that a system H following a Markov policy π from
he initial condition x0 will reach the target set T at time N while
emaining within the safe set K for all t = 0, 1, . . . ,N − 1,

π
x0 (K, T ) = Eπ

x0

[(N−1∏
i=0

1K(xi)
)
1T (xN )

]
. (1)

or a fixed Markov policy π , we define the value functions Vπ
t :

→ [0, 1], t = 0, . . . ,N , via backward recursion:
π (x) = 1 (x), (2)
N T
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t (x) = 1K(x)

∫
X
Vπ
t+1(y)Q (dy | x, π (x)). (3)

Then according to Summers and Lygeros (2010), we have that
Vπ
0 (x0) = rπx0 (K, T ) for every x0 ∈ X .
We consider the case where the stochastic kernel Q is un-

known, which means the integral in (3) becomes intractable.

Assumption 2. The stochastic kernel Q is unknown.

Instead, we presume that a finite sample S of M ∈ N observa-
tions is available, taken independently and identically distributed
(i.i.d.) from the stochastic kernel Q ,

S = {(yi, xi, ui)}Mi=1, (4)

where xi are taken i.i.d. from a probability measure with support
X , ui = π (xi), and yi ∼ Q (· | xi, ui).

2.2. Conditional distribution embeddings

Because Q is assumed to be unknown, we cannot compute the
safety probabilities rπx0 (K, T ) directly. Thus, we seek to approxi-
mate the safety probabilities by numerically approximating the
integral with respect to Q (· | x, π (x)) in (3) using the sample S .
In order to approximate the integral of Vπ

t+1 in (3), we choose to
represent the integral operator with respect to Q (· | x, π (x)) as
an element in a high-dimensional space of functions known as a
reproducing kernel Hilbert space (RKHS).

Define a positive-definite (Christmann & Steinwart, 2008, Def-
inition 4.15) function k : X ×X → R known as a kernel function
and let H be a Hilbert space of functions of the form X → R
equipped with an inner product ⟨·, ·⟩H and the induced norm
∥ · ∥H .

Definition 3 (RKHS). Let E be an arbitrary space. A Hilbert space
H is a reproducing kernel Hilbert space (RKHS) if there exists a
positive-definite kernel function k : E × E → R that satisfies the
following properties (Aronszajn, 1950):

1. k(x, ·) ∈ H for all x ∈ E, and
2. f (x) = ⟨f , k(x, ·)⟩H for all f ∈ H and x ∈ E.

where the second property is known as the reproducing property.

Remark 4. Conversely, by the Moore–Aronszajn theorem (Aron-
szajn, 1950), for any positive-definite kernel k, there exists a
unique RKHS with k as its reproducing kernel, where H is defined
as the closure of the linear span of kernel functions, i.e. H =

span{k(x, ·) | x ∈ X }. In short, this means that by defining a repro-
ucing kernel, we obtain a corresponding RKHS. See, e.g., Berlinet
nd Thomas-Agnan (2004), Christmann and Steinwart (2008),
cholkopf and Smola (2001) for more information on reproducing
ernel Hilbert spaces.

The reproducing property is central to our approach, since it
llows us to evaluate any function in the RKHS as a Hilbert space
nner product. By embedding the integral operator with respect
o Q (· | x, π (x)) as an element in the RKHS, we can use the
eproducing property to evaluate the integral in (3).

For the measurable space X , define the kernel function k :

× X → R with the associated RKHS H . We impose a mild
implifying assumption for the purpose of analysis and assume
hat the kernel k is bounded above by a real number ρ < ∞,
here supx∈X (k(x, x))1/2 ≤ ρ < ∞. Such a kernel is called
bounded kernel (Christmann & Steinwart, 2008, §4.3). This

ssumption (along with the measurability of k) ensures that we
an represent the integral operator as an element in the RKHS.
Let P denote the set of probability measures on X which are

ensities of Y ∈ X conditioned on (X,U) ∈ X × U (of which
3

the probability measures defined by the stochastic kernel Q are a
art). For any probability measure Q (· | x, u) ∈ P , if the following
ecessary and sufficient condition EY∼Q (·|x,u)[k(Y , Y )] < ∞ is

satisfied (Sriperumbudur, Gretton, Fukumizu, Schölkopf, & Lanck-
riet, 2010) (which is satisfied if k is bounded and measurable on
X ), there exists an element m(x, u) ∈ H called the conditional
distribution embedding (Song et al., 2009), defined as:

m : P → H ,

Q (· | x, u) ↦→ m(x, u) :=
∫
X
k(y, ·)Q (dy | x, u).

(5)

Using this representation, we can embed the integral with respect
to Q (· | x, u) as an element in the RKHS H . Furthermore, if the
kernel is characteristic (Sriperumbudur, Fukumizu, & Lanckriet,
2011), then the embedding is unique, meaning the embedding
captures all statistical information of the underlying distribution,
and no information is lost by this representation.

As shown in Thorpe and Oishi (2019), we can use conditional
istribution embeddings to solve the stochastic reachability prob-
em. By the reproducing property, we can evaluate the integral
f any function f ∈ H with respect to Q (· | x, π (x)) as a
ilbert space inner product with the embedding m(x, π (x)). Thus,
ssuming the value functions Vπ

t , t = 1, . . . ,N , are in H , we can
valuate the integral in (3) as:

Vπ
t+1,m(x, π (x))⟩H

=

⟨
Vπ
t+1,

∫
X
k(y, ·)Q (dy | x, π (x))

⟩
H

(6)

=

∫
X
⟨Vπ

t+1, k(y, ·)⟩H Q (· | x, π (x)) (7)

=

∫
X
Vπ
t+1(y)Q (· | x, π (x)). (8)

sing the embedding m(x, π (x)), we can substitute the integral
xpression in the stochastic reachability backward recursion (3)
ith a Hilbert space inner product in order to compute the safety
robabilities rπx0 (K, T ). This reduces the evaluation of potentially
xpensive integrals to a simple linear operation in Hilbert space.

.3. Empirically approximating the value functions

In practice, we do not have access to the true embedding
(x, π (x)) since the stochastic kernel Q is unknown, meaning
e cannot compute (3) directly. Thus, we compute an empirical
pproximation of the embedding m(x, π (x)) using a finite sample
as in (4) of size M ∈ N collected i.i.d. from Q .
Following Micchelli and Pontil (2005), using a sample S , we

an compute an empirical estimate m̂(x, u) of an embedding
(x, u) as the solution to the following regularized least-squares
roblem (Grünewälder et al., 2012; Micchelli & Pontil, 2005),

min
m̂

1
M

M∑
i=1

∥k(yi, ·)− m̂(xi, ui)∥2H + λ∥m̂∥
2
Γ , (9)

where Γ is a vector-valued RKHS (Micchelli & Pontil, 2005)
and λ > 0 is the regularization parameter. By the representer
theorem (Micchelli & Pontil, 2005), the solution to (9) is unique
and has the following form:

m̂ =

M∑
i=1

αik(xi, ·)l(ui, ·), (10)

where α ∈ RM is a vector of real-valued coefficients and l :

U×U → R is a reproducing kernel function over U . For simplicity,
we assume that the kernel l is bounded and the bound ρ of the
kernel k is also a bound for l. By substituting (10) into (9) and
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aking the derivative with respect to α, we obtain the following
losed-form solution,

ˆ (x, u) = Φ⊤WΨ k(x, ·)l(u, ·), (11)

here Φ and Ψ are known as feature vectors, with elements
i = k(yi, ·) and Ψi = k(xi, ·)l(ui, ·), respectively, and W =

(ΨΨ ⊤
+ λMI)−1. For simplicity, let

β(x, u) := WΨ k(x, ·)l(u, ·) (12)

be a vector of real-valued coefficients that depends on the value
of the conditioning variables x and u, such that m̂(x, u) = Φ⊤

β(x, u).
As shown in Thorpe and Oishi (2019), using an estimate

ˆ (x, π (x)) of m(x, π (x)), we can approximate the integral of the
alue functions with respect to Q (· | x, π (x)) in (3) as an inner
roduct,

Vπ
t+1, m̂(x, π (x))⟩H = V π

t+1
⊤β(x, π (x))

≈

∫
X
Vπ
t+1(y)Q (dy | x, π (x)), (13)

here V π
t+1 = [Vπ

t+1(y1), . . . , V
π
t+1(yM )]⊤. Thus, using the estimate

ˆ (x, π (x)), we can recursively approximate and substitute the
alue functions in the stochastic reachability backward recursion
n order to approximate the safety probabilities. We summarize
his procedure as Lemma 5.

emma 5 (Approximate Backward Recursion, Thorpe & Oishi, 2019).
et π be a fixed Markov policy. Define the approximate value func-
ions V̄π

t : X → [0, 1], t = 0, . . . ,N by the backward recursion:

¯ π
N (x) = Vπ

N (x), (14)
¯ π
t (x) = 1K(x)⟨V̄π

t+1, m̂Y |x,π (x)⟩H . (15)

hen rπx0 (K, T ) ≈ V̄π
0 (x0).

Note that since the estimate m̂(x, π (x)) is conditioned on a
articular value of x ∈ X , by approximating the safety probability
π
x0 (K, T ) using Lemma 5, we obtain a point-based approximation
f the safety probability at a particular value of x0 ∈ X . Lemma 5
rovides a model-free approach to approximate the stochastic
eachability probability, and can easily be extended to solve re-
ated problems, including the first-hitting time problem (Sum-
ers & Lygeros, 2010) and the multiplicative and maximal cost
tochastic reachability problems in Abate et al. (2008).

. Finite sample bounds

The difficulty in finding bounds on the stochastic reachability
robability stems from the underlying structure of the condi-
ional distribution embedding estimate. Unlike the embedding
or a marginal distribution (Smola, Gretton, Song, & Schölkopf,
007), which has uniform coefficients 1/M , the conditional dis-
ribution embedding has non-uniform coefficients β(x, u) (12)
hich depend upon the value of the conditioning variables. This
omplicates the application of existing mathematical techniques
rom statistical learning theory.

It is worth noting that in our case, we directly bound the
ariation of the estimator at a particular value of the conditioning
ariables x and u. This means the bounds we derive provide
localized result, which can be used to assess the quality of

he approximation at a particular point. This is not a significant
imitation in the context of Lemma 5, since in the case of the
tochastic reachability backward recursion, we seek to evaluate
he safety probability at a single point.

In order to determine a bound on the quality of the ap-
roximation obtained using Lemma 5, we seek a bound on the
ifference between the expectation of the value function and its
mpirical counterpart.
4

.1. Worst-case difference between the true and the empirical ex-
ectation

Assume that Vπ
t ∈ H , t = 1, . . . ,N , and assume that for all

∈ H , f ∈ [0, 1] and ∥f ∥H ≤ 1. We begin by upper bounding
he deviation of the empirical expectation computed using an
stimate m̂(x, u) from the true expectation for any value function
π
t . In other words, we seek a state-based bound B(x, u) ∈ R such
hat for any value function Vπ

t , t = 1, . . . ,N ,

EY∼Q (·|x,u)[Vπ
t (Y )] − V π

t
⊤β(x, u)| ≤ B(x, u). (16)

or simplicity of notation, let Ef := EY∼Q (·|x,u)[f (Y )].
We can uniformly bound the difference between the value

unction expectation and the empirical expectation computed
sing an estimate m̂(x, u). Note that for any value function Vπ

t ∈

, not necessarily attaining the supremum,

EVπ
t − V π

t
⊤β(x, u)| ≤ sup

∥h∥H ≤1
|Eh− h⊤β(x, u)|, (17)

here h is some function in H , h = [h(y1), . . . , h(yM )]⊤, and
(x, u) is defined as in (12). This means that in the worst case,
he deviation of the estimated value function expectation from
he true value function expectation is less than or equal to the
eviation of a function h∗ ∈ H which satisfies the supremum.
We then bound the right-hand side of (17) using McDiarmid’s

inequality. In simple terms, McDiarmid’s inequality states that if
the empirical estimate h⊤β(x, u) computed using S has bounded
variation when a single observation in the sample S is changed,
then the deviation of the estimate from the true expectation is
bounded by some quantity that depends on the variation bound.

Definition 6 (Bounded Differences Condition). Given coefficients
ci ≥ 0, i = 1, . . . ,M , a function f : EM

→ R satisfies the bounded
differences condition if

sup
x1,...,xM

x′i∈E

|f (x1, . . . , xM )− f (x1, . . . , x′i, . . . , xM )| ≤ ci (18)

for every i = 1, . . . ,M .

Lemma 7 (McDiarmid’s Inequality, McDiarmid, 1989). Let X =

{X1, . . . , XM} be independent random variables taking values in a set
E, and assume that the function f : EM

→ R satisfies the bounded
differences condition (Definition 6). Then for every ε > 0,

Pr(|f (X)− E[f (X)]| ≥ ε) ≤ exp
(
−

2ε2∑M
i=1 c

2
i

)
. (19)

Alternatively, Lemma 7 implies that, given a small probability
δ/2 ∈ (0, 1), then with probability 1 − δ/2, the deviation of the
function f from the expectation E[f (X)] is bounded by:

f (X)− E[f (X)] ≤

√
MC2 log(2/δ)

2
, (20)

where C ≥ ci for all i = 1, . . . ,M .
In order to determine the bound on (17), we seek some con-

stant C that satisfies the bounded differences condition. However,
the effect of changing an individual observation in the empirical
expectation term in (17) is non-trivial, since changing a single
observation affects all elements of the coefficient vector β(x, u).

Therefore, in order to determine C , we make use of a well-
known result in linear algebra known as the push-through iden-
tity (Bernstein, 2009, Fact 2.16.16).

Lemma 8 (Push-Through Identity, Bernstein, 2009, Fact 2.16.16). Let
A ∈ Rn×m and B ∈ Rm×n, and assume that AB + I is non-singular.
Then BA+ I is non-singular and

(AB+ I)−1A = A(BA+ I)−1. (21)
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We now prove the following theorem:

Theorem 9. The variation of h⊤β(x, u) by changing a single
bservation is at most ρ/(λM).

roof. For some h ∈ H , let h⊤β(x, u) be defined as in (17),
uch that β(x, u) = WΨ k(x, ·)l(u, ·), where Ψ is a feature vector
ith elements Ψi = k(xi, ·)l(ui, ·), W = (ΨΨ ⊤

+ λMI)−1, and the
kernels k and l are bounded by some constant ρ < ∞.

Using Lemma 8, we can write WΨ as:

WΨ = (ΨΨ ⊤
+ λMI)−1Ψ = Ψ (Ψ ⊤Ψ + λM)−1, (22)

where we note that (Ψ ⊤Ψ + λM)−1 is scalar. Using the identity
in (22), we can rewrite the estimate h⊤β(x, u) as:

h⊤WΨ k(x, ·)l(u, ·) =
1

Ψ ⊤Ψ + λM
h⊤Ψ k(x, ·)l(u, ·). (23)

ince h ∈ [0, 1] by assumption, we have from (23) that the
variation for changing a single observation is at most ρ/(λM),
which proves the result. □

Remark 10. Note that the result provided by Theorem 9 is strong,
and is verified by the result presented in Bousquet and Elisseef
(2002, Theorem 22) (with a scaling factor of 1 instead of 1/2,
which comes from the worst-case bound).

From Theorem 9, we have that C = ρ/(λM) satisfies the
bounded differences condition (Definition 6). Continuing from
(17), using McDiarmid’s inequality (19), we have that given δ/2 ∈

(0, 1), with probability 1− δ/2,

sup
∥h∥H ≤1

|Eh− h⊤β(x, u)|

≤ ES

[
sup

∥h∥H ≤1
|Eh− h⊤β(x, u)|

]
+

√
ρ2 log(2/δ)

2λ2M
. (24)

e now have an expression for the worst-case difference be-
ween the true and empirical stochastic reachability probabilities.
owever, because the expectation on the right-hand side of (24)
elies upon the true expectation of h, it is not directly computable.

.2. Removing reliance upon the true expectation

In order to enable computability of the bound in (24), we
ound the first term on the right-hand side of (24) via sym-
etrization and then utilize the properties of the RKHS to bound

he expectation of the worst-case empirical estimate. In particu-
ar, we make use of the reproducing property and the definition of
he dual norm for Hilbert spaces, which we present here adapted
rom Rudin (1991, Theorem 4.3).

efinition 11 (Dual Norm). Let H be a Hilbert space. For any
, g ∈ H , ∥f ∥H = sup∥g∥H ≤1|⟨f , g⟩H |.

In addition, we rely upon a special type of random variable
nown as a Rademacher variable (cf. Bartlett & Mendelson, 2002),
hich is a uniform random variable taking values in {−1, 1}.

efinition 12 (Rademacher Variable, Bartlett & Mendelson, 2002).
random variable σ is called a Rademacher variable if it is

ndependent uniform, such that Pr(σ = 1) = Pr(σ = −1) = 1/2.

We now prove the following lemma:

emma 13. Let h ∈ H and h⊤β(x, u) be defined as in (17). Given
/2 ∈ (0, 1), then with probability 1− δ/2,

S

[
sup |Eh− h⊤β(x, u)|

]

∥h∥H ≤1

5

≤ 2
√
tr(β⊤ΦΦ⊤β)+ 2

√
ρ2 log(2/δ)

2λ2M
. (25)

roof. We begin by bounding the first term on the right-hand
ide of (24) via symmetrization (Vapnik, 1998). Let S̃ be a ghost
sample, that is, an independent copy of S that is drawn from the
same sampling distribution as S (Vapnik, 1998). We replace the
expectation in the first term on the right-hand side of (24) with
a second empirical estimate computed using S̃ , to obtain:

ES

[
sup

∥h∥H ≤1
|Eh− h⊤β(x, u)|

]
≤ ES

[
sup

∥h∥H ≤1
|ES̃[h̃

⊤

β̃(x, u)− h⊤β(x, u)]|
]

(26)

≤ ESS̃

[
sup

∥h∥H ≤1
|h̃

⊤

β̃(x, u)− h⊤β(x, u)|
]
, (27)

where β̃(x, u) is computed using S̃ as in (12) and h̃ = [h(ỹ1), . . . ,
h(ỹM )]⊤. Eq. (26) follows almost surely from the properties of
conditional expectations and (27) follows by the convexity of the
supremum.

We next exploit the symmetry of the empirical distributions
to upper bound (27). Let σ be Rademacher variables with σ i ∈

{−1, 1}, and let β := diag(β(x, u)).
Since the distribution of the difference in empirical expecta-

tions h̃⊤β̃(x, u)−h⊤β(x, u) is symmetric around 0, which follows
since f ⊤β(x, u) ∈ [0, 1] for all f ∈ H , we see that h̃⊤β̃σ − h⊤βσ

has the same distribution. In effect, the Rademacher variables
randomly exchange observations in S and S̃ with probability 1/2.
When we take the expectation over σ, the expectations of the
empirical estimates computed using S and S̃ are the same. Using
this fact, we obtain the following:

ESS̃

[
sup

∥h∥H ≤1
|h̃⊤β̃(x, u)− h⊤β(x, u)|

]
= ESS̃σ

[
sup

∥h∥H ≤1
|h̃⊤β̃σ − h⊤βσ|

]
(28)

≤ 2ESσ

[
sup

∥h∥H ≤1
|h⊤βσ|

]
. (29)

Then by applying the reproducing property (Definition 3) and the
definition of the dual norm for Hilbert spaces (Definition 11), we
remove the dependence on h:

2ESσ

[
sup

∥h∥H ≤1
|h⊤βσ|

]
= 2ESσ

[
sup

∥h∥H ≤1
|⟨h,Φ⊤βσ⟩H |

]
(30)

= 2ESσ[∥Φ
⊤βσ∥H ]. (31)

We then utilize the definition of the Hilbert space norm and the
concavity of the square root and note that the expectation of the
Rademacher variables Eσ[σ iσ j] vanishes except when i = j,

2ESσ[∥Φ
⊤βσ∥H ]

≤ 2ES

[(
Eσ

[
σ⊤β⊤ΦΦ⊤βσ

])1/2
]

(32)

= 2ES

[(
tr

(
β⊤ΦΦ⊤β

))1/2
]
. (33)
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y bounding the expectation in (33) by McDiarmid’s inequality
gain, we obtain:

ES

[(
tr

(
β⊤ΦΦ⊤β

))1/2
]

≤ 2
√
tr(β⊤ΦΦ⊤β)+ 2

√
ρ2 log(2/δ)

2λ2M
, (34)

hich proves the result. □

Continuing from (24), using McDiarmid’s inequality with C =

/(λM) via Theorem 9 and Lemma 13, we have that given δ/2 ∈

(0, 1), with probability 1− δ/2,

sup
∥h∥H ≤1

|Eh− h⊤β(x, u)|

≤ 2
√
tr(β⊤ΦΦ⊤β)+ 3

√
ρ2 log(2/δ)

2λ2M
. (35)

Thus, we have a computable bound for the worst-case difference
between the true and empirical expectation of a function h ∈ H .

Remark 14. We note that even in the worst case, the first term
on the right-hand side of (35) is bounded, since ∥Φ⊤β(x, u)∥H ≤

1 by assumption. However, in practice, with appropriate kernel
selection and choice of regularization parameter λ, this term will
often be significantly less than 1.

3.3. Finite sample bound on the safety probability

We now can state the main result, which we present as
Theorem 15.

Theorem 15. For any value function Vπ
t , given δ/2 ∈ (0, 1), with

probability 1 − δ/2, the difference between the true and empirical
expectation of the value functions is bounded by:

|EVπ
t − V π

t
⊤β(x, u)|

≤ 2
√
tr(β⊤ΦΦ⊤β)+ 3

√
ρ2 log(2/δ)

2λ2M
. (36)

Proof. The proof follows from the arguments presented for (35).
In (17), we uniformly bound the difference between the true and
empirical expectation of the value functions by the worst-case
function h ∈ H . We then use McDiarmid’s inequality (Lemma 7)
with the bound C = ρ/(λM) satisfying the bounded differences
condition (Theorem 9) to obtain (24). Using a ghost sample, the
ymmetrization argument, and the definition of the dual norm for
ilbert spaces, we then bound the first term on the right-hand
ide of (24) in order to remove the dependence on h,

ES

[
sup

∥h∥H ≤1
|Eh− h⊤β(x, u)|

]
≤ 2

√
tr(β⊤ΦΦ⊤β)+ 2

√
ρ2 log(2/δ)

2λ2M
. (37)

e then substitute the bound in (37) into (24) and obtain the
result,

|EVπ
t − V π

t
⊤β(x, u)|

≤ 2
√
tr(β⊤ΦΦ⊤β)+ 3

√
ρ2 log(2/δ)

2λ2M
, (38)

hich proves (36). □

Let B(x, u) be the bound on the difference between the ex-
ected value of the value functions and its empirical counterpart
n (36), given by

(x, u) = 2
√
tr(β⊤ΦΦ⊤β)+ 3

√
ρ2 log(2/δ)

. (39)

2λ2M

6

This means that for any value function Vπ
t , given δ/2 ∈ (0, 1),

with probability 1 − δ/2, that the absolute difference between
the actual expectation and the empirical expectation computed
using m̂(x, π (x)) is bounded by

−B(x, u) ≤ EVπ
t − V π

t
⊤β(x, u) ≤ B(x, u). (40)

Thus, by applying this bound to the expectations in the back-
ward recursion, we obtain an overall bound on the approximation
of the safety probabilities obtained using Lemma 5. Furthermore,
the bound in (39) depends on the value of the conditioning vari-
ables x and u, which means the bound can serve as an indication
of the quality of the approximation at a particular point.

Note that the bound in (39) applies to the error of a value
function at a single time step. This means that the total error on
the approximation of the safety probabilities increases linearly
with the number of time steps used in the backward recursion
in Lemma 5. Following Thorpe and Oishi (2019, Corollary 3), if
the error of each value function is bounded by B(x, u) in (39), we
obtain an overall bound on the safety probabilities Vπ

0 of NB(x, u),
where N is the time horizon. We summarize this result in the
following lemma:

Lemma 16. Given a bound B(x, u), the error in the safety probabil-
ities obtained via Lemma 5 is given by

|EVπ
0 − V π

0
⊤β(x, u)| ≤ NB(x, u), (41)

where N is the time horizon.

Proof. The proof is by induction. If the error of a single value
function is B(x, u) as in (39), and the safety probabilities are
computed via recursive substitution as in Lemma 5, then at time
t = 0, the maximum error of Vπ

0 is NB(x, u).

4. Kernel and parameter selection

The quality of the approximation of the stochastic reachability
probability is governed by a number of factors, including the
choice of kernel function, parameters associated with the kernel
function, the regularization parameter of the least-squares prob-
lem (9), and the sample, S . In a realistic setting, we typically do
not have explicit control over the sample S or the number of
observations in the sample. Thus, the choice of kernel function
and the model parameters plays an important role in the quality
of the kernel-based approximation.

4.1. Kernel selection

The performance of kernel-based learning algorithms is closely
tied to the choice of kernel function and the structure of the
RKHS. In essence, the Hilbert space needs to be rich enough
to model the set of probability measures underlying the ob-
served data without overfitting. Thus, we frame the problem
of kernel selection as a problem of limiting the complexity of
the RKHS (Bartlett & Mendelson, 2002; Vapnik, 1998), where
complexity in statistical learning literature refers to the ability of
a function class to fit random noise. Intuitively, by choosing a
function class that lowers the complexity term, we reduce the
possibility that our function class H will overfit the observed
data.

We propose a complexity term that is closely related to the
Rademacher complexity (Bartlett & Mendelson, 2002) from statis-
tical learning theory, but instead based on the bound presented in
Theorem 15 that accommodates non-uniform coefficients β(x, u).
Define the random variable

Ĉ (H ) = Eσ

[
sup |h⊤βσ|

]
. (42)
∥h∥H ≤1
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hen the conditional complexity of H is defined as C (H ) =

S[Ĉ (H )]. Using the bound in (33), we have

(H ) ≤ ES

[(
tr

(
β⊤ΦΦ⊤β

))1/2
]
. (43)

his choice of complexity term is equivalent to the first term
n the right-hand side of (39). Since the conditional complexity
ppears in the bounds presented in Theorem 15, minimizing the
omplexity term also minimizes the finite sample bounds on
he difference in expectations. Thus, we can choose the kernel
unctions which minimize the complexity term for all (x, u), ef-
ectively minimizing the finite sample bound on the difference in
xpectations of the value functions.
The kernel should also be chosen to satisfy universality (Sripe-

umbudur et al., 2011, 2010) (resp. characteristic) and bound-
dness properties. One common choice of kernel that satisfies
hese properties is the Gaussian RBF kernel k(x, x′) = exp(−∥x−
′
∥
2
2/2σ

2), where σ > 0. Universal (Smola et al., 2007; Sriperum-
udur et al., 2010) kernels are so-named because they satisfy a
niversal approximation property and are able to learn any real-
alued function arbitrarily well. Because the mapping from the
et of all probability measures P into the RKHS (5) is injective
for universal (resp. characteristic, see Sriperumbudur et al., 2011)
ernels, this means there is a unique element in the RKHS H for

any P,Q ∈ P , such that ∥mP −mQ∥H = 0 if and only if P = Q.
his ensures that the conditional distribution embedding admits
unique solution (Sriperumbudur et al., 2010), and that we can
istinguish between distributions in Hilbert space. By choosing
bounded kernel function, we ensure that ρ < ∞, and we can

achieve tighter bounds by selecting a kernel function with small
ρ. The Gaussian kernel function, for example, has ρ = 1.

Typically, a parameterized kernel which is known to sat-
isfy these properties is chosen, and then kernel parameters are
tuned via cross-validation techniques. However, nascent work
has posed kernel synthesis for a given sample S as an opti-
mization problem. This approach has been demonstrated via
convex optimization (Kim, Zymnis, Magnani, Koh, & Boyd, 2008)
and semi-definite programming (Lanckriet, Cristianini, Bartlett,
Ghaoui, & Jordan, 2004) for marginal distributions with scalar-
valued regression. While this idea is promising, the connection
between conditional distribution embeddings and the under-
lying regression problem has only recently begun to be ex-
plored (Grünewälder et al., 2012). Further, the extension from
scalar-valued regression to vector-valued regression (Micchelli
& Pontil, 2005) that is required by the objective function in (9)
is not straightforward. Hence additional work will be needed
to evaluate the feasibility of kernel synthesis methods for this
problem.

4.2. Parameter selection

Tighter bounds may be possible by identifying a strict upper
bound on the elements of β(x, u), which in turn are influenced by
the parameters ρ, the upper bound on the kernel function, and λ,
the least-squares regularization coefficient in (9).

The value of ρ is determined primarily by the choice of kernel
and its parameters, and can be tuned by minimizing the com-
plexity term C (H ). The value of λ affects the convergence rate
associated with the uniform finite sample bound. The conver-
gence guarantees in Song et al. (2009) and Grünewälder et al.
(2012b) typically depend upon λ going to zero as the number of
observations increases. See Caponnetto and De Vito (2007), De
Vito, Caponnetto, , and Rosasco (2005) for a discussion of optimal
values of λ.
 (

7

4.3. Scalability

One significant advantage of using the kernel-based approach
in Lemma 5 is that approximating the value function expectation
in (3) using conditional distribution embeddings does not scale
exponentially as the system dimensionality increases (also known
as the curse of dimensionality). This is primarily due to the fact
that the system dimensionality (as well as the input dimension)
only has an effect on the evaluation of the kernel functions k and l.
Instead, the complexity of computing the conditional distribution
embedding estimate is generally O(M3), which is primarily driven
by the matrix inverse W in (12), and scales solely with the
sample size M used to construct the embedding estimate. This
is demonstrated empirically in Thorpe and Oishi (2019), which
shows that the computational complexity increases roughly lin-
early as the system dimensionality is increased. However, in
order to adequately characterize the stochastic kernel of a high-
dimensional state space, a large sample size may be required.
In effect, this means that the quality of the approximation is in
large part governed by the sample used to characterize the region
of interest—which further motivates our approach to state-based
finite sample bounds.

As the time horizon N increases, the backward recursion in
Lemma 5 shows that if the policy π is time-invariant, meaning
π0 = π1 = · · · = πN−1, we do not need to recompute the
embedding estimate m̂(x, π (x)) at every time step. This means we
only need to compute the estimate once for a given sample S , and
indicates that the complexity of Lemma 5 increases linearly as the
time horizon increases. In the case of time-varying policies, this
of course means that we must recompute the embedding at every
time step since the closed-loop dynamics of the system vary with
time in accordance with the policy.

5. Examples

We implemented Lemma 5 on a stochastic chain of integra-
tors for the purpose of validation, and on a nonlinear pendulum
system (Dutta, Chen, & Sankaranarayanan, 2019) and a closed-
loop nonlinear cart–pole benchmark system (Lopez, Musau, Tran,
& Johnson, 2019) with black-box neural network controllers to
demonstrate the capabilities of the proposed approach. For each
problem, we generated a sample S of observations via simulation,
and then assumed no knowledge of the system dynamics or
the structure of the disturbance for the purposes of computing
the stochastic reachability probability. We then computed finite
sample bounds via Theorem 15. For all problems, we chose a
Gaussian kernel k(x, x′) = exp(−∥x − x′∥22/2σ

2) with σ = 0.1,
and chose λ using the optimal rate computed in Caponnetto and
De Vito (2007).

All computations were done in Matlab, and code to repro-
duce the analysis and figures is available at: github.com/unm-
hscl/ajthor-Automatica2020a.

5.1. Stochastic chain of integrators

We first consider a 2-D stochastic chain of integrators (Vinod &
Oishi, 2017), in which the input appears at the second derivative
and each element of the state vector is the discretized integral
of the element that follows it. The dynamics with sampling time
T = 0.25 are given by:

xk+1 =

[
1 T
0 1

]
xk +

[
T2
2
T

]
uk + wk (44)

here wk is an i.i.d. disturbance defined on the probability space
W,B(W), Pr ). We presume a Gaussian disturbance w ∼ N
w k
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Fig. 1. (a) Safety probabilities at k = 0, N = 5, for a double integrator computed using dynamic programming. (b) Safety probabilities at k = 0 for a double integrator
omputed using Lemma 5 for N = 5. (c) Absolute error |Vπ

0 (x)− V̄π
0 (x)| between the dynamic programming solution and Lemma 5. (d, e) Upper and lower finite

ample bounds, respectively, of the safety probabilities of a double integrator system computed using Theorem 15 with δ = 0.1, where (d) is V̄π
0 (x)+ B(x, π (x)) and

e) is V̄π
0 (x)− B(x, π (x)), where B(x, π (x)) is computed as in (39).
b

I
5
o
[

t
e
o
f
(
t

i
t
m
k
d
o
t
t
v
B
w
a

5

e
T
2

θ

w
d
0

Fig. 2. Figure showing the mean of the finite sample bounds B(x, π (x)) in the
egion [−1, 1] × [−1, 1] for a double integrator system as a function of δ.

0,Σ) with Σ = 0.01I , a control policy π (x) = 0, and target and
afe sets T = [−1, 1]2 and K = [−1, 1]2.
We consider a sample S of M = 2500 observations drawn

.i.d. from Q , a representation of (44) as a Markov control process
Definition 1). The initial conditions x ∈ X in the sample were
hosen uniformly in the interval [−1.1, 1.1]×[−1.1, 1.1] in order
o ensure that a subset of the initial conditions violates the safety
onstraints, K and T . We do this to ensure the ‘‘learned’’ model
oes not map all initial conditions to a safe set. Otherwise, in
he regression, the value function estimate maps all values to 1.
he resulting state y ∈ X is drawn from Q (· | x, π (x)) using

the dynamics in (44). We then presumed no knowledge of the
system dynamics or Q and computed the estimate m̂(x, π (x))
according to (11), with β(x, π (x)) computed as in (12). Using
m̂(x, π (x)), we then computed the stochastic reachability prob-
ability using Lemma 5 for a time horizon of N = 5. We compare
the stochastic reachability probability computed according to
Lemma 5 against the solution via dynamic programming, that
presumes the stochastic kernel Q is known. The absolute error
|Vπ

0 (x)− V̄π
0 (x)| between the results obtained from Lemma 5 and

the dynamic programming solution is shown in Fig. 1(c). As ex-
pected, the stochastic reachability probabilities computed using
Lemma 5, show low absolute error as compared with the dynamic
programming solution, with a maximum absolute error of 0.1158
and a mean absolute error of 0.0122.

We then evaluated the finite sample bounds of the approxima-
tion using Theorem 15. We computed the bound B(x, π (x)) as in
(39) with δ = 0.1 to obtain bounds on the safety probabilities.
The bounds obtained from Theorem 15 are probabilistic upper
nd lower bounds, meaning that given any δ/2 ∈ [0, 1], with
robability 1−δ/2, the approximation from Lemma 5 is bounded
8

y Theorem 15, which validates the result. Fig. 1(d) shows the
upper bound on the safety probabilities, while Fig. 1(e) shows the
lower bound.

We can see that the difference between the upper and lower
bounds is small, which indicates that the quality of the approx-
imation obtained via Lemma 5 is close to the true solution with
high probability. Further, the absolute difference is larger than the
error values in Fig. 1(c), as expected, meaning that the computed
bound is a reasonable probabilistic upper bound.

We then consider the effect of varying the parameters M and
δ in (39) on the finite sample bound computed using Theorem 15.
n order to demonstrate the effect of the parameter M , we drew
new samples from the stochastic kernel Q , where the number
f observations in each sample was chosen to be of size M ∈

100, 2500]. An estimate was then computed for each sample and
he finite sample bounds were computed for each estimate. For
ach sample of length M ∈ [100, 2500], we computed the mean
f the finite sample bounds in the region [−1, 1]×[−1, 1] for dif-
erent values of δ ∈ [0.1, 1.9]. Fig. 2 shows the mean of B(x, π (x))
39), the finite sample bounds computed using Theorem 15 for
he five samples of length M ∈ [100, 2500] as a function of δ.

As expected, we can see that as the size of the samples
ncreases, we obtain tighter probabilistic bounds B(x, π (x)) in
he region [−1, 1] × [−1, 1] via Theorem 15. Effectively, this
eans that as the number of observations from the stochastic
ernel increases, we obtain a better estimate of the conditional
istribution embedding m(x, π (x)), and thus a better estimate
f the safety probabilities via Lemma 5. Also as expected, as
he violation threshold decreases (i.e., δ increases), the mean of
he probabilistic bound decreases. Fig. 2 also shows that for low
alues of delta, we obtain higher values of the probabilistic bound
(x, π (x)). This corresponds to a high desired confidence. Further,
e can see in Fig. 2 that the finite sample bounds do not improve
ppreciably as the sample size increases beyond a certain point.

.2. Linearized cart–pole system

We then considered a benchmark cart–pole system (Lopez
t al., 2019) with a black-box neural network feedback controller.
he dynamics for the linearized cart–pole system (Lopez et al.,
019) are given by:

ẍ = 0.0043θ̇ − 2.75θ + 1.94u− 10.95ẋ
¨ = 28.58θ − 0.044θ̇ − 4.44u+ 24.92ẋ

(45)

ith state x = [x, ẋ, θ, θ̇ ]⊤ ∈ R4 and control input u ∈ R. The
ynamics are then discretized in time with sampling time Ts =

.2 s. We add an additional Gaussian disturbance w ∼ N (0,Σ)
k
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Fig. 3. (a) Safety probabilities for a linearized cart–pole system computed using Lemma 5 for N = 10. (b) Upper bound on the safety probabilities computed using
Theorem 15. (c) Lower bound on the safety probabilities computed using Theorem 15.
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Fig. 4. Sample realization of the nonlinear cart–pole system (48) over 600 time
teps.

ith Σ = 0.01I to the dynamical state equations, which can sim-
ulate dynamical uncertainty or minor system perturbations. The
control input is computed via a neural network controller (Lopez
et al., 2019), which takes the current state and outputs a real
number u ∈ R, which can be interpreted as the input torque.

The benchmark is defined (Lopez et al., 2019) such that the
eural network controller must keep the lateral position of the
art x within [−0.7, 0.7], maintain a low cart velocity ẋ ∈ [−1, 1],
nd keep the pendulum angle θ within [−π/6, π/6] while the
ngular velocity θ̇ is unconstrained. We define the safe set K

according to the above constraints, and define the target set T
such that the pendulum angle θ must be within [−0.05, 0.05].

K = {x ∈ R4
| |x1| ≤ 0.7, |x2| ≤ 1, |x3| ≤ π/6} (46)

T = {x ∈ R4
| |x3| ≤ 0.05} (47)

We simulated 10 trajectories from initial conditions taken uni-
formly from the ranges specified above, and extracted a sample S
of M = 12,234 observations taken i.i.d. from the stochastic kernel
Q , a representation of the dynamics (45) as a Markov control
rocess (Definition 1).
We then computed the safety probabilities for the system

ver a time horizon N = 10 using Lemma 5 to demonstrate
he feasibility of the approach. The safety probabilities computed
sing Lemma 5 at k = 0 for N = 10 are shown in Fig. 3(a).
e can see that the closed-loop system has a high probability
f stabilizing the pendulum from an initial condition within the
ange θ ∈ [−π/6, π/6] and the results also show an underlying
ymmetry around θ = 0, as expected. We then computed the
inite sample bounds on the approximation using Theorem 15
ith δ = 0.1 to obtain probabilistic upper and lower bounds
n the safety probabilities. Fig. 3(b) shows the probabilistic up-
er bound on the safety probabilities, while Fig. 3(c) shows the
9

ower bound. As expected, because we use a high number of
bservations M = 12,234, the bounds computed in Theorem 15
how that with high probability, the solution is close to the true
olution.
This means that using the proposed data-driven approach,

e can utilize stochastic reachability to analyze the safety prop-
rties of a dynamical system with a black-box neural network
ontroller. Similarly, we can expose the underlying structure of
he closed-loop system to reveal useful knowledge of the system
roperties, such as symmetry.

.3. Nonlinear cart–pole system

We then analyzed a nonlinear cart–pole system with a neural
etwork controller (Lopez et al., 2019), with dynamics given by:

ẍ =
u+mlω2 sin(θ )

mt

−
ml(g sin(θ )− cos(θ ))( u+mlω2 sin(θ )

mt
)

l( 43 −m cos2(θ )
mt

)

cos(θ )
mt

θ̈ =
g sin(θ )− cos(θ )( u+mlω2 sin(θ )

mt
)

l( 43 −m cos2(θ )
mt

)

cos(θ )
mt

(48)

where g = 9.8 is the gravitational constant, the pole mass is
m = 0.1, half the pole’s length is l = 0.5, and mt = 1.1 is the total
mass. The dynamics are then discretized in time with sampling
time Ts = 0.015 s. The control input, u ∈ {−10, 10}, which affects
the lateral position of the cart, is chosen by the neural network
controller (Lopez et al., 2019). This means the controller is less
‘‘smooth’’ than the neural network controller for the linearized
cart–pole system, because when the pendulum is near vertical,
the controller rapidly switches between a high positive and neg-
ative control input value. Thus, the velocity components of the
system state, ẋ and θ̇ , will not stabilize to zero, as shown in Fig. 4.

As before, we added a Gaussian disturbance wk ∼ N (0,Σ)
with Σ = 0.01I to the dynamical equations and represent the
system as a Markov control process. The benchmark is defined
such that the pole angle θ will remain within [−π/6, π/6], while
the other variables are unconstrained. As such, we define the
target set T such that θ ∈ [−0.05, 0.05] as with the linearized
cart–pole system, but define the safe set K to be the entire state
space, meaning there is no unsafe region.

T = {x ∈ R4
| |x3| ≤ 0.05} (49)

This allows us to analyze the behavior of the controller to reach a
pre-specified objective without enforcing constraints on the sys-
tem before the terminal time. We then simulated 10 trajectories
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Fig. 5. (a) Safety probabilities of the nonlinear cart–pole system computed using
Lemma 5 for a time horizon of N = 600. (b) Probabilistic lower bound on the
safety probabilities computed using Theorem 15 with δ = 0.1.

from initial conditions sampled uniformly from the ranges speci-
fied above, and collected a sample S of M = 10,000 observations.
Then, we computed the safety probabilities using Lemma 5 with
N = 600. The results are shown in Fig. 5(a). We then computed
the finite sample bounds using Theorem 15 for δ = 0.1, and
plotted the lower bound on the safety probabilities in Fig. 5(b).

As expected, we see that the safety probabilities show that
the nonlinear pendulum system is able to stabilize a pendulum
starting within a small range of θ . Interestingly, it is revealed in
Fig. 5(a) that the controller is not completely symmetric, meaning
it has a higher chance of stabilizing the pendulum for positive val-
ues of θ than negative values of θ . Fig. 5(b) shows the probabilistic
lower bound on safety probabilities computed using Theorem 15
with δ = 0.1.

6. Conclusion

We provided state- and input-based finite sample bounds for
the stochastic reachability probability constructed via conditional
distribution embeddings. Our approach is based on an application
of statistical learning theory, that relates the observed data to
the quality of the approximation of the stochastic reachability
probability at a given state and input. This approach enables rig-
orous bounds on model-free stochastic reachability. We validated
our approach on a nonlinear dynamical system with a neural net
controller, and numerically characterized our approach on the
stochastic double integrator.
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