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Abstract

Linking the highly complex morphology of organic photovoltaic (OPV) thin films to their charge transport properties is criti-
cal for achieving high performance material systems that facilitate cost-efficient energy harvesting. In this paper, the current
Materials Knowledge Systems (MKS) framework was extended so that it was able to establish reduced-order high-fidelity
structure—property linkages for OPV films. Specifically, the following extensions were needed: (i) the proper application
of digital image processing algorithms to identify the salient local material states in OPV microstructures controlling the
charge transport phenomenon, (ii) computationally efficient feature engineering that not only utilized 2-point spatial cor-
relations and principal component analysis, but also two new distance-based metrics, and (iii) the successful application
of a localized version of the Gaussian process (1aGP) together with an active learning Cohn (ALC) for building the desired
surrogate models linking the OPV microstructures to their short-circuit currents. It is demonstrated that the extended MKS

framework can produce high-fidelity structure—property linkages for OPV films.

Keywords Unsupervised feature engineering - Reduced-order models - Structure—property linkages - Organic

photovoltaics - Charge transport - Gaussian processes

Introduction

Flexible, lightweight, and wearable solar cells offer a prom-
ising solution to cheap energy harvesting for consumer
products as well as residential applications. Over the past
decade, rapid developments in synthetic chemistry have
resulted in organic photovoltaic systems that have pushed
single-junction organic photovoltaic (OPV) efficiencies over
16%. These novel materials—electron-donors and electron-
acceptors—provide tremendous opportunities for improved
performance, reaching the performance of silicon-based
photovoltaics. In conjunction with synthesis advances, a
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large body of work has demonstrated that the microstruc-
ture in the active layer is key to high performance devices.
Thus, tailoring the morphology in the active layer of OPVs
continues to be crucial for maximizing performance. More
importantly, advances in self-assembly suggests the possi-
bility of remarkable control of the active layer morphology.

Despite the importance of morphology to OPV device
performance, it remains a challenge to comprehensively
and rapidly map morphologies to performance. The avail-
ability of reliable and fast structure—property models could
enable domain scientists to (a) explore, identify and design
"ideal" morphologies that maximize performance, (b) iden-
tify microstructure features that positively (or negatively)
impact performance, and (c) quantify how perturbations
to the morphology (due to oxidation, annealing or aging)
degrade performance.

Past approaches of investigating structure—property
linkages relied on full-physics simulators either discrete
(kinetic) Monte Carlo models, or continuum drift—diffusion
models. These models are typically expensive to deploy, and
sequential deployment for exploration or optimization has
been shown to be prohibitively expensive. Similarly, rapid
design exploration using such full-physics simulators is
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typically not possible, even with access to high performance
computing resources.

Recent approaches overcome this challenge by first cre-
ating a diverse dataset of annotated morphologies and their
performances, and then utilizing data-driven tools on this
dataset to construct low-computational cost surrogate struc-
ture—property models. Such a strategy amortizes the cost of
creating a large, annotated dataset across multiple studies.
Additionally, property annotation on this dataset using the
full-physics simulators are embarrassingly parallel, thus,
optimally utilizing HPC resources.

Such structure—property surrogate models—especially in
the context of OPV—have been successfully constructed and
deployed for design optimization, process—structure—prop-
erty linkages, sensitivity analysis, and other studies. How-
ever, most of these studies have:

e cither relied on manual 'featurization' of the morpholo-
gies based on knowledge of the photophysics [1-3].
While very useful, such approaches are non-trivial and
generally time-consuming. Additionally, manual fea-
turization carries the risk of overlooking or neglecting
important features,

e or utilized the full raw morphology data to con-
struct structure—property linkages [4]. However, these
approaches need massive datasets to train good surrogate
models due to the large input dimensionality (of the mor-
phology image). Additionally, the resultant surrogates are
complex and usually not interpretable.

In this work, we bridge these two extremes by using a
principled approach of unsupervised featurization of the
morphologies. These low dimensional set of features are
then used to train an accurate structure—property surrogate
model. Specifically, the recently developed Material Knowl-
edge System (MKS) framework [5-9] offers a data-driven
framework for unsupervised feature engineering of mate-
rial microstructures. This framework employs a voxelized
representation of microstructures to efficiently compute the
2-point spatial correlations [10—-12] and perform principal
component analysis (PCA) [13, 14] on them to identify a suf-
ficiently small number of features representing the complex
material microstructure. The feature engineering developed
in the MKS framework is unsupervised in that the micro-
structure feature selection is completely uninfluenced by the
output variables targeted by the surrogate model. Although
a large number of options exist for building the surrogate
models of interest, recent work in the MKS framework [8,
9, 15-20] has demonstrated that Gaussian process regression
(GPR) [14, 21] offers advantages because of its ability to
formulate nonparametric models while allowing for a rigor-
ous consideration of the prediction uncertainty.
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Certain extensions are needed to the current MKS frame-
work in order to apply it successfully to the present problem:
(1) A large number of pixel-scale (local) material states need
to be considered, which is expected to be significantly larger
than those encountered in prior case studies. This is because
of the need to consider not only the donor and acceptor
pixels, but also the different types of the donor—acceptor
interfaces present in the microstructure. This challenge is
addressed in this work by applying digital image processing
techniques in combination with the previously established
MKS feature selection methods that utilized fast-Fourier
transform (FFT) based computations of 2-point spatial
correlations and PCA. (ii) The small thickness of the films
necessitated the development and use of new features that
specifically accounted for the distances of the different types
of the donor—acceptor interfaces from the top and the bottom
surfaces of the films [22]. (iii) Given the large dimensional
and large input domains involved, a localized version of the
Gaussian process (1aGP) is needed. In this work, the 1laGP is
implemented together with an active learning Cohn (ALC)
for building the desired surrogate models. This paper dem-
onstrates that this extended MKS framework is capable of
producing highly accurate reduced-order models linking the
OPV microstructures to their short-circuit currents.

Background
Microstructure and Photovoltaic Property Dataset

We utilize a curated dataset of microstructure images created
by solving the Cahn—Hilliard equation [23] with varying ini-
tial conditions. The Cahn-Hilliard equation [23] describes
phase separation occurring in a binary mixture and has been
shown to be a good representation of morphology evolution
during fabrication of organic blend thin films [24-26] that
are the typical active layer in OPV's. The image data arising
from these simulations provide a rich dataset for construct-
ing structure—property surrogate models [4]. The dataset is
a collection of 33,552 microstructure images of 101 x 101
pixels in resolution. Each image is grayscale, with the value
of each pixel ranging between 0 and 1.

Each microstructure is virtually interrogated to extract
its current—voltage characteristics, by solving a morphology
aware (i.e., spatially heterogeneous) photophysics device
model. We deploy a validated, in-house software that uses a
finite element based solution strategy for solving the photo-
physics device model [27-29]. The photophysics model is
described by the steady state excitonic drift diffusion (XDD)
equations. The XDD equations are a set of four tightly cou-
pled partial differential equations that model the optoelec-
tronic physics of energy harvesting in organic photovoltaic
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devices. The photophysics consists of the following stages
(also illustrated in Fig. 1):

¢ Incident solar radiation causes the generation of energeti-
cally active electron—hole pairs, called excitons (denoted
by y), in the donor regions of the microstructure. These
excitons diffuse across the microstructure and have a
finite lifetime before becoming ground state electron—
hole pairs;

e Excitons that diffuse and reach the donor—acceptor inter-
face undergo dissociation into electrons (denoted by N)
and holes (denoted by P) at the donor—acceptor interface.
The dissociation mechanism is material and field depend-
ent (denoted by D);

e These generated charges (N,P) traverse the microstruc-
ture and reach their corresponding electrodes (cathode
and anode) to produce a current. Two mechanisms are
responsible for driving carrier transport or current flow.
First, the drift, which is caused by the presence of an
electric field (denoted as the gradient of the potential,
V@), and second, the diffusion, which is caused by a spa-
tial gradient of electron or hole concentration;

e The distribution of electrons and holes in the microstruc-
ture interacts with the applied voltage and influences
the electrostatic potential @ across the microstructure.
Finally, electrons and holes can recombine (denoted by
p) to create excitons

The photophysics described above is encoded using the
exciton drift diffusion (XDD) equations [27]. In prior work,
these XDD equations were solved to get the performance of
the OPV device, which is characterized by the short-circuit
current J,.. XDD simulation results for each of the 33,552
microstructures generated earlier provide us the photophys-
ics properties (J,,).

Feature Engineering Using MKS Framework

In the MKS framework, the uniformly discretized (i.e.,
voxelated) representative volume elements (RVEs) of the
material microstructures are denoted by an array, mi’ whose
elements denote the volume fractions of the material state
h found at voxel s. Microstructural domains where each
voxel is occupied fully by a specific material state lead to
microstructure arrays where the value of mf is either O or
1. Although it may be tempting to use mf directly as the
feature set, it should be recognized that it lacks translational
invariance. The MKS framework employs the framework
of 2-point spatial correlations [10—12], which are essen-
tially auto- and cross-correlations of material state maps of
the microstructure. Mathematically, the discretized set of
2-point spatial correlations, denoted as frhh’, are computed as

’ 1 ’
hh' __ h I
R = Yomim, (1)
r s

where h and /' index all of the material states present in the
studied material system, r indexes a set of discretized vec-
tors arising from the voxelization used to define mf, and S,
denotes the total number of pixels that allow for placement
of vectors r within the microstructural domain. The compu-
tations implied in Eq. (1) can be efficiently carried out using
the fast Fourier transform (FFT) algorithm [30, 31].

The complete set of 2-point spatial correlations computed
using Eq. (1) produces a large unwieldy set of features. In
the MKS framework, a smaller set of salient features is
identified (i.e., feature engineering) by performing princi-
pal component analysis (PCA) [13, 14], which (rotationally)
transforms the data into a new space where the axes are
organized by their ability to account for the variance in the
dataset. The new orthogonal axes and the new coordinates
obtained from the PCA are then referred to as PC scores
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Fig. 1 Schematic illustrating the various stages of the photophysics process (see main text for detailed description)
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and PC basis, respectively. Prior studies have often shown
a drastic dimensionality reduction going from ~ 10> — 10°
original microstructural features to less than ~ 10 — 15 PCs
[6, 8, 15, 32, 33].

Gaussian Process Regression Models

Although many surrogate model building approaches can
be used for building structure—property linkages, prior work
has shown the benefits of using Gaussian process regression
(GPR) in combination with the MKS feature engineering
described earlier [8, 9, 15-20]. GPR is particularly power-
ful when building surrogate models for complex nonlinear
systems/phenomena, where the parametric model forms are
not yet established. The other main advantage of GPR lies
in the quantification of the uncertainty associated with the
model predictions.

In the GPR-MKS framework, the reduced-order struc-
ture—property linkage of interest can be decomposed into a
linear mean function m and an error function € often mod-
eled as a zero-mean Gaussian process. Mathematically, the
desired model is expressed as [21]

p=m(y)+e )
R

m(y) = Bo+ ). B, 3)
i=1

e~ GP(0,k(7.7")) @)

where p is the target property (i.e., output), y is the input
feature vector consisting of R PCs, B are coefficients of the
linear model, and k(y, y' ) is the GP's covariance function.
The automatic relevance determination squared exponen-
tial (ARD-SE) kernel [21] has often been used to define
the GP's covariance. The ARD-SE kernel is mathematically
expressed as

R 12

1 Y1 =7
) =den | ST ey
=1 1

where the scaling factor o, length scale o;, and noise fac-
tor o, are hyperparameters of the kernel function, and 5,/
is the Kronecker delta. The hyperparameter ¢, determines
the homoscedastic noise in the target predictions. The hyper
parameter o controls the amplitude of the variance in the
output. The length scale ¢, automatically determines the rel-
evance of input features on the predictions. Higher values of
o, results in smoother predictions, indicating minimal influ-
ence on the output prediction. The values of hyperparam-
eters need to be optimized during the model building process
to obtain the best model.
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The joint distribution of the observed training data (X) and
the unobserved test data (X,,) is given by [21]

P KX.X) K,(X.X,)

e[ ) ©
The predictive posterior is obtained from conditioning the

joint distribution fully defined by its mean and covariance [21]:

u,=KK'p )

T, =K, -KK'K,

The main computationally intensive operation in GP for-
mulation is the inversion of the kernel matrix which scales
as O(N?). Although this is a one-time computation, in case
of large ensemble of training data, the computation and stor-
age of K~! present significant challenges. Prior studies have
addressed these challenges using methods such as low-rank
approximations to GPs [21, 34], treed GPs [35, 36] and local
approximate GP (1aGP) [37, 38]. Recent research has demon-
strated that low-rank approximations and treed GPs tend to
over-smooth the data, might impose an upper limit on the data
size and typically take longer to compute [39]. The recently
developed 1aGP model is particularly attractive as it scales well
with the data size, allows for non-stationarity modeling, and is
highly parallelizable. The 1aGP model is a local variant of the
GPR which employs a local subset of the data to train separate
GPs for each target point. The subset of data can be chosen
as n nearest neighbors of the target point. However, this sim-
ple criterion does not yield the optimum predictions. Instead,
the 1aGP approach utilized in this work employs the active
learning Cohn (ALC) method [38, 40] to sequentially update
the chosen subset of the training points. The ALC method
sequentially identifies points whose addition to the local sub-
set maximizes the expected information gain by maximizing
the reduction in the prediction variance. More specifically,
for each prediction, the first n nearest neighbors to the target
point are chosen as the initial set for constructing the first laGP
model. Then the ALC method is applied over all of the remain-
ing points to identify the new point to be added to the next
update of the laGP model. Points are sequentially identified
until no further improvement to model is observed. Thus, the
size of the final set of neighbors utilized in each 1aGP model
is represented by n; = ny + ny; ¢, where ny; - is the total num-
ber of points selected by the application of the ALC method.
Since the number of neighbors selected is typically quite small
(ng; < N), 1laGP successfully circumvents the aforementioned
challenges in the use of global GPR on large datasets.
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Microstructure-Property Models
for Photovoltaic Polymers

The workflow used in this paper for building the surrogate
microstructure—property models for OPVs will involve two
main steps: (i) unsupervised feature engineering of the
microstructure using the MKS framework, and (ii) estab-
lishing the 1aGP models using the engineered features.
Further details of these steps are described next.

Material States in OPV Microstructures

The grayscale OPV microstructures (with each pixel value
ranging between zero and one) obtained from solving the
Cahn—Hilliard equation (summarized in “Microstructure
and Photovoltaic Property Dataset” section) are thresh-
olded into binary microstructures consisting of donor (D)
and acceptor (A) phases (i.e., material state binerization).
In this study, a threshold of 0.5 was used to convert the
gray-scale microstructures into binary microstructures.
The charge transport of OPV materials is affected by the
shape, size, spacing distribution of donor and acceptor
regions as well as their connectivity to their corresponding
electrodes. More specifically, in order for the OPV micro-
structures to exhibit efficient charge transport, the donor
and the acceptor regions should be directly connected to
the corresponding electrodes positioned at top and bottom
surfaces of the thin films, respectively. In other words,
the donor/acceptor pixels connected to their respective
electrodes are expected to be very productive, while those
not connected to their respective electrodes are expected
to be fairly non-productive. Therefore, it was decided to
define four different material local states for labeling the
individual pixels in the microstructures: (i) D*—donor
pixels connected to the top surface, (ii) D°—donor pixels
unconnected to the top surface, (iii) A¥—acceptor pixels
connected to the bottom surface, and (iv) A°—acceptor
pixels unconnected to the bottom surface. These constitute
the first set of material local states identified for this work.

In addition, the different types of the donor—acceptor
interfaces present in the microstructure affect the charge
transport in very different ways. Any interface pixels
between two connected regions (i.e., regions connected to
their respective electrodes), defined as I; = (DA,AV), are
expected to contribute the most to the charge transport.
It can also be seen that any interface pixels between two
unconnected regions, I, = (D°,A®), are fairly non-produc-
tive. The other two sets of interface pixels, I; = (D*,A°)
and I, = (D°,AV), are considered semi-effective. The four
sets of interfaces thus defined constitute the second set of
identified material local states.

As a final consideration, the charges created in OPV
microstructures typically move through the donor and
acceptor regions that are directly connected to the top and
bottom electrodes (D and AY), respectively. In addition, if
unconnected donor/acceptor regions (D° and A°) are con-
siderably close to their respective electrodes, they can also
play an important role in the charge transport [22], espe-
cially in microstructures that comprised only unconnected
donor/acceptor regions. Note that the charge transport in
such microstructures is inversely related to the distance of
the closest D° and A° from their relevant electrodes (i.e.,
shorter the distance, higher the charge transport). These
insights were used to define two additional distance-based
metrics described later.

In order to properly account for all of the physical insights
described above, we devised and implemented a 3-step pro-
cedure to assign material local states to each pixel in each
OPV microstructure. In the first step, we assign one of the
four material local states described above to each voxel in
the OPV microstructure: D*, D°, AV, and A° (see Fig. 2a).
This was achieved by first considering the donor phase as
the foreground (i.e., assigning values of one to donor pix-
els and zero to acceptor pixels) and using a cluster labeling
algorithm [41] to identify uniquely the connected sets of the
donor pixels (i.e., donor clusters). The pixels in the donor
clusters connected to the top surface were all assigned the
material state D, while the rest of the donor pixels were
assigned the material state D°. A similar procedure was
performed to assign the material states AY and A°. Note
that the assignment of these four material states is mutually
exclusive. In other words, every pixel in the microstructure
is assigned only one of the four material states mentioned
above.

In the second step, we have defined an additional mate-
rial local state identifying the different types of interfaces
between the donor and acceptor pixels. This additional
material state is assigned only to the interface pixels. As
already described, a total of four different interfaces are pos-
sible: (DA, AY), (D?, A°), (D°, AY), and (D°, A°) (see the
microstructure shown in Fig. 2b). In this work, we adopted
a 2-pixel interfacial region that included the first pixel on
either side of the interface. The interface pixels are identi-
fied using a computational strategy developed in prior work
for 2-phase microstructures [8]. This method is used due
to its computational efficiency, derived from the use of the
convolution kernel shown in Fig. 2b on selected foreground
material states. The result of this computations is an integer
¢; € [1 : 4]for each pixel i, which identifies the four desired
classes of interfacial pixels described earlier (note that the
interior pixels within the foreground and background would
exhibit values zero and five, respectively). In this work, spe-
cial considerations were made to account for the non-peri-
odicity of the microstructures. Specifically, this challenge
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Fig.2 Labeling of the material local states to each pixel of a selected
OPYV microstructure. a Each pixel is assigned one of the four material
local states corresponding to connected/unconnected donor/accep-
tor pixels. Connectivity in this context refers to whether the donor/
acceptor pixels are connected to their corresponding electrodes at the
top/bottom surfaces. b Each interface pixel is assigned one of the four
interfaces. The interfacial region is considered to be 2-pixel thick,

was addressed using suitable zero-padding schemes [31].
For non-periodic microstructures, the sets of edge pixels and
corner pixels were identified separately; edge pixels with
¢; €[1 : 3] and corner pixels with ¢; € [1,2] denote inter-
facial pixels. By applying the procedure described above
to each phase (i.e., treating each phase as foreground one
at a time), each interface pixel can be mapped uniquely to
one the aforementioned four types of interfaces. Figure 2b
shows the labeling of the interface pixels for the example
microstructure shown in Fig. 2a.

In the last step of the unsupervised feature identification
procedure employed in this study, we identify a third local
material state descriptor, which is applied only for the top/
bottom rows of pixels connecting to the electrodes. This
feature is designed to capture the effect arising from the
shortest distance of donor/acceptor pixels from their respec-
tive electrodes, which essentially reflects the transport dis-
tance for the generated charges to complete the circuit. As
already mentioned, this feature is especially important for
microstructures where the donor/acceptor pixels are not in
direct contact with their corresponding electrodes. Figure 2¢c
presents a histogram of the shortest vertical distance of the
donor (acceptor) pixel to the top (bottom) surface, d, for the
example microstructure shown in Fig. 2a. For our work, it is
necessary to suitably scale these distances to reflect the fact
that larger values of d do not contribute significantly. It was
decided to use exp(—d/A) as the feature value for each top/
bottom pixel, with 4 = 10nm reflecting the expected diffu-
sion length for charge transport [22, 42]. Consequently, the
feature value is one when the pixels are in direct contact
and exponentially decreases when there is a gap. The rate of
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comprising both pixels on either side of the interface. The convolu-
tion kernel used to identify the interfaces is shown on the right. ¢ A
third material state is assigned to the top and bottom rows of pixels
based on the shortest distance, d, of the donor (acceptor) pixels from
the top (bottom) surface. The plot shows distribution of d for the
selected microstructure

decrease is controlled by the value of 4, i.e., pixels farther
than A are assumed to make fairly insignificant contributions
to the charge transport.

After labeling the material local states, the next step
involves the computation of the important microstructure sta-
tistics. The central challenge comes from the large number of
spatial statistics that could be computed. In the present case,
since there are a total of eight material local states (four accep-
tor/donor states and four interface states), one can potentially
define a total of 8% = 64 sets of spatial correlations (including
auto-correlations and cross-correlations). Since each set of
spatial correlations has a total of 101 x 101 = 10, 201 features,
the full set of features becomes unwieldy for establishing sur-
rogate models. In prior work [8] on correlating the effective
permeability of a porous solid to its pore structure, it was
observed that the auto-correlations of the material local states
(including interface states) were adequate for producing high
fidelity structure—property linkages. Utilizing the insights from
that work, we have included only the following sets of spatial
correlations in establishing the surrogate models presented in
this work: i) 2-point spatial auto-correlations for each of the
four main material local states frDADA S, frAVAv S }, and
ii) 2-point spatial auto-correlations for each of the four inter-

L phly ol

facial local states{ P S SN ,1414 } Even using only this

subset of spatial correlations produces a total of
8 x 10,201 = 81, 608 features. As already described in “Fea-
ture engineering using MKS framework”Section, PCA is
applied to obtain a small number of features (i.e., PC scores)
as inputs to the surrogate structure—property models. Prior to
application of PCA, each of the eight sets of spatial
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correlations is scaled to exhibit the same variance across the
entire dataset. This is necessary due to the fact that PCA aims
to capture the variance in the dataset in the smallest number of
terms. Therefore, scaling the different sets of spatial correla-
tions ensures that each set of spatial correlations is equally
weighted in the PC representations. In this work, for reasons
already explained, the averaged values of exp(—d/10) for both
electrodes, denoted as {6", sV }, are used as additional features
(i.e., these are appended to the selected PC scores representing
the microstructure statistics as additional features).

Local Gaussian Process Surrogate Models for OPVs

The microstructure PC scores as well as the two distance-
based features are used as inputs to train a local Gaussian
process (laGP) surrogate model to predict the short circuit
current of OPV microstructures. Each input is scaled to
exhibit the same variance across the entire ensemble of the
dataset. This is needed because 1aGP models identify local
subsets of the training data using suitable distance measures.
For each target point, the first n, closest neighboring points
are chosen as the initial training set for building the initial
GP. Subsequently, the ALC criterion is used to sequentially
update the training data to maximize the expected informa-
tion gain. As the training subset is sequentially updated, one
expects to see a systematic decrease in the improvement to
the model performance. Consequently, one would naturally
reach a point where further updating the training set would
only minimally improve the laGP model performance. In this
study, the sequential update of the laGP model was continued
until the reduction in the prediction variance was smaller than
107%. In the protocol described above, the final size of the local
training set is denoted as n, = ng + ny; -, where n,; - denotes
the number of training points selected using the ALC criterion.
The performance of the trained laGP models produced in this
work was quantified using multiple error measures, including
normalized mean absolute error (nMAE), normalized median
absolute deviation (nMAD) and R?. These are defined as

LNV 6 3G
v Zim V5 = I8

nMAE = - ®)
]SC

median(|J0) = J0), | = J@)..... g = T))

nMAD = =

]SC
9)
D 330))2
e Zim U2 =90

(10)

. - 2
Zi‘i] (Jii) - Jsc)

where J@ and J@ are the actual (ground truth) and the
predicted short circuit current of the i target point, and N

is the number of test points. jsc denotes the mean value of
the J,,. values. R? serves as an indicator of how much of the
variation in the output is explained by the inputs. The value
of R? for a perfect model is expected to be one. Likewise,
for a flat line model that always predicts the mean, the value
of R? will be zero.

Results and Discussion

In the present study, an ensemble of 33,552 distinct OPV
microstructures was generated to establish the desired data-
driven microstructure—property linkage for OPV films. The
short circuit current J,, associated with each microstructure
was obtained by solving the XXD equations discussed in
“Microstructure and Photovoltaic Property Dataset” section.
The unsupervised feature engineering framework described
in “Material states in OPV microstructures” section was
employed on each microstructure.

Figure 3 depicts the eight sets of spatial auto-correlations
computed for the example microstructure shown in Fig. 2a.
The top and bottom rows in this figure present spatial auto-
correlations of the four main material states and the four
interface states, respectively. Note that the auto-correlations
exhibit centro-symmetry, because the values of the statis-
tics for r and —r are the same. Therefore, half the infor-
mation in these maps is redundant and could be eliminated
before performing the PCA. The central peak value in each
auto-correlation map, corresponding to r = 0, reflects the
volume fraction of the specific material state. For the inter-
face states, this value corresponds to the volume fraction
occupied by the 2-voxel wide interface regions defined in
this work. The auto-correlation maps implicitly capture a
significant amount of statistical information on the shape,
size, and spacing distributions of the material states in the
microstructure. For instance, the bands in the frDADA map
capture important features related to the size, shape, orien-
tation, and spacing of the D” regions in the microstructure
(compare the auto-correlation map with the actual micro-
structure in Fig. 2a). Similarly, f4"4" captures the details of
the more compact and isolated positioning of the A° regions
in this microstructure. In contrast, the auto-correlation maps
for D° and AV indicate that these regions are more broadly
distributed in the microstructure. Similar observations can
be made for the auto-correlation maps of the interface states.

In order to efficiently compute the PCA of the large data
matrix of size 33,552 x 81,608 assembled in this work,
we took advantage of the randomized SVD algorithm
implemented in DASK package in Python programming
language [43]. It was decided to truncate the PC repre-
sentations obtained from this protocol to 10 PCs, because
there was no appreciable improvement in the variance
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Fig.3 The 8 sets of 2-point spatial auto-correlations corresponding to main material states and interfaces of the example microstructure shown
in Fig. 2 is shown. The center value of these statistical maps is volume fraction of the corresponding material state

captured beyond this truncation level. This represents a
significant reduction in the dimensionality of the micro-
structure representation, where we started with 81,608
spatial correlations and ended up with only 10 PC scores.
The representation of all 33,552 microstructures in the first
three PCs is presented in Fig. 4. In this figure, each data
point corresponds to the first three PC scores of the micro-
structure statistics and is colored using its value of J.
Although the three PC scores represent only a subset of
the regressors we intend to use in this work (a total of ten
PC scores and two distance-based metrics will be used), it

Fig.4 The low-dimensional
representation of the entire data
ensemble of OPV microstruc-
tures in the first 3 PC basis is

depicted. The PC representa- 100 LeoLie

tions are truncated after the 50

first 10 PCs. The unsupervised

PCA is powerful in capturing 0 ——

the microstructural differences O"’

as well as the variance in the o 5

values of J,
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-150
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100
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is very encouraging to see the patterns in Fig. 4 suggest-
ing a strong dependence of the target on these regressors.

A direct interpretation of the PC scores is currently not
possible. Essentially, each PC basis represents a linearly
weighted collection of 81,608 spatial correlations. The PC
score of each OPV microstructure represents the projec-
tion (i.e., dot product) of its set of 81,608 spatial corre-
lations on the corresponding PC basis. The high dimen-
sionality of the PC basis makes it impractical to seek the
precise physical meaning of the PC scores. However, it
was found that the first PC score is highly correlated to
the volume fractions of the four main material local states
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as well as the I; and I, interface states (interfaces of D*
with acceptor material states). The second PC score was
found to be highly correlated to volume fractions of I,
and [, interface states (interfaces of A with donor mate-
rial states). In addition to the information on the volume
fractions, PC scores contain rich information on other
morphological aspects of microstructures such as shape,
size, orientation and spacing of material features within
OPYV microstructures. For instance, as shown in Fig. 4,
the microstructures comprising coarser regions of AY and/
or D° have higher PC, values, while the microstructures
with coarser regions of A° and/or D* have smaller PC,
values. Several other similar qualitative observations can
be made by inspecting Fig. 4 closely. As another example,
it can be seen that microstructures comprised mainly/only
from coarser unconnected donor/acceptor regions are com-
pletely separated from the microstructures with connected
donor/acceptor finer regions in the low-dimensional PC
representation.

The 10 microstructure PC scores and the two averaged
distance-based metrics, §* and §V, are used as inputs to
train the surrogate laGP models using the R package lan-
guage [38]. As already noted, each input feature is scaled
to exhibit the same variance across the entire dataset for
this model building strategy. A 1aGP model is produced
for each test point using a set of ny, = 35 closest neigh-
bors in the input domain. The ALC criterion is employed
to sequentially add points to the design space such that
their addition maximizes the expected information gain.
The training size for the 33,552 1aGP models produced
in this study was in the range [36,346]. The distribution
of the training sizes is shown in Fig. 5.a. It is seen that
more than 99% of the 1aGP models built in this study
needed less than 100 local training data points. This small
size of the local training data set significantly reduces
the computational cost involved in building the desired
laGP models. Figures 5b and 5c¢ present the parity plot
comparing the J,. predictions from the laGP models with
their corresponding ground-truth values as well as the
uncertainty associated with the model predictions (i.e.,
one standard deviation from the mean prediction shown
as error bars) and the distribution of the relative mean
absolute errors, respectively. The standard deviation in
99.7% of the trained models is within 5% of the J... Those
few models that exhibit higher uncertainties correspond to
the microstructures that fall on the boundary of the input
PC domain. This is to be expected as 1aGP performs bet-
ter in the interior of the input domain, compared to the
edges of the input domain (there is limited availability of
training points in these regions). The normalized absolute
error was higher than 0.05 in only 8% of the trained 1aGP
models. Considering the entire set of trained models, the
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Fig.5 Depiction of the performance of the data-driven structure—
property linkages trained for OPV microstructures is presented. The
total design size of each 1aGP model is determined using ALC crite-
rion. The distribution of the final design size is shown in a. The par-
ity plot comparing the predictions and actual values of J,, as well as
the relative mean absolute error are presented in b and ¢, respectively.
The established high-fidelity microstructure—property linkages dem-
onstrate the utility of the developed feature engineering framework
for organic photovoltaics

normalized mean absolute error nMAE and the normalized
mean median absolute deviation nMAD were 2.16% and
1.10%, respectively. Moreover, a high value of R? = 0.99
was calculated for the trained 1aGP models, which demon-
strates that a high proportion of the variance in the target
is being captured well by the model inputs. This clearly
demonstrates the efficacy of the novel feature engineer-
ing framework presented in this work in establishing
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high-fidelity data-driven microstructure—property map-
pings in organic photovoltaics.

Conclusions

A novel unsupervised feature engineering framework for
data-driven mappings of OPV microstructures to their
functional properties has been successfully developed.
This new feature engineering framework successfully lev-
eraged digital image processing algorithms in conjunction
with the previously established MKS framework. Specifi-
cally, a computationally efficient labeling of two sets of
salient material states (four bulk material states and four
interface states) was found to be the critical first step in the
feature engineering of the OPV microstructures. One set of
features characterized the connectivity of the bulk phases
controlling the generation and transport of excitons,
while the other set of features characterized the interfaces
between the bulk phases controlling the generation and
transport of charges. This was then followed by the com-
putation of suitable 2-point spatial auto-correlations using
the MKS framework, and their low-dimensional repre-
sentation by PCA performed using a scalable randomized
SVD algorithm. In addition to material PC scores, it was
found that two additional expert-defined distance-based
metrics were essential to improve the accuracy of the data
driven structure—property linkages for microstructures
where the donor/acceptor pixels are not in direct contact
with their corresponding electrodes. Finally, a localized-
version of the Gaussian process (laGP) was employed
to extract the desired reduced-order structure—property
linkages. It was found that the implementation of 1aGP
with ALC produced many computational benefits for the
present application. It was shown that with only a small
subset of the training dataset one can build accurate 1aGP
models at low computational cost. The uncertainty associ-
ated with the model predictions was quantified by consid-
ering one standard deviation from the mean prediction. It
was found that only 0.3% of the model predictions exhib-
ited a standard deviation higher than 5% of the mean value
of the target property. The high-fidelity structure—property
linkages extracted in this study attest to the tremendous
efficacy of the proposed novel feature engineering frame-
work for complex organic photovoltaic microstructures.
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