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Abstract
Linking the highly complex morphology of organic photovoltaic (OPV) thin films to their charge transport properties is criti-
cal for achieving high performance material systems that facilitate cost-efficient energy harvesting. In this paper, the current 
Materials Knowledge Systems (MKS) framework was extended so that it was able to establish reduced-order high-fidelity 
structure–property linkages for OPV films. Specifically, the following extensions were needed: (i) the proper application 
of digital image processing algorithms to identify the salient local material states in OPV microstructures controlling the 
charge transport phenomenon, (ii) computationally efficient feature engineering that not only utilized 2-point spatial cor-
relations and principal component analysis, but also two new distance-based metrics, and (iii) the successful application 
of a localized version of the Gaussian process (laGP) together with an active learning Cohn (ALC) for building the desired 
surrogate models linking the OPV microstructures to their short-circuit currents. It is demonstrated that the extended MKS 
framework can produce high-fidelity structure–property linkages for OPV films.

Keywords  Unsupervised feature engineering · Reduced-order models · Structure–property linkages · Organic 
photovoltaics · Charge transport · Gaussian processes

Introduction

Flexible, lightweight, and wearable solar cells offer a prom-
ising solution to cheap energy harvesting for consumer 
products as well as residential applications. Over the past 
decade, rapid developments in synthetic chemistry have 
resulted in organic photovoltaic systems that have pushed 
single-junction organic photovoltaic (OPV) efficiencies over 
16%. These novel materials—electron-donors and electron-
acceptors—provide tremendous opportunities for improved 
performance, reaching the performance of silicon-based 
photovoltaics. In conjunction with synthesis advances, a 

large body of work has demonstrated that the microstruc-
ture in the active layer is key to high performance devices. 
Thus, tailoring the morphology in the active layer of OPVs 
continues to be crucial for maximizing performance. More 
importantly, advances in self-assembly suggests the possi-
bility of remarkable control of the active layer morphology.

Despite the importance of morphology to OPV device 
performance, it remains a challenge to comprehensively 
and rapidly map morphologies to performance. The avail-
ability of reliable and fast structure–property models could 
enable domain scientists to (a) explore, identify and design 
"ideal" morphologies that maximize performance, (b) iden-
tify microstructure features that positively (or negatively) 
impact performance, and (c) quantify how perturbations 
to the morphology (due to oxidation, annealing or aging) 
degrade performance.

Past approaches of investigating structure–property 
linkages relied on full-physics simulators either discrete 
(kinetic) Monte Carlo models, or continuum drift–diffusion 
models. These models are typically expensive to deploy, and 
sequential deployment for exploration or optimization has 
been shown to be prohibitively expensive. Similarly, rapid 
design exploration using such full-physics simulators is 
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typically not possible, even with access to high performance 
computing resources.

Recent approaches overcome this challenge by first cre-
ating a diverse dataset of annotated morphologies and their 
performances, and then utilizing data-driven tools on this 
dataset to construct low-computational cost surrogate struc-
ture–property models. Such a strategy amortizes the cost of 
creating a large, annotated dataset across multiple studies. 
Additionally, property annotation on this dataset using the 
full-physics simulators are embarrassingly parallel, thus, 
optimally utilizing HPC resources.

Such structure–property surrogate models—especially in 
the context of OPV—have been successfully constructed and 
deployed for design optimization, process–structure–prop-
erty linkages, sensitivity analysis, and other studies. How-
ever, most of these studies have:

•	 either relied on manual 'featurization' of the morpholo-
gies based on knowledge of the photophysics [1–3]. 
While very useful, such approaches are non-trivial and 
generally time-consuming. Additionally, manual fea-
turization carries the risk of overlooking or neglecting 
important features,

•	 or utilized the full raw morphology data to con-
struct structure–property linkages [4]. However, these 
approaches need massive datasets to train good surrogate 
models due to the large input dimensionality (of the mor-
phology image). Additionally, the resultant surrogates are 
complex and usually not interpretable.

In this work, we bridge these two extremes by using a 
principled approach of unsupervised featurization of the 
morphologies. These low dimensional set of features are 
then used to train an accurate structure–property surrogate 
model. Specifically, the recently developed Material Knowl-
edge System (MKS) framework [5–9] offers a data-driven 
framework for unsupervised feature engineering of mate-
rial microstructures. This framework employs a voxelized 
representation of microstructures to efficiently compute the 
2-point spatial correlations [10–12] and perform principal 
component analysis (PCA) [13, 14] on them to identify a suf-
ficiently small number of features representing the complex 
material microstructure. The feature engineering developed 
in the MKS framework is unsupervised in that the micro-
structure feature selection is completely uninfluenced by the 
output variables targeted by the surrogate model. Although 
a large number of options exist for building the surrogate 
models of interest, recent work in the MKS framework [8, 
9, 15–20] has demonstrated that Gaussian process regression 
(GPR) [14, 21] offers advantages because of its ability to 
formulate nonparametric models while allowing for a rigor-
ous consideration of the prediction uncertainty.

Certain extensions are needed to the current MKS frame-
work in order to apply it successfully to the present problem: 
(i) A large number of pixel-scale (local) material states need 
to be considered, which is expected to be significantly larger 
than those encountered in prior case studies. This is because 
of the need to consider not only the donor and acceptor 
pixels, but also the different types of the donor–acceptor 
interfaces present in the microstructure. This challenge is 
addressed in this work by applying digital image processing 
techniques in combination with the previously established 
MKS feature selection methods that utilized fast-Fourier 
transform (FFT) based computations of 2-point spatial 
correlations and PCA. (ii) The small thickness of the films 
necessitated the development and use of new features that 
specifically accounted for the distances of the different types 
of the donor–acceptor interfaces from the top and the bottom 
surfaces of the films [22]. (iii) Given the large dimensional 
and large input domains involved, a localized version of the 
Gaussian process (laGP) is needed. In this work, the laGP is 
implemented together with an active learning Cohn (ALC) 
for building the desired surrogate models. This paper dem-
onstrates that this extended MKS framework is capable of 
producing highly accurate reduced-order models linking the 
OPV microstructures to their short-circuit currents.

Background

Microstructure and Photovoltaic Property Dataset

We utilize a curated dataset of microstructure images created 
by solving the Cahn–Hilliard equation [23] with varying ini-
tial conditions. The Cahn–Hilliard equation [23] describes 
phase separation occurring in a binary mixture and has been 
shown to be a good representation of morphology evolution 
during fabrication of organic blend thin films [24–26] that 
are the typical active layer in OPV's. The image data arising 
from these simulations provide a rich dataset for construct-
ing structure–property surrogate models [4]. The dataset is 
a collection of 33,552 microstructure images of 101 × 101 
pixels in resolution. Each image is grayscale, with the value 
of each pixel ranging between 0 and 1.

Each microstructure is virtually interrogated to extract 
its current–voltage characteristics, by solving a morphology 
aware (i.e., spatially heterogeneous) photophysics device 
model. We deploy a validated, in-house software that uses a 
finite element based solution strategy for solving the photo-
physics device model [27–29]. The photophysics model is 
described by the steady state excitonic drift diffusion (XDD) 
equations. The XDD equations are a set of four tightly cou-
pled partial differential equations that model the optoelec-
tronic physics of energy harvesting in organic photovoltaic 
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devices. The photophysics consists of the following stages 
(also illustrated in Fig. 1):

•	 Incident solar radiation causes the generation of energeti-
cally active electron–hole pairs, called excitons (denoted 
by � ), in the donor regions of the microstructure. These 
excitons diffuse across the microstructure and have a 
finite lifetime before becoming ground state electron–
hole pairs;

•	 Excitons that diffuse and reach the donor–acceptor inter-
face undergo dissociation into electrons (denoted by N ) 
and holes (denoted by P ) at the donor–acceptor interface. 
The dissociation mechanism is material and field depend-
ent (denoted by D);

•	 These generated charges ( N,P ) traverse the microstruc-
ture and reach their corresponding electrodes (cathode 
and anode) to produce a current. Two mechanisms are 
responsible for driving carrier transport or current flow. 
First, the drift, which is caused by the presence of an 
electric field (denoted as the gradient of the potential, 
∇φ ), and second, the diffusion, which is caused by a spa-
tial gradient of electron or hole concentration;

•	 The distribution of electrons and holes in the microstruc-
ture interacts with the applied voltage and influences 
the electrostatic potential � across the microstructure. 
Finally, electrons and holes can recombine (denoted by 
� ) to create excitons

The photophysics described above is encoded using the 
exciton drift diffusion (XDD) equations [27]. In prior work, 
these XDD equations were solved to get the performance of 
the OPV device, which is characterized by the short-circuit 
current Jsc . XDD simulation results for each of the 33,552 
microstructures generated earlier provide us the photophys-
ics properties ( Jsc).

Feature Engineering Using MKS Framework

In the MKS framework, the uniformly discretized (i.e., 
voxelated) representative volume elements (RVEs) of the 
material microstructures are denoted by an array, mh

s
 , whose 

elements denote the volume fractions of the material state 
h found at voxel s . Microstructural domains where each 
voxel is occupied fully by a specific material state lead to 
microstructure arrays where the value of mh

s
 is either 0 or 

1. Although it may be tempting to use mh
s
  directly as the 

feature set, it should be recognized that it lacks translational 
invariance. The MKS framework employs the framework 
of 2-point spatial correlations [10–12], which are essen-
tially auto- and cross-correlations of material state maps of 
the microstructure. Mathematically, the discretized set of 
2-point spatial correlations, denoted as f hh

′

r
 , are computed as

where h and h′ index all of the material states present in the 
studied material system, r indexes a set of discretized vec-
tors arising from the voxelization used to define mh

s
 , and Sr 

denotes the total number of pixels that allow for placement 
of vectors r within the microstructural domain. The compu-
tations implied in Eq. (1) can be efficiently carried out using 
the fast Fourier transform (FFT) algorithm [30, 31].

The complete set of 2-point spatial correlations computed 
using Eq. (1) produces a large unwieldy set of features. In 
the MKS framework, a smaller set of salient features is 
identified (i.e., feature engineering) by performing princi-
pal component analysis (PCA) [13, 14], which (rotationally) 
transforms the data into a new space where the axes are 
organized by their ability to account for the variance in the 
dataset. The new orthogonal axes and the new coordinates 
obtained from the PCA are then referred to as PC scores 

(1)f hh
�

r
=

1

Sr

∑

s

mh
s
mh�

s+r

Fig. 1   Schematic illustrating the various stages of the photophysics process (see main text for detailed description)
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and PC basis, respectively. Prior studies have often shown 
a drastic dimensionality reduction going from ∼ 105 − 106 
original microstructural features to less than ∼ 10 − 15 PCs 
[6, 8, 15, 32, 33].

Gaussian Process Regression Models

Although many surrogate model building approaches can 
be used for building structure–property linkages, prior work 
has shown the benefits of using Gaussian process regression 
(GPR) in combination with the MKS feature engineering 
described earlier [8, 9, 15–20]. GPR is particularly power-
ful when building surrogate models for complex nonlinear 
systems/phenomena, where the parametric model forms are 
not yet established. The other main advantage of GPR lies 
in the quantification of the uncertainty associated with the 
model predictions.

In the GPR-MKS framework, the reduced-order struc-
ture–property linkage of interest can be decomposed into a 
linear mean function m and an error function � often mod-
eled as a zero-mean Gaussian process. Mathematically, the 
desired model is expressed as [21]

where p is the target property (i.e., output), � is the input 
feature vector consisting of R PCs, � are coefficients of the 
linear model, and  k

(
�, �′

)
 is the GP's covariance function. 

The automatic relevance determination squared exponen-
tial (ARD-SE) kernel [21] has often been used to define 
the GP's covariance. The ARD-SE kernel is mathematically 
expressed as

where the scaling factor �f  , length scale �l , and noise fac-
tor �n are hyperparameters of the kernel function, and ���′ 
is the Kronecker delta. The hyperparameter �n determines 
the homoscedastic noise in the target predictions. The hyper 
parameter �f  controls the amplitude of the variance in the 
output. The length scale �l automatically determines the rel-
evance of input features on the predictions. Higher values of 
�l results in smoother predictions, indicating minimal influ-
ence on the output prediction. The values of hyperparam-
eters need to be optimized during the model building process 
to obtain the best model.

(2)p = m(�) + �

(3)m(�) = �0 +

R∑

i=1

�i�i

(4)� ∼ GP
(
0, k

(
�, ��

))

(5)k
(
�, ��

)
= �2

f
exp

[

−
1

2

R∑

l=1

(
�l − � �

l

)2

�2
l

]

+ �2
n
���

�

The joint distribution of the observed training data ( X ) and 
the unobserved test data ( X

∗
 ) is given by [21]

The predictive posterior is obtained from conditioning the 
joint distribution fully defined by its mean and covariance [21]:

The main computationally intensive operation in GP for-
mulation is the inversion of the kernel matrix which scales 
as O

(
N3

)
 . Although this is a one-time computation, in case 

of large ensemble of training data, the computation and stor-
age of K−1 present significant challenges. Prior studies have 
addressed these challenges using methods such as low-rank 
approximations to GPs [21, 34], treed GPs [35, 36] and local 
approximate GP (laGP) [37, 38]. Recent research has demon-
strated that low-rank approximations and treed GPs tend to 
over-smooth the data, might impose an upper limit on the data 
size and typically take longer to compute [39]. The recently 
developed laGP model is particularly attractive as it scales well 
with the data size, allows for non-stationarity modeling, and is 
highly parallelizable. The laGP model is a local variant of the 
GPR which employs a local subset of the data to train separate 
GPs for each target point. The subset of data can be chosen 
as n nearest neighbors of the target point. However, this sim-
ple criterion does not yield the optimum predictions. Instead, 
the laGP approach utilized in this work employs the active 
learning Cohn (ALC) method [38, 40] to sequentially update 
the chosen subset of the training points. The ALC method 
sequentially identifies points whose addition to the local sub-
set maximizes the expected information gain by maximizing 
the reduction in the prediction variance. More specifically, 
for each prediction, the first n0 nearest neighbors to the target 
point are chosen as the initial set for constructing the first laGP 
model. Then the ALC method is applied over all of the remain-
ing points to identify the new point to be added to the next 
update of the laGP model. Points are sequentially identified 
until no further improvement to model is observed. Thus, the 
size of the final set of neighbors utilized in each laGP model 
is represented by nd = n0 + nALC , where nALC is the total num-
ber of points selected by the application of the ALC method. 
Since the number of neighbors selected is typically quite small 
( nd ≪ N ), laGP successfully circumvents the aforementioned 
challenges in the use of global GPR on large datasets.

(6)
[
p

p∗

]

∼ N

(

0,

[
K(X,X) K∗

(
X,X∗

)

K†
∗

(
X,X∗

)
K∗∗

(
X∗,X∗

)
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(7)�∗ = K†
∗
K−1p

�∗ = K∗∗ − K†
∗
K−1K∗
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Microstructure–Property Models 
for Photovoltaic Polymers

The workflow used in this paper for building the surrogate 
microstructure–property models for OPVs will involve two 
main steps: (i) unsupervised feature engineering of the 
microstructure using the MKS framework, and (ii) estab-
lishing the laGP models using the engineered features. 
Further details of these steps are described next.

Material States in OPV Microstructures

The grayscale OPV microstructures (with each pixel value 
ranging between zero and one) obtained from solving the 
Cahn–Hilliard equation (summarized in “Microstructure 
and Photovoltaic Property Dataset” section) are thresh-
olded into binary microstructures consisting of donor ( D ) 
and acceptor ( A ) phases (i.e., material state binerization). 
In this study, a threshold of 0.5 was used to convert the 
gray-scale microstructures into binary microstructures. 
The charge transport of OPV materials is affected by the 
shape, size, spacing distribution of donor and acceptor 
regions as well as their connectivity to their corresponding 
electrodes. More specifically, in order for the OPV micro-
structures to exhibit efficient charge transport, the donor 
and the acceptor regions should be directly connected to 
the corresponding electrodes positioned at top and bottom 
surfaces of the thin films, respectively. In other words, 
the donor/acceptor pixels connected to their respective 
electrodes are expected to be very productive, while those 
not connected to their respective electrodes are expected 
to be fairly non-productive. Therefore, it was decided to 
define four different material local states for labeling the 
individual pixels in the microstructures: (i) DΛ—donor 
pixels connected to the top surface, (ii) D◦—donor pixels 
unconnected to the top surface, (iii) A∨—acceptor pixels 
connected to the bottom surface, and (iv) A◦—acceptor 
pixels unconnected to the bottom surface. These constitute 
the first set of material local states identified for this work.

In addition, the different types of the donor–acceptor 
interfaces present in the microstructure affect the charge 
transport in very different ways. Any interface pixels 
between two connected regions (i.e., regions connected to 
their respective electrodes), defined as I1 =

(
DΛ,A∨

)
 , are 

expected to contribute the most to the charge transport. 
It can also be seen that any interface pixels between two 
unconnected regions, I2 = (D◦,A◦) , are fairly non-produc-
tive. The other two sets of interface pixels, I3 =

(
DΛ,A◦

)
 

and I4 =
(
D◦,A∨

)
 , are considered semi-effective. The four 

sets of interfaces thus defined constitute the second set of 
identified material local states.

As a final consideration, the charges created in OPV 
microstructures typically move through the donor and 
acceptor regions that are directly connected to the top and 
bottom electrodes ( DΛ and A∨ ), respectively. In addition, if 
unconnected donor/acceptor regions ( D◦ and A◦ ) are con-
siderably close to their respective electrodes, they can also 
play an important role in the charge transport [22], espe-
cially in microstructures that comprised only unconnected 
donor/acceptor regions. Note that the charge transport in 
such microstructures is inversely related to the distance of 
the closest D◦ and A◦ from their relevant electrodes (i.e., 
shorter the distance, higher the charge transport). These 
insights were used to define two additional distance-based 
metrics described later.

In order to properly account for all of the physical insights 
described above, we devised and implemented a 3-step pro-
cedure to assign material local states to each pixel in each 
OPV microstructure. In the first step, we assign one of the 
four material local states described above to each voxel in 
the OPV microstructure: DΛ , D◦ , A∨ , and A◦ (see Fig. 2a). 
This was achieved by first considering the donor phase as 
the foreground (i.e., assigning values of one to donor pix-
els and zero to acceptor pixels) and using a cluster labeling 
algorithm [41] to identify uniquely the connected sets of the 
donor pixels (i.e., donor clusters). The pixels in the donor 
clusters connected to the top surface were all assigned the 
material state DΛ , while the rest of the donor pixels were 
assigned the material state D◦ . A similar procedure was 
performed to assign the material states A∨ and A◦ . Note 
that the assignment of these four material states is mutually 
exclusive. In other words, every pixel in the microstructure 
is assigned only one of the four material states mentioned 
above.

In the second step, we have defined an additional mate-
rial local state identifying the different types of interfaces 
between the donor and acceptor pixels. This additional 
material state is assigned only to the interface pixels. As 
already described, a total of four different interfaces are pos-
sible: ( DΛ , A∨ ), ( DΛ , A◦ ), ( D◦ , A∨ ), and ( D◦ , A◦ ) (see the 
microstructure shown in Fig. 2b). In this work, we adopted 
a 2-pixel interfacial region that included the first pixel on 
either side of the interface. The interface pixels are identi-
fied using a computational strategy developed in prior work 
for 2-phase microstructures [8]. This method is used due 
to its computational efficiency, derived from the use of the 
convolution kernel shown in Fig. 2b on selected foreground 
material states. The result of this computations is an integer 
ci ∈ [1 ∶ 4] for each pixel i , which identifies the four desired 
classes of interfacial pixels described earlier (note that the 
interior pixels within the foreground and background would 
exhibit values zero and five, respectively). In this work, spe-
cial considerations were made to account for the non-peri-
odicity of the microstructures. Specifically, this challenge 
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was addressed using suitable zero-padding schemes [31]. 
For non-periodic microstructures, the sets of edge pixels and 
corner pixels were identified separately; edge pixels with 
ci ∈ [1 ∶ 3] and corner pixels with ci ∈ [1, 2] denote inter-
facial pixels. By applying the procedure described above 
to each phase (i.e., treating each phase as foreground one 
at a time), each interface pixel can be mapped uniquely to 
one the aforementioned four types of interfaces. Figure 2b 
shows the labeling of the interface pixels for the example 
microstructure shown in Fig. 2a.

In the last step of the unsupervised feature identification 
procedure employed in this study, we identify a third local 
material state descriptor, which is applied only for the top/
bottom rows of pixels connecting to the electrodes. This 
feature is designed to capture the effect arising from the 
shortest distance of donor/acceptor pixels from their respec-
tive electrodes, which essentially reflects the transport dis-
tance for the generated charges to complete the circuit. As 
already mentioned, this feature is especially important for 
microstructures where the donor/acceptor pixels are not in 
direct contact with their corresponding electrodes. Figure 2c 
presents a histogram of the shortest vertical distance of the 
donor (acceptor) pixel to the top (bottom) surface, d , for the 
example microstructure shown in Fig. 2a. For our work, it is 
necessary to suitably scale these distances to reflect the fact 
that larger values of d do not contribute significantly. It was 
decided to use exp(−d∕�) as the feature value for each top/
bottom pixel, with � = 10nm reflecting the expected diffu-
sion length for charge transport [22, 42]. Consequently, the 
feature value is one when the pixels are in direct contact 
and exponentially decreases when there is a gap. The rate of 

decrease is controlled by the value of � , i.e., pixels farther 
than � are assumed to make fairly insignificant contributions 
to the charge transport.

After labeling the material local states, the next step 
involves the computation of the important microstructure sta-
tistics. The central challenge comes from the large number of 
spatial statistics that could be computed. In the present case, 
since there are a total of eight material local states (four accep-
tor/donor states and four interface states), one can potentially 
define a total of 82 = 64 sets of spatial correlations (including 
auto-correlations and cross-correlations). Since each set of 
spatial correlations has a total of 101 × 101 = 10, 201 features, 
the full set of features becomes unwieldy for establishing sur-
rogate models. In prior work [8] on correlating the effective 
permeability of a porous solid to its pore structure, it was 
observed that the auto-correlations of the material local states 
(including interface states) were adequate for producing high 
fidelity structure–property linkages. Utilizing the insights from 
that work, we have included only the following sets of spatial 
correlations in establishing the surrogate models presented in 
this work: i) 2-point spatial auto-correlations for each of the 
four main material local states 

{
f D

ΛDΛ

r
, f D

◦D◦

r
, f A

∨A∨

r
, f A

◦A◦

r

}
 , and 

ii) 2-point spatial auto-correlations for each of the four inter-
facial local states 

{
f
I1I1
r , f

I2I2
r , f

I3I3
r , f

I4I4
r

}
 . Even using only this 

subset of spatial correlations produces a total of 
8 × 10, 201 = 81, 608 features. As already described in “Fea-
ture engineering using MKS framework”Section, PCA is 
applied to obtain a small number of features (i.e., PC scores) 
as inputs to the surrogate structure–property models. Prior to 
application of PCA, each of the eight sets of spatial 

Fig. 2   Labeling of the material local states to each pixel of a selected 
OPV microstructure. a Each pixel is assigned one of the four material 
local states corresponding to connected/unconnected donor/accep-
tor pixels. Connectivity in this context refers to whether the donor/
acceptor pixels are connected to their corresponding electrodes at the 
top/bottom surfaces. b Each interface pixel is assigned one of the four 
interfaces. The interfacial region is considered to be 2-pixel thick, 

comprising both pixels on either side of the interface. The convolu-
tion kernel used to identify the interfaces is shown on the right. c A 
third material state is assigned to the top and bottom rows of pixels 
based on the shortest distance, d , of the donor (acceptor) pixels from 
the top (bottom) surface. The plot shows distribution of d for the 
selected microstructure
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correlations is scaled to exhibit the same variance across the 
entire dataset. This is necessary due to the fact that PCA aims 
to capture the variance in the dataset in the smallest number of 
terms. Therefore, scaling the different sets of spatial correla-
tions ensures that each set of spatial correlations is equally 
weighted in the PC representations. In this work, for reasons 
already explained, the averaged values of exp(−d∕10) for both 
electrodes, denoted as 

{
�Λ, �∨

}
 , are used as additional features 

(i.e., these are appended to the selected PC scores representing 
the microstructure statistics as additional features).

Local Gaussian Process Surrogate Models for OPVs

The microstructure PC scores as well as the two distance-
based features are used as inputs to train a local Gaussian 
process (laGP) surrogate model to predict the short circuit 
current of OPV microstructures. Each input is scaled to 
exhibit the same variance across the entire ensemble of the 
dataset. This is needed because laGP models identify local 
subsets of the training data using suitable distance measures. 
For each target point, the first n0 closest neighboring points 
are chosen as the initial training set for building the initial 
GP. Subsequently, the ALC criterion is used to sequentially 
update the training data to maximize the expected informa-
tion gain. As the training subset is sequentially updated, one 
expects to see a systematic decrease in the improvement to 
the model performance. Consequently, one would naturally 
reach a point where further updating the training set would 
only minimally improve the laGP model performance. In this 
study, the sequential update of the laGP model was continued 
until the reduction in the prediction variance was smaller than 
10−6 . In the protocol described above, the final size of the local 
training set is denoted as nd = n0 + nALC , where nALC denotes 
the number of training points selected using the ALC criterion. 
The performance of the trained laGP models produced in this 
work was quantified using multiple error measures, including 
normalized mean absolute error ( nMAE ), normalized median 
absolute deviation ( nMAD ) and R2 . These are defined as

where  J(i)
sc

 and   J̃(i)
sc

 are the actual (ground truth) and the 
predicted short circuit current of the ith target point, and N 
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is the number of test points.  Jsc denotes the mean value of 
the Jsc values. R2 serves as an indicator of how much of the 
variation in the output is explained by the inputs. The value 
of R2 for a perfect model is expected to be one. Likewise, 
for a flat line model that always predicts the mean, the value 
of R2 will be zero.

Results and Discussion

In the present study, an ensemble of 33,552 distinct OPV 
microstructures was generated to establish the desired data-
driven microstructure–property linkage for OPV films. The 
short circuit current Jsc associated with each microstructure 
was obtained by solving the XXD equations discussed in 
“Microstructure and Photovoltaic Property Dataset” section. 
The unsupervised feature engineering framework described 
in “Material states in OPV microstructures” section was 
employed on each microstructure.

Figure 3 depicts the eight sets of spatial auto-correlations 
computed for the example microstructure shown in Fig. 2a. 
The top and bottom rows in this figure present spatial auto-
correlations of the four main material states and the four 
interface states, respectively. Note that the auto-correlations 
exhibit centro-symmetry, because the values of the statis-
tics for r and −r are the same. Therefore, half the infor-
mation in these maps is redundant and could be eliminated 
before performing the PCA. The central peak value in each 
auto-correlation map, corresponding to r = 0 , reflects the 
volume fraction of the specific material state. For the inter-
face states, this value corresponds to the volume fraction 
occupied by the 2-voxel wide interface regions defined in 
this work. The auto-correlation maps implicitly capture a 
significant amount of statistical information on the shape, 
size, and spacing distributions of the material states in the 
microstructure. For instance, the bands in the f DΛDΛ

r
 map 

capture important features related to the size, shape, orien-
tation, and spacing of the DΛ regions in the microstructure 
(compare the auto-correlation map with the actual micro-
structure in Fig. 2a). Similarly, f A◦A◦

r
 captures the details of 

the more compact and isolated positioning of the A◦ regions 
in this microstructure. In contrast, the auto-correlation maps 
for D◦ and A∨ indicate that these regions are more broadly 
distributed in the microstructure. Similar observations can 
be made for the auto-correlation maps of the interface states.

In order to efficiently compute the PCA of the large data 
matrix of size 33, 552 × 81, 608 assembled in this work, 
we took advantage of the randomized SVD algorithm 
implemented in DASK package in Python programming 
language [43]. It was decided to truncate the PC repre-
sentations obtained from this protocol to 10 PCs, because 
there was no appreciable improvement in the variance 
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captured beyond this truncation level. This represents a 
significant reduction in the dimensionality of the micro-
structure representation, where we started with 81,608 
spatial correlations and ended up with only 10 PC scores. 
The representation of all 33,552 microstructures in the first 
three PCs is presented in Fig. 4. In this figure, each data 
point corresponds to the first three PC scores of the micro-
structure statistics and is colored using its value of Jsc . 
Although the three PC scores represent only a subset of 
the regressors we intend to use in this work (a total of ten 
PC scores and two distance-based metrics will be used), it 

is very encouraging to see the patterns in Fig. 4 suggest-
ing a strong dependence of the target on these regressors.

A direct interpretation of the PC scores is currently not 
possible. Essentially, each PC basis represents a linearly 
weighted collection of 81,608 spatial correlations. The PC 
score of each OPV microstructure represents the projec-
tion (i.e., dot product) of its set of 81,608 spatial corre-
lations on the corresponding PC basis. The high dimen-
sionality of the PC basis makes it impractical to seek the 
precise physical meaning of the PC scores. However, it 
was found that the first PC score is highly correlated to 
the volume fractions of the four main material local states 

Fig. 3   The 8 sets of 2-point spatial auto-correlations corresponding to main material states and interfaces of the example microstructure shown 
in Fig. 2 is shown. The center value of these statistical maps is volume fraction of the corresponding material state

Fig. 4   The low-dimensional 
representation of the entire data 
ensemble of OPV microstruc-
tures in the first 3 PC basis is 
depicted. The PC representa-
tions are truncated after the 
first 10 PCs. The unsupervised 
PCA is powerful in capturing 
the microstructural differences 
as well as the variance in the 
values of J

sc



Integrating Materials and Manufacturing Innovation	

1 3

as well as the I1 and I3 interface states (interfaces of DΛ 
with acceptor material states). The second PC score was 
found to be highly correlated to volume fractions of I2 
and I4 interface states (interfaces of A∨ with donor mate-
rial states). In addition to the information on the volume 
fractions, PC scores contain rich information on other 
morphological aspects of microstructures such as shape, 
size, orientation and spacing of material features within 
OPV microstructures. For instance, as shown in Fig. 4, 
the microstructures comprising coarser regions of A∨ and/
or D◦ have higher PC1 values, while the microstructures 
with coarser regions of A◦ and/or DΛ have smaller PC1 
values. Several other similar qualitative observations can 
be made by inspecting Fig. 4 closely. As another example, 
it can be seen that microstructures comprised mainly/only 
from coarser unconnected donor/acceptor regions are com-
pletely separated from the microstructures with connected 
donor/acceptor finer regions in the low-dimensional PC 
representation.

The 10 microstructure PC scores and the two averaged 
distance-based metrics, �Λ and �∨ , are used as inputs to 
train the surrogate laGP models using the R package lan-
guage [38]. As already noted, each input feature is scaled 
to exhibit the same variance across the entire dataset for 
this model building strategy. A laGP model is produced 
for each test point using a set of n0 = 35 closest neigh-
bors in the input domain. The ALC criterion is employed 
to sequentially add points to the design space such that 
their addition maximizes the expected information gain. 
The training size for the 33,552 laGP models produced 
in this study was in the range [36, 346] . The distribution 
of the training sizes is shown in Fig. 5.a. It is seen that 
more than 99% of the laGP models built in this study 
needed less than 100 local training data points. This small 
size of the local training data set significantly reduces 
the computational cost involved in building the desired 
laGP models. Figures 5b and 5c present the parity plot 
comparing the Jsc predictions from the laGP models with 
their corresponding ground-truth values as well as the 
uncertainty associated with the model predictions (i.e., 
one standard deviation from the mean prediction shown 
as error bars) and the distribution of the relative mean 
absolute errors, respectively. The standard deviation in 
99.7% of the trained models is within 5% of the Jsc . Those 
few models that exhibit higher uncertainties correspond to 
the microstructures that fall on the boundary of the input 
PC domain. This is to be expected as laGP performs bet-
ter in the interior of the input domain, compared to the 
edges of the input domain (there is limited availability of 
training points in these regions). The normalized absolute 
error was higher than 0.05 in only 8% of the trained laGP 
models. Considering the entire set of trained models, the 

normalized mean absolute error nMAE and the normalized 
mean median absolute deviation nMAD were 2.16% and 
1.10%, respectively. Moreover, a high value of R2 = 0.99 
was calculated for the trained laGP models, which demon-
strates that a high proportion of the variance in the target 
is being captured well by the model inputs. This clearly 
demonstrates the efficacy of the novel feature engineer-
ing framework presented in this work in establishing 

Fig. 5   Depiction of the performance of the data-driven structure–
property linkages trained for OPV microstructures is presented. The 
total design size of each laGP model is determined using ALC crite-
rion. The distribution of the final design size is shown in a. The par-
ity plot comparing the predictions and actual values of J

sc
 as well as 

the relative mean absolute error are presented in b and c, respectively. 
The established high-fidelity microstructure–property linkages dem-
onstrate the utility of the developed feature engineering framework 
for organic photovoltaics
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high-fidelity data-driven microstructure–property map-
pings in organic photovoltaics.

Conclusions

A novel unsupervised feature engineering framework for 
data-driven mappings of OPV microstructures to their 
functional properties has been successfully developed. 
This new feature engineering framework successfully lev-
eraged digital image processing algorithms in conjunction 
with the previously established MKS framework. Specifi-
cally, a computationally efficient labeling of two sets of 
salient material states (four bulk material states and four 
interface states) was found to be the critical first step in the 
feature engineering of the OPV microstructures. One set of 
features characterized the connectivity of the bulk phases 
controlling the generation and transport of excitons, 
while the other set of features characterized the interfaces 
between the bulk phases controlling the generation and 
transport of charges. This was then followed by the com-
putation of suitable 2-point spatial auto-correlations using 
the MKS framework, and their low-dimensional repre-
sentation by PCA performed using a scalable randomized 
SVD algorithm. In addition to material PC scores, it was 
found that two additional expert-defined distance-based 
metrics were essential to improve the accuracy of the data 
driven structure–property linkages for microstructures 
where the donor/acceptor pixels are not in direct contact 
with their corresponding electrodes. Finally, a localized-
version of the Gaussian process (laGP) was employed 
to extract the desired reduced-order structure–property 
linkages. It was found that the implementation of laGP 
with ALC produced many computational benefits for the 
present application. It was shown that with only a small 
subset of the training dataset one can build accurate laGP 
models at low computational cost. The uncertainty associ-
ated with the model predictions was quantified by consid-
ering one standard deviation from the mean prediction. It 
was found that only 0.3% of the model predictions exhib-
ited a standard deviation higher than 5% of the mean value 
of the target property. The high-fidelity structure–property 
linkages extracted in this study attest to the tremendous 
efficacy of the proposed novel feature engineering frame-
work for complex organic photovoltaic microstructures.
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