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Abstract— We present algorithms for performing data-driven
stochastic reachability as an addition to SReachTools, an
open-source stochastic reachability toolbox. Our method lever-
ages a class of machine learning techniques known as Kkernel
embeddings of distributions to approximate the safety proba-
bilities for a wide variety of stochastic reachability problems.
By representing the probability distributions of the system state
as elements in a reproducing kernel Hilbert space, we can learn
the “best fit” distribution via a simple regularized least-squares
problem, and then compute the stochastic reachability safety
probabilities as simple linear operations. This technique admits
finite sample bounds and has known convergence in probability.
We implement these methods as part of SReachTools, and
demonstrate their use on a double integrator system, on a
million-dimensional repeated planar quadrotor system, and a
cart-pole system with a black-box neural network controller.

I. INTRODUCTION

Modern control systems incorporate a wide variety of
elements which are resistant to traditional modeling tech-
niques. For instance, systems with autonomous or learning
components, human-in-the-loop elements, or poorly char-
acterized stochasticity provide a significant challenge for
model-based analysis methods. In practice, model assump-
tions can be overly simplistic or fail to capture uncertain
behavior, and in some cases are simply wrong. As such,
these scenarios have brought about a need for algorithms
which can provide probabilistic guarantees of safety, even
when a comprehensive model of the system is unavailable.
Thus, data-driven techniques for safety analysis are widely
applicable for systems with poorly characterized dynamics
or uncertainties, and provide an inroad for computing the
probability of safety for stochastic systems in a model-free
manner.
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We present an addition to SReachTools [1] which
enables data-driven stochastic reachability, based on a ma-
chine learning technique known as conditional distribution
embeddings [2, 3]. As a nonparametric technique, kernel
distribution embeddings use principles from functional anal-
ysis to embed probability distributions as elements in a
high-dimensional Hilbert space. These techniques have ap-
plications to Markov models [4], partially-observable models
[5, 6], and have recently been used to solve stochastic reach-
ability problems [7]-[9]. We incorporate an implementation
of the algorithms presented in [7]-[9] into SReachTools,
enabling data-driven solutions for stochastic reachability
problems that are model-free and distribution agnostic.

These algorithms have several advantages over comparable
model-based techniques. First, the techniques admit finite
sample bounds [9] and provide convergence guarantees in the
infinite sample case [2]. Second, the algorithms largely avoid
the curse of dimensionality [10], which can be a significant
computational roadblock when solving dynamic programs.
Without modification, [7] computes the safety probabilities
for a stochastic chain of integrators up to ten thousand
dimensions, which is beyond the scope of many existing
toolsets. However, the techniques are also amenable to
several approximative speedup techniques [11]-[13], which
have been shown to reduce the computational complexity
down to log-linear time. These techniques generally rely
upon Fourier approximations of kernel functions and random
sampling in the frequency domain, as well as approximations
of Gaussian random matrices to alleviate the computational
burden. In [8], the authors present an application of one of
these techniques, known as random Fourier features [11],
to solve a stochastic reachability problem for a million-
dimensional system.

Several point-based stochastic reachability techniques are
already implemented in SReachTools, based on chance
constraints [14], Fourier transforms [15], and particle-based
approaches [16], among others. Several existing toolboxes,
including Faust?> [17], PRISM [18], STORM [19], and
multiple preexisting algorithms in SReachTools, present
solutions for stochastic reachability problems and model-
checking of continuous and discrete-time Markov chains.
Unlike most traditional approaches, however, our algorithms
are data-driven, meaning we treat the system as a black
box, and do not rely upon gridding-based solutions. Because
of this, we are able to perform stochastic reachability on
systems with arbitrary disturbances, as well as systems with
autonomous elements such as neural network controllers
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(Figure 1). Effectively, this means we can also compute
the safety probabilities for autonomous systems and perform
neural network verification in a model-free environment.
Several existing toolboxes, such as Sherlock [20], NNV [21],
and Marabou [22] tackle the problem of neural network
verification, but to the best of our knowledge, our toolbox
is the first to be able to compute safety probabilities for
stochastic, autonomous systems using backward reachability.

The paper is organized as as follows: In Section II,
we present the system model and outline the stochastic
reachability problems our algorithms are designed to solve.
The contribution to SReachTools is presented in Section
III. We present a brief outline of the theory of condi-
tional distribution embeddings and random Fourier features.
Then, we describe the algorithms and their use as part of
SReachTools. In Section IV, we present several numerical
examples demonstrating the algorithms, including a stochas-
tic integrator system, a repeated planar quadrotor system,
and a cart-pole system with a black-box neural network
controller. Concluding remarks are presented in Section V.

II. STOCHASTIC REACHABILITY

We utilize the following notation throughout the paper. Let
FE be an arbitrary nonempty space. The indicator function
14:E — {0,1} of A C E is defined such that 14(z) =1
if x € A, and 14(x) = 0 if © ¢ A. Let £ denote the o-
algebra on E. If F is a topological space [23], the o-algebra
generated by the set of all open subsets of E is called the
Borel o-algebra, denoted by Z(E). Let (2, F,P) denote
a probability space, where F is the o-algebra on ) and
P: F — [0,1] is a probability measure on the measurable
space (£, F). A measurable function X : Q — E is called
a random variable taking values in (E,£). The image of P
under X, P(X~1A), A € £ is called the distribution of X.

A. System Model
Consider a Markov control process H as defined in [24].

Definition 1. A Markov control process H = (X, U, Q) is
comprised of:
e X C R a Borel space called the state space;
o U C R, a compact Borel space called the control space;
e Q: B(X)x X xU — [0,1], a stochastic kernel that
assigns a probability measure Q(- | z,u) on (X, B(X))
to every (xz,u) € X X U.

The system evolves from an initial condition zg € X over
a finite time horizon k£ = 0,1,..., N with control inputs
chosen according to a Markov control policy .

Definition 2 (Markov Policy). A Markov control policy m =
{70, 1, ..., TN—1} is a sequence of universally measurable
maps m - X — U, k = 0,1,...,N — 1. The set of all
admissible Markov policies is denoted as M.

B. Problem Definitions

We define the stochastic reachability problems the algo-
rithms can solve as in [24] using the stochastic reachability
tube definition from [25].

Tk Th41
Trg1 ~ Q( |z, ug)

A
|
A
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by - b 4

Fig. 1. Feedback control diagram for a stochastic system with a neural
network controller.

Definition 3 (Stochastic Reachability Tube). Given a finite
time horizon N € N, a stochastic reachability tube is a
sequence A = {Ao, ..., AN} of nonempty sets Ay, where
k=0,1,...,N.

1) Terminal-Hitting Time Problem: Given a target tube 7T,
the terminal-hitting time safety probability pj  is defined as
the probability that a system following a policy 7 will reach
the target set 7 at time k = IV while remaining within the
target tube 7 for all time & < N from an initial condition

N-1
Pz (T) = EZ, K 11 1%(%‘)) 17y (xN)] (D

=0

Zo-

For a fixed policy m € M, we define the terminal-hitting
value functions W : X - R, k=0,1,...,N as

Wi (2) = 17, (2)
Wi (z) = 17, (2) /X Wi )Qdy |2, mi(2)) @)

Then W (xo) = pF, (T).

2) First-Hitting Time Problem: Let K denote the con-
straint tube and 7 denote the target tube. The first-hitting
time safety probability p7 is defined as the probability that
a system following a policy m will reach the target tube 7
at some time 7 < N while remaining within the constraint
tube /C for all time k£ < j from an initial condition .

Z( i 11@\’&(%)) 1%(%‘)1 3)

7j=0 \i=

P, (K, T) = B,

For a fixed policy # € M, we define the first-hitting value
functions V;" : X = R, k=0,1,...,N as

Vii(2) = 17y (@)
V() = 17, (1) + Loy () /X VL (1)Qdy | 2, 7 (@)
“4)
Then Vi (20) = pf, (K, T).
III. DATA-DRIVEN STOCHASTIC REACHABILITY

We consider the case where the stochastic kernel @ is
unknown, but observations taken from the system evolution
are available. Thus, we have no prior knowledge of the
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system dynamics or the structure of the disturbance. Because
@ is unknown, we cannot compute the safety probabilities
in (4) or (2) directly. Instead, we seek to compute an
approximation of the safety probabilities by embedding the
expectation operator with respect to the stochastic kernel
@ in a reproducing kernel Hilbert space and estimating the
operator in Hilbert space.

Definition 4 (RKHS). Let E be an arbitrary, nonempty
space and % be a Hilbert space over E, which is a linear
space of functions of the form f : E — R. The Hilbert space
J is a reproducing kernel Hilbert space (RKHS) if there
exists a positive definite kernel function kg : E x E — R,
and it obeys the following properties:

ke(z,-) € g
where (5b) is called the reproducing property, and for any

x, 2’ € E, we denote kg(x,-) in the RKHS % as a function
on E such that ' — kg(z,z’).

We define an RKHS 7% over X and %%y over X X
U with corresponding kernel functions ky and kxyy, and
define the conditional distribution embedding of @ as:

Ve e F
VfeHp, VN eR

(52)
(5b)

mY\z,u Z/Xk’x(yv)Q(dvau) (6)

By the reproducing property, for any function f € %,
we can compute the expectation of f with respect to the
distribution Q(-|x,u), where (z,u) € X x U, as an inner
product in Hilbert space with the embedding my ;. [7].
Thus, we can compute the safety probabilities for the first-
hitting time problem and the terminal-hitting time problem
by computing the expectations in (4) and (2) as Hilbert space
inner products.

A. Kernel Distribution Embeddings

However, we typically do not have access to my|,,
directly since the distribution is typically unknown. Instead,
we compute an estimate 1y |y, of my|;, using a sample
S = {(z/,zi,u;)}L, of M € N observations taken i.i.d.
from @, where u; = w(x;) and z;/ ~ Q(-|z;,u;). The
estimate 1My, ,, can be found as the solution to a regularized
least squares problem:

M

1 . .

min — [k (@) = iy e, 3 + AR D)
i=1

where A\ > 0 is the regularization parameter and I" is a vector-

valued RKHS. The solution to (7) is unique and has the
following form:

My |pu =0 U (8)

where § € Jy and V¥ is known as a feature vector, with
elements ¥; = kxwy((zi,u;), (z,u)). The coefficients [ are
the unique solution to the system of linear equations

(G+AMI)B = 9)

Algorithm 1 KernelEmbeddings

Input: sample S, policy 7, horizon N
Output: value function estimate V()
1: Initialize V7§ (z) < 17, (x)
2: Compute My |4 (z) (8) using S
3: for k< N —1to00do
4 Y Vi), Vi ()] "
5 Vi(z) + 17, (2) + L7 (2) VT (G + AMI) "W
6: end for
7. Return V7 (z) ~ p=(K,T)

Algorithm 2 KernelEmbeddingsREF

Input: sample S, policy 7, horizon N, sample €2
Output: value function estimate V()
1: Initialize V7§ (x) < 17, ()
2: Compute RFF approximation of 7y |, x(,) (11) using S
and
3: for k< N —1to0do
Ve Vi @) Vi )]
so Vi)« 1p(r) + Lean@)YT(ZZ27T +
AMI)1Z
6: end for
7: Return V¥ (x) = pZ (K, T)

where G = (gi;) € RM*M js known as the Gram or

kernel matrix, with elements g;; = kx xu/ (i, usi), (x5, u5)),
and @ is a feature vector with elements ®; = kx(z;/,).
Thus, we can approximate the expectation of a function
[ € Jx using an inner product (1My |z, [) . As shown
in [7, 8], we can substitute the inner product into the
backward recursion in (4) and (2) to approximate the safety
probabilities. We have implemented this in SReachTools
as KernelEmbeddings. We present the algorithm for the
first-hitting time problem as Algorithm 1.

B. Random Fourier Features

Note that in order to compute 5 in (9), we must solve a
system of linear equations that scales with the number of
observations M in the sample S. When M is prohibitively
large, [11] shows that by exploiting Bochner’s theorem [26],
we can approximate the kernel function by computing its
Fourier transform and approximating the Fourier integral in
feature space using random realizations of the frequency
variable.

Bochner’s Theorem. [26] A continuous, translation-invar-
iant kernel function k(x,z") = @(x — ') is positive definite
if and only if (x — ') is the Fourier transform of a non-
negative Borel measure A.

Following [11], we construct an estimate of the Fourier
integral using a set of D realizations Q = {w;}2,, such
that w; is drawn i.i.d. from the Borel measure A according
to w; ~ A(+). Then, we can efficiently compute an approxi-

5075

Authorized licensed use limited to: Meeko Mitsuko Oishi. Downloaded on August 01,2022 at 04:35:10 UTC from IEEE Xplore. Restrictions apply.



mation of the kernel as a sum of cosines.

D
1

k(z,z") ~ ) izzlcos(w;r(x —1x')) (10)

According to [8], we can approximate the estimate using (10)

as:

(1)

where Z is a feature vector computed using the RFF approx-
imation of kyxy and the coefficients  are the solution to
the system of linear equations

(ZZT + \MI)y=®

N T
my|zu ~ 7 Z

12)

This enables a more computationally efficient approxima-
tion of the safety probabilities [8] when the number of
observations M is large, or when the dimensionality of the
system is high. We implement this in SReachTools as
KernelEmbeddingsRFF and present the algorithm for
the first-hitting time problem as Algorithm 2.

C. SReachTools Kernel Module

We incorporate the algorithms into SReachTools as
modular components, meaning they can be applied to any
closed-loop system for which observations are available, and
can be applied to either the first-hitting time problem, the
terminal-hitting time problem, or the reach-avoid problem
[1], which can be viewed as a simplification of the terminal-
hitting time problem.

In the implementation, we restrict ourselves to a Gaus-
sian kernel function since the Fourier transform is easy to
compute, and to enable a more direct comparison between
the two algorithms. The kernel has the form k(z,z’) =
exp(—||x — 2'||3/20?%), where o is known as the bandwidth
parameter. In order to use the algorithms, we must specify the
parameter o, the regularization parameter A\ (7), the sample
S, and the problem, which is either the first-hitting time
problem or the terminal hitting time problem, parameterized
by the stochastic reachability tubes /C and 7 (Definition 3).

The algorithm parameters ¢ and A are typically chosen via
cross-validation, though [27] suggests a method to select a
more optimal rate. The default values are chosen to be o0 =
0.1 and A\ = 1. We represent a sample S = {(x;/, x;,u;)} M,
of size M € N taken i.i.d. from a Markov control process
H as a set of matrices, (X, U,Y), where the i*" columns of
X and U are the observations x; and u;, where u; = m(x;),
and the i*" column of Y is x;/, where z;/ ~ Q(-| x4, u;).
For KernelEmbeddingsRFF, we are also required to
specify the size D of the frequency sample (). The stochastic
reachability tubes K and T are specified as in [1], which is
typically defined as a sequence of polyhedra representing
the constraints. However, we also include the possibility of
representing the tubes via a function-based approach, where
the constraints are user-specified indicator functions.

We then use the sample, the constraint and target tube
definitions, and the kernel parameters as inputs to the al-
gorithm and compute the safety probabilities for a point
ro € X using SReachPoint [1], which returns the safety
probability p7 (K, T) € [0,1].

TABLE I
COMPUTATION TIMES OF SREACHPOINT ALGORITHMS FOR A
STOCHASTIC DOUBLE INTEGRATOR SYSTEM WITH N = 5.

Computation
Algorithm Sample Size Time [s]
KernelEmbeddings M = 2500 0.72 s
KernelEmbeddingsRFF M = 2500,
D = 5000 2.78 s

ChanceAffine 3.7l s
ChanceAffineUniform 2.22's
ChanceOpen 0.25 s
GenzpsOpen 0.53 s
ParticleOpen 0.34 s
VoronoiOpen 1.69 s

0.8

E

= 0.6

204

=

50.2

g

5o ' S— '

500 1000 1500 2000 2500
Number of Samples M

Fig. 2. Computation time of KernelEmbeddings as a function of the

sample size M. The computation time increases roughly exponentially as a
the sample size increases.

IV. NUMERICAL EXPERIMENTS

We present several examples to showcase the capa-
bilities of the proposed methods. Numerical experiments
were performed in Matlab on a Intel Xeon CPU with
32 GB RAM, and computation times were obtained
using Matlab’s Performance Testing Framework. Code
to reproduce the analysis and figures is available at:
github.com/unm-hscl/ajthor-ortiz—-CDC2021.

A. Stochastic Chain of Integrators

We first consider a toy example to demonstrate the use of
the algorithms and compare the output against known results.
Consider a n-dimensional stochastic chain of integrators [8,
25], in which the input appears at the n'" derivative and each
element of the state vector is the discretized integral of the
element that follows it. The dynamics with sampling time 7’
are given by:

T’n,fl Tn
T -
0 1 i o=
Tpt1 = A A (n_, M g+ wy
0O 0 O 1 T
(13)

For the purpose of comparison against other algorithms, we
restrict ourselves to the 2-dimensional case and Gaussian
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Fig. 3. (a) Safety probabilities VODP (zo) for a 2-D stochastic chain of integrators computed using dynamic programming over a time horizon N = 5. (b)
Safety probabilities V< (z9) computed using KernelEmbeddings (c) Absolute error |VPT (z0) — VM (z)]. (d) Safety probabilities ViFF' ' (z¢)
computed using KernelEmbeddingsRFF (e) Absolute error |V (z0) — VI F (z0)].
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Fig. 4.  (left) First-hitting time safety probabilities for a single planar
quadrotor system with a Gaussian disturbance and (right) with a beta
distribution disturbance over the horizon N = 5.

disturbances. We compare the computation time of the algo-
rithms with a single evaluation point zg = 0 against several
other algorithms present in SReachTools. The results are
displayed in Table I. Note that the kernel-based algorithms do
not compute the optimal value functions unless the policy is
the maximally safe Markov policy 7* [24]. This makes direct
comparison of the algorithms in SReachTools difficult,
since the existing algorithms also perform controller synthe-
sis to obtain the maximal reach probability. We then seek to
quantify the effect of the sample size M on the computation
time. We vary M and plot the computation time as a function
of M in Figure 2. This shows that as we increase the sample
size M, the computation time increases exponentially.

In order to validate the approach, we compute the safety
probabilities using dynamic programming VT (). We then
generate observations of the system by choosing z; € X,
i = 1,...,2500, uniformly in the range [—1.1,1.1]? and
collect a sample S of size M = 2500. The dynamic
programming results are shown in Figure 3(a). Figure 3(b)
shows the safety probabilities Vi (x) computed for a 2-
dimensional integrator system using KernelEmbeddings.
We then treat the dynamic programming solution as a truth
model, and plot the absolute error |VPF (z9) — ViEM (20)| in
Figure 3(c). In order to evaluate KernelEmbeddingsRFEF,
we then collect a sample of frequency realizations of size
D = 15000 and compute the safety probabilities V*5'F ().
The results are shown in Figure 3(d), where Figure 3(e)
shows the absolute error, |VPY (zq) — VEFEE (z0)].

B. Repeated Planar Quadrotor

This example is used to showcase the ability of the system
to handle high-dimensional systems [8]. This problem can
be interpreted as a simplification of formation control for
a large swarm of quadrotors, where we compute the safety
probabilities for the entire swarm as they are controlled to
reach a particular elevation. The nonlinear dynamics of a
single quadrotor are given by

miE = —(uy + usg) sin(0)
my = (u1 + uz) cos(d) — mg

70 = r(uy — uz) (14)

where x is the lateral position, y is the vertical position, € is
the pitch, and we have the constants intertia Z = 2, length
r = 2, mass m = 5, and g = 9.8 is the gravitational constant.

The safety probabilities for a single planar quadrotor
with a Gaussian and non-Gaussian disturbance are shown
in Figure 4. We then formulate the dynamics for a swarm
of quadrotors by repeating the dynamics until we have
over a million state variables. We then generate a sample
S of size M = 1000 for the repeated system and com-
pute the safety probabilities using KernelEmbeddings.
Then, we collect a sample of frequency realizations of size
D = 15000 and compute the safety probabilities using
KernelEmbeddingsRFF over a single time step N =
1. The mean computation time for KernelEmbeddings
was 1.23 hours, and for KernelEmbeddingsRFF the
mean computation time was 44.63 seconds. This shows
that KernelEmbeddingsRFF can be used to compute the
safety probabilities for extremely high-dimensional systems.

C. Cart-Pole

The following examples are used to showcase the ability of
the algorithms to compute the safety probabilities for systems
with neural network controllers.

1) Linearized Cart-Pole: The dynamics for the linearized
cart-pole system [28] are given by:

& = 0.004360 — 2.750 + 1.94u — 10.953

6 = 28.580 — 0.0446 — 4.44u + 24.923 (15)

We add an additional Gaussian disturbance A (0,X) with
¥ = 0.01] to the dynamical state equations, which can
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Fig. 5.
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(a), (b) 3-D and 2-D cross-sections respectively, of the safety probabilities computed using KernelEmbeddings for linearized Cart-Pole system,
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and (c), (d) 3-D and 2-D cross-sections respectively, of safety probabilities computed using KernelEmbeddings for the nonlinear cart-pole system.

simulate dynamical uncertainty or minor system perturba-
tions. The control input is computed via a feedforward neural
network controller [28], which takes the current state and
outputs a real number v € R, which can be interpreted as
the input torque.

Figure 5(a) shows a cross-section of the safety probabili-
ties for the system computed using KernelEmbeddings
holding = and % constant at 0, and Figure 5(b) shows a 2-
D projection. The algorithms are agnostic to the structure
of the dynamics, which means we do not require any
prior knowledge of the structure of the neural network
controller. Because of this, the algorithms are able to perform
verification of systems that incorporate learning enabled
components.

2) Nonlinear Cart-Pole: We then analyzed a nonlinear
cart-pole system with a neural network controller [28], with
dynamics given by:

u + mlw? sin(0)

my
ml(gsin(6) — cos(0)) (“EE) (o)
l(%imcoit(e)) my
j_ 9sin(0) = cos(8) () cos(9) (16)
l(% 7mcoif(9)) my

where g = 9.8 is the gravitational constant, the pole mass
is m = 0.1, half the pole’s length is [ = 0.5, and m; = 1.1
is the total mass. The control input, u € {—10,10}, which
affects the lateral position of the cart, is chosen by the neural
network controller [28]. We add an additional Gaussian
disturbance A(0,X) with ¥ = 0.017 to the dynamical state
equations.

Figure 5(c) shows a 3-D representation of the
safety probabilities for the system computed using
KernelEmbeddings, and Figure 5(d) shows a 2-D
projection. This example shows that we can handle systems
which are traditionally very difficult to model and analyze,
such as nonlinear systems and systems with neural network
controllers.

V. CONCLUSION & FUTURE WORK

We presented a data-driven stochastic reachability module
for SReachTools based on conditional distribution em-
beddings. These algorithms add to the suite of stochastic

reachability algorithms already present in the toolbox and
enable point-based stochastic reachability for a wide variety
of stochastic systems. We would like to extend the kernel-
based algorithms to enable model-free controller synthesis
and broaden the capability of the algorithms to handle a
wider variety of systems, such as hybrid system models.
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