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Abstract—The analysis of variance (ANOVA) F-statistic is 

proposed as a tool to isolate near-field measurement configura-

tions that are sensitive to targeted chip processes in embedded 

systems. It is hypothesized that the desired measurement 

configurations have high F-values, i.e., the variation in a target 

process is a major contributor whereas obfuscating background 

processes and measurement uncertainty are minor contributors 

to the variance of measured signals. The concept is demon-

strated by isolating data-dependent measurement configura-

tions for a commercially available variant of the 8051 micro-

controller: First, a multi-stage measurement protocol using F-

values is developed to rapidly isolate optimal measurement 

configurations within the 4-D search space of 2-D probe location 

over chip area, probe orientation, and time. Then, signals 

captured using configurations with high F-values are analyzed 

to identify the Hamming weights of the output data computed 

by a randomized test code running on the 8051. It is shown that 

configurations with higher F-values generally result in more 

accurate classification of the output data; the configuration with 

the highest F-value results in 100% accuracy. 
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I. INTRODUCTION  

Fields unintentionally emanated by integrated circuits 
offer a viable path for recovering critical information [1]-[7]; 
e.g., EM side-channel analysis (SCA) attacks extract infor-
mation about a target chip-process by statistically interro-
gating the fields emanated by exploitable on- and off-chip 
sources. Especially potent are EM SCA attacks that use near-
field scanning systems (Fig. 1) to collect numerous signals 
from a device under test (DUT). Such fine-grained EM SCA 
attacks were used recently to recover secret keys from 
cryptographic chips during encryption operations [5], [6] and 
to localize instruction-dependent sources during program 
execution on processors [7].  

Fine-grained EM SCA attacks can significantly reduce the 
marginal cost of future attacks on an implementation by first 
isolating optimal measurement configurations for information 
recovery. Finding effective information-revealing measure-
ment configurations involves, among other factors, evaluating 
the performance of various probe types, bandwidths, sizes, 
locations, and orientations; this can require an extensive, 
potentially infeasible number of measurements. The number 
of measurements also depends on the complexity of the DUT 
and the information and noise content in captured signals—
sum of fields emanated by exploitable and other sources.   

The attempt to extract information about a target chip-
process via fine-grained EM SCA attacks is confounded by 
various uncertainties in near-field measurements, e.g., due to 
equipment sensitivity, environment, drift, etc. [4], [8] and by 

concurrent processes in the system. Obfuscation of the signals 
of interest due to both measurement noise and fields emanated 
by extraneous/background processes (henceforth referred to 
as “algorithmic noise”) can be quantified by statistically 
characterizing the measurements. In particular, the analysis of 
variance (ANOVA) of near-field measurements is a promising 
approach for such characterizations; e.g., the ANOVA F-
statistic (referred to as signal-to-noise ratio in the context of 
EM side-channel security) was shown to successfully isolate 
optimal configurations for recovering one of the key-bytes 
used for encryption from a 128-bit implementation of the 
advanced encryption standard (AES), while fields emanated 
from unrelated processes involving other key-bytes obfuscate 
the signals [4], [5].  

This article presents a methodology that characterizes the 
obfuscating factors in near-field measurements of embedded 
systems via ANOVA F-tests and isolates effective measure-
ment configurations. The methodology assumes that 
configurations most sensitive to a target process will be least 
affected by measurement and algorithmic noise. First, 
obfuscation due to measurement noise is quantified and 
configurations that have both relatively small measurement 
noise and high sensitivity to changes in the target process are 
identified via F-tests. Next, the configurations least impacted 
by measurement noise are used to quantify the obfuscation 
due to algorithmic noise. Multiple stages of F-tests are 
required to quantify the impact of algorithmic noise, where 
ineffective configurations identified in one stage are discarded 

 
Fig. 1. The near-field measurement setup used for EM SCA attacks. 
Experiments were performed with an 8051 microcontroller, a general-
purpose embedded system. Near-fields were sensed using an H-field probe, 
scanning the chip at a height of 0.2 mm.  



from analysis in the subsequent stage. At the end of the 
protocol, only configurations most sensitive to the target 
process remain, which are further tested for potential 
information recovery. This approach reduces the cost of 
isolating optimal near-field measurement configurations by 
subsuming process variations within smaller groups based on 
information-leakage models [5]-[6].       

The proposed approach is demonstrated on an 8051 micro-
controller unit (MCU) with a 2-stage pipeline and shared bus 
architecture [12]. A 3-stage measurement protocol is proposed 
to isolate the data-dependent probe locations on the chip, 
probe orientations, and observation time windows. At each 
stage, ineffective measurement configurations are discarded 
via null hypothesis testing for F-values. The protocol aims to 
isolate configurations that can effectively extract the output 
for each instruction execution (the target process); changes in 
remaining architectural components (instructions, memory 
locations, program counter, etc.) are categorized as 
algorithmic noise. To verify that these isolated configurations 
actually exhibit high sensitivity to the target process, signals 
measured with these configurations are used to recover the 
Hamming weights (HW) of binary output data—the number 
of bits with value 1 in the 8-bit output generated as a result of 
executing an instruction—for a test code running on the MCU.  

II. STATISTICAL ANALYSES OF NEAR-FIELD MEASUREMENTS 

A. Dependence of Signals on Chip-Processes 

Consider a signal ,,
 measured by a near-field probe 

located above a chip. The measured signal depends on the 
probe configuration ; in this article, this corresponds to 4 
independent variables: the probe's 2-D location (, ) on the 
chip, height above the chip surface ℎ, and orientation . It also 
depends on the observation time   and all the processes  
performed on the chip at that time instant. The signal is also 
designated as a function of measurement repetition index  to 
account for measurement-to-measurement variations. In the 
following, it is assumed that the probe is located at one of the  ×  regular grid points on a chip of size  × , i.e., at 

points  

  ,  =  
 , 

 (1) 

where  = 0,1, ⋯ ,  − 1 and  = 0,1, ⋯ ,  − 1, and   
samples are recorded in each clock cycle with a sampling rate 
of 1/∆. 

 The measured signal’s dependency on chip-processes  
stems from data-dependent switching in CMOS logic [5],[6]. 
Signals emanated by the 8051 MCU can depend on the 
instructions in its execution pipeline, the memory locations 
they are referencing, program counter changes, and data 
transfers within each execution. Consider two instructions that 
move data to register A: “MOV A, #00h” and “MOV A, R0”. 
If the register R0 is loaded with #00h (hexadecimal notation 
for the MCU), then executing either instruction will move the 
same value (00h) to register A. Even when all other chip 
processes (e.g., pipelined instructions) are identical, because 
they access different memory locations, the two executions 
will emanate different fields observable near the chip (Fig. 2). 

  Let chip-processes  be expressed as a combination of a 
“target process” Tpr  and one or more irrelevant   

“background processes” Bpr, where the subscript indexes  
and   represent versions within each process and the 

superscript index  represents different types of background 
processes. For example, if output data is designated the target 
process (see Section III.A), Tpr to Tpr will represent the 
data values from 00h to FFh in the 8051 MCU. In this case, 
increment of the program counter is a type of background 
process, varying from Bpr to Bpr  for each byte of code 
fetched from memory, for a maximum code size of 4 KB. 
Other background processes that have dependencies among 
them are represented as different versions of one type of 
process. In particular, because all instruction opcodes are 
decoded to determine each instruction and memory locations 
of all of its operands, a single type of background process  
represents all of them and a specific instruction and its 
memory locations are represented by the subscript; e.g., Bpr can represent MOV using program memory, Bpr ADD 
using program memory, and Bpr ADD using data memory.  

 To analyze the signals, let the array ,
 list all the 

measured signals corresponding to all possible combinations 

of processes. Each observed signal in the array, ,,
,

, 

can be decomposed into three independent, abstract signals 


,

, ,
, and 

,,
. Here, 

,
  and 

,,
 represent the 

contribution of the target and background processes  Tpr 
and Bpr  to the observed signal, whereas , represents the 

effect of measurement-to-measurement variations. In 
information-revealing measurement configurations, the 

observed signal will depend strongly on 
,

 and will be 

insensitive to ,
 and 

,
 . If the quantities 

,
, ,

, 

and 
,

 are listed in the arrays , , ,, and ,,, their 

variances are related as 

  
,
(,) = 1 + ,

(,)
1 ,⁄

+ ,,
(,)
1 ,,⁄

 (2) 

While the abstract signals in , , , , and  ,, 
cannot be measured separately, the ratio of their variances can 
be computed by using ANOVA F-statistics on observed 
signals. Specifically, F-values for one-way ANOVA are 
computed by separating datasets into multiple groups, each 
group dependent on one version of a test parameter, while 
quantities within each group depend on several variations in 
other parameters [4], [11]. High F-values indicate that 

  

 

Fig. 2. Instruction dependence of observed signals as a MOV instruction with 
the same operand value 0x00 was executed. The data was fetched from either 
the program memory (blue) or data memory (red) as shown in the snippet. 
The signals were observed by an x-oriented H-field probe at the centre ( =5 ,  = 5 ) of an 8051 chip operated at a clock frequency of 2 MHz.

 



variance between groups is significantly larger than the 
variance within the groups, implying that the given dataset is 
highly sensitive to the test parameter. Here, the F-values are 

computed by separating observed signals  , ,
,

 into 

groups for each version  in Tpr , with each group consisting 
of variations in repeated measurements, and  Bpr  within 

them. For signals in ,
 to have minimal contributions from 

measurement uncertainty and background processes, the sum 

of terms 1/,
 and 1/,,

 in (2) must be minimized 
across probe configurations and time instances (operations 
randomized in space [11], where the effective configurations 
vary for the same operation, are not considered in this work).  

B. Computation of  F-statistics  

 The ,
 value quantifies the variation in a target process 

with respect to measurement uncertainty and does not depend 
on background processes. To compute it, various programs are 
run on the processor such that the target process varies as Tpr, Tpr, ⋯ , Tpr , while the background processes are 

kept constant as Bpr
 , for  = 1,2, ⋯ , ; here,  is the 

number of target-process changes,   is the number of 
background process types, and   is one version of a 
background process. Measurements for the configurations of 
interest are repeated  times. For each target process Tpr , 
the sample mean ̅,

,
 and sample variance ,

,
 of 

the measured signals  , ,
, , ⋯ ,  , ,

,
 are 

computed. Then, the F-value is computed as: 

 , = 
(̅,, ,̅,, ,⋯,̅,, )

(,, ,,, ,⋯,,, ) (3) 

The ,
 value is large when the measured signals exhibit 

large changes as the target process varies and small changes 
as the measurements are repeated.  

Because the arrays , and  ,,  are by definition 
independent of measurement noise, averaged signals are used 

to compute the ,,
 value. This computation can be 

performed for each type of background process  separately, 
keeping other background processes constant. For each 
version  of the target process Tpr , first a background process 

Bpr  is varied as Bpr , Bpr , ⋯ , Bpr , where   is the 

number of possible versions in that process, and the mean 

̿,,
 and the variance ̅ ,,,

 of the sample mean 

̅,
,

 are computed. Then the F-value is computed as:  

,, = 
(̿,, ,̿,, ,⋯,̿,, )

(̅,, ,̅,, ,⋯,̅,, ) (4) 

C. Practical Considerations 

From (3) and (4), computing the F-statistics requires 
measurements for all possible variations in processes, which 

may be infeasible for large  and   values. F-statistics 

can be evaluated using fewer measurements by adopting 
leakage models such as Hamming weight (HW) model or 
Hamming distance (HD) model for target and background 
processes in the DUT. Such leakage models are commonly 
used to correlate observed signals to system outputs in EM 

SCA attacks. Because HWs represent the number of bits with 
value 1 in binary representation, to correlate signals with 
HWs, the information-leaking block must reset to a known 
state (e.g., a pre-charged bus) after every operation, i.e., 
signals will not depend on the previous state of the block but 
only on its current state. For example, if a block is reset to 00h 
before an operation, signals will be similar for block values 
F0h and 0Fh, both having the same HW 4, and signals will 
vary for values 0Fh (HW 4) and 1Fh (HW 5).  HD represents 
the number of 0 → 1  and 1 → 0  bit transitions between 2 
binary numbers. The HD model is used for information-
leaking blocks that hold their previous states before updating 
their values (e.g., registers).    

The proposed methodology assumes complete control 
over the processes. While the DUT may in general be 
assumed to not be a black box, i.e., observers can control 
inputs and outputs, all chip processes may not be controllable; 
e.g., the program counter will increment irrespective of 
fetched instruction or data. Therefore, it may not be possible 
to ensure background processes are constant for the 

computation of ,
 or ,,

. Furthermore, the target 

process and all background processes can be studied 
independently, with no dependencies between them, only in 
some special cases; e.g., in the AES algorithm, byte-
substitution operations are performed independently, 
allowing byte-wise EM SCA attacks [6]. For complex 
embedded systems, however, the target and certain 
background processes may not be completely independent.  

To address these confounding issues, a non-independent 
background process is split into two processes—an 
independent background process and an intermediary 
“linking process” that is correlated with both the background 
and the target processes; e.g., an instruction can be split into 
output-independent opcode fetch/decode and the correlated 
input operand values. Here, the dependence between the 
linking process and the target process varies for changes in a 
background process; e.g., input values will be strongly 
correlated with the output values for a MOV instruction 
compared to an ADD instruction.  To reduce the sensitivity 
of the F-value estimates in (4) towards linking processes, test 
cases are specifically chosen such that the variations in the 
linking process are included during the characterization of a 
background process; e.g., by varying the input operands in 
the arithmetic and logical instructions to achieve the same 

results, the ,,
 metric can be made less sensitive to 

operand values.     

D. Measurement Protocol 

To demonstrate the methodology, a protocol is proposed 
to isolate measurement configurations sensitive to output 
data. The protocol is implemented in  + 1 stages, where  is the number of background processes ( = 2  for the 
chosen test case in Section III.A). Stages are numbered from 
0 onwards, where the 0th stage characterizes obfuscation due 
to measurement noise. It is assumed that the configuration 
with the minimum sum in (2), will belong to an intersection 
of optimal configurations identified in each stage of the 
protocol, i.e., the F-values computed in each stage are 
maximized separately (minimizing the 1/F-values) and 
configurations with F-values maximized for all stages will 
include the optimal ones. To this end, ineffective 



configurations identified in one stage are discarded from the 
analysis in the subsequent stage. Critical F- values  from F-
distributions are used as thresholds for discarding such 
configurations with null hypothesis testing. These values are 
computed at a confidence ratio of 99.99%, for 

appropriate  ,  , and   values at each stage of the 

protocol. In cases where signals are obfuscated significantly, 
the confidence with which configurations can be isolated will 
reduce.  

Stage 0 of the protocol estimates ,
 using (3), which is 

followed by the creation of a mask, to be used for the next 
stage, 

 , =  0                       if  , < , 
 1                       if  , ≥ ,            (5)  

Every subsequent stage   characterizes algorithmic noise 

from different background processes by computing ,,
 

only for the optimal configurations identified in the previous 
stage  − 1 using the generated masks as  

, =  0          if  , × ,, < , 
 1          if  , × ,, ≥ ,  ,     (6) 

for  = 1,2, ⋯ ,  . The F-statistics are first computed for 
background processes that do not depend on inputs supplied 
to the system. Optimal configurations identified after the last 

stage (with 
, = 1 ) can be tested for potential 

information recovery. 

III. MEASUREMENT RESULTS 

A. Measurement Setup 

The setup shown in Fig. 1 used Atmel’s variant of 8051, 
AT89S51 as the DUT. The chip was programmed with HEX 
files generated from test codes compiled using Keil’s 8051 
emulator. The files were loaded to the memory of the chip 
using SPI transfer protocol, with an Arduino board used as 
the intermediary. The chip operated at a clock frequency of 2 
MHz. A Keysight Infiniium oscilloscope was used as the 
signal capture device with signals sampled at ∆ = 0.2 ns. For 
the clock period of 500 ns,  = 2500 points were recorded. 

Bandwidth for the setup was limited to 500 MHz by the 
oscilloscope. The chip’s surface area  ×  is 10 mm × 10 

mm. Probe locations were chosen over  ×  = 51 × 51 

grid points over the chip area, spaced at 0.2 mm in both axes. 
A 30 dB pre-amplifier stage was used to boost signals from a 
1-mm H-field probe from Langer. The probe was positioned 
using the Riscure EM probe station which has a step-size of 
2.5 m. The setup allows measurements with x and y probe 
orientations, where the probe can move up to 40 mm in all 
directions. The probe was fixed at a height of 0.2 mm above 
the chip. Measurement and analysis costs were reduced by 
storing and processing data locally on the oscilloscope. 
Acquisition time associated with each stage ranged from 2 to 
3 hrs. Space-time maps of received signals for both 
orientations are shown for one instruction in Fig. 3. The 
figure shows significant dependence of the measured signal 
on the probe configuration. 

Processes sensitive to the output of two-operand 
arithmetic and logical instructions were chosen as the target 
for experiments. Since these instructions use the same 
architectural blocks, for this target process, two background 
processes were considered − increment of the program 
counter and changes in combinations of memory location and 
instruction functions. In pipelined embedded systems, 
processes within each pipeline stage must be accounted for, 
within background processes. Pipeline effects do not need to 
be considered, however, in these experiments because fetch- 
and execute-related operations use the same architectural 
blocks for the given set of instructions in the 8051 MCU [12].  

Complete computation of F-statistics for the 8051 MCU 
requires measurements for  = 256 data values. For each 

of these data values, a total of  = 4096  variations in 

program counter (maximum code size) and  = 16 

variations in background processes–8 arithmetic and logical 
instructions and 2 memory locations of operands–are to be 
measured. Measuring all process combinations using all 
probe configurations is infeasible; thus, leakage models were 
used for estimation of the F-statistics. The MCU implements 
a shared 8-bit bus with all bus bits pre-charged to logic 1. This 
allows the use of the HW model for correlating signals to data 
transfers on the bus. Using HW model of leakage,  was 

reduced from 256 possible values of output data to 9 values 
corresponding to a HW from 0 to 8. HD model was used to 
represent variation in program counter-dependent leakage. 

 

Fig. 4. Assembly code used to collect signals for computing ,
.

Background processes were constant – MOV instruction fetching data from 
program memory. An additional MOV instruction was appended at the end 
to ensure the background processes are consistent for all captured signals. 

 
(a) x-orientation 

 
(b) y-orientation 

Fig. 3. Space-time distribution of the signals measured using two orthogonal 
probe orientations at 51×51 observer locations for the instruction                 
MOV A, #00h. Spatial map was plotted at 200 ns and time variation was 
plotted at the centre of the chip.  



The program counter increments by 1 for every fetch from 

program memory. To estimate  ,,
,  =4 variations in 

program counter switching, from HD 1 to HD 4, were 
considered, and target processes were varied for each of these 

variations. To minimize the cost of computing ,,
, one 

instruction was selected from each functional group – MOV 
for data transfer, ADD from arithmetic instructions, and ORL  
from logical instructions. For each of these instructions, the 
source of operands may vary between 2 locations – data 
memory or program memory. The total number of variations 

in this background process was  = 6.  

B. Computation of F-statistics 

Variation in output data Tpr  is represented using 9 values 
0b00000000, 0b00000001, 0b00000011,⋯ , 0b11111111 in 
binary notation, such that all HWs from 0 to 8 are covered. 

Test program to compute ,
is shown in Fig. 4. The number 

of measurement repetitions was fixed as  = 10. Space-time 

maps of ,
 are shown in Fig. 5. Critical F-value ,, for 

computing ,
 was found to be ~4.8. To compute ,,

, 4 
HD variations in the program counter were used as 
background processes, for 4 HW variations of output data, due 
to code length constraints. The background process Bpr , 

which represents the pair of instruction function and memory 
location, was kept constant as MOV from program memory. 

The threshold , was found to be ~18. Configurations with 

,
lower than the critical value were ignored when 

computing ,,
, by only considering configurations 

with , = 1 as shown in Fig. 6. Comparing F-values at 
the center of the chip in Figs. 5 and 6, it can be inferred that 
F-values close to ~360 ns show some dependence on outputs 
which is obfuscated by program counter processes.  

Computation of ,,
 used 9 variations in target processes 

with 6 variations in background processes. Ineffective 
configurations were ignored by only computing the F-statistic 

for configurations with , = 1. The threshold , was 

found to be ~5.3. Space-time maps for the ,,
statistic is 

shown in Fig. 7. Comparing the ,,
 statistic with ,

 and 

,,
 values at the center of the chip, it was observed that all 

F-values between 300 ns to 450 ns were below the threshold 
and are ineffective configurations for information recovery, 
while the values remain consistent for other time intervals. 

From spatial maps, it was observed that the ,,
 statistic, 

masked with ,
, was highly localized during the initial 

loading of the bus. As time progressed, localization reduced, 
and the statistic showed very high dependence on the target 
for multiple on-chip configurations. Following this, the F-
values reduced till they dropped below ,, indicating they 
were ineffective configurations. Spatio-temporal variations of 

, × ,,
depend on chip layout as well as variations 

    
(a) x-orientation 

    
(b) y-orientation  

Fig. 5. Space-time maps of ,
 for two probe orientations. Space map was 

plotted at 23 ns and time variations were plotted at the centre of the chip. 
Configurations with F-values below the threshold , = 4.8  (dark blue 

regions for space maps and below the dashed red lines for time plots) were 

assigned ,
= 0 and ignored when computing ,,

 .        

 
         (a)                                                (b) 

Fig. 6. (a) Time instances where , values are above the critical threshold 

, = 4.8 (Fig. 5), i.e., , = 1 are identified. (b) The ,,
-value is 

computed at those time intervals and the time instances where , =
1. Similarly, ,,

-value is computed where ,, > ,~18 (dashed red 

line).      

  
     (a) Time variation at (5, 5) mm 

          

 
                          t1 = 23 ns                                         t2 =24 ns 

   
                         t3 = 25 ns                                          t4 = 26 ns 

(b) Spatial maps of , × ,,
 

Fig. 7. (a) Time instances were selected from the plotted curves to analyze 

spatial variation of the ,,
 statistic, along with threshold , = 5.3

(dashed red line). (b) Distribution of ,,
 varied significantly across 

space. Results shown for y-oriented probe. 



in the data-dependent current. The most optimal 
configurations were found to be close to the center of the chip 
at ~24 ns (t2 in Fig. 7) in both orientations. 

C. Information Recovery from Isolated Configurations 

  The potential of optimal configurations to recover 
information was tested by identifying output data HWs for a 
test code with several randomly generated background 
process variations, which in turn randomizes output data. The 
experiment described in this section mimics a profiled attack 
[11], where profiled EM models are constructed a priori, for 
an implementation with fully controlled access. Test signals, 
from similar implementations, corresponding to unknown 
system inputs are correlated with constructed profiles to 
recover information. For the 8051 MCU, output data-
dependent signals corresponding to each output HW were 
compiled into a reference dictionary. Signals for an optimal 
probe configuration and time interval are shown in Fig. 8. 
Comparisons can be performed at optimal configurations by 
computing the difference between test and dictionary signals 
and identifying the dictionary with least difference as best fit. 

 Instructions such as SUBB and XOR, which were not 
considered for estimation of F-statistics, were included for 
tests, to verify the coverage of the protocol for the selected set 
arithmetic and logical instructions. The test code included 100 
instructions. The test code and output HW identified for an 
optimal configuration are shown in Fig. 9. Test configurations 
included 5 randomly selected measurement configurations, 

where , = 1. Results are shown in Table I. 

TABLE I.  ACCURACY OF INFORMATION RECOVERY  

Probe Configuration Time 

instant 

(ns) 

,
× ,,

 

Accuracy 

(%) 
Location  

 ,    
Orientation 

(5,5) x 24 75 100 

(6,4) x 235 58 93 

(5,5) y 70 45 99 

(4,6) y 75 28 92 

(7,5) y 195 20 84 

 Although configurations with low F-values had 
comparatively more misclassified outputs, high F-values 
alone cannot ensure maximum leakage, since information 
recovery will also depend on signal distributions at these 
configurations. For example, if one value in the target process 
varies significantly, compared to other values, the F-statistic 
will be skewed. While F-statistics are reliable indicators of 
dependence on processes, they may not be directly used as a 
metric to quantify information leakage, such as correlation 
coefficients for EM SCA attacks on cryptography [6].  

IV. CONCLUSION 

This article presented a measurement protocol to rapidly 
isolate information-revealing measurement configurations for 
a general embedded system. The protocol was used to isolate 
configurations sensitive to the output of instruction execution 
in the 8051 MCU. Isolated configurations were tested to verify 
that they can effectively recover the HWs of the output data. 
The proposed methodology can be extended to isolate 
effective configurations for off-chip leakage sources by 
increasing scan area, subject to increasing measurement costs. 
Methods for identification of such configurations can be 
extended to source localization for EM interference testing [9] 
and fingerprinting techniques for Trojan detection [10]. Rapid 
isolation of such configurations also enables testing whether 
countermeasures designed to mask information leakage do 
actually rectify vulnerabilities as intended [11]. 
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Fig. 9. A test code with randomly generated instruction, memory 
referencing, and input operands, with observed output HW at one of the 
most optimal configurations at (5,5) mm and 24 ns for an x-oriented probe. 
The same code was repeated for different probe configurations to allow 
comparisons of accuracy of information recovery. An instruction was 
appended to keep pipeline operations consistent. 

 
Fig. 8. Signals for different HWs along with a test signal (black) with HW 
4 (left) at the centre of the chip, with clear separation at certain time 
instances. Difference between test signal and reference signals (right) 
identified  HW 4 dictionary correctly as the best fit at 24 ns.  


