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Abstract—The analysis of variance (ANOVA) F-statistic is
proposed as a tool to isolate near-field measurement configura-
tions that are sensitive to targeted chip processes in embedded
systems. It is hypothesized that the desired measurement
configurations have high F-values, i.e., the variation in a target
process is a major contributor whereas obfuscating background
processes and measurement uncertainty are minor contributors
to the variance of measured signals. The concept is demon-
strated by isolating data-dependent measurement configura-
tions for a commercially available variant of the 8051 micro-
controller: First, a multi-stage measurement protocol using F-
values is developed to rapidly isolate optimal measurement
configurations within the 4-D search space of 2-D probe location
over chip area, probe orientation, and time. Then, signals
captured using configurations with high F-values are analyzed
to identify the Hamming weights of the output data computed
by a randomized test code running on the 8051. It is shown that
configurations with higher F-values generally result in more
accurate classification of the output data; the configuration with
the highest F-value results in 100% accuracy.

Keywords—electromagnetic measurements, analysis of
variance, side-channel attacks, measurement uncertainty,
electromagnetic interference

I. INTRODUCTION

Fields unintentionally emanated by integrated circuits
offer a viable path for recovering critical information [1]-[7];
e.g., EM side-channel analysis (SCA) attacks extract infor-
mation about a target chip-process by statistically interro-
gating the fields emanated by exploitable on- and off-chip
sources. Especially potent are EM SCA attacks that use near-
field scanning systems (Fig. 1) to collect numerous signals
from a device under test (DUT). Such fine-grained EM SCA
attacks were used recently to recover secret keys from
cryptographic chips during encryption operations [5], [6] and
to localize instruction-dependent sources during program
execution on processors [7].

Fine-grained EM SCA attacks can significantly reduce the
marginal cost of future attacks on an implementation by first
isolating optimal measurement configurations for information
recovery. Finding effective information-revealing measure-
ment configurations involves, among other factors, evaluating
the performance of various probe types, bandwidths, sizes,
locations, and orientations; this can require an extensive,
potentially infeasible number of measurements. The number
of measurements also depends on the complexity of the DUT
and the information and noise content in captured signals—
sum of fields emanated by exploitable and other sources.

The attempt to extract information about a target chip-
process via fine-grained EM SCA attacks is confounded by
various uncertainties in near-field measurements, e.g., due to
equipment sensitivity, environment, drift, etc. [4], [8] and by
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Fig. 1. The near-field measurement setup used for EM SCA attacks.
Experiments were performed with an 8051 microcontroller, a general-
purpose embedded system. Near-fields were sensed using an H-field probe,
scanning the chip at a height of 0.2 mm.

concurrent processes in the system. Obfuscation of the signals
of interest due to both measurement noise and fields emanated
by extraneous/background processes (henceforth referred to
as “algorithmic noise”) can be quantified by statistically
characterizing the measurements. In particular, the analysis of
variance (ANOVA) of near-field measurements is a promising
approach for such characterizations; e.g., the ANOVA F-
statistic (referred to as signal-to-noise ratio in the context of
EM side-channel security) was shown to successfully isolate
optimal configurations for recovering one of the key-bytes
used for encryption from a 128-bit implementation of the
advanced encryption standard (AES), while fields emanated
from unrelated processes involving other key-bytes obfuscate
the signals [4], [5].

This article presents a methodology that characterizes the
obfuscating factors in near-field measurements of embedded
systems via ANOVA F-tests and isolates effective measure-
ment configurations. The methodology assumes that
configurations most sensitive to a target process will be least
affected by measurement and algorithmic noise. First,
obfuscation due to measurement noise is quantified and
configurations that have both relatively small measurement
noise and high sensitivity to changes in the target process are
identified via F-tests. Next, the configurations least impacted
by measurement noise are used to quantify the obfuscation
due to algorithmic noise. Multiple stages of F-tests are
required to quantify the impact of algorithmic noise, where
ineffective configurations identified in one stage are discarded



from analysis in the subsequent stage. At the end of the
protocol, only configurations most sensitive to the target
process remain, which are further tested for potential
information recovery. This approach reduces the cost of
isolating optimal near-field measurement configurations by
subsuming process variations within smaller groups based on
information-leakage models [5]-[6].

The proposed approach is demonstrated on an 8051 micro-
controller unit (MCU) with a 2-stage pipeline and shared bus
architecture [12]. A 3-stage measurement protocol is proposed
to isolate the data-dependent probe locations on the chip,
probe orientations, and observation time windows. At each
stage, ineffective measurement configurations are discarded
via null hypothesis testing for F-values. The protocol aims to
isolate configurations that can effectively extract the output
for each instruction execution (the target process); changes in
remaining architectural components (instructions, memory
locations, program counter, etc.) are categorized as
algorithmic noise. To verify that these isolated configurations
actually exhibit high sensitivity to the target process, signals
measured with these configurations are used to recover the
Hamming weights (HW) of binary output data—the number
of bits with value 1 in the 8-bit output generated as a result of
executing an instruction—for a test code running on the MCU.

II. STATISTICAL ANALYSES OF NEAR-FIELD MEASUREMENTS

A. Dependence of Signals on Chip-Processes

Consider a signal VJ;C: measured by a near-field probe

located above a chip. The measured signal depends on the
probe configuration pc; in this article, this corresponds to 4
independent variables: the probe's 2-D location (x,y) on the
chip, height above the chip surface h, and orientation o. It also
depends on the observation time t and all the processes pr
performed on the chip at that time instant. The signal is also
designated as a function of measurement repetition index r to
account for measurement-to-measurement variations. In the
following, it is assumed that the probe is located at one of the

Ny X Ny regular grid points on a chip of size [, X [y, i.e., at
points
= (M Tyl
(x”X'y”y) - (NX—1’Ny—1) @)
where n, = 0,1,--, N, — 1 and ny, =0,1,, Ny, — 1,and N;

samples are recorded in each clock cycle with a sampling rate
of 1/At.

The measured signal’s dependency on chip-processes pr
stems from data-dependent switching in CMOS logic [5],[6].
Signals emanated by the 8051 MCU can depend on the
instructions in its execution pipeline, the memory locations
they are referencing, program counter changes, and data
transfers within each execution. Consider two instructions that
move data to register A: “MOV A, #00h” and “MOV A, RO”.
If the register RO is loaded with #00h (hexadecimal notation
for the MCU), then executing either instruction will move the
same value (00h) to register A. Even when all other chip
processes (e.g., pipelined instructions) are identical, because
they access different memory locations, the two executions
will emanate different fields observable near the chip (Fig. 2).

Let chip-processes pr be expressed as a combination of a
“target process” Tpr; and one or more irrelevant
“background processes” Bpr}‘, where the subscript indexes i
and j represent versions within each process and the
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MOV RO, #00h ; load register data
MOV A, #00h ; immediate value fetched from program memory
MOV A, RO ; register value fetched from data memory
MOV A, #00h ; appended to keep pipeline operations identical

Fig. 2. Instruction dependence of observed signals as a MOV instruction with
the same operand value 0x00 was executed. The data was fetched from either
the program memory (blue) or data memory (red) as shown in the snippet.
The signals were observed by an x-oriented H-field probe at the centre (x =
5mm,y = 5mm) of an 8051 chip operated at a clock frequency of 2 MHz.

superscript index k represents different types of background
processes. For example, if output data is designated the target
process (see Section III.A), Tpr; to Tpr,s¢ will represent the
data values from 00h to FFh in the 8051 MCU. In this case,
increment of the program counter is a type of background
process, varying from Bprj to Bpri,os for each byte of code
fetched from memory, for a maximum code size of 4 KB.
Other background processes that have dependencies among
them are represented as different versions of one type of
process. In particular, because all instruction opcodes are
decoded to determine each instruction and memory locations
of all of its operands, a single type of background process k
represents all of them and a specific instruction and its
memory locations are represented by the subscript; e.g.,
Bpr? can represent MOV using program memory, Bprz ADD
using program memory, and Bpr3 ADD using data memory.

To analyze the signals, let the array V' list all the
measured signals corresponding to all possible combinations

ot
of processes. Each observed signal in the array, VP
Tprl,BprJ 7’

can be decomposed into three independent, abstract signals

Tfpcrt, Np” and Bk;’:]t Here, Tfpcrt and B® p}t represent the
contribution of the target and background processes Tpr;
and Bprj-‘ to the observed signal, whereas N} ot represents the
effect of measurement-to-measurement variations. In
information-revealing measurement configurations, the

observed signal will depend strongly on TTp ot

If the quantltles T,l?;rt, N;. pc’

and will be

, t
insensitive to N, POt and chr
J
c,t .
and Bp i are listed in the arrays TPS¢, NPSt, and B¥PS, their
prj
variances are related as

Var(vfc't) _ Var(NPSt) Var(Bk'pC'f) ?)
Var(TPot) — Var(TPSt) ' Var(TPCt)
1/F£C't 1/kact

While the abstract signals in TPSt, NPt and BFPot

cannot be measured separately, the ratio of their variances can
be computed by using ANOVA F-statistics on observed
signals. Specifically, F-values for one-way ANOVA are
computed by separating datasets into multiple groups, each
group dependent on one version of a test parameter, while
quantities within each group depend on several variations in
other parameters [4], [11]. High F-values indicate that



variance between groups is significantly larger than the
variance within the groups, implying that the given dataset is
highly sensitive to the test parameter. Here, the F-values are

. . pc,t .
computed by separating observed signals VTpri’Bpr?’r into

groups for each version i in Tpr;, with each group consisting
of variations in repeated measurements, and Bpr}‘ within
them. For signals in V7 “* to have minimal contributions from
measurement uncertainty and background processes, the sum
of terms 1/Fy “and 1/ FBk'pC’t in (2) must be minimized
across probe configurations and time instances (operations
randomized in space [11], where the effective configurations
vary for the same operation, are not considered in this work).

B. Computation of F-statistics

The F “t value quantifies the variation in a target process
with respect to measurement uncertainty and does not depend
on background processes. To compute it, various programs are
run on the processor such that the target process varies as
Tpry, Tpry, -+, TprNTpr, while the background processes are

kept constant as Bprjkl, fork = 1,2,--+, Ny; here, Nrp, is the
number of target-process changes, N, is the number of
background process types, and j; is one version of a
background process. Measurements for the configurations of

interest are repeated N, times. For each target process Tpr;,

_pc,t . pc,t
the sample mean x « and sample variance s &
Tpr;,Bprj Tpr;,Bpr;
s ct ot
the measured signals 1744 K p k are
Tpri,Bprjl,l Tpri,Bprh,Nr
computed. Then, the F-value is computed as:
Var(zP¢* k Pt x R L k)
Tprq,Bpri.  Tpry,Bpr; Tpry. ,Bpr;
ch,t =N J1 J1 Tpr J1 (3)
N r Mean(spc't Spc,t o pCt )

K S, k
Tprl,Bpr]-1 Tprz,Bpr]-1 TprNTpr,Bpr]-1
The FY ! value is large when the measured signals exhibit
large changes as the target process varies and small changes
as the measurements are repeated.

Because the arrays TPS¢and B¥P%¢ are by definition
independent of measurement noise, averaged signals are used
to compute the FE{( PSE value. This computation can be
performed for each type of background process k separately,
keeping other background processes constant. For each
version i of the target process Tpr;, first a background process

Bpr is varied as Bpr¥, Bpr¥, ---, Bprl’;k , where Né‘pr is the
Bpr

number of possible versions in that process, and the mean

=pc,t . —k,pc,t

p . and the variance 57 « of the sample mean

Tpr;,Bpr Tpr;,Bpr

_pc,t .

P « are computed. Then the F-value is computed as:

Tpri,Bprj

Var(xP“t FPot - gZPot )

Fk,pc,t Nk Tprl,Bprk Tprz,Bprk TprNTpr,Bprk (4)
B — “YBpr Mean(s’pc’t _pct .. bt

5 R
Tpry,Bprk” Tpry,Bprk TprNTpr,Bprk

C. Practical Considerations

From (3) and (4), computing the F-statistics requires
measurements for all possible variations in processes, which
may be infeasible for large Nrp, and Néfpr values. F-statistics
can be evaluated using fewer measurements by adopting
leakage models such as Hamming weight (HW) model or
Hamming distance (HD) model for target and background
processes in the DUT. Such leakage models are commonly
used to correlate observed signals to system outputs in EM

SCA attacks. Because HWSs represent the number of bits with
value 1 in binary representation, to correlate signals with
HWs, the information-leaking block must reset to a known
state (e.g., a pre-charged bus) after every operation, i.e.,
signals will not depend on the previous state of the block but
only on its current state. For example, if a block is reset to 00h
before an operation, signals will be similar for block values
FOh and OFh, both having the same HW 4, and signals will
vary for values OFh (HW 4) and 1Fh (HW 5). HD represents
the number of 0 —» 1 and 1 — 0 bit transitions between 2
binary numbers. The HD model is used for information-
leaking blocks that hold their previous states before updating
their values (e.g., registers).

The proposed methodology assumes complete control
over the processes. While the DUT may in general be
assumed to not be a black box, i.e., observers can control
inputs and outputs, all chip processes may not be controllable;
e.g., the program counter will increment irrespective of
fetched instruction or data. Therefore, it may not be possible
to ensure background processes are constant for the
computation of FY “t or FBk PSE - Furthermore, the target
process and all background processes can be studied
independently, with no dependencies between them, only in
some special cases; e.g., in the AES algorithm, byte-
substitution operations are performed independently,
allowing byte-wise EM SCA attacks [6]. For complex
embedded systems, however, the target and certain
background processes may not be completely independent.

To address these confounding issues, a non-independent
background process is split into two processes—an
independent background process and an intermediary
“linking process” that is correlated with both the background
and the target processes; e.g., an instruction can be split into
output-independent opcode fetch/decode and the correlated
input operand values. Here, the dependence between the
linking process and the target process varies for changes in a
background process; e.g., input values will be strongly
correlated with the output values for a MOV instruction
compared to an ADD instruction. To reduce the sensitivity
of the F-value estimates in (4) towards linking processes, test
cases are specifically chosen such that the variations in the
linking process are included during the characterization of a
background process; e.g., by varying the input operands in
the arithmetic and logical instructions to achieve the same
results, the FBk PO metric can be made less sensitive to
operand values.

D. Measurement Protocol

To demonstrate the methodology, a protocol is proposed
to isolate measurement configurations sensitive to output
data. The protocol is implemented in Ny, + 1 stages, where
Ny, is the number of background processes (N, = 2 for the
chosen test case in Section III.A). Stages are numbered from
0 onwards, where the O™ stage characterizes obfuscation due
to measurement noise. It is assumed that the configuration
with the minimum sum in (2), will belong to an intersection
of optimal configurations identified in each stage of the
protocol, i.e., the F-values computed in each stage are
maximized separately (minimizing the 1/F-values) and
configurations with F-values maximized for all stages will
include the optimal ones. To this end, ineffective
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Fig. 3. Space-time distribution of the signals measured using two orthogonal
probe orientations at 51x51 observer locations for the instruction
MOV A, #00h. Spatial map was plotted at 200 ns and time variation was
plotted at the centre of the chip.

configurations identified in one stage are discarded from the
analysis in the subsequent stage. Critical F- values F. from F-
distributions are used as thresholds for discarding such
configurations with null hypothesis testing. These values are
computed at a confidence ratio of 99.99%, for
appropriate Nyp, Né‘pr, and N; values at each stage of the
protocol. In cases where signals are obfuscated significantly,
the confidence with which configurations can be isolated will
reduce.

Stage 0 of the protocol estimates F,&’ ot using (3), which is
followed by the creation of a mask, to be used for the next
stage,

. pct
Maskgc’t _ {O ?f FA;” < Fep s)
1 if Fy™" = F,
Every subsequent stage k characterizes algorithmic noise
from different background processes by computing

only for the optimal configurations identified in the previous
stage k — 1 using the generated masks as

0 if MaskP®t x FfP°Y < F,, ©
1 if Mask?“t x FfPY > F, '
for k =1,2,---,Np. The F-statistics are first computed for

background processes that do not depend on inputs supplied
to the system. Optimal configurations identified after the last

stage (with Maskf,f)’1 =1) can be tested for potential

k,pct
FB

Mask}“" = {

information recovery.

III. MEASUREMENT RESULTS

A. Measurement Setup

The setup shown in Fig. 1 used Atmel’s variant of 8051,
AT89S51 as the DUT. The chip was programmed with HEX
files generated from test codes compiled using Keil’s 8051
emulator. The files were loaded to the memory of the chip
using SPI transfer protocol, with an Arduino board used as
the intermediary. The chip operated at a clock frequency of 2
MHz. A Keysight Infiniium oscilloscope was used as the
signal capture device with signals sampled at At = 0.2 ns. For
the clock period of 500 ns, N, = 2500 points were recorded.

ORG 0O0CODH

SJMP TEST

TEST: CPL P1.3 H
CPL P1.3
MOV E, #00h
MOV L, #
MOV 2
MOV I
MOV I
MOV I
MOV R
MOV I
MOV R
MOV R 1) as pre

SJMF TEST ; loop statement

o b

Fig. 4. Assembly code used to collect signals for computing F,f et
Background processes were constant — MOV instruction fetching data from
program memory. An additional MOV instruction was appended at the end
to ensure the background processes are consistent for all captured signals.

Bandwidth for the setup was limited to 500 MHz by the
oscilloscope. The chip’s surface area Iy X ly is 10 mm X 10
mm. Probe locations were chosen over Ny X N, = 51 x 51
grid points over the chip area, spaced at 0.2 mm in both axes.
A 30 dB pre-amplifier stage was used to boost signals from a
1-mm H-field probe from Langer. The probe was positioned
using the Riscure EM probe station which has a step-size of
2.5 um. The setup allows measurements with x and y probe
orientations, where the probe can move up to 40 mm in all
directions. The probe was fixed at a height of 0.2 mm above
the chip. Measurement and analysis costs were reduced by
storing and processing data locally on the oscilloscope.
Acquisition time associated with each stage ranged from 2 to
3 hrs. Space-time maps of received signals for both
orientations are shown for one instruction in Fig. 3. The
figure shows significant dependence of the measured signal
on the probe configuration.

Processes sensitive to the output of two-operand
arithmetic and logical instructions were chosen as the target
for experiments. Since these instructions use the same
architectural blocks, for this target process, two background
processes were considered — increment of the program
counter and changes in combinations of memory location and
instruction functions. In pipelined embedded systems,
processes within each pipeline stage must be accounted for,
within background processes. Pipeline effects do not need to
be considered, however, in these experiments because fetch-
and execute-related operations use the same architectural
blocks for the given set of instructions in the 8051 MCU [12].

Complete computation of F-statistics for the 8051 MCU
requires measurements for Npp, = 256 data values. For each
of these data values, a total of Népr = 4096 variations in
program counter (maximum code size) and N§pr =16
variations in background processes—8 arithmetic and logical
instructions and 2 memory locations of operands—are to be
measured. Measuring all process combinations using all
probe configurations is infeasible; thus, leakage models were
used for estimation of the F-statistics. The MCU implements
a shared 8-bit bus with all bus bits pre-charged to logic 1. This
allows the use of the HW model for correlating signals to data
transfers on the bus. Using HW model of leakage, Nyp, was
reduced from 256 possible values of output data to 9 values
corresponding to a HW from 0 to 8. HD model was used to
represent variation in program counter-dependent leakage.
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The program counter increments by 1 for every fetch from
program memory. To estimate FB1 et Népr =4 variations in
program counter switching, from HD 1 to HD 4, were
considered, and target processes were varied for each of these
variations. To minimize the cost of computing FB2 Pt one
instruction was selected from each functional group — MOV
for data transfer, ADD from arithmetic instructions, and ORL
from logical instructions. For each of these instructions, the
source of operands may vary between 2 locations — data
memory or program memory. The total number of variations
in this background process was Népr = 6.

B. Computation of F-statistics

Variation in output data Tpr; is represented using 9 values
0b00000000, 0b00000001, 0bOO000011,++, Ob11111111 in
binary notation, such that all HWs from O to 8 are covered.
Test program to compute FA’; “!is shown in Fig. 4. The number
of measurement repetitions was fixed as N, = 10. Space-time
maps of “* are shown in Fig. 5. Critical F-value Fq, for
computing F} * was found to be ~4.8. To compute FB1 Pet 4
HD variations in the program counter were used as
background processes, for 4 HW variations of output data, due
to code length constraints. The background process Bprjz- ,
which represents the pair of instruction function and memory
location, was kept constant as MOV from program memory.
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(b) Spatial maps of MaskP®* x FZP%*
Fig. 7. (a) Time instances were selected from the plotted curves to analyze
spatial variation of the FP* statistic, along with threshold F,, = 5.3
(dashed red line). (b) Distribution of F.**" varied significantly across
space. Results shown for y-oriented probe.

The threshold F, ; was found to be ~18. Configurations with
FI\? ' Jower than the critical value were ignored when
. 1pct . . . .
computing Fy , by only considering configurations
with Mask} !t = 1 as shown in Fig. 6. Comparing F-values at
the center of the chip in Figs. 5 and 6, it can be inferred that
F-values close to ~360 ns show some dependence on outputs
which is obfuscated by program counter processes.
Computation of FB2 Pt used 9 variations in target processes
with 6 variations in background processes. Ineffective
configurations were ignored by only computing the F-statistic
for configurations with M atskf7 ' = 1. The threshold F,, was
found to be ~5.3. Space-time maps for the FB2 P statistic is
shown in Fig. 7. Comparing the FB2 P statistic with EY “* and
FB1 PEL yalues at the center of the chip, it was observed that all
F-values between 300 ns to 450 ns were below the threshold
and are ineffective configurations for information recovery,
while the values remain consistent for other time intervals.
From spatial maps, it was observed that the FB2 pet statistic,
masked with Mask? ©twas highly localized during the initial
loading of the bus. As time progressed, localization reduced,
and the statistic showed very high dependence on the target
for multiple on-chip configurations. Following this, the F-
values reduced till they dropped below F,, indicating they
were ineffective configurations. Spatio-temporal variations of
M askf ot x FB2 ’pc'tdepend on chip layout as well as variations
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in the data-dependent current. The most optimal
configurations were found to be close to the center of the chip
at ~24 ns (t2 in Fig. 7) in both orientations.

C. Information Recovery from Isolated Configurations

The potential of optimal configurations to recover
information was tested by identifying output data HWs for a
test code with several randomly generated background
process variations, which in turn randomizes output data. The
experiment described in this section mimics a profiled attack
[11], where profiled EM models are constructed a priori, for
an implementation with fully controlled access. Test signals,
from similar implementations, corresponding to unknown
system inputs are correlated with constructed profiles to
recover information. For the 8051 MCU, output data-
dependent signals corresponding to each output HW were
compiled into a reference dictionary. Signals for an optimal
probe configuration and time interval are shown in Fig. 8.
Comparisons can be performed at optimal configurations by
computing the difference between test and dictionary signals
and identifying the dictionary with least difference as best fit.

Instructions such as SUBB and XOR, which were not
considered for estimation of F-statistics, were included for
tests, to verify the coverage of the protocol for the selected set
arithmetic and logical instructions. The test code included 100
instructions. The test code and output HW identified for an
optimal configuration are shown in Fig. 9. Test configurations
included 5 randomly selected measurement configurations,

where Mask} “* = 1. Results are shown in Table I.

TABLE L ACCURACY OF INFORMATION RECOVERY
Probe Configuration i
- g . Time Mask}* | Accuracy
Location instant 2pet
( Orientation X F B’p ’ (%)
x,,x,y,,y) mm (ns)
(5,5) x 24 75 100
(6.4) x 235 58 93
5,5) y 70 45 99
(4,6) y 75 28 92
(7,5) y 195 20 84
Although configurations with low F-values had

comparatively more misclassified outputs, high F-values
alone cannot ensure maximum leakage, since information
recovery will also depend on signal distributions at these
configurations. For example, if one value in the target process
varies significantly, compared to other values, the F-statistic
will be skewed. While F-statistics are reliable indicators of
dependence on processes, they may not be directly used as a
metric to quantify information leakage, such as correlation
coefficients for EM SCA attacks on cryptography [6].

Randomized Test Code Output HW
MOV A, #3Fh ; Pre load A register
MOV RO, #13h ; Pre load RO register
ADD A, #23h 3
XRL A, RO | Test 4
SUBB A #0Fh - 6

MOV A,#00h ; Appended instruction

Fig. 9. A test code with randomly generated instruction, memory
referencing, and input operands, with observed output HW at one of the
most optimal configurations at (5,5) mm and 24 ns for an x-oriented probe.
The same code was repeated for different probe configurations to allow
comparisons of accuracy of information recovery. An instruction was
appended to keep pipeline operations consistent.

IV. CONCLUSION

This article presented a measurement protocol to rapidly
isolate information-revealing measurement configurations for
a general embedded system. The protocol was used to isolate
configurations sensitive to the output of instruction execution
in the 8051 MCU. Isolated configurations were tested to verify
that they can effectively recover the HWs of the output data.
The proposed methodology can be extended to isolate
effective configurations for off-chip leakage sources by
increasing scan area, subject to increasing measurement costs.
Methods for identification of such configurations can be
extended to source localization for EM interference testing [9]
and fingerprinting techniques for Trojan detection [10]. Rapid
isolation of such configurations also enables testing whether
countermeasures designed to mask information leakage do
actually rectify vulnerabilities as intended [11].

REFERENCES

[1] M. Vuagnoux and S. Pasini, “An improved technique to discover
compromising electromagnetic emanations,” in Proc. IEEE Int. Symp.
Electromagn. Compat., pp. 121-126, July 2010.

[2]1 A. Zajic and M. Prvulovic, “Experimental demonstration of electro-
magnetic information leakage from modern processor-memory
systems,” IEEE Trans. EMC, vol. 56, no. 4, pp. 885-893, Aug. 2014.

[3] Y. I Hayashi et al., “Analysis of electromagnetic information leakage
from cryptographic devices with different physical structures,” IEEE
Trans. EMC, vol. 55, no. 3, pp. 571-580, June 2013.

[4] V.V.Iyerand A. E. Yilmaz, “Using the ANOVA F-statistic to rapidly
identify near-field vulnerabilities of cryptographic modules,” in Proc.
IEEE Int. Microw. Symp., June 2021.

[5] F. Unterstein et al., “Dissecting leakage resilient prfs with multivariate
localized em attacks,” in Proc. COSADE, July 2017.

[6] V. V.Iyerand A. E. Yilmaz, “An adaptive acquisition approach to
localize electromagnetic information leakage from cryptographic
modules,” in Proc. IEEE Texas Wireless Symp., Mar. 2019.

[7]1 F. Werner et al., “A method for efficient localization of magnetic field
sources excited by execution of instructions in a processor,” IEEE
Trans. EMC, vol. 60, no. 3, pp. 613-622, June 2018.

[8] B. F. Jamroz et al., “Accurate monte carlo uncertainty analysis for
multiple measurements of microwave systems,” in Proc. IEEE MTT-S
Int. Microw. Symp., Jun. 2016.

[9] A. Gorbunova, A. Baev, M. Konovalyuk, and Y. Kuznetsov,
“Localization of cyclostationary EMI sources based on near-field
measurements,” in Proc. IEEE Int. Symp. Electromagn. Compat., pp.
450-455, Aug. 2015.

[10] J. Balasch, B. Gierlichs, and I. Verbauwhede, “Electromagnetic circuit
fingerprints for hardware Trojan detection,” in Proc. IEEE Int. Symp.
Electromagn. Compat., pp. 246-251, Aug. 2015.

[11] G.Li, V.Iyer, and M. Orshansky, “Securing AES against localized EM
attacks through spatial randomization of dataflow,” in Proc. IEEE
HOST, May 2019.

[12] J. Wharton, “An Introduction to the Intel MCS-51 Single-Chip
Microcomputer Family,” Intel Corporation, Application Note AP-69,
May 1980.



