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Abstract—The effectiveness of coarse- and fine-grained 

electromagnetic (EM) side-channel analysis (SCA) attacks, as 

well as power SCA attacks, are empirically evaluated on 

implementations of the Advanced Encryption Standard (AES) 

algorithm. Coarse-grained EM and power SCA attacks use a 

single sensor configuration to measure the aggregated EM 

emanation or power consumption for a large set of encryptions, 

and then analyze this set of signals to recover all encryption key 

bytes. In contrast, fine-grained EM SCA attacks first perform 

high-resolution scans with relatively small probes in multiple 

orientations to localize on-chip information leakage, and then 

use a specific probe configuration for each key byte to collect 

and analyze signals. The fine-grained EM SCA attacks are 

found to be up to >70× more effective than coarse-grained EM 

and power SCA attacks when extracting the key from 3 imple-

mentations of 128-bit AES. They are constrained, however, by 

the potentially prohibitive cost of the initial search to identify 

effective probe configurations. Search protocols, categorized 

according to the threat model, to reduce this one-time 

acquisition cost are presented and are found to require ~8-15× 

fewer measurements compared to an exhaustive search. 

Keywords—Side-channel attacks, electromagnetic measure-

ments, measurement techniques, analysis of variance  

I. INTRODUCTION  

Side-channel analysis (SCA) attacks defeat crypto-
systems by exploiting unintentional information leakage from 
physical realizations of cryptographic algorithms [1]-[6]; e.g., 
the Advanced Encryption Standard (AES) cipher key can be 
recovered from a chip by correlating side-channel signals to 
bit transitions in state registers [2]. This article focuses on 
SCA attacks that observe the power consumption or electro-
magnetic (EM) emanations during critical computations. In 
power SCA attacks, the observed power consumption is 
dictated by the aggregate current drawn by electronic logic 
blocks [1]. In EM SCA attacks, the observed fields depend on 
the size, location, and orientation of the probes as well as the 
physical layout of the device under test (DUT) (Fig. 1). In all 
SCA attack modalities, the information in the observed 
quantities may be obfuscated by measurement noise as well as 
by algorithmic noise from uncorrelated system processes [4].  

Power SCA setups and coarse-grained EM SCA setups 
with relatively large probes (Fig. 1(a)-(b)) are commonly used 
to evaluate hardware security [1]-[3] in part because the setups 
are relatively easy to implement, requiring a single sensor 
configuration. In contrast, security evaluations using fine-
grained EM SCA setups with relatively small probes (Fig. 
1(c)) are rare, more elaborate, and potentially more potent. 
Because they can localize leakage sources [4]-[8], e.g., via 

high-resolution scans, these setups can circumvent some 
countermeasures that are effective against power and coarse-
grained EM SCA attacks [1]. While fine-grained EM SCA 
attacks may require observing far fewer encryptions if they 
can place probes near relevant signal sources, they become 
even less effective than their coarse-grained counterparts 
when probes are away from the sources of interest because 
EM fields decay rapidly with distance. Thus, the attempt to 
localize vulnerabilities can accrue substantial measurement 
costs—also referred to as the “acquisition cost” of fine-
grained EM SCA attacks [4]. If the search succeeds, the best 
configurations can be re-used; indeed, unlike other attacks that 
are memoryless, fine-grained EM SCA attacks reduce the 
marginal cost of future attacks on identical or substantially 
similar physical implementations.  

The acquisition cost of fine-grained EM SCA attacks can 
be high because the search space for effective configurations 
includes the transverse location, height, and orientation of a 
probe [4],[7]. In general, attacks using exhaustive search 
methods [8], which scan the entire chip/board at a very high 
resolution with multiple probe orientations, have to limit the 
number of measurements for each probe configuration in 
order to be feasible. Recently, various protocols have been 
proposed to accelerate the search and reduce the acquisition 
cost [4]-[6]. These search protocols for fine-grained EM SCA 
attacks should be contrasted carefully because they implicitly 
assume different restrictions on attackers; e.g., [5] repeated 
measurements and averaged the captured signals to improve 
the signal-to-noise ratio. This pre-supposes that attackers have 
at least partial control over the cryptosystem inputs. 
Moreover, if the threat model in fact permits attackers to 
repeat specific inputs, the repeatability of the measurements 
can be used instead as an indicator to discard configurations 
[6] and reduce the acquisition cost significantly. Indeed, the 
restrictions on attackers must be considered explicitly to 
rigorously analyze and meaningfully contrast the acquisition 
costs of different fine-grained EM SCA attacks. 

   
(a)                                (b)                                 (c)            

Fig. 1. Setups for power, coarse-grained EM, and fine-grained EM SCA 
attacks: (a) A sensor monitoring the aggregate power use of the chip (via 
the top-right port).(b) A 10-mm diameter H-field probe aggregating fields 
emanated by sources distributed throughout the chip. (c) A 1-mm diameter 
H-field probe scanning the chip surface for vulnerabilities.    

 



This article systematically compares correlation-based 
power, coarse-grained EM, and fine-grained EM SCA attacks 
on both baseline and hardened implementations of AES-128. 
It first evaluates the marginal costs of attacks targeting the 
AES cipher key using typical measurement configurations for 
the three attacks. It then introduces a classification for 
restrictions placed on fine-grained EM SCA attacks that 
consists of three threat model categories. All of the threat 
models assume that the attackers have physical access to the 
DUT and can observe the output ciphertext, but  
• the most restricted black-box threat model assumes 

attackers have no access to inputs;  
• a less restricted gray-box threat model assumes attackers 

have partial control over inputs, i.e., they can repeat inputs 
but not observe them; and  

• the least restricted white-box threat model assumes 
attackers have full access to inputs, i.e., they can repeat and 
observe them (the cipher key is unknown).  

A different search protocol suitable is presented for each threat 
model and their acquisition costs are contrasted.  

II. SCA ATTACKS ON AES IMPLEMENTATIONS 

A. Correlation Analysis and Its Measurement Costs 

SCA attacks correlate switching in the final round of AES 
to quantities observed in the same time interval [2]-[4]. 
Specifically, for each byte   of the AES key, (i) the last-
round key value is guessed as 0 ≤  ≤ 255, (ii) ciphertexts 
are observed and each one’s value in the penultimate AES 
round corresponding to each guessed key is generated, (iii) 
the Hamming distance between each ciphertext and its  
penultimate value is computed, and (iv) the results are stored 

in the arrays , . There are 16 × 256  such arrays, each 
storing  integers if  encryptions are observed.   

In the power SCA or coarse-grained EM SCA attack, the 
aggregate power consumption or EM emanation is recorded 
during the final round of AES for each encryption; the 
observed signals are stored in the array  of size  ×  for  time samples. Correlating   with the Hamming distances , yields the correlation coefficients ,,,

, for each key-

byte , guess key , and time instant . The correct guess key 
value ∗  is identified by using thresholds derived from 
inverse t-distributions for desired confidence intervals [7] 
(Fig. 2). The minimum number of encryptions needed to 
disclose a key-byte   is defined as the “measurements to 

disclosure”  . These attacks require  . Pwr/cgEM = min (e, max ,Pwr/cgEM) (1) 

encryptions to be observed, i.e., they observe more and more 
encryptions until either all bytes are disclosed or a limit on 
the number of observations, e, is reached. 

In contrast, in the fine-grained EM SCA attack, fields are 
observed for each encryption and stored in the array , of 
size  ×  ×  ; here,   denotes the number of 

different probe configurations  —combination of 
transverse probe location , height ℎ, and orientation —used 
to observe the emanated fields for each encryption. The array 

is correlated with ,  to find ,,,,
 and to identify ,pc , the minimum number of encryptions needed to 

disclose key-byte   with each probe configuration. As 
mentioned in the Introduction, some of the probe 
configurations will be ineffective and will reach the limit on 

the number of observations, i.e.,   < e  only for 

some . Let ,opt denote the optimal probe configuration 
such that the key-byte   is disclosed with the minimum 
number of encryptions 

                       = min ,pc                        (2) 

Then, the fine-grained EM attack requires observing (at least)  

           .  =  ∑                      (3) 

encryptions if the optimal probe configurations are known. 
Identifying these optimal configurations, however, can be 
expensive. A naïve approach to find these is to use a high-
resolution scan and probe the fields for as many encryptions 
as feasible [4],[7],[8], i.e., performing the correlation analysis 
at   transverse locations,   probe heights, and   probe 
orientations would require [4]  

                .  = e                           (4) 
encryptions to be observed if e encryptions are observed 

and correlated to ,  in each probe configuration. This 
exhaustive search for the optimal probe configurations can 

find them only if e > max  . The higher the scan/ 

probe resolution, the smaller e has to be, however, for the 
exhaustive search's acquisition cost to remain feasible.  

Alternative search protocols aim to minimize the 
acquisition cost, or equivalently, to rapidly isolate probe 
configurations least affected by noise. Correlation analysis is 
an effective and simple method to achieve this goal, 
especially if attackers have limited access to the DUT. If the 
threat model permits attackers to characterize noise, however, 
fewer observations will be needed compared to correlation 
analysis. To show this, let’s decompose the fields in ,  as 
a sum of independent hypothetical quantities representing 
target signals in , , measurement noise in , , and 
algorithmic noise from background operations in ,  [6]. 
the correlation coefficients can be represented as [2],[6],[8],  

   ,,,, = ,,,(,)×,,,,,
× 

,,≈/, ,,≈/,
  (5) 

Clearly, the variance terms degrade the noise-free correlation 

coefficient ,,,
. The ratio of the variance of target signals 

to that of measurement (algorithmic) noise—also known as 
SNR in side-channel security literature [2], [8]—can be 
estimated from measured fields using the analysis of variance 

(ANOVA) F-statistic ,
 (,

) [6], [8]. These F-statistics 

can be computed with relatively small datasets that 
characterize noise and thus can rapidly eliminate probe 
configurations least likely to disclose the key bytes, reducing 
the number of correlation-analysis measurements. The threat 
model dictates whether attackers can create such datasets.  

   
Fig. 2. The correlation coefficient (left) and its maximum value (right) for 
all 256 guesses (gray) for key byte 1 found by observing the power 
consumed during 4000 encryptions by an Artix-7 FPGA implementing 
AES-128. The correlation for the correct guess ∗ = 19 (blue) crosses the 
null-hypothesis threshold (dashed) after  = 3000 encryptions.     



B. SCA Threat Models for AES 

The search for the optimal probe configurations in fine-
grained EM SCA attacks depends on the threat model. 
Naturally, all models assume that the cipher key is unknown 
and the attackers can access the side-channel signals. Starting 
from the most-restrictive “red box” model, where they have 
no additional information, and “black box” model, where 
they can observe the output ciphertext, three progressively 
less-restrictive threat models can be identified based on the 
attackers’ access to the DUT’s peripherals and key (Fig. 3). 
Search protocols suitable for each model are detailed next.  

C. Attacking a Red Box: Pre-characterization Phase 

An initial low-cost scan can discard ineffective probe 
configurations and reduce the search space in fine-grained 

EM SCA attacks. In this scan, e
 encryptions are observed 

with each probe configuration  . The encryptions can 
potentially be all different; the only constraint is that the same 

encryption is not repeated e times for any . Once the 

observed fields are recorded, max STD(,) is computed 

for each . Probe configurations with the smallest standard 
deviations, close to the noise floor of measurement 
equipment, can be deemed insensitive to the sources of 
interest and discarded. This pre-characterization requires 

                     .  =  e


                  (6) 

encryptions to be observed; here, e ≪ e.  
As the AES input and output are not used, this phase can 

be considered a fine-grained EM SCA attack for the red box 
threat model. While configurations that give rise to the largest 
variations in ,  are of interest, these variations can stem 

from not only the changes in targeted signal sources (,) 
but also measurement noise (,) and algorithmic noise (,) . In general, attackers cannot use just the signals 
measured during the pre-characterization phase to perform 
correlation analysis. Instead, this phase enables attackers to 
rapidly judge if potentially exploitable signals exist, which 
can reduce the initial search space and acquisition costs of the 
following measurement protocols.  

D. Attacking a Black Box  

The black-box threat model, where attackers can observe 

the outputs but have no access to the inputs or the key, is 

commonly used for side-channel security evaluation. In this 

threat model, statistical methods that can rapidly identify 

probe configurations degraded by noise are unavailable 

because of the restrictions on the attackers. Search protocols 

based on correlation analysis [4],[5], including the exhaustive 

search, can be used; here, the method in [4] is implemented.  

The measurement protocol for the black-box threat model 

is an adaptive scan performed in 2 phases: In Phase I (Fig. 

4(a)), scan,I progressively costlier low-resolution scans are 

performed to identify the probe configurations ,
 that 

disclose the key-byte  with   measurements. In each 

scan   of Phase I,  either the number of locations probed ,,,,I or number of encryptions observed ,, is increased 

[7]. Then, for each key-byte, scan,II  progressively cheaper 

scans are performed in Phase II (Fig. 4(b)) to optimize the 

configurations found in Phase I. Each scan in Phase II uses 

only the optimal orientations ,
 at height ℎ,

, restricts 

the area of the scan near the optimal locations in the previous 

scan ,, and observes only the minimum number of 

encryptions used to disclose the key byte in the previous scan. 

This requires 

      . Bbox = .  +                                      ∑ ∑ ∑ ,,l,h,o,s,Iscan,I +                                      ∑ ∑ −1 l,s,IIscan,II           (7)  

measurements. In the black-box threat model, this search 
protocol may converge to local minima for MTDs and not 
identify the most optimal probe configurations [4]. 

E. Attacking a Gray Box  

The gray-box threat model permits attackers partial 

control over the input: while they cannot modify or observe 

the plaintexts, attackers can repeat them. This enables signal 

averaging to improve the signal-to-noise ratio. It also enables 

the use of repeatability characterizations and ANOVA F-

statistics to prune the search space because probe 

configurations showing low signal variance for repeated 

encryptions and high signal variance for changing 

encryptions are most likely to disclose the keys [6].  

  
Fig. 3. SCA threat models for AES. Unrestricted attackers (gold box) control
the key and have complete access to device peripherals. The access to the 
DUT is progressively restricted (white, gray, and black box) until attackers 
have no access to inputs and outputs (red box).  

 
(a) Phase I  

  
(b) Phase II 

Fig. 4.  The fine-grained EM SCA measurement protocol in the black-box 
threat model. Scans are marked with red and the number of locations and 
encryptions observed in each scan are specified. Phase I scans are performed 
with multiple probe orientations, becoming progressively more expensive, 
while Phase II scans become progressively cheaper. 



The measurement protocol for the gray-box threat model 
is performed in 3 phases: In Phase I (Fig. 5), one scan per 
orientation is performed, where e,I encryptions are repeated r  times at l,,,I  locations. For each encryption  , the 

sample mean ̅,
 and variance ,

 are computed across 
the repeated measurements and the F-statistic that quantifies 
the effect of measurement noise on signals is estimated as [6] 

                 , = , ××̅,,̅,,…,̅, , 
,,,,…,, ,                       (8) 

The computed values are compared to a threshold , derived from F-distributions for a selected confidence 

level. Configurations with F-values greater than the threshold 
are least affected by measurement noise. This model enables 
attackers to identify configurations significantly degraded by 
measurement noise (see (5)) and remove them from the 
search after Phase I. Typically, the resolution of the Phase I 
scan is higher than its black-box counterpart as it requires 
fewer encryptions to be observed. Once configurations ,  with high F-values are isolated, phases I and II of the 
measurement protocol for the black-box threat method are 
performed (Fig. 4). This requires  . Gbox = . pre + ∑ ∑ ,,,r, +                                ∑ ∑ ∑ ,,l,h,o,s,IIscan,II +                                ∑ ∑  l,s,IIIscan,III               (9) 

measurements.  

F. Attacking a White Box  

The white-box threat model permits attackers complete 

control over the inputs. The measurement protocol is 

performed in 4 phases (Fig. 6): Because the key is unknown, 

Phase I of the protocol for the gray-box threat model is 

implemented followed by Phase I of the protocol for the 

black-box threat model to recover the key. In these first two 

phases, the protocol prioritizes recovering the key over 

isolating optimal configurations; this allows low-resolution 

scans to first disclose the key and then further optimize the 

attack by computing the F-statistic ,
. Because each byte 

of AES is targetted separately, the algorithmic noise is 

assumed to come from uncorrelated computations involving 

the remaining 15 bytes. Although each byte can potentially 

switch from 256 values in the penultimate round to 256 

values in the final output, the Hamming distance (HD) of this 

transition reduces the number of combinations from 256×256 

to 9 values, from HD  to HD . This simplification is 

consistent with the HD leakage model used in Section II.A 

for correlation analysis. For each HD of a target byte, e,III 
encryptions are performed, where uncorrelated bytes are 

chosen randomly to increase algorithmic noise. The mean ̿HD,
and variance ̅HD,

 are computed on the averaged signals 

across the changing encryptions, and the F-statistic ,
 is 

estimated as 

                   , = ×e,III×(̿, ,̿, ,⋯,̿, )(̅, ,̅, ,⋯,̅, )                  (10) 

In Phase III, ,
 is estimated in a single high-resolution 

byte-wise scan using configurations identified in Phase II. 
Comparing the computed values with a threshold , derived 

from F-distributions enables attackers to remove configura-
tions significantly degraded by algorithmic noise after Phase 
III. Phase IV subjects optimal configurations , to 
correlation analysis. This requires   . Wbox = . pre + ∑ ∑ ,,,r, +                                ∑ ∑ ∑ ,,l,h,o,,s,IIscan,II +                                ∑ 9e,IIIl,III  + ∑ e,IVl,IV          (11) 

encryptions to be observed. Due to lack of space, the gold-
box threat model is not addressed in this article, except to note 
that unrestricted attackers (controlling the key) can further 
reduce the acquisition cost by designing specific tests 
(plaintext-key combinations) that generate extreme variations 

in target signals to rapidly estimate the F-statistic ,
.  

III. MEASUREMENT RESULTS 

A. Setup 

Fine-grained EM SCA attacks were implemented on AES-
128 implementations using a 1-mm diameter H-field probe, at 
a fixed height ℎ = 0.5 mm, to scan an 8×8 mm2 ASIC [1] 
and an 18×18 mm2 Artix-7 FPGA [4]. Both chips operated at 
input clock frequency of 20 MHz and supply voltage of 1.1 V. 
A Keysight DSOS054A oscilloscope recorded the signals 
with a sampling rate of 10 GS/s. Analysis was performed 
locally on the oscilloscope, saving experiment time. The probe 
was positioned using Riscure’s EM probe positioner. The 
setup allows scanning only in x- and y-orientation, i.e.,  =2. The search space included  = 51 × 51 locations in both 
orientations. The spatial distributions of measured EM signals 
are shown in Fig. 7(a). Coarse-grained EM SCA attacks were 
performed using a 10-mm H-field probe while power attacks 
were performed using available supply pins on the test boards. 
Signals captured for power and coarse-grained EM SCA 
attack are shown in Fig. 7(b)-(c). 

In addition to an unsecured AES implementation, the 
ASIC also used a module hardened against power and coarse-
grained EM SCA attacks by using a power delivery 
mechanism based on the galvanic isolation principle [1]. 
Galvanic isolation is typically used in high-voltage power 
converters, where the secondary side of the converter is 
separated from the primary side to protect it from potentially 

 
Fig. 5. The measurement protocol in Phase I of the gray-box threat model

prunes the search space by repeating scans, computing ,
, and comparing 

it to a threshold ,. The reduced set of configurations are then evaluated 

with the black-box protocol.   

Fig. 6. The measurement protocol in the white-box threat model initially 
performs Phase I of the protocols used for gray- and black-box threat 
models. Once the key is disclosed, the search space is pruned by computing  ,

 statistic byte-wise and comparing it to a threshold ,. The reduced 

set of configurations are then evaluated using correlation analysis.      



damaging transient voltages and currents [9]. Here, the AES 
core is isolated from the external power supply to protect the 
module from power SCA attacks. Reconfigurable capacitor 
banks are used to supply the necessary charge to perform 
AES computations. Therefore current signatures and ground 
bounce in the external supply have minimal data-dependent 
variance. 

B. Marginal Cost 

 First, the marginal costs of EM and power SCA attacks are 
compared (correlation analysis was performed using the 
optimal probe configurations or the fine-grained EM SCA 
attack) to judge their effectiveness.  The number of 
observations with each attack modality was limited to 2 
million encryptions; in some cases, the AES key could not be 
extracted within this limit. The observed marginal costs for all 
the implementations are listed in Table I. Table I shows that 
the coarse-grained EM SCA attack was the least effective 
SCA modality against all the implementations. Surprisingly, 
the power SCA attack was the most effective against the 
FPGA (recovering the key with ~2.5× fewer encryptions than 
the best alternative); this may be because the FPGA and its 
test board are specifically designed and marketed to study 
power SCA attacks, i.e., they must have particularly low-noise 
outputs suitable for the power attack. The fine-grained EM 
SCA attack required ~3.7× fewer encryptions for the baseline 
ASIC and >70× times fewer  encryptions for the secured ASIC 
compared to the power SCA attack.  

TABLE I.  MARGINAL COSTS OF SCA ATTACKS 

Marginal Cost  

DUT  

FPGA 
Baseline 

ASIC 

Secured 

ASIC 

Power 4.20×103  1.00×105 >2.00×106 

Coarse-Grained EM 4.58×104  1.48×105 >2.00×106 

Fine-Grained EM 1.05×104 2.65×104 2.80×104 

 Using the exhaustive search to isolate the optimal probe 
configurations for the fine-grained EM SCA attack would 

require ~108 measurements for both implementations, if e = 20 000. Next, the results from the search protocols 
to reduce this cost are reported for the FPGA and the secured 
ASIC (similar acquisition costs were observed for both 
secured and unsecured implementations).  

C. Comparison of Fine-grained EM SCA Protocols 

The pre-characterization (Fig. 8) was performed using e = 50  encryptions for the maximum number of 
observers on both chips. The signal’s standard deviation 
across the chip was computed and configurations with low 
variance (< 0.1 mV) were discarded. The pre-characterization 
showed a significant reduction in the initial search space for 
the ASIC (~40%) compared to the FPGA (~15%). Before 
implementing measurement protocols, the configurations 
eliminated by the pre-characterization phase were noted. If a 
scan included such a configuration, that measurement was 
skipped and the probe was positioned at the next 
configuration. 

The protocol for the black-box threat model (Fig. 9) [4], 
[7] required Nscan,I = 2 Phase I scans for the FPGA, with the 

second scan requiring ,, = 6000  encryptions per 

configuration and probed observers on an equally spaced grid 
of size 11 × 11 over the chip. It required  Nscan,I = 2 Phase I 

scans for the ASIC, where ,, = 8000  encryptions per 

     

  
(a) Fine-grained EM SCA 

 
             (b) Coarse-grained EM SCA                   (c) Power SCA 
Fig. 7. (a) Spatial map of the absolute value of the measured signals using 
an x-oriented 1-mm diameter H-field probe at ~12 ns during the last round
for the FPGA (left) and the secured ASIC (right). = 51×51 locations were 
probed in both cases. (b) EM signal measured by a z-oriented 10-mm 
diameter H-field probe positioned at the center of the FPGA. (c) Supply 
variation of FPGA during the last round of AES operations.      

        

   
Fig. 8. Spatial maps of max Std(,) obtained with the x-oriented probe 

for the FPGA (left) and ASIC (right).  

        

 
(a) Phase I scan 2 

 
(b) Phase II scan 1 

Fig. 9. MTD maps for byte 1 obtained from the black-box search protocol 
for the FPGA (left) and ASIC (right) implementations. Scans constrain area 
(red and black) and number of measurements progressively to reduce cost.  



configuration were used in the second scan. Both 
implementations required Ncan,II = 2  scans to disclose all 

bytes of the key. 
Attacks using the gray-box protocol first computed F-

statistic ,
 for configurations within the search space 

reduced by pre-characterization. To compute the F-statistic, , =20 encryptions were repeated  = 50 times [4]. As 

shown in Fig. 10, comparing the values with the critical 
threshold 1.6 (confidence level 95%), several non-optimal 
configurations were discarded. Phases II and III implemented 
the black-box search protocol over a reduced area, using Nscan,II = 1 and Nscan,III=2 scans.  

Attacks using the white-box protocol started with the pre-
characterization and Phase I for the gray-box model. Phase II 
performed a low-resolution scan with l,1,II = 6 × 6, in the 

region marked in Fig. 10. Once the final round keys were 
identified, inputs were provided to the chip such that for each 
variation of Hamming distance switching of an output byte, e,III = 20 encryptions were generated to compute the ,

 

statistic (Fig. 11) in Phase III. The statistic was computed at 
a comparatively finer resolution for the FPGA since a larger 
region was observed to leak information in previous phases. 

D. Acquisition Cost Comparison 

The pre-characterization stage required ~2.6×105 
encryptions for both AES implementations. The acquisition 
costs were ~9.9×106, ~7.3×106, and ~6.9×106 (~1.27×107, 
~9.8×106, and ~6.8×106) measurements for the FPGA (ASIC) 
when the black-, gray-, and white-box threat model was used. 
The number of probe configurations and the accumulation of 
the acquisition cost at each phase of the search protocols are 
shown in Figs. 12(a)-(c). The final acquisition costs are 
compared to that of the exhaustive approach in Fig. 12(d). 
Compared to the exhaustive search, the search protocols for 
the black-, gray-, and white-box threat models showed ~8-
10×, ~10-13×, and ~14-15× cost reduction. The search 

protocols for the gray- and white-box threat models required 
~1.3-1.35× and ~1.5-2× fewer measurements compared to 
that for the black-box one, respectively.  

IV. CONCLUSION 

 Fine-grained EM SCA attacks were systematically 
compared to coarse-grained EM and power SCA attacks. 
Though fine-grained EM SCA attacks were found to be more 
than 70× effective compared to the alternatives on AES-128, 
they are constrained by the potentially infeasible acquisition 
cost of the measurements. Various threat models were 
introduced to categorize search protocols that can rapidly 
isolate optimal probe configurations in fine-grained EM SCA 
attacks. Experiments showed that different search protocols 
can reduce the acquisition cost compared to an exhaustive 
search by ~8-15×. These protocols enable designers to rapidly 
evaluate the security o cryptographic modules that implement 
EM and power SCA countermeasures.   
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                    (a) Black-box model                        (b) Gray-box model 

   
                (c) White-box model                    (d) Final cost comparison 

Fig. 12. Reduction of the search space for optimal probe configurations. 
The optimal configurations were more rapidly isolated for the less 
restrictive threat models.  

            

  
Fig. 10. Spatial map of max ,

 and the are used in subsequent analysis 

(red) with an x-oriented probe for the FPGA (left) and ASIC (right).  

      

   
Fig. 11. Spatial map of max ,

 compared to optimal configurations (star) 

for the FPGA (left) and ASIC (right). 


