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ABSTRACT: We investigate the sensitivity of mesoscale atmospheric predictability to the slope of the background kinetic
energy spectrum E by adding initial errors to simulations of idealized moist midlatitude cyclones at several wavenumbers k
for which the slope of E(k) is significantly different. These different slopes arise from 1) differences in the E(k) generated
by cyclones growing in two different moist baroclinically unstable environments, and 2) differences in the horizontal scale
at which initial perturbations are added, with E(k) having steeper slopes at larger scales. When small-amplitude potential
temperature perturbations are added, the error growth through the subsequent 36-h simulation is not sensitive to the slope
of E(k) nor to the horizontal scale of the initial error. In all cases with small-amplitude perturbations, the error growth in
physical space is dominated by moist convection along frontal boundaries. As such, the error field is localized in physical
space and broad in wavenumber (spectral) space. In moist midlatitude cyclones, these broadly distributed errors in wave-
number space limit mesoscale predictability by growing up-amplitude rather than by cascading upscale to progressively
longer wavelengths. In contrast, the error distribution in homogeneous turbulence is broad in physical space and localized
in wavenumber space, and dimensional analysis can be used to estimate the error growth rate at a specific wavenumber k
from E(k). Predictability estimates derived in this manner, and from the numerical solutions of idealized models of homo-
geneous turbulence, depend on whether the slope of E(k) is shallower or steeper than k23, which differs from the slope-
insensitive behavior exhibited by moist midlatitude cyclones.

KEYWORDS: Extratropical cyclones; Mesoscale processes; Baroclinic models; Numerical weather prediction/
forecasting

1. Introduction

Lorenz (1969) suggested that certain flows with many scales
of motion, such as the atmosphere, may have a finite predict-
ability limit that cannot be extended by decreasing initial
errors to any magnitude greater than zero. In Lorenz’s model,
which represents two-dimensional homogeneous turbulence,
error growth is dominated by a cascade from small to large
scales, and this upscale cascade is dependent on the slope of
the flow’s background kinetic energy (KE) spectrum E(k)
where k is the horizontal wavenumber. If E(k) is proportional
to k2p for p , 3, the upscale error cascade proceeds faster on
progressively smaller scales, and any nonzero initial error will
produce a complete loss in predictability in a finite time. In
contrast, if p $ 3, the upscale error transfer does not become
progressively faster at smaller scales, so predictability can be
extended indefinitely by continually reducing the initial-error
scale and amplitude. Lorenz’s “butterfly effect” has been sup-
ported by studies using more advanced turbulence models
(Leith and Kraichnan 1972; Métais and Lesieur 1986;
Rotunno and Snyder 2008) and is now a widely accepted con-
cept in dynamic meteorology.

However, the extent to which error-growth estimates from
homogeneous turbulence apply to atmospheric predictability
is not well understood. Even so, the background KE spectrum
in the atmosphere does tend to follow power laws similar to
those assumed for E(k) in the aforementioned idealized stud-
ies. Observations have shown that in the midlatitudes, the

time-averaged E(k) approximately follows a k23 power law
on synoptic scales, while at mesoscale wavelengths less than
about 400 km, the slope gradually shallows to k25/3 (Nastrom
and Gage 1985). Similar background KE spectra have been
produced using realistic global convection-permitting numeri-
cal simulations (Skamarock et al. 2014; Judt 2018). Following
turbulence theory, the k25/3 slope of E(k) on the mesoscale
suggests that the atmosphere should have finite predictability.
Indeed, studies using full-physics atmospheric models have
agreed with Lorenz’s estimate that midlatitude synoptic-scale
weather systems have an intrinsic predictability limit of about
2 weeks (Zhang et al. 2019; Judt 2020). The possibility of
improving the applicability of turbulence theory to the atmo-
sphere has motivated the development of turbulence models
with hybrid k23 and k25/3 KE spectra (Durran and Gingrich
2014; Sun and Zhang 2020; Leung et al. 2020).

Vigorous atmospheric convection provides one important
path for errors to propagate through the mesoscale and ulti-
mately limit the predictability on all scales. Selz and Craig
(2015) showed that error growth in a simulation of a real sum-
mertime weather event proceeded most rapidly in regions of
strong, precipitating convection. Sun and Zhang (2016, here-
after SZ16) investigated error growth in idealized simulations
of moist midlatitude cyclones with strong convective instabil-
ity. They concluded that “the short-range forecast is domi-
nated by the upscale growth from the small scales” due to
moist convection and that “the predictability behavior is
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closely linked to the flow’s kinetic energy spectrum,” as is the
case in homogeneous turbulence. Nevertheless, spectral error
growth in convection-permitting simulations of realistic atmo-
spheric flows is typically different from the way small-scale
errors evolve in turbulence models. In realistic flows the
errors tend to grow uniformly at all scales in an “up-
amplitude” fashion, rather than via an upscale cascade from
the shortest wavelengths (Mapes et al. 2008; Durran et al.
2013; Durran and Gingrich 2014; Selz and Craig 2015; Weyn
and Durran 2017; Judt 2018, 2020).

The main goal of this paper is to investigate the sensitivity of
atmospheric predictability to the initial-error scale and to the
slope of the background KE spectrum. We conduct our experi-
ments using convection-permitting idealized simulations of iso-
lated midlatitude cyclones developing within moist baroclinically
unstable channels, as in several previous predictability studies
(Zhang et al. 2007; Bei and Zhang 2014; SZ16). Similarly to
those studies, we will focus on error growth through the meso-
scale at lead times up to 36 h, since baroclinic-wave channel sim-
ulations lack the planetary-scale circulations that would need to
be included in realistic simulations of error growth on synoptic
and larger scales over longer lead times. Our strategy is to per-
turb the potential temperature fields in our simulations at dis-
tinct wavelengths and amplitudes and compare the evolution of
the perturbed and unperturbed runs.

The remainder of this paper is organized as follows. In sec-
tion 2 we introduce the baroclinic-wave simulations used to
run our predictability experiments: one following that of
SZ16 and another that simulates moist processes more realis-
tically. Section 3 outlines the initial perturbation strategy. We
discuss error growth in physical space in section 4 and error
growth in spectral space in section 5. We provide concluding
remarks in section 6.

2. Overview of the simulations

a. Model configuration

We use the Advanced Research version of the Weather
Research and Forecasting Model (WRF-ARW version 3.6.1;
Skamarock et al. 2008) to run idealized simulations of moist
baroclinic waves in f-plane channels with zonally periodic and
meridionally symmetric boundaries. The background state for
the simulations is a zonally uniform jet profile that we gener-
ate by inverting a potential vorticity (PV) field in the y–z
plane following Rotunno et al. (1994). The horizontal grid res-
olution is Dx 5 4 km, which is well within the range of grid
spacings used in typical convection-permitting simulations,
but is nevertheless too coarse to accurately resolve the true
scale of convective updrafts. The errors in ensemble and near-
twin simulations of systems with deep convection would be
expected to grow more rapidly if the resolution were
improved (Weyn and Durran 2018). There are 100 vertical
levels with the model top at 20 km.

We configure our first family of simulations following SZ16;
the background-state PV is a constant 0.4 potential vorticity
units (PVU; 1 PVU5 1026 K m2 s21 kg21) in the troposphere
and a constant 4 PVU in the stratosphere, with PV increasing

sharply within the tropopause. We call the simulations using
this setup the “two-layer potential vorticity” (2LPV) simula-
tions. The 2LPV approach is a widely used method for gener-
ating background states for idealized baroclinic-wave
simulations (Rotunno et al. 1994; Tan et al. 2004; Zhang et al.
2007; Menchaca and Durran 2017).

However, the 2LPV simulations develop unrealistic vertical
motions because the background-state static stability profile
in the troposphere is unrealistic. Holding PV constant within
the troposphere forces ­ū=­z to decrease with height, since
the background density r̄ z( ) decreases with height and Ertel’s
PV is PV 5 (za · $u)/r. This, combined with the fact that u
increases with height, causes the buoyancy frequency
N25 g=u

( )
dū=dz
( )

to decrease with height. As shown by the
blue curve in Fig. 1, prescribing constant PV in the tropo-
sphere thus results in unrealistically high buoyancy frequency
near the surface (almost 0.015 s21) and more realistic values
of N just below the tropopause (about 0.01 s21). We will show
in section 2b that this unrealistic profile of N leads to anoma-
lous wave activity at low levels and unrealistic moist convec-
tion confined to the upper troposphere. Since moist processes
have been shown to play a key role in modulating error
growth in baroclinic waves (Zhang et al. 2007; SZ16), the
results of our predictability experiments using the 2LPV simu-
lations are likely limited to flows with similar degrees of con-
vective instability and wave activity.

FIG. 1. Vertical profiles of buoyancy frequency N (s21) for the
2LPV (blue) and CTSS (red) background states. The profiles of N
are zonally averaged in the meridional center of the respective
domains (y 5 4000 km for the 2LPV simulation and y 5 3600 km
for the CTSS simulation).
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To address this issue, we consider a second family of baro-
clinic-wave simulations in which the background-state buoy-
ancy frequency is roughly a constant 0.01 s21 throughout the
troposphere (as shown by the red curve in Fig. 1). We desig-
nate these simulations the “constant tropospheric static
stability” (CTSS) simulations. We create the simple, but more
realistic thermodynamic structure of the CTSS background
state by prescribing a PV field that increases with height
within both the troposphere and the stratosphere. The PV at
the bottom of the troposphere is 0.22 PVU and the PV at the
bottom of the stratosphere is 1.8 PVU. We outline the details
of this PV field in appendix A, and we invert the field using
the same methodology as in the 2LPV case.

Figure 2 depicts the background-state jet profiles for the
2LPV and CTSS simulations. The 2LPV jet closely resembles
that of SZ16 (their Fig. 1), with a zonal wind maximum of just
over 50 m s21 at a height of about 8 km, a meridional surface
temperature gradient of about 70 K, and a tropopause height
that ranges from about 10 km in the south to 5 km in the
north. In contrast, the CTSS tropopause height ranges from
about 13 to 10 km, which is more consistent with observations
at midlatitudes than in the 2LPV case (Kishore et al. 2006).
The higher and more gently sloped CTSS tropopause is also
associated with a weaker jet maximum (about 35 m s21) at
about 12-km height and a weaker meridional surface temper-
ature gradient (about 30 K) than in the 2LPV background
state. The 2LPV and CTSS moisture fields have similar struc-
tures, although the CTSS water vapor mixing ratio values are
smaller, extend farther north, and do not extend as high up in
the atmosphere. Note that we compute the 2LPV moisture
field following the relative humidity formula in SZ16 (their
appendix A), while we calculate the CTSS water vapor mixing
ratios using the formula in appendix B.

The 2LPV and CTSS simulations also have different domain
sizes and parameterizations. The 2LPV domain is the same size
as in SZ16, with a zonal extent of Lx 5 4000 km and a meridio-
nal extent of Ly 5 8000 km, although the 4-km horizontal

resolution is an improvement upon the 10-km resolution used in
SZ16. The CTSS domain is twice as long in the zonal direction,
with Lx 5 8000 km and Ly 5 7200 km, to allow the cyclone
more room to develop away from the periodicity constraint at
the zonal boundaries. The 2LPV parameterizations follow those
of SZ16; we use the Lin et al. (1983) microphysics scheme, the
Hong and Pan (1996) planetary boundary layer scheme, and the
Monin–Obukhov similarity theory to parameterize surface layer
friction with the default roughness of z0 5 0.01 m (fluxes of heat
and moisture are set to zero). The CTSS parameterizations are
selected based on the default WRF schemes; we use the Yonsei
University (YSU) planetary boundary layer scheme (Hong et al.
2006) and the revised surface layer scheme based on the fifth-
generation Pennsylvania State University–National Center for
Atmospheric Research Mesoscale Model (MM5) parameteriza-
tion (Jiménez et al. 2012). Although it is not the default, we use
the National Severe Storms Laboratory (NSSL) two-moment
microphysics scheme (Mansell et al. 2010) for the CTSS simula-
tion because two-moment schemes have been shown to have sig-
nificant advantages over one-moment schemes (Johnson and
Jung 2016). In both simulations, we use the Rayleigh damping
scheme described in Klemp et al. (2008) in the top 5 km of the
model, we do not include solar nor infrared radiation, and we do
not use cumulus parameterization.

b. Cyclone evolution

We generate the 2LPV and CTSS cyclones using a method
similar to that of Menchaca and Durran (2017). Cyclone
growth is triggered by a localized quasigeostrophic PV anom-
aly of the form

Q′ x, y, z( )5Q0e2 s=dh( )2e2 z2 zc( )=dy[ ]2 , (1)

where s2 5 (x2 xc)
2 1 (y2 yc)

2, the magnitude isQ0 5 3.03
1025 s21, and the decay scales are dh 5 1000 km in the hori-
zontal and dy 5 3 km in the vertical. The center of the 2LPV
anomaly is located at (xc, yc, zc) 5 (1000, 3000, 6.5 km),

(a) 2LPV (b) CTSS

FIG. 2. South–north vertical cross sections of the (a) 2LPV and (b) CTSS background states for zonal wind (red contours every
10 m s21), potential temperature (gray contours every 10 K), and water vapor mixing ratio (color fill every 2 g kg21, as denoted by the
color bar). The tropopause is represented by the thick black line, which refers to where the potential vorticity is equal to 1.5 PVU in the
2LPV simulation and 1.8 PVU in the CTSS simulation.

L L O VERA S E T A L . 121JANUARY 2022

Brought to you by University of Washington Libraries | Authenticated drdee@uw.edu | Downloaded 07/29/22 05:49 PM UTC



placing it below and to the south of the jet maximum. We
choose the same y–z location for the CTSS anomaly, except
we change the zonal center to xc 5 2400 km in light of the
larger zonal domain to ensure that the anomaly is well away
from the periodic boundary. After seeding the cyclone, the
model is integrated for 24 h using the WRF Dolph–Chebyshev
digital filter (Lynch 1997) to remove any artificial gravity
waves of periods less than 6 h caused by imbalances in the ini-
tial state. The filtered variables serve as the new initial condi-
tions at 12 h into the simulation, from which the standard,
unfiltered WRFModel is integrated forward.

As in SZ16, we consider the growth of potential tempera-
ture perturbations in our baroclinic-wave simulations over
36-h forecast periods. In the 2LPV experiments, we add
the perturbations at day 4.5 of the simulation, at which time
the cyclone is in roughly the same developmental stage as the
cyclone in SZ16 when they added perturbations to their simu-
lations. The main period of focus for the CTSS experiments
(3–4.5 days) covers an earlier stage of baroclinic growth in
which the cyclone deepens more rapidly than in the 2LPV
case (Fig. 3). As will be discussed (in connection with Fig. 13),
the error growth over this 3–4.5-day period of rapid deepen-
ing is nevertheless similar to that which occurs if perturba-
tions are added to the CTSS simulation at 4.5 days.

Figure 3 shows the 2LPV and CTSS surface temperature
and pressure fields at 12 and 36 h after the addition of pertur-
bations. The CTSS cyclone is significantly more realistic than
the 2LPV cyclone. The CTSS cyclone closely resembles the
Norwegian cyclone model first introduced by Bjerknes (1919),
with distinct warm, cold, and occluded fronts and cold air that
wraps around the low pressure center as the cyclone matures.
In contrast, cold air does not wrap around the 2LPV cyclone
as it deepens and moves northward, resulting in the develop-
ment of a large region with a weak surface temperature gradi-
ent just south of the low pressure center. By 36 h the 2LPV
cyclone has developed unrealistic kinks in the surface pres-
sure and temperature fields on scales of about 100 km (Fig.
3b); this is consistent with the surface features found in the
simulations of Tan et al. (2004) and Zhang et al. (2007) that
use a similar background state.

Figure 4 shows how the improved tropospheric static stabil-
ity profile in the CTSS simulation leads to more realistic
clouds and moist convection than in the 2LPV case. Figures
4a and 4b show the cloud-top temperature fields for the two
simulations (at day 5 for 2LPV, day 4.5 for CTSS). The 2LPV
cloud field is dominated by low, warm clouds, many with
wavelike structures, particularly in the warm sector and cloud
shield. The majority of the coldest cloud tops are convective
clouds that occur sporadically along the cold front. In con-
trast, the CTSS cloud field is much more robust and realistic,
as the clouds extend high into the atmosphere and are struc-
tured in a way that reflects the large-scale rising motions that
are characteristic of midlatitude cyclones.

The cross sections of vertical velocity and potential temper-
ature in Figs. 4c and 4d correspond to the locations of the red
lines in Figs. 4a and 4b, respectively. In the 2LPV cross sec-
tion, the anomalously high near-surface static stability con-
fines low-level vertical motion to wavelike features with

wavelengths of about 40 km, while convective cells develop in
the 6–10-km layer where the buoyancy frequency is approxi-
mately 0.01 s21 (Fig. 1). In contrast, the vertical motion in the
CTSS cross section is dominated by large-scale ascent along
the cyclone’s warm conveyor belt. Also, the region of higher
vertical velocity in the western portion of the CTSS cross sec-
tion is associated with snowfall. These broader features in the
vertical velocity field are more representative of rising
motions in the cloud fields of real-world midlatitude cyclones.

c. Background KE spectra

We compute two-dimensional (2D) KE spectra for the
2LPV and CTSS simulations following Menchaca and Durran
(2019). First, we interpolate the WRF data onto constant-
height surfaces with 200 m vertical intervals. Next, we extend
the variables periodically in the meridional direction follow-
ing Waite and Snyder (2013) to create a doubly periodic
domain of size Lx by 2Ly, taking advantage of the periodic
boundary conditions in x and the symmetric boundary condi-
tions in y. We then compute Fourier transforms of the veloc-
ity fields using the default option in Python’s numpy.fft
module. Denoting the 2D discrete Fourier transform of a
function f by f̂ and its complex conjugate by f̂

∗
, we compute

the density-weighted KE spectral density at each vertical level
m using the binning technique described in Durran et al.
(2017) as

Em kp
( )

5
r̄mDxDy min Dkx,Dky

( )
8p2NxNy

∑
k∈R p( )

ûm k( )û∗
m k( )[

1 ŷm k( )ŷ∗m k( )], (2)

where r̄ z( ) is a horizontally uniform background density
profile, Dx 5 Dy 5 4 km is the horizontal grid spacing, Nx

and Ny are the numbers of grid points in the zonal and
meridional directions, respectively, k 5 (kx, ky) is the hori-
zontal wavenumber vector, and Dkx 5 2p/Lx and Dky 5

2p/Ly are the zonal and meridional wavenumber spacings,
respectively. To define R(p), we discretize the 2D wavenum-
ber in multiples of the maximum one-dimensional wave-
number Dkh 5 max(Dkx, Dky) such that kp 5 pDkh, p 5 1, 2,

… , Nmax, where Nmax5
⌈ ��

2
√

max Nx=2,Ny=2
( )⌉

. Then R(p) is

the set of wavenumber indices k 5 (kx, ky) satisfying

kp2Dkh=2#
����������
k2x1k2y

√
#kp1Dkh=2.

Figure 5 shows E(k) for the unperturbed 2LPV and CTSS
simulations at the time we add the perturbations and 36 h
after. The red curves correspond to the midtroposphere,
which we define as the 2–6-km vertical range in the 2LPV
simulation and 4–8 km for the CTSS case. The blue curves
correspond to the lower stratosphere, which we define as
8–12 km in the 2LPV simulation and 10–14 km for the CTSS
case.

At mesoscale wavenumbers, the 2LPV and CTSS simula-
tions exhibit dramatically different E(k). The slopes of the
mesoscale 2LPV spectra are shallower than the canonical
k25/3 power law at both levels and times; in fact, the tropo-
spheric spectra are consistently flat at wavelengths between
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40 and 80 km. This is in stark contrast to the CTSS spectra in
the mesoscale, which have slopes that are steeper than k25/3

at both levels and times and more closely follow a k22 power
law. Previous studies have indicated that moist convection
and gravity waves are often responsible for energizing the
mesoscale (Sun et al. 2017; Weyn and Durran 2017; Menchaca
and Durran 2019), so it is likely that the dramatic differences
in the mesoscale energy spectra in the 2LPV and CTSS simu-
lations are due to the more prominent wave activity in the
2LPV case (see Fig. 4).

At scales greater than 400 km, both the 2LPV and CTSS
spectra approximately follow a k23 power law in the tropo-
sphere and have slightly steeper slopes in the stratosphere. In
addition, E(k) increases with time in both simulations and at
all scales and levels as the cyclones develop. Nevertheless, the
spectral slopes are generally constant in time, except in the

2LPV stratosphere, where the mesoscale spectrum flattens
and the large-scale spectrum smoothens during the 36-h fore-
cast period.

The stark differences between the 2LPV and CTSS
mesoscale KE spectra offer an opportunity to assess the
sensitivity of mesoscale atmospheric predictability to the
slope of E(k). The remainder of this paper focuses on how
errors of varying initial scales and amplitudes grow over
36-h forecast periods in the 2LPV and CTSS baroclinic-
wave simulations.

3. Design of the perturbations

The potential temperature perturbations added at day 4.5
of the 2LPV simulation and day 3 of the CTSS simulation are
of the form

(a) 5 days (t = 12 hr) (b) 6 days (t = 36 hr)

L

H

H

L

(c) 3.5 days (t = 12 hr)

(d) 4.5 days (t = 36 hr)

2LPV

CTSS

L

L

H

H

FIG. 3. Surface pressure (black contours every 10 hPa) and surface temperature (color fill
every 58C, as denoted by the color bar) for the unperturbed (a),(b) 2LPV and (c),(d) CTSS
cyclones at (a),(c) 12 and (b),(d) 36 h after the initial perturbations are added. Lows and highs
are labeled by “L” and “H,” respectively.
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u′ x, y, z( )5Ae2 z=Hsin 2p
x
L

2fx

( )[ ]
sin 2p

y
L

2fy

( )[ ]
, (3)

where A is the amplitude, L is the horizontal scale, andH 5 1
km is the e-folding height scale. We use this monochromatic
perturbation structure to isolate the effects of errors at spe-
cific scales. This allows for a clearer distinction between
upscale and downscale error propagation than the errors in
SZ16, which were added over ranges of wavelengths and had
different structures at large and small scales. We add the per-
turbations at three amplitudes A 5 0.01, 0.1, and 1.0 K and
three horizontal scales L 5 24, 400, and 1000 km. For the
2LPV experiments, we use the random phase shifts fx and fy

(0# fx,y # 2p) to generate 5 ensemble members at each scale
and amplitude. We do not run ensembles for the CTSS
experiments due to the computational limitations of the larger
CTSS domain. Instead, we set fx 5 fy5 0 for the perturbed
runs, resulting in near-twin simulations.

The black symbols plotted on the KE spectra in Fig. 5 mark
the initial wavelengths of these perturbations. Note that a

perturbation at scale L in (3) has a 2D wavelength of 221/2L.
We choose L 5 24 km as the smallest-scale perturbation
(indicated by the triangles in Fig. 5) because it is roughly the
shortest wave that is not significantly damped by numerical
dissipation. We choose L 5 400 km as the medium-scale per-
turbation (indicated by the circles in Fig. 5) because it repre-
sents a transition point between the shallower mesoscale KE
spectra and steeper slopes in the synoptic scales. We choose
L 5 1000 km as the largest-scale perturbation (indicated by
the squares in Fig. 5) because it lies among the synoptic scales
where the KE spectral slopes are approximately k23 and fits
easily within our domain.

We choose the perturbation amplitude A 5 0.1 K to
approximately match the magnitude of the perturbations in
SZ16. We decrease this amplitude by a factor of 10 for the
0.01-K experiments to see if our simulations have limited pre-
dictability and to evaluate the importance of initial scale as
errors become smaller in magnitude. We increase the 0.1-K
amplitude by a factor of 10 for the 1.0-K experiments to
examine how growth dynamics and initial-scale sensitivities
change as errors become larger in magnitude.

2LPV CTSS
(a) (b)

(c) (d)

FIG. 4. (a),(b) Cloud-top temperature (gray-scale fill every 108C, as denoted by the color bar) and (c),(d) east–west vertical cross sections
of vertical velocity (color fill, in m s21, as denoted by the nonlinear color bar) and potential temperature (black contours every 4 K) at
(a),(c) day 5 of the unperturbed 2LPV simulation and (b),(d) day 4.5 of the unperturbed CTSS simulation. The red lines in (a) and (b) cor-
respond to the respective locations of the cross sections in (c) and (d).
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As in SZ16, we use the difference total energy (DTE;
m2 s22) as an error metric, which is defined at any grid point
and time as

DTE5
1
2

du( )2 1 dy( )2 1k dT( )2[ ]
, (4)

where du, dy, and dT are the differences between the unper-
turbed and perturbed fields of zonal wind, meridional wind,
and temperature, respectively. The constant k 5 cp/Tr, where
cp 5 1004 J K21 kg21 is the specific heat at constant pressure
and Tr 5 270 K is a reference temperature.

4. Error growth in physical space

Figures 6 and 7 show the domain-integrated DTE time
series for the 2LPV and CTSS experiments, respectively, dis-
played on a semilog plot to show the error growth at early
times (Figs. 6a–c, 7a–c) and using a linear ordinate to capture
the growth at later times (Figs. 6d–f, 7d–f). The time series for
the 2LPV experiments are plotted for both the individual
ensemble members (dotted) and the ensemble means of those
DTE values (solid). The dashed lines in Figs. 7b and 7e corre-
spond to two 0.1-K experiments using the CTSS environment
without moisture.

In the 0.1-K experiments for both the 2LPV (Figs. 6b,e)
and CTSS simulations (Figs. 7b,e), the total error growth is
nearly independent of the initial scale throughout the 36-h

forecast period. In the first 9 h, errors rapidly increase by
nearly two orders of magnitude and grow slightly faster if the
perturbations are smaller in scale (Figs. 6b and 7b). Through-
out the remainder of both simulations, the sensitivity of the
error to the initial scale is negligible.

The insensitivity to the initial scale is even more pro-
nounced in the smallest-amplitude 0.01-K experiments (Figs.
6a,d and 7a,d); all curves lie on top of each other in both the
linear and semilog plots. In addition, the DTE values in the
0.01-K experiments are nearly identical to those of the 0.1-K
experiments after about 9 h. This suggests that our baroclinic-
wave simulations have finite predictability, as reducing the ini-
tial amplitude by a factor of 10 does not reduce the total error
growth through 36-h lead times.

Our result that the growth of small-amplitude perturbations
is not sensitive to the initial scale is consistent with previous
work (Lorenz 1969; Durran and Gingrich 2014; SZ16; Weyn
and Durran 2017). However, recall that we add the perturba-
tions not only at different spatial scales, but also at wavenum-
bers where the slope of the background KE spectrum is
significantly different (Fig. 5). Thus, a key implication of our
result that was not considered by the aforementioned studies
is that error growth is not sensitive to the slope of the back-
ground KE spectrum at the wavelength of the initial
perturbation.

In the largest-amplitude 1.0-K experiments (Figs. 6c,f and
7c,f), the error growth is different from the 0.01- and 0.1-K
experiments in two key ways. First, the 36-h error growth

(a) 2LPV (b) CTSSk -3 k -3

k -5/3

k -5/3

k -2

FIG. 5. Two-dimensional background kinetic energy (KE) spectral densities (kg s22) for the (a) 2LPV and (b) CTSS
simulations. Spectra are plotted at the time the initial errors are added (dashed) and 36 h after (solid) and are vertically
averaged over the midtroposphere (red) and lower stratosphere (blue). Stratospheric spectra are shifted down by a
factor of 10 for visibility. Gray lines with slopes of k23 (solid), k25/3 (dashed), and k22 (dotted) are plotted for refer-
ence. The triangles, circles, and squares plotted on the 36-h tropospheric spectra indicate the 2D wavenumbers of the
initial 24-, 400-, and 1000-km-scale perturbations, respectively.

L L O VERA S E T A L . 125JANUARY 2022

Brought to you by University of Washington Libraries | Authenticated drdee@uw.edu | Downloaded 07/29/22 05:49 PM UTC



in the 1.0-K experiments depends on the initial scale: the
400-km perturbation causes the greatest DTE growth, the
24-km perturbation causes the least growth, and the 1000-km
perturbation causes intermediate growth. This scale depen-
dence is consistent throughout the 36-h periods of both the
2LPV and CTSS experiments, including all of the individual
2LPV ensemble members. Second, the errors in the 1.0-K
experiments are greater than those in the 0.01- and 0.1-K
experiments throughout the 36-h forecast period, indicating
that the 1.0-K perturbations are too large in magnitude to
illustrate the system’s intrinsic predictability.

Moist convection is the principal physical process by which
errors grow in our experiments, which is consistent with previ-
ous idealized studies of moist baroclinic waves (Zhang et al.
2007; SZ16). This is shown by Fig. 8, which depicts the evolu-
tion of column-maximum DTE and surface pressure for indi-
vidual members of the 2LPV ensembles with perturbation
amplitudes of 0.1 K and scales of 24 and 1000 km. Figure 9
shows the same fields, but for the corresponding near-twin
CTSS experiments.

The 36-h error growth is highly localized in physical space
to regions of moist convection. In the first 12 h, the largest

DTE values are primarily in convective areas along the cold
front (Figs. 8a,d and 9a,b). During the next 12 h, the errors
continue to grow the fastest along the cold and occluded
fronts, although there is some growth beyond the convective
regions. In the 2LPV experiments, this is most notable in
areas of wave activity to the east of the low pressure center
(Figs. 8b,e), while in the CTSS experiments this is most nota-
ble in the cloud shield ahead of the warm front (Figs. 9c,d).
From 24 to 36 h, the errors continue to spread throughout
both cyclones, but the largest DTE values remain confined to
the cold and occluded fronts (Figs. 8c,f and 9e,f). This convec-
tion-dominated mode of error growth is consistent between
simulations with different background KE spectral slopes in
the mesoscale (2LPV vs CTSS) and between experiments
with different initial-error scales (24 vs 1000 km).

If moisture is not included, the error growth is negligible
over at least the first 36 h. This is illustrated by the dashed
lines in Figs. 7b and 7e, which show the DTE time series for
the dry CTSS experiments with perturbation amplitudes of
0.1 K and scales of 24 and 1000 km. The slow error growth in
the absence of moisture is likely because the unbalanced pertur-
bations radiate away as gravity waves rather than growing via

(a) (b) (c)

(d) (e) (f )

0.01 K 0.1 K 1.0 K

FIG. 6. Time series of the domain-integrated difference total energy (DTE; m2 s22) for the 2LPV experiments. DTE time series for the
individual ensemble members (dotted) and the ensemble means of those DTE values (solid) are plotted for initial-error scales of
24 (green), 400 (orange), and 1000 (blue) km and initial-error amplitudes of (a),(d) 0.01, (b),(e) 0.1, and (c),(f) 1.0 K. In (a)–(c) DTE are
plotted with a logarithmic y axis, while in (d)–(e) DTE are plotted with a linear y axis.
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convective instability. By 36 h in the dry experiments, the
only regions of nonnegligible column-maximum DTE are in
areas of wave activity upstream of the cold front (Fig. 10).
This further demonstrates the importance of moist pro-
cesses in modulating the error growth in our baroclinic-
wave simulations.

Given that the error growth is closely tied to moist convec-
tion, it is important to consider how much convective instabil-
ity is present in each simulation. Figure 11a shows the
meridional distributions of surface-based convective available
potential energy (CAPE) for the 2LPV and CTSS back-
ground states; both exhibit strong conditional instability in the
southern part of the domain, with the 2LPV case having more
than twice the amount of CAPE as the CTSS case at the
southern boundary. Notably, neither background state is as
extreme as the control simulations of Tan et al. (2004) and
Zhang et al. (2007) in which 6000 J kg21 of CAPE is present
at the southern boundary. The highest CAPE values in the
southern portions of the 2LPV and CTSS domains, which are
not representative of the values in midlatitude cyclones,
remain well south of the low pressure centers. As shown in
Figs. 11b and 11c, the CAPE is essentially zero throughout
most of the area around both lows. Nonzero CAPE values do
appear in the southern part of the warm sector, with values
slightly larger than 1000 J kg21present at the leading edge of

the cold front. Small patches of CAPE exceeding 100 J kg21

are also as found as far north as the occluded front in the
CTSS case. For comparison, CAPE values on the order of
1000 J kg21 are observed along the warm conveyor belts
of real-world midlatitude cyclones that produce intense
convection (Oertel et al. 2021). Note that the areas with
large column-maximum DTE (orange fill in Figs. 11b,c)
extend well beyond the regions of moderately high
CAPE. In summary, the 2LPV and CTSS simulations rep-
resent systems with very active convection, but the
extremely large values of CAPE in the southern portions
of the domains are not dominating the dynamics of either
cyclone.

5. Error growth in spectral space

Thus far we have shown, using two families of baroclinic-
wave simulations, that the growth of small-amplitude per-
turbations over a 36-h period is dominated by moist convec-
tion along frontal boundaries, regardless of the initial-error
scale or the slope of the background KE spectrum. The goal
of this section is to explore how the error growth manifests
in spectral space. We will also contrast the error growth in
our experiments with that of a 2D spectral turbulence
model.

0.01 K 0.1 K 1.0 K

(a) (c)

(d) (f )

(b)

(e)

FIG. 7. As in Fig. 6, but for the near-twin CTSS experiments. The dashed lines in (b) and (e) refer to the dry experiments with initial pertur-
bations at scales of 24 (green) and 1000 km (blue).
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a. Nonlocalized growth of error KE spectra

Figure 12 shows the evolution of midtropospheric 2D error
KE spectra in the 0.01-K ensemble-mean 2LPV and near-twin
CTSS experiments for the three perturbation scales. Error
spectra are computed using (2), but with the velocities
replaced by the differences between the velocities of the
unperturbed and perturbed simulations. Time-averaged back-
ground KE spectra are also plotted after being multiplied by 2
to represent error saturation limits.

The error growth in the 0.01-K experiments is broad in
spectral space, no matter the initial scale of the perturbation
nor the slope of the background KE spectrum. In both the
2LPV and CTSS experiments, the monochromatic initial per-
turbations rapidly spread throughout all other scales such that
the error KE spectra for the 24-, 400-, and 1000-km experi-
ments are nearly identical at 3 h, aside from the remnants of
peaks at the initial wavelengths. These peaks are mostly gone
by 6 h as the errors continue to spread both upscale and
downscale. Except at the wavelengths of the initial errors, the
growth between 3 and 6 h is mostly up-amplitude in the sense
that the error KE increases by roughly 1.5 decades at most
wavelengths in all panels of Fig. 12. Such up-amplitude
growth continues through the remainder of the 36-h forecast
period at all wavelengths where the error remains unsatu-
rated. This up-amplitude, nonlocalized growth in spectral
space differs from the classical upscale cascade in which errors

at a given scale remain negligible until errors at slightly
smaller scales begin to saturate (see Fig. 15c). By 36 h in all
0.01-K experiments, the error is saturated at all wavelengths
less than about 60 km, but it has similar or greater absolute
magnitude at longer wavelengths up to roughly 1000 km.

The nonlocalized evolution of error KE spectra in our
experiments might be expected given that the error growth is
highly localized in physical space to regions of moist convec-
tion (Figs. 8 and 9). As emphasized by Durran et al. (2013),
small-scale, localized perturbations in physical space appear
broad and are maximized at large scales in spectral space.
Spectrally broad, up-amplitude error growth has been
observed in several other studies simulating realistic atmo-
spheric flows (Mapes et al. 2008; Durran and Weyn 2016;
Weyn and Durran 2017; Judt 2018, 2020).

In addition, the evolution of error KE spectra in the CTSS
and 2LPV experiments are very similar, despite the two simu-
lations having drastically different background KE spectral
slopes in the mesoscale. This conflicts with predictions from
turbulence theory suggesting that small-scale errors should
grow and saturate faster in the 2LPV simulation because the
mesoscale background KE spectral slope is shallower than in
the CTSS simulation. In fact, the opposite is observed in our
experiments: mesoscale errors approach saturation faster in
the CTSS than the 2LPV experiments despite having a
steeper background slope at those wavelengths.

12 hr 24 hr 36 hr

24 km

1000 km

(a) (b) (c)

(d) (e) (f )

FIG. 8. Column-maximum DTE (color fill, m2 s22, as denoted by the nonlinear color bar) and surface pressure (black contours every
10 hPa) at (a),(d) 12, (b),(e) 24, and (c),(f) 36 h after initial errors are added for individual members of the 0.1-K 2LPV ensembles at scales
of (a)–(c) 24 and (d)–(f) 1000 km.
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The more rapid mesoscale saturation in the CTSS experi-
ments is illustrated by Fig. 13a, which shows the time series of
the ratio of error to saturation midtropospheric KE,
expressed as a percent, for the 0.01-K experiments over the
40–60-km wavelength range. This range is chosen because
they are the largest wavelengths that reach 80% saturation by
36 h in all experiments, which we consider to be the threshold
for significant predictability loss following Weyn and Durran

(2017). Mesoscale errors saturate more rapidly in the CTSS
experiments for all perturbation scales, reaching the 80% sat-
uration threshold by 21 h. Meanwhile, errors in the 2LPV
experiments do not reach 80% saturation until 36 h. Figure
13b demonstrates that this result is not a consequence of the
perturbations being added at an earlier stage of the simulation
in the CTSS case. When the 400-km perturbation is added at
day 4.5 of the CTSS simulation (as in the 2LPV experiments),

24 km 1000 km

12 hr

24 hr

36 hr

(a) (b)

(c) (d)

(e) (f )

FIG. 9. As in Fig. 8, but for the 0.1-K near-twin CTSS experiments at (a),(b) 12, (c),(d) 24, and (e),(f) 36 h after initial perturbations are
added at scales of (a),(c),(e) 24 and (b),(d),(f) 1000 km.

(a) 24 km (b) 1000 km

FIG. 10. As in Fig. 9, but for the dry 0.1-K CTSS experiments at 36 h after perturbations are added at scales of (a) 24 and (b) 1000 km.
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the time series of error saturation remains largely unchanged:
mesoscale errors still saturate more rapidly than in the 2LPV
experiments. These results demonstrate that spectral error
growth on the mesoscale need not be faster when the slope of
the background KE spectrum is shallower. In section 5b we
will discuss why this result might be expected given that the
errors grow nonlocally in spectral space.

Figure 14 shows the evolution of error KE spectra for the
larger-amplitude 0.1- and 1.0-K CTSS experiments. Over the
first 3 h, the errors in the 0.1-K experiments spread rapidly to
other wavelengths and, except near the scale of the initial
error, become largest at the shortest wavelengths. The 3-h
growth is also faster if the initial perturbation is smaller in
scale, which is consistent with the time series of domain-inte-
grated DTE (Fig. 7b). This growth does not, however, take
the form of a localized cascade upscale from the wavelength
of the perturbation; instead, the faster growth occurs on all
scales except at the initial-error wavelength. Beyond
3 h, up-amplitude growth continues such that the error spectra
in all of the 0.1-K experiments are about equal at 6 h, except
at the wavelengths of the initial perturbations. Between hours
12 and 36, the magnitude, distribution, and up-amplitude
growth of the error spectra in the 0.1-K experiments are nearly
identical to those in the 0.01-K experiments (cf. Figs. 12d–f).
This is further evidence that our baroclinic-wave simulations

have limited predictability and that this limit is not sensitive to
the initial wavelength of the error nor to the slope of the back-
ground KE spectrum at that wavelength.

The 1.0-K CTSS experiments produce much greater errors
than the smaller-amplitude cases during the 36-h forecast
period, particularly at longer wavelengths. In the 24-km exper-
iment, the error KE at the perturbation wavelength initially
exceeds the background KE, which results in the nearly imme-
diate saturation of the small scales and rapid growth at larger
scales. Having overshot the background spectrum, the initial
peak in error KE falls back to the saturation KE during the
first 12 h. In contrast, the 400- and 1000-km perturbations do
not overshoot the background spectrum, so the initial peaks in
error KE are not forced to recede to the saturation KE. This
leads to faster relative error growth at scales away from the
initial wavelength beyond the first 3 h and is likely responsible
for the greater domain-integrated DTE seen in the 400- and
1000-km experiments (Figs. 7c,e). The 36-h errors in all of the
1.0-K experiments are about an order of magnitude greater
than those of the 0.01- and 0.1-K experiments at large scales
where the error is unsaturated. The fact that decreasing the
initial-error amplitude from 1.0 to 0.1 K leads to a significant
decrease in the 36-h error KE at large scales further demon-
strates that the 1.0-K perturbations are too large in amplitude
to give an indication of the system’s intrinsic predictability.

(b) 2LPV (c) CTSS

(a)

FIG. 11. (a) Meridional distributions of surface-based convective available potential energy
(CAPE; J kg21) for the 2LPV (blue) and CTSS (red) background states. (b),(c) Surface-based
CAPE (color fill, J kg21, as denoted by the nonlinear color bar) and surface pressure (black con-
tours every 10 hPa) at 24 h after perturbations are added in the (b) 2LPV and (c) CTSS experi-
ments with initial-error amplitudes of 0.1 K and scales of 24 km. The orange shading denotes
where the column-maximum DTE exceeds 16 m2 s22.
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b. Contrast with a spectral turbulence model

Error growth in the Lorenz (1969) model of homogeneous
turbulence in two-dimensional incompressible flow depends
on the slope of the background KE spectrum through the
presence of the background streamfunction field in the linear-
ized governing equation. Numerical solutions to the Lorenz
model show rapid upscale error growth and limited predict-
ability when the slope of the background KE spectrum is shal-
lower than k23 (Rotunno and Snyder 2008).

Lorenz (1969), Lilly (1972), and Palmer et al. (2014)
explained the dependence of error growth on the slope of the
background KE spectrum by introducing a spectrally localized
time scale t(k) representing the time required for errors at
wavenumber k to grow and contaminate the predictability at an
adjacent scale having twice the wavelength. For a homogeneous
multiscale turbulent flow, dimensional analysis implies that

t k( ) ∼ k23=2Ẽ k( )21=2, where Ẽ k( ) is the background KE density
per unit wavenumber (having units of m3 s22). If the background
KE spectrum follows a power law such that Ẽ k( )5c0k2p, t(k) is
proportional to k(p23)/2. The time it takes for the predictability at a
large scale kL to be degraded by the upscale growth of initial
errors beginning at a much smaller scale with wavenumber 2NKL

scales as the sum of t(k) over theN octaves from 2NKL to kL,

T
L
5

∑N
n5 0

t 2nk
L

( )
5 c2 1=2

0

∑N
n5 0

2nk
L

( ) p2 3( )=2

5 c2 1=2
0

12 2 p2 3( )=2[ ]N1 1

12 2 p2 3( )=2 k p2 3( )=2
L

· (5)

If p , 3, the lead time TL converges to a finite value as
N → ∞, implying that pushing the initial error to smaller and
smaller scales does not extend the predictability horizon.

24 km 400 km 1000 km

2LPV

CTSS

k -3

k -5/3

k -2

k -3

(a) (b) (c)

(d) (e) (f )

FIG. 12. Two-dimensional background (solid black) and error (dashed colors) KE spectral densities for the 0.01-K (a)–(c) 2LPV and
(d)–(f) CTSS experiments with initial-error scales of (a),(d) 24, (b),(e) 400, and (c),(f) 1000 km. Error spectra are plotted at 3 (cyan),
6 (red), 12 (blue), 21 (orange), and 36 h (purple) after perturbations are added. Background spectra are averaged over the 36-h forecast
periods and are multiplied by 2 to represent saturation limits. All spectra are averaged over the midtroposphere. The 2LPV spectra are
averaged over their respective ensembles. Gray lines with slopes of k23 (solid), k25/3 (dashed), and k22 (dotted) are plotted for reference.
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Conversely, if p $ 3, TL diverges as N → ∞, and the predict-
ability horizon can, therefore, be progressively extended by
continually reducing the scales subject to initial error.

For background KE spectra with the same c0 and p, 3, the
preceding scaling argument also implies that the shallower the
slope (i.e., the smaller the p), the faster the error transfer
across a given wavenumber, and the more limited the predict-
ability. This is consistent with Lorenz (1969, Table 3), who
found that, although the predictability limit remained finite,
mesoscale errors grew more slowly in his experiment D with a
background spectral slope of k27/3 than in the corresponding
k25/3 case (e.g., experiment A).

Lorenz did note that this change in p only produced a mod-
est 5% increase in the total time required to saturate the error
at the longest wavelength (40 000 km) and observed that
adjusting the value of c0 to keep the total domain-integrated
energy constant between experiments A and D essentially
eliminated this 5% difference. He therefore hypothesized that
for systems with p , 3 “the range of intrinsic predictability
may depend mainly upon the total energy rather than on the
details of the spectrum.” This hypothesis certainly does not
apply to the mesoscale error growth in his model, where, for
example, he found that the time for errors to grow from a
wavelength of 9.766–19.531 km increased from about 27 min
to about 3.1 h as p increased from 5/3 to 7/3. As noted in Sun
and Zhang (2020), the time required to saturate the errors in
the largest scale in homogeneous turbulence models “has the
same order of magnitude as the eddy turnover time at the
largest scale.” The background KE spectrum utilized by
Lorenz sets the KE per unit logarithm of the wavenumber to
zero at k 5 0 and deviates from the mesoscale power spec-
trum such that the energy in wavenumbers 1–5 is identical in
experiments A and D and dominates the total energy (his

Table 1); therefore, his proposed rescaling does not come
close to equalizing the error growth rates through the
mesoscale.

Although the preceding scaling argument for the impor-
tance of the slope of Ẽ k( ) applies to Lorenz’s model for
homogeneous turbulence, it does not apply to our baroclinic-
wave experiments because the circulations are very nonhomo-
geneous. The error growth is highly localized in physical space
to regions of moist convection, and thus it is not localized in
spectral space. Errors are transferred to a given scale from a
broad range of wavenumbers. As a result, the evolution of the
error spectra is not sensitive to the location of the initial per-
turbation in spectral space (i.e., its horizontal scale) nor to the
slope of the background KE spectrum.

To emphasize this contrast between the error growth in our
baroclinic-wave simulations and that of turbulence models,
here we consider two additional 2LPV experiments run out to
3 h. As before, we perturb the potential temperature field at
day 4.5 following (3), but with the phase shifts set to fx 5

fy 5 0, resulting in near-twin simulations instead of ensem-
bles. We add the perturbations at wavelengths of L5 100 km,
which is in a region of the background KE spectrum where
the slope is flat, and L 5 1000 km, which is located under the
steepest portion of the background spectrum (Fig. 5). For
the sake of comparison with Lorenz’s experiments, we use
our smallest initial-error amplitudeA5 0.01 K.

The turbulence model we use to compare with our baro-
clinic-wave experiments is the smooth-saturation Lorenz–
Rotunno–Snyder (ssLRS) model described in Durran and
Gingrich (2014). The ssLRS model can be configured with dif-
ferent background KE spectral slopes and with different
underlying dynamics. We implement the ssLRS model using
24 wavenumbers that increase geometrically by powers of 21/2.

(a) (b)

FIG. 13. Time series of error saturation (the ratio of error to saturation kinetic energy; %) summed over horizontal
wavelengths of 40–60 km and averaged over the midtroposphere for (a) the 0.01-K CTSS (red) and ensemble-mean
2LPV (blue) experiments with initial-error scales of 24 (solid), 400 (dashed), and 1000 km (dotted) and (b) the 0.01-K,
400-km CTSS experiments with perturbations added at 3 (dashed red) and 4.5 days (dashed black).

J OURNAL OF THE ATMOS PHER I C S C I ENCE S VOLUME 79132

Brought to you by University of Washington Libraries | Authenticated drdee@uw.edu | Downloaded 07/29/22 05:49 PM UTC



We dimensionalize our results such that the longest wave-
length corresponds to the zonal domain size of the 2LPV simu-
lation (4000 km). The time scale (and implicitly the value of
c0) is dimensionalized based on the observed KE spectral den-
sity of roughly Ẽ40052:5 3 105 m3 s22 at a wavelength of
400 km, which is approximately the scale at which the slope of the
observed KE spectrum transitions from k23 to k25/3 (Nastrom
and Gage 1985) and is therefore a reasonable common point for
background spectra with either of these slopes. The dimensional-
ized time scale then becomes t5 k400( )23=2 Ẽ400

( )21=2
, where

k400 5 2p/(400 km). The initial perturbation KE spectral den-
sity is defined to be very small at all scales except for the initial
perturbation at a wavelength of just over 100 km.

Figure 15 depicts the evolution of error spectra in the
2LPV and ssLRS experiments. Figures 15a and 15b show the
midtropospheric error KE spectra for the 2LPV experiments
at 10, 30, 90, and 180 min after perturbations are added. The
midtropospheric background KE spectrum plotted in black is
averaged over the first 3 h and multiplied by 2 to represent the

saturation limit. Figures 15c and 15d show the evolution of
error KE spectra in two runs of the ssLRS model out to
180 min: one with surface quasigeostrophic dynamics (SQG)
and a background KE spectrum proportional to k25/3, and
another based on the two-dimensional barotropic vorticity
equation (2DV) with Ẽ k( ) proportional to k23. Note that non-
physical negative error values develop at around 50 min; this is
due to a flaw in Lorenz’s original model that is discussed in
appendix A of Weyn and Durran (2018) and likely arises from
Lorenz’s use of the quasi-normal approximation (Orszag 1970).

In the 2LPV experiments (Figs. 15a,b), the error growth is
not sensitive to the slope of the background KE spectrum at
the wavelength of the initial perturbation. The perturbations
at 100 and 1000 km spread throughout all other scales during
the first 3 h, resulting in the errors in the two experiments
being about equal at those scales that are not adjacent to the
peaks at the initial wavenumbers (as, for example, at wave-
number 20). The nonlocalized, up-amplitude evolution of the
error spectra results in similar growth in the 100- and 1000-km

0.1 K

1.0 K

24 km 400 km 1000 km

k -3

k -2

(a) (b) (c)

(d) (e) (f )

FIG. 14. As in Figs. 12d–f, but for the CTSS experiments with initial-error amplitudes of (a)–(c) 0.1 and (d)–(e) 1.0 K and initial-error scales
of (a),(d) 24, (b),(e) 400, and (c),(f) 1000 km.
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experiments despite the initial errors appearing in regions of
the background KE spectrum with drastically different slopes.

In contrast, upscale error growth in the ssLRS model
(Figs. 15c,d) is dominated by interactions between adja-
cent wavelengths and is thus dependent on the slope of
the background KE spectrum. In the SQG case with a k25/

3 slope, errors grow much faster on small scales than on
large scales, resulting in the rapid downscale spreading of
error energy in the first 10 min and hardly any growth at
scales larger than that of the initial perturbation. Just
after 25 min, errors saturate at the smallest scales and an

upscale cascade proceeds through the remainder of the
first 3 h. This upscale cascade is not observed in any of
our baroclinic-wave experiments, even those with initial
perturbations in a region of the background KE spectrum
where the slope is shallower than k25/3 (Fig. 15a). In the
2DV case with a steeper k23 slope, small-scale errors
grow no faster than large-scale ones, resulting in much
slower growth than in the SQG run. The smallest scales in
the 2DV run do not achieve saturation until about 3 h, by
which time a broad large-scale maximum in error KE has
developed.
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(c) SQG, k -5/3

0 min
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90 min
180 min

(d) 2DV, k -3

(a) 2LPV, 100 km (b) 2LPV, 1000 km
k -5/3

k -3

FIG. 15. (a),(b) As in Figs. 12a–c, but for the 0.01-K near-twin 2LPV experiments with initial-error scales of (a) 100
and (b) 1000 km. Error spectra are plotted at 10 (red), 30 (blue), 90 (orange), and 180 min (purple) after initial per-
turbations are added, and the background spectrum is averaged over the first 180 min and multiplied by 2 to repre-
sent the saturation limit. (c),(d) Background (solid black) and perturbation (dashed colors) KE spectral densities (m3

s22) generated by the ssLRS model for (a) surface quasigeostrophic dynamics with a background slope of k25/3 and
(b) the barotropic vorticity equation with a background slope of k23. Error spectra are plotted at 0 (blue), 10 (red),
25 (orange), 50 (purple), 90 (green), and 180 min (cyan).
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c. One- versus two-dimensional error spectra

Do the preceding results based on 2D spectra change if
instead we use one-dimensional (1D) spectral analysis? Dur-
ran et al. (2017) showed that if the 2D KE spectral density of a
nondivergent, isotropic flow follows a kb power law for b , 0,
the 1D spectral density for that flow will follow the same power
law, only with a different constant of proportionality (see also
Leith 1971). Durran et al. (2017) also found this result to work
well for divergent, anisotropic flows. The perturbation KE spec-
tral slopes appearing in Fig. 12 do not, however, follow a
kb slope with some negative value for b. If they were to follow a
power law, the corresponding b would be positive and thus the
derivation in Durran et al. (2017) would not apply. Nevertheless,
the literature on atmospheric predictability includes a mix of 1D
(Mapes et al. 2008; Durran et al. 2013; Zhang et al. 2019; Judt
2020) and 2D (SZ16; Weyn and Durran 2017; Judt 2018; Weyn
and Durran 2019) spectral analysis of error growth, without
explicit discussion on the differences that might be expected
between 1D and 2D spectral representations of the error.

The boundary conditions for the simulations used in this
study allow either 1D or 2D spectral analysis. Here we com-
pute perturbation KE spectra using both methods to identify
the relationship between 1D and 2D error spectra in our
experiments. The computation of 1D KE spectral densities in
the zonal direction is straightforward in our simulations, as
the domains are zonally periodic. Denoting the 1D discrete
Fourier transform of a function f by f̌ and its complex conju-
gate by f̌

∗
, the KE spectral density at each meridional grid

point j and vertical levelm is computed following Durran et al.
(2017) as

Ej,m kx( )5 r̄mDx
2pNx

ǔj,m kx( )ǔ∗
j,m kx( )1 y̌j,m kx( )y̌∗j,m kx( )

[ ]
; (6)

Ej,m(kx) is then meridionally averaged to give the 1D KE
spectrum at each vertical level. As in the 2D case, 1D pertur-
bation KE spectra are also computed using (6), but with the
velocities replaced by the differences between the velocities
of the unperturbed and perturbed simulations.

Figure 16 shows the evolution of midtropospheric 1D and
2D error KE spectra for the CTSS experiment with an initial
perturbation amplitude of 0.01 K and scale of 400 km. The
time-averaged 1D and 2D background spectra are also plot-
ted after multiplication by 2 to represent error saturation lim-
its. The 1D and 2D background KE spectra have nearly
identical slopes, which is consistent with previous studies
(Durran et al. 2017).

The similarities between the 1D and 2D background spec-
tral slopes do not, however, hold for the error spectra. The
1D error spectra are essentially flat throughout the 36-h fore-
cast period, with equal perturbation KE at all wavelengths
larger than the dissipative scales. In contrast, the 2D errors
are largest at small scales and decrease with increasing wave-
length. These differences are consistent with, for example, the
differences between the flat 1D error spectra in Judt (2020)
and the positively sloped 2D error spectra in Judt (2018).
Nevertheless, the error growth using both computational
methods is primarily up-amplitude, with relative errors

growing at approximately the same rate at all scales, rather
than through an upscale cascade.

6. Discussion and conclusions

In this study we investigate the sensitivity of mesoscale
atmospheric predictability to the scale and amplitude of the
initial disturbance, and to the slope of the background KE
spectrum, using two families of convection-permitting ideal-
ized simulations of moist baroclinic waves. The first family
of simulations examines error propagation in a midlatitude
cyclone growing in a widely studied, but unrealistic, moist
baroclinically unstable shear flow [the two-layer potential
vorticity (2LPV) case]. The second family of simulations
considers moist baroclinically unstable growth in a more
realistic shear flow [the constant tropospheric static stability
(CTSS) case]. After each cyclone undergoes a period of ini-
tial development, we perturb the low-level potential tem-
perature fields at distinct wavelengths and amplitudes and
examine how the errors induced by these perturbations
evolve in physical and spectral space.

In our experiments with perturbation amplitudes of 0.01
and 0.1 K, the error growth is not sensitive to the initial hori-
zontal scale up to 36-h lead times. About nine hours after
their introduction, errors generated by the 0.01- and 0.1-K ini-
tial perturbations reach essentially the same amplitude and
continue to produce similar error magnitudes for the remain-
der of the simulation. This insensitivity to the amplitude of
the initial error suggests we are encountering intrinsic limita-
tions on the predictability of the moist cyclogenesis in both
the 2LPV and CTSS simulations. Similar insensitivities of the
error growth to the scale of small-amplitude initial perturba-
tions have been previously noted in studies of idealized mod-
els of homogeneous turbulence (Lorenz 1969; Durran and
Gingrich 2014), in idealized and case-study simulations of
organized convection (Durran and Weyn 2016; Weyn and
Durran 2017, 2019), and in at least some experiments with
moist baroclinically unstable waves (SZ16). In contrast to the
0.01- and 0.1-K experiments, the larger 1.0-K amplitude per-
turbations do produce greater error growth over the full
period of each simulation and that growth is scale dependent,
with the 400-km (24-km) initial perturbations producing the
largest (smallest) errors.

We are not aware of previous studies documenting our
other key finding, that error growth through the mesoscale in
prototypical atmospheric disturbances is not sensitive to the
slope of the background KE spectrum. This insensitivity is
demonstrated by the nearly identical growth of errors initial-
ized at wavelengths where the slope of the background KE
spectrum is significantly different. For example, the error
growth in the 2LPV simulation resulting from perturbations
added where the background KE spectrum is flat is nearly
identical to that produced when initial errors are added where
the background slope is steeper than k23 (Figs. 15a,b). Addi-
tionally, we find that small-scale errors in the CTSS simulation
saturate faster than in the 2LPV case despite the CTSS case
having a much steeper background KE spectral slope in the
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mesoscale (Fig. 13). This behavior is the opposite of what
would be expected based on the dimensional analysis of error
growth rates in homogeneous turbulence and the results
obtained in idealized simulations by Lorenz (1969).

In contrast to idealized studies of error growth in homo-
geneous turbulence, the error growth in our experiments is
highly localized in physical space to regions of moist convec-
tion. The idea that moist convection helps errors spread rap-
idly upscale is certainly not new (Zhang et al. 2003, 2007;
Rodwell et al. 2013; Selz and Craig 2015), but key implica-
tions of the nonhomogeneous distribution of convection
within midlatitude cyclones appear to have been over-
looked. As apparent in Figs. 8 and 9, the convection and the
largest errors are localized along the cold front. Such local-
ized errors in physical space have a broad distribution in
wavenumber (spectral) space, and therefore grow nonlo-
cally in an up-amplitude fashion at all wavenumbers. The
tendency of errors to grow up-amplitude, rather than cas-
cade upscale in convection-permitting simulations of realis-
tic atmospheric circulations was noted by Mapes et al.
(2008), and has been reproduced in many subsequent stud-
ies. As demonstrated in Fig. 16, the shape of the error spec-
tra undergoing such up-amplitude growth will depend on
whether they are calculated using 1D or 2D Fourier
transforms.

Since error growth is not localized in spectral space, it is
not appropriate to make the dimensional analysis assump-
tion that the error-growth time scale for a given wavenum-
ber k is proportional to k23/2E(k)21/2, where E(k) is the
background kinetic energy. Error growth and the loss of
mesoscale predictability in these moist midlatitude cyclone

simulations is thereby decoupled from the slope of the back-
ground KE spectrum. It is possible that the limits to predict-
ability may have some dependence on the slope of E(k) in
other atmospheric regimes where the dominant motions are
more horizontally homogeneous, but there does not appear
to be a universal relationship between atmospheric predict-
ability and the slope of the background KE spectrum.

Because our simulations are conducted in a midlatitude
f-plane channel, we are not able to realistically simulate error
growth through the synoptic to the planetary scales. Previous
research has consistently identified baroclinic instability as a
key driver of extratropical error growth on these larger scales
(Tribbia and Baumhefner 2004; Judt 2020). Analogous to the
localized and anisotropic distribution of convection around
midlatitude cyclones, the distribution of baroclinically unstable
disturbances throughout the extratropics is not localized in
spectral space, and it is therefore not obvious that a rigorous
connection can be established between atmospheric predict-
ability and the slope of the background KE spectrum on these
larger scales. Future research could help clarify this question.
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FIG. 16. (a) As in Fig. 12e, again computed using 2D spectra, and (b) meridionally averaged 1D spectra in the zonal direction, computed
from the same data as in (a).
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APPENDIX A

PV Formula for the CTSS Background State

We prescribe the CTSS background-state PV using the
Exner function P5 cp p=p0

( )Rd=cp as the vertical coordinate,
where p is the pressure, cp 5 1004 J K21 kg21 is the specific
heat at constant pressure, Rd 5 287 J K21 kg21 is the ideal
gas constant for dry air, and p0 5 1000 hPa is a reference
pressure. The PV formula is

PV y,P( )5 1
2

aPVT 1bPVS( )1 1
2

aPVT 2bPVS( )tanh 2
P2PTP

DPTP

( )
,

(A1)

where PVT 5 0.22 PVU is the PV at the bottom of the tro-
posphere and PVs 5 1.8 PVU is the PV at the bottom of
the stratosphere. The parameters a and b are

a y,P( )5 11 3
P0 2P

P0 2PTP

( )2
if P$PTP,

1 if P,PTP,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (A2)

b y,P( )5
1 if P$PTP,

11 21
PTP 2P

PTP 2PTOP

( )2
if P,PTP,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (A3)

where P0 5 1004 J K21 kg21 is the P value corresponding
to the reference pressure p0 5 1000 hPa and PTOP 5 410 is
the P value at the top of the P domain. The P value at the
tropopause PTP is defined as

PTP y( )5

Pm 2DPe if e, 2
p

2
,

Pm 1DPesin e( ) if 2
p

2
#e#

p

2
,

Pm 1DPe if e.
p

2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(A4)

where Pm 5 670 J K21 kg21 is the average P value of the
tropopause, DPe 5 40 J K21 kg21 is the maximum deviation
from the average tropopause P value, e52 y2 1=2

( )
ytot

[ ]
=Dye,

and Dye 5 2500 km is the meridional scale for the tropopause
transition.

APPENDIX B

CTSS Moisture Field

We add moisture to the CTSS background state by com-
puting soundings at each horizontal grid point. First, we
compute the saturation vapor pressure profile as

es 5

611:2exp 17:67
T2 273:15
T2 29:65

( )[ ]
if T. 273:15 K,

611:2exp 21:87
T2 273:15
T2 7:66

( )[ ]
if T# 273:15 K:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(B1)

Next, we compute the water vapor mixing ratio profile
qy as

qy 5RH0
Rd

Ry

es
p2 es

( )
, (B2)

where p is the pressure profile, RH0 5 0.75 is the reference
relative humidity, Rd 5 287 J K21 kg21 is the ideal gas
constant of dry air, and Ry 5 461.6 J K21 kg21 is the ideal
gas constant of water vapor. Then we update the potential
temperature profile using u 5 uy/(1 1 0.61qy), where we
assume that the potential temperature obtained through the
PV inversion is equal to the virtual potential temperature
uy. The new u field is then used to rebalance the other input
variables moist hydrostatically. This results in a relative
humidity field that varies both meridionally and vertically,
even though the relative humidity distribution is not pre-
scribed explicitly.
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