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Strongly coupled immersed boundary (IB) methods solve the nonlinear fluid and structural 
equations of motion simultaneously for strongly enforcing the no-slip constraint on the 
body. Handling this constraint requires solving several large dimensional systems that scale 
by the number of grid points in the flow domain even though the nonlinear constraints 
scale only by the small number of points used to represent the fluid-structure interface. 
These costly large scale operations for determining only a small number of unknowns 
at the interface creates a bottleneck to efficiently time-advancing strongly coupled IB 
methods. In this manuscript, we present a remedy for this bottleneck that is motivated 
by the efficient strategy employed in stationary-body IB methods while preserving the 
favorable stability properties of strongly coupled algorithms—we precompute a matrix that 
encapsulates the large dimensional system so that the prohibitive large scale operations 
need not be performed at every time step. This precomputation process yields a modified 
system of small-dimensional constraint equations that is solved at minimal computational 
cost while time advancing the equations. We also present a parallel implementation that 
scales favorably across multiple processors. The accuracy, computational efficiency and 
scalability of our approach are demonstrated on several two dimensional flow problems. 
Although the demonstration problems consist of a combination of rigid and torsionally 
mounted bodies, the formulation is derived in a more general setting involving an arbitrary 
number of rigid, torsionally mounted, and continuously deformable bodies.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Immersed boundary (IB) methods are numerical techniques for simulating the flow around bodies. In this framework, 
the bodies described by Lagrangian points are immersed into the fluid domain discretized by non-body-conforming Eulerian 
points. The interaction between the fluid and body is achieved via interpolation, which allows for the no-slip condition on 
the immersed body to be enforced by localized momentum forcing near the body. For flows past bodies that are stationary 
or undergoing prescribed kinematics, the interpolation operators relating the fluid and structure can be formulated to be in-
dependent of time. In this setting, the stresses on the immersed surface that enforce the no-slip constraint can be efficiently 
obtained via small-dimensional, time-constant linear systems with matrices that can be precomputed before advancing the 
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equations in time [1–3]. However, in fully coupled fluid-structure interaction (FSI) problems, the unknown structural motion 
leads to a nonlinear algebraic constraint with time-varying operators that can no longer be efficiently precomputed [4,5].

There are a number of ways to handle this nonlinear constraint arising from the fluid-structure coupling. Weakly coupled 
IB methods treat the body forces or no-slip constraint explicitly in time. Although this approach removes the need to iterate 
on a nonlinear system of equations to advance the system in time [6,7], the explicit treatment can impose severe time step 
restrictions if the structure undergoes large deformations or if the structure-to-fluid mass ratio is low [8–10].

By contrast, strongly coupled IB methods treat the body forces and no-slip constraints implicitly in time, allowing for 
stable simulations of FSI systems with modest time step sizes. The implicit treatment in these strongly coupled methods 
necessitates that the fluid and structural equations as well as the nonlinear interface constraint be solved simultaneously 
via an iterative scheme [11–13]. These iterative approaches require, for each FSI iteration, the solution of a large system 
of equations involving not only the nonlinear constraint and but also the structural and flow equations that scale with the 
large number of points in the flow domain. These additional large linear solves, which are not present in the stationary-
body setting, arise because of the small-dimensional, time-dependent no-slip condition that scales with the number of 
points on the fluid-structure interface. The small-dimensional nature of this FSI coupling offers a tantalizing question: can 
the additional expense, compared with stationary-body problems, of time-advancing fully coupled FSI systems be restricted 
to small-dimensional systems that scale with the number of points at the fluid-structure interface where the FSI coupling 
occurs?

Towards this aim, some IB methods have reformulated the fully coupled system of equations via block Gauss-Seidel 
[14] or block-LU factorization [15], so that the iterations are restricted only to the variables existing on the fluid-structure 
interface. Yet, a key bottleneck to cost reductions in these reformulations is that there is inevitably a large linear system—
that scales with the large number of unknowns in the entire flow domain—that gets embedded within the small dimensional 
nonlinear FSI coupling equation.

A similar embedding of a large linear system within a small-dimensional matrix is also observed in some non-iterative 
IB methods [16]. These methods utilize a semi-explicit treatment of the body forces or the no-slip constraint, with the 
benefit that the system may be advanced in time without iteration. Moreover, these approaches have been demonstrated 
to have favorable stability properties compared with weakly coupled methods, and are therefore often also referred to as 
strongly coupled methods. However, in the current work we refer to these methods as semi-strongly coupled because they 
do not strictly enforce the nonlinear algebraic constraint at a given time step, and often result in a reduction in the temporal 
accuracy of the solver to first order.1

In this article, we focus on these strongly and semi-strongly coupled methods that contain an embedded large system 
within the small nonlinear FSI coupling equation because of their favorable stability properties and potential for computa-
tional efficiency. We note that the embedded large-dimensional solve provides a significant obstacle to any practical benefits 
associated with the nominally small-dimensional nature of the algebraic systems to be iterated on: merely constructing the 
small-dimensional matrix is computationally expensive since it entails several linear solves involving the large embedded 
system. Furthermore, this small coupling matrix is dependent on the time-varying position of the immersed body, and 
therefore it must be constructed at least once per time step (semi-strongly coupled methods) or once per FSI iteration 
(strongly-coupled methods). The process of constructing the small-dimensional matrix therefore dominates the computa-
tional cost of time-advancing these IB methods. We emphasize that this costly process is in contrast to that for flows past 
stationary bodies, where the small dimensional coupling matrix is not time dependent. This time independence allows one 
to precompute the coupling matrix once at the beginning of a simulation, allowing for the full system to be advanced 
without the bottleneck described above [2,20].

We present an efficient remedy for addressing the embedded large linear solve, towards realizing an iterative time 
advancement scheme that makes use of the small dimensional nature of the FSI coupling. The proposed approach preserves 
the favorable stability properties of these strongly and semi-strongly coupled schemes, while mimicking desirable features 
of the stationary body setting – namely, precomputing a matrix that encapsulates the large linear system so that the several 
prohibitive large linear solves need not be performed at every time step. We also describe a parallel implementation of our 
FSI algorithm and demonstrate favorable strong scaling on a relatively large two-dimensional problem. Our formulation is 
developed for FSI problems involving an arbitrary number of rigid, torsionally mounted, and elastically deformable bodies, 
though for simplicity of presentation our results focus on a combination of rigid and torsionally mounted bodies.

The remainder of the paper is organized as follows. In Sec. 2, we give a background of the IB method of Goza and 
Colonius [15], which serves as the basis for the specific algorithm proposed in this article. We emphasize that the proposed 
approach for efficiently addressing the embedded large linear solve arising from many FSI systems has applicability beyond 
Goza and Colonius [15]. To demonstrate this fact, we further describe in Sec. 2 how the aforementioned bottleneck appears 
in a number of semi-strongly coupled and strongly coupled methods. The proposed efficient treatment of the FSI coupling 
is detailed in Sec. 3, and the strategies for parallel implementation on multiple processors are discussed in Sec. 4. We 
demonstrate the accuracy, computational efficiency and scalability of our approach on several two-dimensional (2D) flow 
problems in Sec. 5. Finally, conclusions are offered in Sec. 6.

1 We note that some semi-strongly coupled IB methods [17–19] do not have an embedding of the large system due to their specific formulations. 
However, these methods have a reduced first order temporal accuracy due to the semi-explicit treatment of boundary constraints.
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2. Background: strongly-coupled immersed boundary formulation

In this section, we first review the strongly-coupled immersed boundary (IB) formulation by Goza and Colonius [15], 
discuss the source of the computational bottleneck encountered by this approach, and demonstrate the appearance of this 
bottleneck in other semi-strongly coupled and strongly coupled numerical methods. In the next section, we will discuss the 
remedy to this bottleneck.

2.1. Governing equations

We consider a fluid domain � and a set of immersed bodies �. We present a formulation for FSI problems involving a 
collection of mr rigid bodies, �i

r for i = 1, . . . , mr , along with mt torsional bodies �i
t for i = 1, . . . , mt and md deformable 

bodies �i
d for i = 1, . . . , md . The torsional bodies are assumed to be mounted on some subset of the rigid bodies, as shown 

in Fig. 1. The readers are referred to [14] for details about bodies that are torsionally connected to other torsional bod-
ies. Incorporating this extension would involve only superficial changes to the formulation. The dimensionless governing 
equations are written as

∂u

∂t
+ u · ∇u = −∇p + 1

Re
∇2u +

∫
�

f (χ (s, t))δ(χ (s, t) − x)ds (1)

∇ · u = 0 (2)

iit
∂2θ i

∂t2
+ cit

∂θ i

∂t
+ kitθ

i = −
∫
�i
t

(χ i
t − χ0i

t ) × f (χ i
t)dχ

i
t + gt(θ

i) for i = 1, . . . ,mt (3)

ρ i
d

ρ f

∂2χ i
d

∂t2
= 1

ρ f U2∞
∇ · σ i + gd(χ

i
d) − f (χ i

d) for i = 1, . . . ,md (4)

∫
�

u(x)δ(x − χ i
r)dx = ui

r(χ
i
r) for i = 1, . . . ,mr (5)

∫
�

u(x)δ(x − χ i
t)dx = ∂θ i

∂t
êi × (χ i

t − χ0i
t ) for i = 1, . . . ,mt (6)

∫
�

u(x)δ(x − χ i
d)dx = ∂χ i

d

∂t
for i = 1, . . . ,md (7)

In the above, x denotes the Eulerian coordinate representing a position in space and χ (s, t) denotes the Lagrangian coor-
dinate attached to the bodies in the set �, the surface of which is parametrized by the variable s. These variables, x, χ
and s were nondimensionalized by a characteristic length scale L; velocity u was nondimensionalized by a characteristic 
velocity scale U∞; time t was nondimensionalized by L/U∞; pressure p and surface stress imposed on the fluid by the 
body f were nondimensionalized by ρ f U2∞ , where ρ f is the fluid density. The Reynolds number in Eq. (1) is defined as 
Re = U∞L/ν , where ν is the kinematic viscosity of the fluid.

The equation of motion of the ith torsional body �i
t is given by Eq. (3) where θ i is the deflection angle of the body 

from its undeformed configuration θ0i and χ i
t is the Lagrangian coordinate of �i

t . Here, iit denotes the moment of inertia of 
the torsionally connected body about a hinge location χ 0i

t nondimensionalized as iit = I it/ρ f L4, where I it is the dimensional 
moment of inertia. Similarly, the torsional spring has a nondimensional stiffness kit = K i

t/ρ f U2∞L2 and damping coefficient 
cit = Ci

t/ρ f U∞L3, where K i
t and Ci

t are the dimensional quantities, respectively. The first term on the right hand side of Eq. 
(3) represents the moment about χ0i

t due to the surface stress imposed on the fluid by the body (thereby resulting in a 
negative sign). The second term gt represents moments due to body forces such as gravity, pseudo forces, etc.

The equation of motion of the ith deformable body �i
d is given by Eq. (4) where χ i

d is the Lagrangian coordinate of �i
d . 

Here ρ i
d is the density of the structure, σ i is the Cauchy stress tensor contributing to the internal restoring forces of the 

body and gd denotes the body force per unit volume due to gravity, pseudo forces etc. See reference [15] for a detailed 
description about these quantities.

The no-slip boundary constraints on the rigid, torsional and deformable bodies are given by Eq. (5), (6) and (7), respec-
tively. Here, ui

r is the (possibly zero) prescribed velocity on the rigid body �i
r , and êi is a unit vector denoting the direction 

of the angular velocity of the torsional body �i
t . These no-slip constraints are used to solve for the surface stress term f (χ)

that enforces the boundary condition that must hold on the respective bodies.
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Fig. 1. Schematic of the computational domain consisting of the flow domain, � and five immersed bodies, � = {�1
r , �2

r , �1
t , �2

t , �1
d}. Rigid bodies include 

�1
r and �2

r while �1
t and �2

t are torsional bodies and �1
d is a deformable body mounted on �2

r . The sub-domain of our proposed approach described in 
Sec. 3 that encompasses the range of motion of all bodies is denoted by �0.

2.2. Fully discretized equations

Following [15], Eq. (1) is spatially discretized using the standard second-order finite difference operators on a staggered 
grid and rewritten in a streamfunction-vorticity formulation. A finite element procedure described in [15] is used to spatially 
discretize Eq. (4). For time-discretization, the flow equations (1) utilize an Adams-Bashforth scheme for the nonlinear term 
and a Crank-Nicolson method for the diffusive term. The structural equations of motion (3) and (4) are discretized using an 
implicit Newmark scheme. The boundary conditions (5)–(7) and the surface stress term in Eq. (1) are evaluated implicitly 
at the current time step to enable stability of the method for bodies with a wide range of mass ratio and undergoing large 
body displacements. The fully discretized equations are given below,

CT ACsn+1 + CT ET
n+1 fn+1 = r f

n (8)

4

	t2
iitθ

i
n+1 + 2

	t
citθ

i
n+1 + kitθ

i
n+1 − Q i

t R
i
t,n+1 f

i
t,n+1	s = rφ,i

n for i = 1, . . . ,mt (9)

2

	t
θ i
n+1 − φi

n+1 = rθ,i
n for i = 1, . . . ,mt (10)

4

	t2
Mi

dχ
i
d,n+1 + Ri

d(χ
i
d,n+1) − Q i

dW
i
d,n+1 f

i
d,n+1 = rζ,i

n for i = 1, . . . ,md (11)

2

	t
χ i
d,n+1 − ζ i

d,n+1 = rχ,i
n for i = 1, . . . ,md (12)

Ei
r,n+1Csn+1 = ui

r,n+1 for i = 1, . . . ,mr (13)

Ei
t,n+1Csn+1 − RiT

t,n+1Q
iT
t φi

n+1 = 0 for i = 1, . . . ,mt (14)

Ei
d,n+1Csn+1 − ζ i

d,n+1 = 0 for i = 1, . . . ,md (15)

Here, the subscript n denotes the time step; the discrete streamfunction and surface stresses imposed on all bodies by 
fluid are denoted by s and f , respectively; the stresses on the individual torsional and deformable bodies are denoted by 
f it,, f id ∈ f , respectively (there is also a set of surface stresses associated with the rigid bodies, f ir ∈ f ). We also define φi = θ̇ i

and ζ i
d = χ̇ i

d . The curl operator is given by C ; A = 1
	t I − 1

2 L where 	t is the time step size, I is the identity and L is the 
vector Laplacian operator. The discretization of the operators in the left hand side of Eq. (5)–(7), Ei

r , Ei
t , and Ei

d , are the 
IB interpolation operators that interpolate the fluid velocity onto the rigid, torsional and deformable bodies, respectively 
and E is simply the block-row aggregation of each of Ei

r , Ei
t , and Ei

d . On the other hand, ET represents the regularization 
operator involving the delta function in Eq. (1) which regularizes surface stress from each of the bodies onto the flow field. 
See reference [3] for more details about the standard finite volume discretizations used to represent fluid operators (e.g., 
C , L) as well as more information on the IB interpolation and regularization operators.

The operator Q i
t R

i
t,n+1 denotes the discretization of the term involving the surface stress in Eq. (3) and 	s is the size of 

discretization of the body while Mi
d , R

i
d and Q i

dW
i
d,n+1 are the finite element operators corresponding to the first, second 

and fourth terms of Eq. (4). See Appendix A for the more details of these operators. The expressions of the right hand 
side terms r f

n , r
φ,i
n , rθ,i

n , rζ,i
n and rχ,i

n , which are the known right-hand side quantities that arise from the explicit temporal 
treatment and boundary conditions, are also provided in Appendix A.
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2.3. Algorithm for strong fluid-structure coupling and associated computational bottleneck

The implicit treatment of body variables and the no-slip constraint in strongly-coupled IB methods necessitates an it-
erative method to solve the above system of equations (8)–(15). However, a straightforward implementation of iterating 
all the equations until convergence will incur significant expense since the flow equations scale by the large number of 
flow points. An observation of Goza and Colonius [15] was that Eq. (8)–(15) can be subjected to a block-LU decomposition 
before applying an iterative scheme so that the iterations are only restricted to the evaluation of small-dimensional systems 
that scale only with the number of points on the immersed surface. The full derivation of this procedure is provided in 
Appendix A for self-containment. The final system of LU-factored equations is

s∗ = (CT AC)−1r f
n (16)(

E(k)
n+1C(CT AC)−1CT E(k)T

n+1 + 2	s

	t
S(k)T
t,n+1 J−1

t S(k)
t,n+1 + 2

	t
Î Td J (k)d

−1
S(k)
d,n+1

)
f (k+1)
n+1 =

E(k)
n+1Cs

∗ − rc(k) + S(k)T
t,n+1

(
rθ(k) − 2

	t
J−1
t rφ(k)

)
+ Î Td

(
rχ(k) − 2

	t
J (k)d

−1
rζ(k)

) (17)

	θ = J−1
t

(
rφ(k) + 	sS(k)

t,n+1 f
(k+1)
n+1

)
(18)

	χd = J (k)d

−1 (
rζ(k) + S(k)

d,n+1 f
(k+1)
n+1

)
(19)

sn+1 = s∗ − (CT AC)−1CT ET
n+1 fn+1 (20)

Here, the superscript (k) denotes the FSI iteration. S(k)
t,n+1, S

(k)
d,n+1, Jt , J

(k)
d and Îd are the aggregated block-diagonal matrices 

containing the individual structural operators with the superscript i in (8)-(15). The expressions of these block-diagonal 
operators as well as the right-hand side terms r f

n , rc(k) , rθ(k) , rφ(k) , rχ(k) are provided in Appendix A.
Now, the entire method can be efficiently divided into three steps. First, a trial streamfunction s∗ is predicted without 

accounting for the body forces in Eq. (16). Next, the FSI coupling Eq. (17)–(19) are solved iteratively at the next time 
step n + 1 for the surface stress f (k+1)

n+1 and body configuration θ(k+1)
n+1 = θ

(k)
n+1 + 	θ , χ(k+1)

d,n+1 = χ
(k)
d,n+1 + 	χd . Within each 

FSI iteration, the linear system in Eq. (17) is solved using an iterative method such as GMRES. We note that there is a 
distinction between the FSI iterations associated with Eq. (17)–(19) and the GMRES iterations used to solve Eq. (17) within 
each FSI iteration. We will differentiate between these two types of iterations as needed for clarity of context. Finally, the 
streamfunction at the current time step, sn+1, is obtained by correcting s∗ using the updated surface stress in Eq. (20).

We note that the trial and corrected streamfunctions and therefore Eq. (16) and (20) scale by the large number of flow 
points. However, Eq. (16) and (20) do not depend on the FSI iterate, k, and therefore, are solved only once at the beginning 
and end of the time-step, respectively. These steps thus incur the same cost as compared to the non-FSI, stationary body 
case, which is a lower bound for the computational expense one can expect to obtain for fully coupled FSI simulations. In 
contrast, Eq. (17)–(19) are solved for multiple FSI iterates k within a single time step. Since the system of iterated equations 
(17)–(19) is small dimensional scaling by the number body points, nominally a significant amount of computational savings 
can be expected as compared to a straightforward implementation of iterating over all the equations.

These savings are realized due to the block-LU decomposition of Eq. (8)–(15). However, an undesirable consequence 
of this decomposition procedure is that a large linear system in the form on (CT AC)−1 that scales with the number of 
points in the flow domain, ns , gets embedded within the small dimensional matrix in Eq. (17), E(k)

n+1C(CT AC)−1CT E(k)T
n+1 . 

Merely constructing the small-dimensional matrix E(k)
n+1C(CT AC)−1CT E(k)T

n+1 is computationally expensive since it requires 
several large computations involving (CT AC)−1. Furthermore, this small matrix depends on the time-varying position of the 
immersed body, and therefore changes at least once per FSI iteration within each time step.

The full construction of E(k)
n+1C(CT AC)−1CT E(k)T

n+1 may be circumvented by a matrix-free implementation of GMRES. How-
ever, even in the matrix-free implementation, these (CT AC)−1 operations are performed once in every GMRES iteration 
within every FSI iteration. For example, if the algorithm requires 3 FSI iterations per time step and on average, each FSI 
iteration requires 5 GMRES iterations, then a total of 3 × 5 = 15 operations of (CT AC)−1 are performed just in a single 
time step. Therefore, even though the underlying linear system in (17) is small dimensional, multiple solves of the large 
embedded system is inevitable.

The root cause for this bottleneck is the need to solve the system of equations (8)–(15) simultaneously arising from 
the implicit treatment of body forces, positions and no-slip constraint in strongly-coupled methods. This implicit treatment 
necessitates the computation of the surface stress such that it enforces the no-slip constraint at the current time step. In 
the IB method of Goza and Colonius [15], this implicit treatment is manifested in the first term of Eq. (17) as
5
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Contribution to no-slip velocity︷ ︸︸ ︷

E(k)
n+1C

Globally affected flow-field︷ ︸︸ ︷
(CT AC)−1

Local fluid source︷ ︸︸ ︷
CT E(k)T

n+1 f (k+1)
n+1 (21)

A source term in the form of surface stress f (k+1)
n+1 is converted into a local fluid source in the vicinity of the Lagrangian 

body points via the action of CT E(k)T
n+1 . Then the elliptic Poisson-like operator (CT AC)−1 containing the viscous contribution 

globally modifies the flow-field. Finally, the no-slip velocity on the body enforced by the surface stress is obtained via 
interpolation of the globally affected flow-field via E(k)

n+1C .
We emphasize that the above-mentioned bottleneck of solving a large-dimensional system for the small dimensional 

body variables is not limited to the IB method of Goza and Colonius [15]. Broadly speaking, fully implicit, strongly coupled 
IB methods require iterations to arrive at a solution that satisfies the flow and structural equations of motion as well as 
the nonlinear no-slip constraint. Many iterative approaches require iterating on all flow (velocity, pressure) and structural 
(displacement, forces) variables, the former of which requires the solution of large-dimensional systems that scale with the 
number of flow points [11,13,12]. Other approaches more similar to that of Goza and Colonius [15] are able to reformulate 
the discrete equations, through either a block Gauss-Seidel approach [14] or a block-LU factorization [16], so that any 
required iterations are restricted to nominally small dimensional systems in analogy with (17)–(19). However, similar to the 
algorithm of Goza and Colonius [15], these small dimensional systems that scale with the number of body points at the 
fluid-structure interface have embedded large linear systems that scale with the number of points in the flow domain.

In the next section, we propose an efficient algorithm that addresses the above-mentioned bottleneck of all strongly 
coupled and some semi-strongly coupled IB methods. Our proposed approach leverages the block-LU factored form of the 
equations (16)–(20), so that the FSI iterations are restricted to small dimensional systems. However, it can be also extended 
to other strongly coupled algorithms which are able to reformulate the equations to restrict the FSI iterations to such small 
dimensional systems. We provide a strategy to precompute the matrix that encapsulates the large linear system on a sub-
domain that envelops the full range of structural motion. The matrix is then updated to accurately enforce the no-slip 
constraint via interpolation onto the portion of the sub-domain for the location of the current structures. The precomputa-
tion procedure avoids additional large linear solves (compared to the non-FSI, stationary body case) while marching in time, 
while the interpolation procedure allows for accurate treatment of arbitrarily large structural motions.

3. Proposed approach for treating arbitrarily moving bodies as efficiently as stationary bodies

Our proposed idea is motivated from the observation that for stationary bodies, the operator E(k)
n+1 and therefore, the 

small-dimensional operator E(k)
n+1C(CT AC)−1CT E(k)T

n+1 do not vary in time. This allows one to compute E(k)
n+1C(CT AC)−1CT E(k)T

n+1
once and for all, thereby circumventing the need to compute the computationally expensive (CT AC)−1 at every GMRES it-
eration within each time step. Similarly, to avoid computing (CT AC)−1 multiple times in Eq. (17) for non-stationary bodies, 
we propose the following approximation for E(k)

n+1,

E(k)
n+1 ≈ P (k)

n+1E0 (22)

where E0 is an IB interpolation operator similar to E(k)
n+1, but defined on a sub-domain defined as a fixed set of nsd Eulerian 

points in the flow domain, �0 ⊂ � as shown in Fig. 1. These sub-domain points are selected a priori, independent of the 
time-instantaneous body locations, and therefore E0 is time-invariant. The actual IB interpolation operator E(k)

n+1 defined on 
the moving Lagrangian body points is then recovered by the application of an interpolation operator P (k)

n+1 (not the same as 
the IB interpolation operator E ) on E0. This operator P

(k)
n+1 is time varying but may be evaluated sparsely and cheaply, as it 

only involves a small number of nonzero interpolation weights near the various structural interfaces (contained within the 
sub-domain). More details about E0 and P (k)

n+1 are discussed in Sec. 3.1. For now, the previously expensive operation of Eq. 
(17) can be rewritten as,

E(k)
n+1C(CT AC)−1CT E(k)T

n+1 ≈ P (k)
n+1

(
E0C(CT AC)−1CT ET

0

)
P (k)T
n+1 = P (k)

n+1BP
(k)T
n+1 (23)

where B = E0C(CT AC)−1CT ET
0 . The above reformulation facilitates the following:

a. Since B is time-invariant and scales by a size smaller than the flow points, nsd < ns (often nsd � ns depending on the 
range of the bodies’ motions), we can compute and store B once and for all, thereby circumventing multiple (CT AC)−1

operations.
b. Additionally, since P (k)

n+1 is sparse, evaluation of P (k)
n+1BP

(k)T
n+1 is performed at minimal computational cost that scales 

only with a small multiple of the number of body interface points.
6
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3.1. Sub-domain IB interpolation operator, E0, and sparse interpolation operator P

The IB interpolation operator is constructed from the regularized discrete delta-function [1,21]. If we denote the discrete 
delta function as d(·), then the interpolation operator for interpolating the velocity from a Eulerian flow point at x = (x j, y j)

to a Lagrangian body point χ = (ξi, ηi) is given (to within a scaling factor [3]) by,

Eij ≡ d(x j − ξi) d(y j − ηi) (24)

Note that the time subscript n + 1 and iteration superscript k are dropped for neatness. In our proposed approach, however, 
we first define a sub-domain �0 ⊂ � as shown in Fig. 1 and define an associated set of points x0 ∈ �0. The procedure 
for selecting the sub-domain is provided in Sec. 3.1.1. In contrast to Eq. (24), the sub-domain interpolation operator is now 
defined between the Eulerian flow point x = (x j, y j) and Eulerian flow sub-domain point x0 = (x0i , y

0
i ) as,

E0i j ≡ d(x j − x0i ) d(y j − y0i ) (25)

This interpolation operator associated with the sub-domain �0, (25), may be precomputed at the fixed set of sub-domain 
points. The desired IB interpolation operator, E , associated with the time varying body locations is then approximated 
through interpolation of the precomputed sub-domain interpolation operator, E0 via

Eij ≡ d(x j − ξi) d(y j − ηi) ≈
nsd∑
k=1

wik d(x j − x0k ) d(y j − y0k) ≡
nsd∑
k=1

Pik E0kj (26)

where wik are the weights of interpolation which are stored in the operator P .
The expression (26) is meant to be illustrative of the interpolation process. In practice, it is wasteful to utilize the entire 

sub-domain �0 to construct the interpolation weights. Instead, we perform local interpolation using only a small number of 
np � nsd nearest neighboring sub-domain points to the body-point. In particular, for approximating Eij at the ith body point 
(ξi, ηi), we identify np nearest neighboring sub-domain points (x0ik , y

0
ik
) where ik ∈ {1, . . . , nsd} for k = 1, . . . , np . In other 

words, (x0ik , y
0
ik
) represents the kth nearest neighbor point on the sub-domain associated with the ith body point (ξi, ηi). 

Accordingly, the interpolation in Eq. (26) can be locally performed as

Eij ≡ d(x j − ξi) d(y j − ηi) ≈
np∑
k=1

wiik d(x j − x0ik ) d(y j − y0ik ) ≡
np∑
k=1

Piik E0ik j (27)

where now only wiik needs to be stored for the body index i and wil = 0 ∀ l ∈ {1, . . . , nsd}, l �= ik for k = 1, . . . , np .
In this way, we may consider only the number of nearest neighbors, np , in constructing and applying P , rather than the 

total number of points in the sub-domain, nsd . This formulation allows for P , which is time dependent, to be efficiently 
constructed and applied via sparse operations. The procedure for identifying the np sub-domain points nearest to a body 
point is provided in Sec. 3.1.3. We also show in Appendix B that the interpolated delta functions in the right hand side of 
the above equation satisfy zeroth to third (and potentially more) moment conditions with at least second order accuracy 
provided that the underlying delta functions being interpolated also satisfy these conditions. This minimum second order 
accuracy is in accordance with the maximum second order accuracy of the immersed boundary method.

Finally, we emphasize that the operator B is constructed for all the points in the sub-domain since it embeds the 
sub-domain interpolation operator E0. Therefore, when the body point moves to a different location or finite volume cell, 
only the nearest neighboring sub-domain points change and the operator P is reconstructed, albeit sparsely. However, 
the previously constructed sub-domain, associated IB interpolation operator E0 and the precomputed operator B remain 
unchanged.

3.1.1. Procedure for selecting a sub-domain
First, a rectangular sub-domain as shown in Fig. 1 is considered for simplicity. Next, the sub-domain boundaries are 

chosen such that all the bodies are guaranteed a priori to stay within the sub-domain at all time instants. This can be 
achieved by examining the physical displacement limits of the body and total simulation time. A physical intuition of the 
problem can also help in choosing a more compact sub-domain. Since choosing the sub-domain is problem dependent, it 
will be discussed in more detail for specific problems in Sec. 5. Next, the grid spacing between the sub-domain points is set 
to be equal to the flow grid spacing. This choice was observed to provide accurate results for the set of problems considered 
in Sec. 5. Furthermore, in the staggered grid configuration, the sub-domain points are chosen to coincide with the vorticity 
points on cell vertices, as shown in Fig. 5, so that the sub-domain points are equidistant from the x− and y− velocity 
points located on the cell edges.
7
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Fig. 2. Schematic for identifying np = 4 nearest neighboring sub-domain points (x0ik , y
0
ik
) for the body point (ξi , ηi).

3.1.2. Choice of interpolation method
A variety of interpolation functions such as Lagrange interpolation functions, delta functions, polynomial functions etc., 

can be used for performing interpolation and constructing P in Eq. (27). Since the use of delta functions for constructing 
E is well known and studied in the IB framework, we use delta functions for constructing P as well. We will denote these 
delta functions as dp(·) and emphasize that the discrete delta functions dp(·) used in P may be different from d(·) used for 
constructing E . While the choice of d(·) is governed by the need to regularize and remove unphysical oscillations in surface 
stress [22], dp(·) is chosen to strike a balance between the sparsity of P and accuracy of interpolation.

In this work, we use a two-point hat function [23] given by

dp(r) =
{
1− |r|

	r , |r| < 	r
0, |r| > 	r

(28)

where 	r is the flow sub-domain grid spacing in the r-direction. We choose this delta function because it has a support 
of only one cell and yet it is O((	x0)2) accurate where 	x0 is the sub-domain grid spacing. A single cell support implies 
that for two dimensional IB method, only np = 4 input points are required for interpolation, thereby, enabling an extremely 
sparse construction of P with only np = 4 non-zeros per row. Furthermore, we note that the second order interpolation 
method does not affect the original first order spatial accuracy [20] of projection based immersed boundary methods. Now, 
the weights of interpolation in Eq. (27) are given by,

wiik = dp(ξi − x0ik ) dp(ηi − y0ik ) (29)

3.1.3. Identification of sub-domain points for local interpolation
For local interpolation, np = 4 nearest neighboring sub-domain points that form a tensor grid are identified. For instance, 

consider the sub-domain points in a two-dimensional space denoted by ‘•’ as shown in Fig. 2. For approximating the 
operator E at the body point (ξi, ηi) denoted by ‘�’, the four nearest neighboring points (x0ik , y

0
ik
) that form a tensor grid 

denoted by ‘◦’ are identified.

3.2. Approximating B as a sparse operator

The proposed sub-domain approach requires precomputing and storing the operator B . However, we note that B is a 
dense matrix and therefore, storing B can become computationally prohibitive for problems with large sub-domain and fine 
grid discretization. To circumvent this computational storage issue, we note that B has a compact structure and therefore, we 
approximate the dense B operator as sparse. In Sec. 3.2.1, we provide justification that B can be indeed constructed sparsely 
up to a drop tolerance. Then a drop tolerance filtering technique similar to that employed in incomplete LU decomposition 
[24] to construct B sparsely is provided in Sec. 3.2.2.

3.2.1. Analysis of compactness of B
For clarity, we specify the dimensions of the previously defined operators as E0 ∈ R2nsd×nq , B ∈ R2nsd×2nsd , C ∈ Rnq×ns

and A ∈ Rnq×nq , respectively, where nsd , nq and ns are the number of sub-domain grid points, sum of velocity grid points 
in x and y coordinate directions (nu + nv ), and vorticity grid points, respectively.

Firstly, we will focus on the interior term C(CT AC)−1CT of B = E0C(CT AC)−1CT ET
0 . Since A = Iq + αCCT , where α =

	t
2Re	x2

, Iq ∈Rnq×nq is the identity and CCT ∈ Rnq×nq is the 2D vector Laplacian matrix, CT AC can be rewritten as,

CT AC = CT C(Is + αCT C) (30)
8
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Fig. 3. Plot of the 250th column of the discrete |SxC T
x | obtained numerically via Fourier transforms and the continuous |SxC T

x | obtained analytically from 
Eq. (33). The region between the red lines indicates the non-zero locations retained when applying a relative drop tolerance of 10−2 relative to L/2 for the 
continuous part and 1 for the discrete part. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where Is ∈ Rns×ns is the identity and CT C ∈ Rns×ns is the standard 2D scalar Laplacian. CT C can be diagonalized as 
CT C = S�ST , where the eigenvectors S ∈ Rns×ns are the discrete sine transforms and � ∈ Rns×ns contains the eigenval-
ues. Accordingly, we can define the singular value decomposition, C = Uc�

1/2ST where Uc ∈ Rnq×ns is the left singular 
vector. On substituting these decompositions, we get for the interior term,

C(CT AC)−1CT = Uc(Is + α�)−1U T
c (31)

For a conservative choice of grid Reynolds number Re	x = 1 and time discretization 	t = 	x/4 resulting in α = 0.125, 
Is + α� has a small condition number of 2. Therefore, we note that Is + α� is nearly a constant diagonal matrix (less 
conservative grid Reynolds numbers would only act to improve this approximation). Thus, UcU T

c will have nearly the same 
sparsity structure as that of Uc(Is +α�)−1U T

c . We therefore demonstrate below that UcU T
c is well approximated as a sparse 

matrix, and use this to argue that the latter matrix Uc(Is +α�)−1U T
c will also be sparse, to within mild changes in sparsity 

pattern and index due to the slight non-unity condition number. We therefore show in this section that the matrix of 
interest can be expected to be sparse, and subsequently introduce a drop tolerance technique in Sec. 3.2.2 to identify which 
nonzero entries to retain.

We note that Uc is comprised of eigenvectors of the 2D vector Laplacian, CCT = Uc�U T
c , that mimics ∇2u. In Cartesian 

coordinates, ∇2u reduces to the scalar Laplacian applied to each velocity component. Therefore, we can segregate Uc as 
Uc ≡ [Fu, Fv ]T where Fu ∈ Rnu×ns and Fv ∈ Rnv×ns are the eigenvectors of the scalar Laplacian acting on the x and y
velocities, u and v , respectively. On staggered grids, u and v have mixed boundary conditions on cell faces to enforce 
zero vorticity conditions on cell vertices. For instance, homogeneous Dirichlet boundary conditions in the x-direction and 
Neumann boundary conditions in the y-direction are imposed on the u-velocity and vice versa for v-velocity. Therefore, Uc

contains a mixture of sines and cosines – Fu = Sx ⊗ Cy and Fv = Cx ⊗ S y , where ⊗ denotes the Kronecker product, Sx and 
S y are 1D discrete sine transforms (type-I) and Cx and Cy are 1D discrete cosine transforms (type-II, excluding the constant 
[1, . . . , 1]T vector that spans the null space of the Neumann operator). On substituting these decompositions we obtain

UcU
T
c ≡

[
SxST

x ⊗ C yC T
y SxC T

x ⊗ C y ST
y

CxST
x ⊗ S yC T

y CxC T
x ⊗ S y ST

y

]
(32)

Here, the block diagonal entries are approximately identity because the sines and cosines are mutually orthogonal among 
themselves. Note that they are not exactly identity because the discrete cosine vectors are truncated by one due to the 
exclusion of the constant null space vector. On the other hand, for the off-diagonal block terms, consider for instance, the 
continuous counterpart of the (i, j + 1) component of SxC T

x ,

(SxC
T
x )(i, j+1) = (ST

x C
(3)
x )(i, j+1)

continuous−−−−−−→
analog

L∫
0

sin
iπx

L
cos

(
j + 1

2

)
πx

L
dx = L

π(2i − 2 j − 1)
+ L

π(2i + 2 j + 1)
(33)

where C (3)
x = CT

x is the discrete cosine transform of type-III [25]. From Eq. (33) it can be seen that any row or column of 
|SxC T

x | is the discrete analog to a quantity that decays as 1
|i− j| with a peak when i = j. For reference, consider a problem 

with grid dimensions 500 × 500, for which we plot in Fig. 3 the 250th column of the discrete |SxC T
x | obtained numerically 

via Fourier transforms and the continuous |SxC T
x | obtained analytically from Eq. (33). Note that for plotting the analytical 
9
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Fig. 4. Plot of the 5000th column of B constructed for a sub-domain of grid dimensions 100 × 100 normalized with respect to the maximum absolute value 
of B in that column. The regions within the red contour lines indicate the non-zero locations retained when applying a drop tolerance of 10−2 relative to 
that maximum absolute value.

part, the right most expression from Eq. (33) is scaled (multiplied) by 1/(L/2), since L/2 is the value corresponding to the 
continuous counterpart of the diagonal of Sx ST

x . The discrete |(SxC T
x )(:,250)| decays similarly to its continuous counterpart 

as 1
|i− j| . The decay rate is increased as 1

|i− j||k−l| when we consider the entire off-diagonal block SxC T
x ⊗ Cy ST

y , where k and 
l indices correspond to the (k + 1, l) component of C y ST

y . Similar decaying trends can be derived for the remaining off-
diagonal block CxST

x ⊗ S yC T
y . Under a drop tolerance filtering criteria where the matrix elements below a specified relative 

tolerance be dropped to zero, these off-diagonal blocks can be approximated sparsely.
To indicate the impact of applying this drop-tolerance filtering procedure, a tolerance of 10−2 relative to L/2 will result 

in retaining approximately 60 non-zeros per row for SxC T
x irrespective of the size of the problem. For the illustration in 

Fig. 3, the ∼ 60 non-zero locations retained for |(SxC T
x )(:,250)| are depicted by the region between the red lines. For a 

problem with grid dimensions 500 × 500 this leads to 8 times fewer kept entries per row than for the unfiltered case of 
500 non-zeros. On accounting for the Kronecker products as well as the identity nature of the block diagonal entries, the 
fully filtered UcU T

c will have 128 times fewer non-zeros compared to the unfiltered one. The savings, of course, will only 
increase with problem size—for example, rows or columns of UcU T

c for a grid of dimensions 2500 × 2500 will have the 
same decay rate as the 500 × 500 case, and thus the same number of nonzero entries to be stored.

We note that the above mentioned theoretical estimates of the sparsity pattern are based on two assumptions: (i) a con-
stant diagonal matrix Is + α�, and (ii) an equal segregation of Uc ≡ [Fu, Fv ]T ; i.e., for the ith column of Uc , the associated 
discrete Fourier functions Fu (i) and Fv (i) are afforded equal weighting so that ||Fu (i)||2 = ||Fv (i)||2 = 0.5. Regarding assump-
tion (i), Is + α� is not a constant matrix but has a low condition number (as mentioned above), and therefore does not 
significantly alter the sparsity pattern of UcU T

c . Regarding assumption (ii), the non-equal weighting of the eigenvectors can 
be accounted for by incorporating diagonal matrices Dx and Dy that unequally scale the different discrete Fourier functions: 
Uc = [FuDx, Fv D y]T . This unequal weighting to the columns can be shown to only distribute the sparsity pattern across the 
diagonal and off-diagonal blocks, and not affect the overall number of non-zeros per row of UcU T

c .
Finally, returning to our original goal—we are interested in the overall sparsity of B = E0C(CT AC)−1CT ET

0 instead of 
C(CT AC)−1CT alone. We note that E0 contains narrow delta functions (see Sec. 3.1) that are discrete analogues to the Dirac 
delta function, and is therefore sparse with only a few nonzero entries off of each diagonal. Additionally, since E0 is a 
rectangular matrix, the overall size of E0C(CT AC)−1CT ET

0 is further reduced, allowing for further efficiency gains in storing 
B . For illustration, consider a sub-domain of grid dimensions 100 ×100 in the above-described 500 ×500 flow domain. One 
of the columns of B constructed for this sub-domain is plotted in Fig. 4. This column corresponds to the velocity induced 
on the sub-domain points due to a unit-valued surface stress in the x-direction applied at a grid point lying at the center 
of the sub-domain. The first and last 104 rows of B plotted in Fig. 4a and 4b correspond to this induced velocity in x− and 
y-directions, respectively. The sharp peaks observed in these plots imply that the induced velocity due to a localized surface 
stress is concentrated around the grid point where the stress is applied. These plots therefore show that B is compact and 
can be approximated sparsely. For instance, based on the same relative drop tolerance of 10−2 , only the regions within the 
red contour lines in Fig. 4 need to be stored, thereby yielding significant storage benefits as compared to storing the full B
matrix.
10
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3.2.2. Drop tolerance filtering technique
We now describe the drop tolerance filtering technique to construct B sparsely. In this strategy, a drop tolerance param-

eter, ε , is used to filter out the elements of the matrix having relative magnitudes lower than the set tolerance. If we denote 
the sparsified version of B as B ′ , then the filtering process is given as,

b′
i, j =

{
bij if |bij| > ε |bii|
0 otherwise

(34)

where bij and b′
i j are the (i, j)th element of B and B ′ , respectively. Hereby, B is replaced by the filtered matrix B ′ in our 

proposed sub-domain based IB method.
Since this filtering technique introduces additional approximations in the algorithm, the choice of ε should be made 

judiciously. A large choice of ε will proportionally filter out a large portion of B and result in an unstable or inaccurate 
algorithm. On the other hand, a small ε will yield only minimal storage gains. Through an ε-convergence study in Sec. 5.1.2, 
a drop tolerance of ε = 0.007 is observed to strike the right balance between accuracy of the solutions and the storage 
requirements. This value of ε is shown to be suitable for a variety of problems described in Sec. 5.

Finally, we emphasize that, in practice, we do not construct the full matrix B before applying the filter. Instead, the 
columns of B are constructed one at a time by successively computing the action of B on a canonical unit vector as,(

E0C(CT AC)−1CT ET
0

)
e j = B j (35)

where e j ∈R2nsd is the jth canonical unit vector and B j is the jth column of B . The filter (34) is then applied on B j before 
the next column, B j+1, is evaluated. This construction process is conducive to scaling up for larger problem sizes.

3.3. Summary of the proposed sub-domain approach

To summarize, the time-varying IB interpolation operator E(k)
n+1 defined on the moving Lagrangian body points is ap-

proximated via an interpolation of the time-independent IB interpolation operator E0 defined on a fixed set of Eulerian 
sub-domain points. This allows us to precompute B and circumvent the expensive (CT AC)−1 solves traditionally required in 
Eq. (17). Furthermore, since B is compact, it is sparsified to achieve significant gains in storage requirement. In Appendix C, 
we show that the former sub-domain approximation, P (k)

n+1E0, converges to true E(k)
n+1 as O(	x2), while the latter sparsity 

approximation is consistent in the sense that the residual of the surface stress equation with the sub-domain approximation 
(i.e. Eq. (23) substituted into Eq. (17)) converges to zero as ε → 0. The full fractional step algorithm from Eq. (16)-(20) for 
our proposed sub-domain approach can be now written as,

s∗ = (CT AC)−1r f
n (36)(

P (k)
n+1B

′P (k)T
n+1 + 2	s

	t
S(k)T
t,n+1 J−1

t S(k)
t,n+1 + 2

	t
Î Td J (k)d

−1
S(k)
d,n+1

)
f (k+1)
n+1 =

P (k)
n+1E0Cs

∗ − rc(k) + S(k)T
t,n+1

(
rθ(k) − 2

	t
J−1
t rφ(k)

)
+ Î Td

(
rχ(k) − 2

	t
J (k)d

−1
rζ(k)

) (37)

	θ = J−1
t

(
rφ(k) + 	sS(k)

t,n+1 f
(k+1)
n+1

)
(38)

	χd = J (k)d

−1 (
rζ(k) + S(k)

d,n+1 f
(k+1)
n+1

)
(39)

sn+1 = s∗ − (CT AC)−1CT ET
0 P

(k)T
n+1 fn+1 (40)

Note that E(k)
n+1 in Eq. (16)–(20) is replaced by P (k)

n+1E0 in Eq. (36)–(40) wherever applicable and the sparsified operator 
B ′ is used instead of B in Eq. (37). Similar to [26], the proposed approach in the vorticity-streamfunction formulation can 
be used in 3D without modification apart from the finite difference operators in going from 2D to 3D. We also derive 
the sub-domain based IB method that treats the fluid in primitive variables in Appendix D. This method utilizes the same 
sub-domain approximation, E(k)

n+1 ≈ P (k)
n E0, and can be applied in both 2D and 3D.

The entire sub-domain based IB method can be divided into offline and online stages. The offline stage is only performed 
once at the beginning of the simulation to compute B ′ . In the online stage, the system of equations (36)-(40) is solved for 
the flow and structure variables and advanced in time. These stages are summarized in Algorithms 1 and 2, respectively.

We note that the offline stage involves performing (CT AC)−1 operations for every point in the sub-domain. Therefore, 
for a large and finely discretized sub-domain, precomputing B ′ can be an expensive process. However, we emphasize that 
it needs to be performed only once in the simulation. Furthermore, B ′ is independent of the instantaneous position of 
the bodies involved in the simulation. Therefore, B ′ constructed for a specific problem can be reused for several other 
problems provided that the following two conditions are met: (a) the spatial and temporal discretization sizes, Reynolds 
number and sub-domain remain unchanged and (b) all the bodies are guaranteed to stay within the sub-domain at all 
11
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Algorithm 1 Offline stage.
Input: Problem setup and grid
Output: Precomputed and sparsified matrix B ′
1: Define a sub-domain according to the guidelines in Sec. 3.1.1
2: Construct E0 using Eq. (25)
3: for j ← 1 to 2nsd do
4: Compute jth column B j from Eq. (35)
5: Apply filtering: B ′

j ← f ilter(B j) where f ilter refers to the drop tolerance filtering technique in Eq. (34)
6: end for

Algorithm 2 Online stage.
Input: Initial conditions s0, f0 and χ0; precomputed matrix B ′
Output: sn , fn and χn for n = 1, . . . , tmax

1: for n ← 0 to tmax do
2: Compute s∗ from Eq. (36)
3: Initiate FSI iterations; k ← 0, f (0)

n+1 = fn and χ(0)
n+1 = χn

4: while ||	χ||∞ > ε do
5: Choose sub-domain points for interpolation based on Sec. 3.1.3 and construct interpolation matrix P (k)

n+1 with weights from Eq. (29).
6: Compute P (k)

n+1B
′ P (k)T

n+1 sparsely and other structural operators
7: Solve Eq. (37) via GMRES for f (k+1)

n+1

8: Update position of the body χ(k+1)
n+1 via Eq. (38) and (39)

9: Advance FSI iterations k ← k + 1
10: end while
11: Compute sn+1 from Eq. (40)
12: end for

times. These conditions are conducive to parametric studies of flow problems, where only the body geometry or parameters 
such as mass ratio, stiffness etc. are varied without modifying the underlying discretization or sub-domain. Therefore, such 
parametric studies, which are customary in the fluid dynamics community, can be efficiently performed using our proposed 
sub-domain based IB method.

4. Parallel implementation

In this section, we describe the parallelization strategies implemented on the proposed sub-domain based IB approach 
to make it scalable across multiple CPUs.

4.1. Domain decomposition for fluid domain

Domain decomposition is a technique used in parallel computing where the computational domain is partitioned among 
many processors and each processor solves a part of the same system of equations locally. During these local computations, 
any required information from the neighboring processors is communicated via a communication protocol. In this work we 
use the message passing interface (MPI) protocol. Domain partitioning is performed using the Portable, Extensible Toolkit 
for Scientific Computation (PETSc) [27] which is built using the MPI library.

The Poisson like operations involving (CT AC)−1 are solved efficiently using fast sine transforms provided by the 
distributed-memory Fast Fourier Transform in the West (FFTW) MPI library [28]. FFTW MPI requires that the domain be 
partitioned in only one dimension irrespective of a two or three dimensional flow domain. In Fortran, this partitioning is 
done along the last dimension of the domain; for instance, the y-direction for 2D problems and the z-direction for 3D. Fig. 5
illustrates this domain partitioning procedure where the y-dimension is partitioned among three processors labeled as 0, 1 
and 2. The blue lines in the flow domain denote the location of partitioning. Each processor handles the data computation 
involving the purple grid points in their respective domains. The inter-processor communication required while performing 
fast Fourier transforms is also managed by FFTW MPI.

As part of the domain partitioning technique, PETSc provides communication protocols conducive to the finite difference 
scheme used in our approach. Therefore, the inter-processor communications involved in operations such as C and CT for 
computation at the grid points at the boundaries of the partitioned domains are efficiently handled by PETSc.

4.2. Partitioning of structure and flow sub-domain

Eq. (37) is solved for the surface stress vector f ∈ Rn f and the parallelization of Eq. (37) depends on the parallelization 
of f . This vector consists of surface stresses in all coordinate directions for all the bodies involved in the simulation. In 
this work, we partition the entire surface stress vector f among a subset of available processors as equally as possible. We 
note that, since the number of degrees of freedom n f is very small compared to the flow grid points, over-partitioning f
among a large number of processors can sometimes create a communication overhead which can result in negative scaling. 
Therefore, the choice of the number of subset processors is problem dependent. For all the problems considered in Sec. 5, 
12
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Fig. 5. Schematic of the domain decomposition of the fluid domain and partitioning of the surface stress vector among three processors labeled as 0, 1 and 
2. The scripts in f ijk are, i: body number; j: {x, y}; k: body grid point. The blue lines denote the location of partitioning in the flow domain and surface 
stress vector. The schematic also describes the sub-domain grid points (purple markers) that coincide with the streamfunction/vorticity grid points (orange 
markers) on the cell vertices.

we partition f among all the processors since we did not observe the aforementioned overhead. The partitioning procedure 
of the surface stress vector is also illustrated in Fig. 5 where we consider a simple case of two bodies denoted by green and 
yellow points. We stack the surface stresses in the order of the number assigned to the body with stresses in x-direction 
stacked first followed by y-surface stress. This force vector is partitioned among three processors as denoted by the blue 
lines. Finally, Eq. (37) is solved in parallel using GMRES which is also provided by PETSc.

The sub-domain and related operators are also partitioned similarly to the surface stress. For instance, the sub-domain 
IB interpolation operator E0 ∈ R2nsd×nq and the operator in Eq. (37) B ′ ∈ R2nsd×2nsd are partitioned equally along the first 
dimension i.e. rows having a global dimension of 2nsd . The sparse interpolation operator P (k)

n+1 ∈Rn f ×2nsd is also partitioned 
along the first dimension, but having a dimension n f and evaluated locally.

4.3. Parallel interfacing between fluid and structure

Although the above-mentioned flow domain and surface stress partitioning approaches ensure equal load-balancing 
across processors in their respective flow or structural domain, parallel interfacing between them is not trivial. For instance, 
consider the interpolation of velocity from the flow grid to the body points via Eq, where q ≡ Cs is a generic velocity vector. 
Here, q in the flow domain and E of the body are partitioned via fundamentally different strategies. Therefore, to enable 
parallel interfacing, the velocity at flow points within the support of the delta function at the body point in considera-
tion are “scattered” or communicated to the processor owning that body point. Once the scattering of the velocity data is 
performed, Eq can be trivially performed as a sparse matrix-vector multiplication.

The exact same strategy is used for performing E0q on the sub-domain in Eq. (37). However, the size of E0q is potentially 
much larger than Eq, nsd � n f . Therefore, to improve the computational efficiency of performing E0q, it is evaluated at only 
those vector locations where the corresponding column of P (k)

n+1 is non-zero since we eventually only need to evaluate the 
overall matrix-vector product P (k)

n+1E0q.

5. Results

In this section, we test the computational accuracy and efficiency of our proposed sub-domain based IB approach on 
several 2D FSI problems. Although our formulation in Sec. 2 is developed for FSI problems involving arbitrary number of 
rigid, torsionally mounted and deformable bodies, for simplicity, the 2D problems considered in this section consist of a 
combination of rigid and torsional bodies. The first problem consists of flapping of torsionally connected ellipses where 
we verify the accuracy of our sub-domain-based approach by comparing the results with those obtained by Wang and 
Eldredge [14] and using the true E , ET operators (Eq. (16)–(20)) in place of the sub-domain interpolation approximations 
(Eq. (36)–(40)). In the second problem, the use of a compact sub-domain is demonstrated on flow around a stationary airfoil 
with a passively deployable flap. The computational efficiency of our sub-domain approach is compared with that attained 
when using the true E , ET operators. These first two problems are constructed to highlight the accuracy and algorithmic 
efficiency of our proposed sub-domain-based interpolation approach. We then demonstrate the parallel scalability of our 
proposed method on a third problem consisting of 8 million grid points and increased complexity of a system of three 
airfoils in tandem each equipped with three passively deployable flaps.

A multi-domain approach for far-field Dirichlet boundary conditions of zero vorticity is incorporated for solving the flow 
equations where a hierarchy of grids of increasing coarseness stretching to the far field is employed (see reference [20]
13
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Fig. 6. Schematic of the flapping of two ellipses connected by a torsional spring.

for details). Following Goza and Colonius [15], the immersed boundary spacing is set to be twice as that of the flow grid 
spacing of the finest grid. A convergence criteria of ‖	θ‖∞ ≤ 10−7 is used when iterating between Eq. (37) and (38). The 
relative error used in various grid convergence and comparison studies in this section is defined as,

Error(%) = ||η − ηref ||2
||ηref ||2 × 100 (41)

where η is the quantity of interest compared against a reference ηref .

5.1. Flapping of torsionally connected ellipses

5.1.1. Problem description
This problem involves flapping of a 2D wing modeled in Wang and Eldredge [14]. The wing is modeled as two ellipses 

of chord length c having aspect ratios of 5:1, connected via a torsional spring. A schematic of this problem is shown in 
Fig. 6: a ‘driven’ component oscillates according to prescribed kinematics, and a second component that is hinged at one 
end of the driven body undergoes dynamics determined by the balance of aerodynamic and structural (stiffness and inertial) 
forces. The bodies are separated by a gap of width 0.1c. The dimensional equation of motion for the hinge deflection angle 
θ between the bodies is given by,

I θ̈ + C θ̇ + Kθ = M f − [mL2 cos(α1 + θ)] Ẍ1 − [I it +m(L22 + L1L2 cos θ)]α̈1 −mL1L2 sin θα̇2
1 (42)

where m is the mass of the passive ellipse, M f is the dimensional moment due to the aerodynamic body forces analogous 
to the integral term in Eq. (3) and L1 = L2 = 0.55c are the distances from the center of gravity of the respective ellipses 
to the hinge. The stiffness and damping coefficient of the spring are K/(ρ f f 2c4) = 456 and C/(ρ f f c4) = 3.95, respectively, 
where f is the frequency of oscillations of the driven body. The moment of inertia of the second ellipse is I/(ρ f c4) =
0.2886 which is equivalent to a density ratio of ρs/ρ f = 5. The multi-domain approach for far-field boundary conditions 
uses 5 grids of increasing coarseness where the finest and coarsest grid levels are [−3.15, 3.15]c × [−4.65, 1.65]c and 
[−50.4, 50.4]c × [−51.9, 48.9]c, respectively.

The kinematics prescribed on the driven ellipse are same as that were used in Wang and Eldredge [14], given by

X1(t) = A0

2

Gt( f t)

maxGt
C( f t) (43)

Y1(t) = 0 (44)

α1(t) = −β
Gr( f t)

maxGr
(45)

where the translational and rotational shape functions, Gt (t) and Gr(t), respectively are given by,

Gt(t) =
∫
t

tanh[σt cos(2πt′)]dt′ (46)

Gr(t) = tanh[σr cos(2πt)] (47)

The initial impulsive velocity is avoided by using a start-up conditioner given by,

C(t) = tanh(8t − 2) + tanh2

1+ tanh2
(48)

Based on these kinematic parameters, the rotational Reynolds number is defined as,
14



Table 1
Kinematic parameters for the flow problem of flapping of torsionally connected ellipses.
Case No. A0/c β σt σr Rer

1 1.4 π/4 3.770 3.770 100
2 1.4 π/4 0.628 0.628 100

Table 2
Parameters for grid convergence study and corresponding discrepancies in θ and cl reported 
with respect to the finest case of 	x/c = 0.00525 for the problem of flapping of torsionally 
connected ellipses.

	x/c 	t/τr Discrepancy in θ Discrepancy in cl

0.00525 0.00163
0.0105 0.00326 0.75% 3.18%
0.021 0.00652 2.75% 9.79%
0.042 0.01304 8.07% 17.95%

Table 3
Parameters for ε-convergence study and corresponding discrepancies in θ and cl reported with 
respect to the finest case of ε = 0.000875 for the problem of flapping of torsionally connected.

ε Discrepancy in θ Discrepancy in cl Memory (GB)

0.000875 20.02
0.00135 0.047% 0.39% 10.48
0.0035 0.088% 0.68% 5.39
0.007 0.13% 0.98% 2.73
0.014 0.17% 1.35% 1.35

Rer = 2πβσr

tanhσr

f c2

ν
(49)

We consider two test cases corresponding to the kinematic parameters provided in Table 1. See reference [29] for a detailed 
study of these parameters on the physics and aerodynamics of flapping.

To set the boundaries of the rectangular sub-domain for our proposed approach, firstly we determine the maximum 
limits of the body displacements. The maximum y-limits of the body displacements are [−1.6, 0.5]c which may occur when 
α1 = 0 and θ = 0. For the x-limits, although the maximum body displacements are [−1.99, 1.99]c based on max(α1) = β =
π/4 and max(X1) = A0/2c = 0.7, these maximum conditions never occur simultaneously since they are separated by a π/2
phase difference. Based on these conditions, the sub-domain is set to [−1.89, 1.89]c×[−1.66, 0.65]c which is a conservative 
estimate of the maximum limits of the body displacements. The sub-domain bounding the flapping ellipses is displayed as 
a black rectangular box in Fig. 8 for reference.

5.1.2. Implementation
Firstly, a grid convergence study on the first test case is performed by varying the spatial and temporal discretizations of 

the finest domain, 	x/c and 	t/τr , respectively, as shown in Table 2, where τr = (2πβσr f / tanhσr)
−1 is the characteristic 

rotation time. The discrepancy in the deflection angle, θ(t), and lift coefficient, cl(t) = 2F y(t)/ρ3
f c

3, in 0 < t/T < 3 computed 
using Eq. (41) are used for determining convergence, where T = f −1 is the time period and F y is the total force on both 
ellipses in the y-direction. In this grid convergence study, the finest grid with 	x/c = 0.00525 is set to be the reference 
case against which the changes in deflection angle and lift are evaluated. Since the grid with 	x/c = 0.0105 is converged 
to within 1% of the finest grid for θ as shown in Table 2, 	x/c = 0.0105 and 	t/τr = 0.00326 are used for presenting the 
results. Next, the order of spatial convergence p is determined via Richardson extrapolation as,

p = log

( |ηr2	x − ηr	x|
|ηr	x − η	x|

)
/ log(r) (50)

where η is a flow metric evaluated for successively refined grids with a constant refinement ratio of r and subscript denotes 
the relative grid under consideration. In this problem, we set η ≡ θ(t) and r = 2. By using the first three grids in Table 2
and averaging p in 0 < t/T < 3, we get the spatial order of accuracy to be p = 1.53. This is in agreement with the order of 
accuracy of most IB methods of between first and second order [3].

Next, an ε-convergence study on the first test case is performed by varying the drop tolerance parameter, ε , as shown in 
Table 3. Similar to the grid convergence study, the discrepancy in θ(t) and cl(t) in 0 < t/T < 1 computed using Eq. (41) are 
tabulated. Furthermore, the memory requirements of storing the sparse B ′ matrix in gigabytes for the various ε values are 
provided. This memory includes the requirement of storing both the non-zero values and the column indices corresponding 
to those values of the sparse B ′ . It can be seen from Table 3 that the discrepancies in both θ and cl across ε are minimal. 
N.J. Nair and A. Goza Journal of Computational Physics 454 (2022) 110897
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Fig. 7. Plots of lift coefficient, cl and deflection angle, θ for the two cases obtained by the true E , ET approach, Wang et al. [14], Toomey et al. [29] and our 
present approach for the problem of flapping of torsionally connected ellipses.

Fig. 8. Contour plots of vorticity at different time instants for case 1 of the problem of flapping of torsionally connected ellipses. The black rectangular box 
denotes the sub-domain that bounds all the bodies.
16
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Table 4
Demonstration of computational accuracy via relative errors in θ and cl , and speed-ups in us-
ing the proposed sub-domain approach compared to the true E , ET operators for the problem 
of flapping of torsionally connected ellipses.
Case Error in θ(t) Error in cl(t) Speed-up

1 0.20% 1.80% 18.39
2 0.88% 3.03% 12.77

Fig. 9. Schematic of the system of passively deployable flap on an airfoil.

However, a significant rise in memory requirement is observed as ε is reduced. For ε = 0.007, cl is converged to within 1% 
of the finest ε considered. Also, the corresponding memory requirement of 2.73 GB is feasible for running the simulation 
on a single core which typically has 8 GB random access memory (RAM). Therefore, ε = 0.007 is used for presenting all the 
results hereafter.

Next, we probe the accuracy of our proposed sub-domain approach by comparing the lift coefficient and deflection angle 
in Fig. 7, for the two test cases listed in Table 1, to those obtained by Wang and Eldredge [14], Toomey and Eldredge [29]
and when using the true E , ET in place of the sub-domain interpolation approximations. The temporal variations of the 
deflection angle and lift agree well across all four cases. For completeness, we illustrate the passive flapping of the second 
ellipse and the resulting lingering vortices via vorticity snapshots at different time instants in Fig. 8.

We provide the relative errors in the lift and deflection angle between our sub-domain interpolation approach and the 
use of the true E , ET operators in Table 4. Relative errors of less than 1% and around 3% for the lift and deflection angle, 
respectively, are obtained, which are within the tolerance to which our results are converged; cf., Table 2. For all the cases 
considered, a maximum of three FSI iterations were required per time step. The computational efficiency of our approach 
is also demonstrated in Table 4 via the significant speed-up obtained by our sub-domain approach compared with use of 
the true E , ET . Here, speed-up is defined as the ratio of mean wall-times incurred per time step in 0 < t/T < 1 when the 
simulations are performed on a single core. The speed-up of more than an order of magnitude is due to the elimination of 
the bottleneck described in Sec. 2.3.

5.2. Passively deployed flap on an airfoil

5.2.1. Problem description
This problem consists of a stationary NACA0012 airfoil of chord length c at an angle of attack of 20◦ in a flow with 

freestream velocity U∞ . The Reynolds number based on the chord length is set to 1000. A flap of length 0.2c is hinged 
on the upper surface of the airfoil at a distance of 0.5c from the leading edge via a torsional spring, as shown in Fig. 9. 
We fix the non-dimensional moment of inertia and damping coefficient to iit = I it/ρ f c4 = 0.001 and cit = Ci

t/ρ f U∞c3 =
0, respectively and consider three test cases of widely varying stiffness, kit = K i

t/ρ f U2∞c2 = {0, 0.001, 0.1}. Initially, the 
flap is rested at an angle of 5◦ from the airfoil surface, which is taken as the undeformed (zero stress) deflection angle. 
As the vortex shedding process occurs, the flap passively deploys and interacts with the flow, providing significant lift 
improvements compared to the flap-less case [30,31]. For the multi-domain approach for far-field boundary conditions, 
five grids of increasing coarseness are used where the finest and coarsest grid levels are [−0.5, 2.5]c × [−1.5, 1.5]c and 
[−23, 25]c × [−24, 24]c, respectively.

We chose the airfoil-flap problem to demonstrate the use of a compact sub-domain to reduce the storage requirements 
of the precomputed matrix B ′ . Since the airfoil is stationary and only the flap undergoes large displacements, we construct 
a small rectangular sub-domain that bounds only the physical limits of flap displacements. Accordingly, the rectangular sub-
domain is set to [0.23, 0.7]c × [−0.24, 0.1]c. This sub-domain bounding the flap motion is displayed as a black rectangular 
box in Fig. 11 for reference. Now, to account for the stationary airfoil, the exact airfoil body points are appended into the set 
of sub-domain points. These exact body points also allow us to use the exact IB interpolation operator E for the airfoil by 
setting the interpolation weight to one in P corresponding to the airfoil points. In problems such as these where physical 
knowledge of the problem is available that yield a compact sub-domain, significant savings in storing the precomputed 
matrix B ′ can be achieved. Finally, we emphasize that, since the underlying discretization sizes, sub-domain and Re are 
fixed, the precomputed matrix is only computed once for all the parametric variations considered within this test problem.
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Table 5
Grid convergence test cases and corresponding errors in θ reported with respect to the finest 
case of 	x/c = 0.0025 for the problem of passively deployable flap on an airfoil.

	x/c 	t/(c/U∞) Mean deflection θ̄ Discrepancy in θ (%)

0.0025 0.0003125 79.18◦
0.003 0.000375 79.60◦ 0.53
0.00349 0.0004375 79.96◦ 0.99
0.00395 0.0004935 77.93◦ 1.58
0.00455 0.000568 76.92◦ 2.85

Fig. 10. Plots of lift coefficient, cl and deflection angle, θ for the three cases of stiffness, kit = {0, 0.001, 0.1}, obtained by the true E , ET approach and our 
present approach for the airfoil-flap system.

5.2.2. Implementation
Firstly, a grid convergence study on the test case of kit = 0.001 is performed by varying the spatial and temporal dis-

cretizations of the finest domain as shown in Table 5. The mean deflection angle θ̄ in the limit cycle oscillation regime 
(t/(c/U∞) > 20) is used to determine grid convergence. In this grid convergence study, the finest grid with 	x/c = 0.0025
is set to be the reference case against which the relative changes of mean deflection angle are computed. Since the grid 
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Table 6
Results from the airfoil-flap problem: columns 2-3: demonstration of computational accuracy 
via relative errors in θ and cl , and efficiency via speed-ups with respect to the true E , ET

operators; column 4: change in mean lift compared with a baseline case involving no flaps. The 
last column is not a measure of computational accuracy, but a demonstration of the potential 
aerodynamic benefits associated with torsionally-hinged flaps.
kit Error in θ̄ Error in c̄l Speed-up 	c̄l

0 0.47% 0.41% 4.22 -0.25%
0.001 0.83% 0.30% 3.87 14.55%
0.1 0.15◦ 0.48% 4.07 1.15%

with 	x/c = 0.00349 is converged to within 1% of the finest grid, 	x/c = 0.00349 and 	t/(c/U∞) = 0.0004375 are used 
for presenting the results.

Next, we determine the accuracy of our proposed sub-domain approach by comparing the lift coefficient and deflection 
angle in Fig. 10, for the various cases of stiffness, kit = {0, 0.001, 0.1}, to those obtained when using the true E , ET operators 
in place of the sub-domain interpolation approximations. Here, the lift coefficient is defined as cl = 2F y/ρ f U2∞c where F y

is the total force on the airfoil and flap system in the y-direction. It can be seen that the transient dynamics of the flap 
deploying into the flow (implied from the large initial deflection angles) and subsequent limit cycle oscillations produced 
from our sub-domain approach agree well with those obtained by using true E , ET for all the cases. The plots of deflection 
angle also demonstrate the stability of our approach in the presence of large deflections for very low stiffness of kit = 0
and kit = 0.001. We note that the discrepancy in the deflection angle between our approach and that of true E , ET for the 
largest stiffness case of kit = 0.1 is slightly larger than the lower stiffness cases. This is because the flap oscillates very close 
to the airfoil resulting in the subset of the np nearest neighboring sub-domain interpolation points to be even closer to the 
airfoil for the immersed body points near the hinge. These sub-domain points unphysically include the contribution of the 
fictitious fluid within the airfoil towards the interpolation and regularization operations of the immersed boundary method. 
This effect is not prominent for the lower stiffness cases where the flap deflection angle is large. The problem associated 
with the fictitious fluid could be addressed by using the method of immersed layers [32] where Heaviside functions are 
used for distinguishing the physical and fictitious fluid regions. For all the cases considered, a maximum of only two FSI 
iterations were required per time step. The relative errors in the mean lift coefficient and deflection angle between our 
approach and the use of true E , ET are also provided in Table 6. For all the cases, relative errors of less than 1% for both the 
lift and deflection angle are attained. Note that, for the case of kit = 0.1, we have reported the absolute error in the mean 
deflection angle instead of the relative error because the flap oscillates very close to the airfoil with a mean deflection 
angle of 0.44◦ and 0.29◦ obtained from our sub-domain approach and by using true E , ET , respectively. This results in a 
misleadingly high relative error of 52.79% with respect to such a small mean deflection angle while noting that the relative 
error in cl is still below 1%.

The computational efficiency of our approach is demonstrated in Table 6 by reporting the speed-up attained by our 
proposed approach compared to when the true E , ET operators are utilized. Here, the speed-up is defined as the ratio of 
mean wall-times on a single core incurred per time step over the first 1000 time steps (t/(c/U∞) < 0.4375). Our proposed 
sub-domain approach is approximately four times more efficient than when using the true E , ET operators for this airfoil-
flap problem.

Finally, to indicate the potential engineering utility of these deployable flaps in improving aerodynamic performance, we 
show in Table 6 the relative change in the lift coefficient, 	c̄l , for the airfoil-flap system compared with the flap-less case 
of only the airfoil at the same angle of attack and Re. The case with kit = 0.001 provides significant lift benefits of around 
15%. To understand the physical mechanisms that enable this lift improvement, four snapshots of the pressure field over one 
period of the limit cycle oscillation regime (t/(c/U∞) > 20) are plotted in Fig. 11. We can clearly observe a low pressure 
region denoted by blue color just upstream of the flap in all the contours. This low pressure zone is formed due to the 
trapping of a portion of the leading edge vortex by the flap. This low pressure region therefore augments the lift of the 
airfoil-flap system compared to the case without the flap. Similar physical mechanisms that augment lift have been found 
for statically deployed flaps [33], but to our knowledge this mechanism has not been observed for the case of dynamic flaps 
mounted via torsional springs. The lift variations for kit = 0 and kit = 0.1 are not significant since they either excessively or 
barely deploy the flap, respectively, such that the trapping of the vortex is not realized.

5.3. Airfoils with passively deployed flaps in tandem

5.3.1. Problem description
In this section, we demonstrate the parallel scalability of our proposed approach on a relatively large problem consisting 

of 8 million flow grid points. This problem involves a similar airfoil-flap system as described in the previous problem in 
Sec. 5.2, but with three stationary NACA0012 airfoils in tandem, each equipped with three torsionally hinged flaps. Such a 
tandem-airfoil-flap system is found to reduce the total drag coefficient compared to the tandem-airfoil system without any 
flaps (see the next Sec. 5.3.2 for details).
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Fig. 11. Contour plots of pressure at four time instants in one time period T . Blue and yellow color denotes regions of low and high pressure, respectively. 
The black rectangular box denotes the sub-domain that bounds the flap motion.

The airfoils are separated by a distance of 1.18c between the consecutive leading edges where c denotes the chord length 
of the airfoils. The flaps are located at a distance of 0.25c, 0.5c and 0.75c from the leading edge of their respective airfoils. 
The angle of attack of all the airfoils is 20◦ and Reynolds number of the flow based on c is set to 1000. The parameters for 
all the springs and flaps are kit = 0.001, cit = 0 and iit = 0.001. Initially, all the flaps are rested at an angle of 5◦ from their 
respective airfoil tangential surface. As the vortex shedding process occurs, all flaps are allowed to passively respond to the 
aerodynamic forces.

The multi-domain approach for the far-field boundary conditions employs five grids of increasing coarseness where the 
finest and coarsest grid levels are [−0.5, 7.5]c × [−2, 2]c and [−60.5, 67.5]c × [−32, 32]c, respectively. The sub-domain 
boundaries are set to [−0.008, 3.296]c × [−0.348, 0.208]c, which encompasses all the airfoils and the physical limits of flap 
displacements. This sub-domain bounding all the bodies is displayed as a black rectangular box in Fig. 13 for reference. 
The grid spacing of the finest domain is 	x/c = 0.002 and the time step size is 	t/(c/U∞) = 0.00025. Note that these 
discretizations are finer than those considered for the similar airfoil-flap problem considered in the previous section 5.2; 
therefore, a grid convergence study is not performed for this problem. The resulting size of the flow domain is 4000 ×2000, 
or 8 million grid points.

Recall from Sec. 4 that, for parallel implementation, the FFTW-MPI library requires that the domain decomposition of 
the flow domain be performed along the y-direction for 2D problems. For the tandem-airfoil-flap problem, this domain 
decomposition corresponds to 1D partitioning along the y-direction consisting of 2000 grid points. However, the preferred 
domain partitioning is along the x-direction, which has the larger dimension of 4000 grid points. We thus superficially 
rotate the original computational domain by 90◦ in clockwise direction to obtain a domain of 2000 × 4000 points. When 
displaying the results, the flow-fields are rotated back to the original 4000 × 2000 configuration for readability.

5.3.2. Implementation
First, the total drag coefficient of the tandem-airfoil-flap system, cd = 2Fx/ρ f U2∞c, where Fx is the total force on all 

airfoils and flaps in the x-direction, is plotted in Fig. 12a and compared with the case of the same three airfoils in tandem, 
but without any flaps. A reduction in mean drag, c̄d , by 46.92% is observed with respect to the flap-less case, where the 
mean is evaluated in the limit cycle oscillation regime after initial transients have decayed, t/(c/U∞) > 30. To indicate the 
physical mechanisms that enable this drag reduction, four snapshots of vorticity are plotted in Fig. 13. These snapshots 
correspond to two troughs and two peaks of one drag cycle in the limit cycle oscillation regime, indicated by the blue 
markers on the cd plot in Fig. 12a. From these figures, we observe that the deployed flaps manipulate the flow to curve 
around a large “imaginary body” that acts as a streamlined connection of the true tandem-airfoil-flap system. Although 
significant flow separation occurs at the first airfoil, the leading flap deflects the shear layer in the upwards transverse 
direction, shielding the second and much of the third airfoil from drag-producing vortex interactions. The end result is a net 
reduction of drag for the collective system.

Now, we demonstrate favorable strong scaling by evaluating the speedup obtained over the first 1000 time steps 
(t/(c/U∞) < 0.25) while increasing the number of processors as {4, 8, 16, 32}. Typically, the speedup is defined as the 
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Fig. 12. Comparison of total drag coefficient, cd (left) and demonstration of favorable strong scaling (right).

ratio of the time taken by one processor to that of p parallel processors. However, due to the large size of the problem, we 
instead define the speedup with respect to four processors as,

Speedup = T4

T p
× 4 (51)

where T p is the time taken by p processors. Note that we only take into account the time incurred in the online stage of our 
algorithm for calculating speedup. The scaling results are displayed in Fig. 12b by plotting the speedup versus the number 
of processors. A plot of linear (ideal) speedup is also provided for reference. A favorable strong scaling efficiency of 84.22% 
at p = 32 processors is observed where efficiency is defined as the ratio of speedup to p. While an ideal 100% efficiency 
at p = 32 is not achieved as compared to some highly scalable IB methods [34,35], the present speedup is comparable 
to that of other IB methods that scale favorably [36–39]. The strong scaling efficiency is highly dependent on the solver 
used to solve the high-dimensional fluid equations. In this work, we have utilized a highly efficient fast Fourier transform-
based linear solver using the FFTW library whose computational complexity is only N log(N). Unfortunately, as mentioned 
in Sec. 4, the distributed FFTW MPI library requires that the domain be partitioned in only one dimension irrespective 
of a two- or three-dimensional flow domain. It is well-known in parallel programming that 1D domain decomposition 
exhibits reduced scalability as compared to multi-dimensional domain decomposition. Another drawback of FFTW MPI is 
that, it does not scale ideally [40] since it requires multiple matrix transpose operations for computing a single transform 
[28], which is inefficient in parallel. Furthermore, we also employ the multi-domain approach of Colonius and Taira [20] to 
efficiently incorporate far-field boundary conditions while utilizing uniform grids required for performing Fourier transforms. 
Unfortunately, the switching between grid levels in the multi-domain approach requires significant communication of data 
across processors before any computation can be performed in that grid level. This inability to overlap communication 
and computation also hampers the parallel efficiency of our IB method. In future efforts, we will look into new solution 
strategies of the spatially discrete governing equations, leveraging for example quadtree data structures for fast solutions 
on non-uniform grids, which could remove the multi-domain bottleneck altogether and also use solvers that allow multi-
dimensional domain decomposition. Finally, for all the cases considered, a maximum of only two FSI iterations were required 
per time step.

6. Conclusions

In this manuscript, we have proposed an efficient sub-domain based IB approach that addresses the computational bottle-
neck encountered in a number of strongly and semi-strongly coupled IB methods, wherein several costly large dimensional 
systems are solved only for a small number of body variables. In our proposed approach, the fluid-structure coupling opera-
tor is constructed on a fixed set of flow sub-domain points instead of time-varying body points, allowing us to precompute a 
matrix that embeds the large dimensional system before any time advancement is performed. This precomputation process 
results in all FSI iterations being restricted to small-dimensional systems. As such, the proposed algorithm mimics favorable 
features of stationary-body IB methods, where the matrix that encodes the interface coupling can be precomputed, while 
retaining the desirable stability properties of strongly coupled FSI methods. We also formulated a parallel implementation 
of this sub-domain-based IB algorithm, and demonstrated favorable strong scaling.

Numerical experiments consisted of two dimensional flow problems involving large body displacements such as flapping 
of torsionally connected ellipses and the FSI dynamics of a passively deployable flap on an airfoil. The results obtained 
from our approach agreed well with those from the previous studies. Regarding computational efficiency, our approach 
21
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Fig. 13. Contour plots of vorticity at different time instants corresponding to the blue markers in the cd plot of Fig. 12a. Blue and yellow denote regions 
of counter-clockwise and clockwise vorticity. Here T denotes the time period of limit cycle oscillations. The black rectangular box denotes the sub-domain 
that bounds all the bodies.

outperformed an implementation of the IB method without the proposed sub-domain approach, delivering speed-ups of up 
to an order of magnitude for the presented problems. Finally, favorable strong scaling of our parallel implementation was 
demonstrated on a larger problem consisting of three airfoils in tandem, each equipped with three passively deployable 
flaps. For all the cases considered, our approach produced a convergent solution in less than three FSI iterations.
22
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Fig. 14. Schematic of a torsionally mounted body.

In this manuscript, we have developed our sub-domain based IB method on the foundation of the IB method of Goza 
and Colonius [15]. However, we emphasize that our formulation can be extended to a wide range of strongly coupled 
IB methods, provided that these methods are able to be reformulated to restrict the FSI iterations to nominally small-
dimensional systems. The proposed approach can also be expected to provide moderate speedups for non-FSI problems 
involving bodies with fully prescribed kinematics. Furthermore, we note that although the flow problems considered in this 
work consisted of a combination of rigid and torsional bodies, the formulation was developed and equally applicable for a 
more general setting that includes deformable bodies, possibly combined to create more complex structures.

Finally, we note that, in this work, we considered a simple rectangular sub-domain whose associated fluid-structure 
coupling matrix had to be precomputed only once. For future work, an adaptive algorithm can be developed wherein 
a new but compact and potentially non-rectangular sub-domain is constructed at specific time intervals. This adaptive 
approach, if optimized for the time intervals of reconstructing the sub-domain, can mitigate the storage requirements of 
the precomputed matrix without significantly compromising the computational speedups. Another avenue for future work 
involves utilizing the integrating factor approach of Liska and Colonius [41] where the columns of B can be constructed via 
convolution operations of lattice Green’s function (LGF) with the sub-domain points. This could enable an efficient solution 
procedure to the discretized differential-algebraic system of equations for the surface stress as well as facilitate a relatively 
straightforward analysis of compactness of B .
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Appendix A. Derivation of Eq. (16)–(20)

This appendix provides the derivation of the fully discretized and block LU factorized equations (16)–(20) from the gov-
erning equations (1)–(7). Firstly, the spatially discretized equations of motion for the fluid on a staggered uniform Cartesian 
grid in the vorticity-streamfunction formulation [20] are given by,

CT C ṡ +N (Cs) = CT LCs − CT ET (χ) f (A.1)

where N (·) is the discretization of the nonlinear advection term.
For the spatial discretization of the equation for the torsionally connected bodies, consider the schematic of the ith

torsional body �i
t with an undeformed (zero stress) angle θ0i from the x-axis in Fig. 14. The normal surface stress, f iN , 

exerted on the body by the fluid is given by,
23
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f iN = − f itx sin(θ0i + θ i) + f ity cos(θ
0i + θ i) = Ri

t f
i
t (A.2)

where f itx and f ity are the surface stresses in the x and y directions, respectively; f it = [ f itx, f ity]T ; and Ri
t is a matrix 

containing two blocks of diagonal matrices aligned column-wise with diagonal entries − sin(θ0i + θ i) and cos(θ0i + θ i)

corresponding to f itx and f ity , respectively. Accordingly, the moment due to surface stress can be discretized as,

−
∫
�i
t

(χ i
t − χ0i

t ) × f (χ i
t)dχ

i
t

discretize−−−−−→
nit∑
j=0

( j	s)(Ri
t f

i
t ) j	s = Q i

t R
i
t f

i
t 	s (A.3)

where nit is the number of discretized points on �i
t and Q i

t = [0, 1, . . . , nit]	s. Now, the semi-discretized equations for the 
torsional body are given by,

iit φ̇
i + citφ

i + kitθ
i = Q i

t R
i
t f

i
t 	s + git for i = 1, . . . ,mt (A.4)

where we define φi = θ̇ i .
The equation for a deformable body is discretized using a finite element procedure as described in Goza and Colo-

nius [15]. By expressing the structural variables using a set of compatible shape functions, we write the spatially discretized 
form of Eq. (4) as,

Mi
d ζ̇

i
d + Ri

d(χ
i
d) = Q i

d(g
i
d + W i

d(χ
i
d) f

i
d) for i = 1, . . . ,mt (A.5)

where f id = [ f idx, f idy]T and the specific forms of Mi
d , R

i
d , Q

i
d and W i

d containing the shape functions are described in 
reference [15]. Next, the boundary conditions on all the bodies are discretized as,

Ei
rCs = ui

r for i = 1, . . . ,mr (A.6)

Ei
tCs − RiT

t Q iT
t φi = 0 for i = 1, . . . ,mt (A.7)

Ei
dCs − ζ i

d = 0 for i = 1, . . . ,md (A.8)

Following the time discretization schemes of Goza and Colonius [15], the fully discretized equations are written as,

CT ACsn+1 + CT ET
n+1 fn+1 = r f

n (A.9)
4

	t2
iitθ

i
n+1 + 2

	t
citθ

i
n+1 + kitθ

i
n+1 − Q i

t R
i
t,n+1 f

i
t,n+1	s = rφ,i

n for i = 1, . . . ,mt (A.10)

2

	t
θ i
n+1 − φi

n+1 = rθ,i
n for i = 1, . . . ,mt (A.11)

4

	t2
Mi

dχ
i
d,n+1 + Ri

d(χ
i
d,n+1) − Q i

dW
i
d,n+1 f

i
d,n+1 = rζ,i

n for i = 1, . . . ,md (A.12)

2

	t
χ i
d,n+1 − ζ i

d,n+1 = rχ,i
n for i = 1, . . . ,md (A.13)

Ei
r,n+1Csn+1 = ui

r,n+1 for i = 1, . . . ,mr (A.14)

Ei
t,n+1Csn+1 − RiT

t,n+1Q
iT
t φi

n+1 = 0 for i = 1, . . . ,mt (A.15)

Ei
d,n+1Csn+1 − ζ i

d,n+1 = 0 for i = 1, . . . ,md (A.16)

where r f
n = ( 1

	t C
T C + 1

2C
T LC)sn + 3

2C
TN (Csn) − 1

2C
TN (Csn−1), r

φ,i
n = iit

(
4

	t2
θ i
n + 4

	t φ
i
n + φ̇i

n

)
+ cit

(
2
	t θ

i
n + φi

n

)
+ git , r

θ,i
n =

φi
n + 2

	t θ
i
n , r

ζ,i
n = Mi

d

(
4

	t2
χ i
d,n + 4

	t ζ
i
d,n + ζ̇ i

d,n

)
+ Q i

d g
i
d and rχ,i

n = ζ i
d,n + 2

	t χ
i
d,n . Following Goza and Colonius [15], an iterative 

procedure is introduced to solve the above system of equations. A guess at iteration (k) is used to compute a new guess 
at k + 1 by defining, ψ i(k+1)

n+1 = ψ
i(k)
n+1 + 	ψ i where ψ = {θ, φ, χd, ζd} and 	ψ i is assumed to be small. On substituting this 

decomposition into (A.9)-(A.16) and retaining first order terms in the increments and 	t , we get,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

CT AC 0 0 0 0 CT E(k)T
n+1

0 0 Jt 0 0 S(k)
t,n+1	s

0 −It
2
	t It 0 0 0

0 0 0 0 J (k)d S(k)
d,n+1

0 0 0 −Id
2
	t Id 0

E(k)
n+1C S(k)T

t,n+1 0 Î Td 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

sn+1
	φ

	θ

	ζd
	χd

f (k)
n+1

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r f
n +O(	t)

rφn − Jtθ
(k)
n+1 +O(	t)

rθn − 2
	t θ

(k)
n+1 + φ

(k)
n+1

rζn − J (k)d χ
(k)
d,n+1 +O(	t)

rχn − 2
	tχ

(k)
d,n+1 + ζ

(k)
d,n+1

U (k)T +O(	t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r f
n

rφ(k)

rθ(k)

rζ(k)

rχ(k)

rc(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.17)
b,n+1
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Here, we have aggregated all the individual 	ψ i into a vector 	ψ where ψ = {θ, φ, χd, ζd} and for the right-hand side 
terms. It and Id are identity operators of compatible sizes for the torsional and deformable bodies, respectively; Jt is a 
square diagonal operator of size mt with diagonal elements Jt (i,i) = 4

	t2
iit + 2

	t c
i
t + kit ; and J (k)d is a square block diagonal 

operator having md blocks where the ith diagonal block is given by J (k)d(i,i) = 4
	t2

Mi
d + K i(k)

d where K i(k)
d = dRi

d/χ |
χ=χ

i(k)
d,n+1

. 

The remaining operators are defined as S(k)
t,n+1 = [0, −Q (k)

t R(k)
t,n+1	s, 0], S(k)

d,n+1 = [0, 0, −Q (k)
d W (k)

d,n+1], Îd = [0, 0, Id], 
U (k)

b,n+1 = [ur,n+1, R
(k)T
t,n+1Q

(k)
t φ

(k)
n+1, ζ

(k)
d,n+1], where Rt , Qt , Wd and Qd are block diagonal operators with entries Ri

t , Q i
t , W i

d

and Q i
d , respectively. On performing a block LU decomposition of Eq. (A.17), we get the final system of equations given in 

Eq. (16)–(20).

Appendix B. Properties of interpolated delta functions

In immersed boundary methods, the delta function used to construct En in Eq. (24) is chosen such that it satisfies certain 
moment conditions, for instance,

∑
j

(ξi − x j)
qd(ξi − x j) =

⎧⎪⎪⎨
⎪⎪⎩

1, q = 0
0, q = 1
K , q = 2 for some constant K
0, q = 3

(B.1)

In this section we show that the interpolated delta functions that form the elements of the sub-domain-approximated 
operator PnE0 in Eq. (27) satisfy the moment conditions provided that the underlying delta function being interpolated, d(·), 
also satisfies these conditions. To simplify the analysis, we consider the delta function in x-direction only since the delta 
function in 2D is simply the outer product of delta functions in both directions. Accordingly, in the following 1D analysis, 
we use np = 2.

We begin the proof by rewriting the left hand side of the moment conditions (B.1) using our sub-domain approximation 
(27) as,

∑
j

(ξi − x j)
q

2∑
k=1

wiikd(x j − x0ik ) =
2∑

k=1

wiik

∑
j

(ξi − x j)
qd(x0ik − x j) (B.2)

Now, we note that, interpolation using the linear two-point hat function described in Sec. 3.1.2 is equivalent to performing a 
linear interpolation with np = 2 nearest neighboring points in 1D. Therefore, the location of the body point ξi can be exactly 
expressed using the neighboring sub-domain points and their corresponding linear interpolation weights as,

ξ j =
2∑

l=1

wiil x
0
il

(B.3)

The substitution of Eq. (B.3) into the right hand side of Eq. (B.2) yields,

∑
j

(ξi − x j)
q

2∑
k=1

wiikd(x j − x0ik ) =
2∑

k=1

wiik

∑
j

(
2∑

l=1

wiil x
0
il

− x j

)q

d(x0ik − x j)

=
2∑

k=1

wiik

∑
j

⎛
⎝ ∑

l={k,k′}
wiil x

0
il

− x j

⎞
⎠q

d(x0ik − x j)

(B.4)

In the above, k′ is defined as k′ = 2 when k = 1 and vice versa. On further mathematical manipulation,

∑
j

(ξi − x j)
q

2∑
k=1

wiikd(x j − x0ik ) =
2∑

k=1

wiik

∑
j

⎛
⎝ ∑

l={k,k′}
wiil x

0
il

+ wiik′ x
0
ik

− wiik′ x
0
ik

− x j

⎞
⎠q

d(x0ik − x j)

=
2∑

k=1

wiik

∑
j

⎛
⎝ ∑

l={k,k′}
wiil x

0
ik

+ wiik′ (x
0
ik′ − x0ik ) − x j

⎞
⎠q

d(x0ik − x j)

=
2∑

wiik

∑(
(x0ik − x j) + (wiik′ (k

′ − k)	x)
)q

d(x0ik − x j)

(B.5)
k=1 j
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Now, we check the individual moment conditions by substituting q = {0, 1, 2, 3} into Eq. (B.5). When q = 0, Eq. (B.5)
becomes,

∑
j

2∑
k=1

wiikd(x j − x0ik ) =
2∑

k=1

wiik

∑
j

d(x0ik − x j) =
2∑

k=1

wiik = 1 (B.6)

On going from the second to the third term above, we have used the fact that the underlying delta function d(·) satisfies 
the zeroth moment condition. Eq. (B.6) proves that the interpolated delta function satisfies the zeroth moment condition. 
Next, when q = 1, Eq. (B.5) becomes,

∑
j

(ξi − x j)

2∑
k=1

wiikd(x j − x0ik ) =
2∑

k=1

wiik

∑
j

(
(x0ik − x j) + (wiik′ (k

′ − k)	x)
)
d(x0ik − x j)

=
2∑

k=1

wiik

⎛
⎝∑

j

(x0ik − x j)d(x
0
ik

− x j) + (wiik′ (k
′ − k)	x)

∑
j

d(x0ik − x j)

⎞
⎠

=
2∑

k=1

wiik wiik′ (k
′ − k)	x = 0

(B.7)

Again, on going from the second to the third line in the above equation, we have used the fact that d(·) satisfies the zeroth 
and first moment conditions. The last line simply involves expanding the summation by noting that k′ = 2 when k = 1 and 
vice versa. Eq. (B.7) proves that the interpolated delta function satisfies the first moment condition. Next, when q = 2, Eq. 
(B.5) becomes,

∑
j

(ξi − x j)
2

2∑
k=1

wiikd(x j − x0ik ) =
2∑

k=1

wiik

∑
j

(
(x0ik − x j) + (wiik′ (k

′ − k)	x)
)2

d(x0ik − x j)

=
2∑

k=1

wiik

⎛
⎝∑

j

(x0ik − x j)
2d(x0ik − x j) +

∑
j

2(x0ik − x j)(wiik′ (k
′ − k)	x)d(x0ik − x j)

+
∑
j

(wiik′ (k
′ − k)	x)2d(x0ik − x j)

⎞
⎠

=
2∑

k=1

wiik

(
K + 0+ w2

iik′ 	x2
)

= K + 	x2wii1wii2 (B.8)

Again, on going from the second to the third line in the above equation, we have used the fact that d(·) satisfies the zeroth, 
first and second moment conditions. Eq. (B.8) proves that the interpolated delta function satisfies the second moment 
condition with second order accuracy since 0 < wii1wii2 < 1, as the individual interpolation weights are bounded and finite, 
0 < wiik < 1. Finally, when q = 3, Eq. (B.5) becomes,

∑
j

(ξi − x j)
3

2∑
k=1

wiikd(x j − x0ik )

=
2∑

k=1

wiik

∑
j

(
(x0ik − x j) + (wiik′ (k

′ − k)	x)
)3

d(x0ik − x j)

=
2∑

k=1

wiik

⎛
⎝∑

j

(x0ik − x j)
3d(x0ik − x j) +

∑
j

3(x0ik − x j)
2(wiik′ (k

′ − k)	x)d(x0ik − x j)

+
∑
j

3(x0ik − x j)(wiik′ (k
′ − k)	x)2d(x0ik − x j) +

∑
j

(wiik′ (k
′ − k)	x)3d(x0ik − x j)

⎞
⎠

=
2∑

k=1

wiik

(
0+ 3K (wiik′ (k

′ − k)	x) + 0+ (wiik′ (k
′ − k)	x)3

)
= 	x3wii1wii2(wii1 − wii2) (B.9)
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Again, on going from the second to the third line in the above equation, we have used the fact that d(·) satisfies the zeroth 
to third moment conditions and −1 < wii1wii2 (wii1 −wii2 ) < 1. Eq. (B.9) proves that the interpolated delta function satisfies 
the third moment condition with third order accuracy.

Eq. (B.6)–(B.9) prove that the interpolated delta function satisfies zeroth to third moment conditions with at least second 
order accuracy provided that the underlying delta function being interpolated satisfies these conditions. Higher order mo-
ment conditions can be proved similarly. This minimum second order accuracy is in accordance with the maximum second 
order accuracy of the immersed boundary method.

Appendix C. Convergence of the sub-domain based IB approach

In this section, we analyze the convergence properties of the two approximations involved in our proposed approach: (a) 
sub-domain approximation, E(k)

n ≈ P (k)
n E0 and (b) approximating dense B as sparse B ′ .

Firstly, we consider the sub-domain approximation, E(k)
n ≈ P (k)

n E0, where the delta functions in E(k)
n are obtained by 

interpolating the delta functions corresponding to the sub-domain points in E0. This interpolation is second order accurate 
in the sub-domain grid spacing, O((	x0)2) as mentioned in Sec. 3.1.2. Furthermore, the sub-domain grid spacing is set to 
be equal to the flow domain spacing, 	x0 = 	x (cf. Sec. 3.1.1). Therefore, the sub-domain approximation converges to true 
E(k)
n as O(	x2).
Next, we analyze the convergence of the sparsity approximation which is built upon the sub-domain approximation. The 

full matrix B can be exactly expressed as B = B ′ + �, where � is the matrix containing the eliminated elements of B after 
passing through the drop tolerance filter. The surface stress equation involving the full B (i.e. Eq. (23) substituted into Eq. 
(17)) can be expressed in compact form as, P B P T f = r, where r is a generic right hand side vector, the n and k indices are 
dropped for neatness, and the structural operators are omitted for simplicity. The residual of this equation can be written 
as,

R( f ) = P B P T − r = P B ′P T f − r + P�P T f = R ′( f ) + P�P T f (C.1)

In the above, R( f ) denotes the residual involving the sub-domain approximation only, while R ′( f ) denotes the residual that 
incorporates the sparsity approximation as well. In our proposed approach which employs both the approximations, we are 
solving for the latter residual, R ′( f ) = 0. Therefore, R( f ) can be simplified as,

R( f ) = P�P T f (C.2)

Recall that the elements of � are determined by using the drop tolerance parameter, ε . In other words, as ε → 0, � → 0. 
Therefore, the residual R( f ) associated with the purely sub-domain approximation converges to zero as ε → 0.

To summarize, the sub-domain approximation converges to true E(k)
n as O(	x2), while the added sparsity approximation 

is consistent in the sense that the residual of the surface stress equation with the sub-domain approximation converges to 
zero as ε → 0.

Appendix D. Proposed sub-domain based IB approach in primitive variables

In this section, we derive the sub-domain based IB approach that treats the fluid in primitive variables. Following the 
appendix in Goza and Colonius [15], the governing equations in the primitive variables (1)–(7) are fully discretized in space 
and time, subjected to a block-LU decomposition and an FSI iterative scheme are applied. The resulting system of equations 
is

u∗ = A−1r̃ f
n − A−1G(GT A−1G)−1(GT A−1r̃ f

n − r̃ pn ) (D.1)

p∗ = (GT A−1G)−1(GT A−1r̃ f
n − r̃ pn ) (D.2)(

E(k)
n+1A

−1(I − G(GT A−1G)−1GT A−1)E(k)T
n+1 + 2	s

	t
S(k)T
t,n+1 J−1

t S(k)
t,n+1 + 2

	t
Î Td J (k)d

−1
S(k)
d,n+1

)
f (k+1)
n+1 =

E(k)
n+1U

∗ − rc(k) + S(k)T
t,n+1

(
rθ(k) − 2

	t
J−1
t rφ(k)

)
+ Î Td

(
rχ(k) − 2

	t
J (k)d

−1
rζ(k)

) (D.3)

	θ = J−1
t

(
rφ(k) + 	sS(k)

t,n+1 f
(k+1)
n+1

)
(D.4)

	χd = J (k)d

−1 (
rζ(k) + S(k)

d,n+1 f
(k+1)
n+1

)
(D.5)

pn+1 = p∗ − (GT AG)−1GT A−1E(k)
n+1 fn+1 (D.6)

un+1 = u∗ − A−1(I − G(GT A−1G)−1GT A−1)E(k) fn+1 (D.7)
n+1
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Here, G denotes the gradient operator and the right hand side terms r̃ f
n and r̃ pn are analogous to those in Appendix A. The 

above equations are written in a similar fractional step format of the vorticity-streamfunction formulation (16)–(20). Fur-
thermore, the FSI iterations identified by the superscript (k) are applied only on the small dimensional equations (D.3)–(D.5), 
which are solved for the surface stress and body position.

Even though the surface stress equation (D.3) is small-dimensional, it contains an embedded large dimensional solve 
in the form of A−1(I − G(GT A−1G)−1GT A−1) resulting in a severe computational bottleneck similar to that discussed in 
Sec. 2.3. This bottleneck is mitigated by using the sub-domain approximation, E(k)

n+1 ≈ P (k)
n+1E0, where all the terms and 

sub-domain involved are exactly the same as that defined in Sec. 3. Now, the expensive solution procedure of solving Eq. 
(D.3) can be rewritten as,

E(k)
n+1A

−1(I − G(GT A−1G)−1GT A−1)E(k)T
n+1 ≈ P (k)

n+1

(
E0A

−1(I − G(GT A−1G)−1GT A−1)ET
0

)
P (k)T
n+1 = P (k)

n+1 B̃ P
(k)T
n+1

(D.8)

where B̃ = E0A−1(I − G(GT A−1G)−1GT A−1)ET
0 is time-invariant and generally small-dimensional, thereby allowing us to 

precompute and store B̃ once and for all. Additionally, since P (k)
n+1 is sparse, evaluation of P (k)

n+1 B̃ P
(k)T
n+1 is performed at 

minimal computational cost that scales only with the small number of body interface points.
Similar to B , B̃ can be sparsified using the drop tolerance filtering algorithm in Sec. 3.2.2. However, the value of drop 

tolerance to be used for sparsifying B̃ could be different from the suggested ε = 0.007 for the vorticity-streamfunction 
formulation and therefore, would have to be re-calibrated to strike the balance between accuracy of solutions and storage 
requirements.
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