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A B S T R A C T

Real-time coordination of distributed energy resources (DERs) is crucial for regulating the voltage profile in
distribution grids. By capitalizing on a scalable neural network (NN) architecture, one can attain decentralized
DER decisions to address the lack of real-time communications. This paper develops an advanced learning-
enabled DER coordination scheme by accounting for the potential risks associated with reactive power
prediction and voltage deviation. Such risks are quantified by the conditional value-at-risk (CVaR) using the
worst-case samples only, and we propose a mini-batch selection algorithm to address the training speed issue
in minimizing the CVaR-regularized loss. Numerical tests using real-world data on the IEEE 123-bus test case
have demonstrated the computation and safety improvements of the proposed risk-aware learning algorithm
for decentralized DER decision making, especially in terms of reducing feeder voltage violations.
1. Introduction

Rapid integration of distributed energy resources (DERs) opens up
new opportunities of flexible and adaptive support to the operations
of power distribution grids. The smart inverters of fast-acting DERs
have been popularly advocated for the feeder voltage optimization by
adjusting their reactive power outputs [1]. It is crucial to design a
scalable coordination framework for these heterogeneous DERs under
limited real-time communications available in distribution systems.

Coordinating reactive power setpoints of DERs can be viewed as an
optimal power flow (OPF) problem that requires all feeder-wide infor-
mation. To bypass the high communication overhead of a centralized
solution, several distributed and decentralized optimization algorithms
have attracted significant interest in the last years; see e.g., [2–4].
While those algorithms can greatly simplify the communication graph
to have information exchange only among neighbors or with the control
center, they still require high-rate bi-directional communications to
cope up with the fast dynamics in distribution grids. With the increasing
volume of available data, the recent trend is to leverage machine
learning (ML) tools to attain decentralized decision rules that map
from the system operating condition (OC) to the optimal decisions
[5–9]. By and large, these ML-based approaches have been designed
to reduce the sample average of prediction error, or the average loss.
Accordingly, they may fail to address the largest sample losses or worst-
case scenarios in terms of prediction error or even the violation of
voltage limits.

Our goal is to develop a risk-aware learning framework to improve
the safety of scalable decision rules developed for distribution grid
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voltage optimization. Inspired by earlier work [5–9], we design a
scalable neural network architecture such that each nodal inverter can
learn its optimal reactive power from local measurements and selected
information only. To address the aforementioned issue of optimizing
average loss only, it is possible to adopt a post-analysis approach that
reduces the worst-case errors of the resultant NN models by restricting
the input domain [10]. Alternatively, we propose to systematically
incorporating the worst-case measure into the training process by intro-
ducing a regularization term on the conditional value-at-risk (CVaR) [11]
of the predicted decisions. The CVaR metric corresponds to the average
of the largest sample losses, or the worst-case scenarios, and thus
optimizing it can improve the safety associated with the reactive power
decisions. Specifically for our voltage optimization task, we also use the
CVaR metric to quantify the worst-case voltage deviation performance.
This way, the NN design is also physics-informed by incorporating the
system-wide voltage limits; see .e.g., [12]. Notably, the CVaR metric
is defined over a subset of samples (worst ones) and thus can suffer
from the learning efficiency issue. We further propose to accelerate
the mini-batch gradient descent for NN training [13,14] by selecting
those mini-batches attaining a certain CVaR threshold. Accordingly,
gradient updates are performed only on the mini-matches of statistical
significance, thus reducing the number of epochs. Our algorithm has
effectively improved the computation time for the training process and
reduced the voltage violations based on numerical tests.

It is worth mentioning the proposed risk-aware learning framework
is very related to a recent work [6] on addressing the CVaR risk of volt-
age deviations in OPF-based NN training. While this paper incorporates
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CVaR in a stochastic optimization framework, our proposed learning
approach here directly uses the scenarios generated by OPF solutions.
Thus, the present work can be easily generalized to incorporate other
operational considerations in real-time feeder decision making. No-
tably, we also present an algorithmic solution to effectively accelerate
the NN training process.

The rest of this paper is organized as follows. Section 2 presents
the system modeling and the centralized voltage optimization problem.
In Section 3, we first formulate the risk-aware learning problem by
introducing the CVaR losses for prediction and voltage deviations. A
mini-batch selection scheme is developed to accelerate the training
process. Numerical tests using real-world data on the single-phase
equivalent of the IEEE-123 bus test case are presented in Section 4 to
demonstrate the computation and safety improvements of the proposed
algorithm. The paper is wrapped up in Section 5.

Notation: Upper (lower) boldface symbols stand for matrices (vec-
tors); (⋅)𝖳 stands for matrix transposition; ‖ ⋅ ‖2 denotes the 𝐿2-norm;
⋅ | denotes the absolute value; ∇𝑥 denotes the gradient with respect to
; 1 denotes the indicator function; and 𝟎 stands for an all-zero vector
f appropriate size.

. System modeling

Consider a radial distribution feeder consisting of (𝑁+1) buses with
bus 0 denoting the reference bus at the feeder head. For simplicity, this
work focuses on single-phase feeders, while results can be extended
to multi-phase systems following earlier approaches such as [15]. Let
vectors 𝐩 ∈ R𝑁 and 𝐪 ∈ R𝑁 collect the net active and reactive power in-
ections, respectively, at all non-reference buses. The net reactive power
onsists of DER generation 𝐪𝑔 (controllable) and load consumption 𝐪𝑐
non-flexible) such that 𝐪 ∶= 𝐪𝑔 − 𝐪𝑐 ; similarly, the net active power
njection is 𝐩 = 𝐩𝑔 − 𝐩𝑐 .

The distribution voltage optimization task aims to coordinate the
ontrollable 𝐪𝑔 from DERs to support system operations in terms of
eeder voltage regulation [2,3] or phase balance in multi-phase sys-
ems [16,17]. We formulate a general centralized problem of minimiz-
ng a system-wide operational objective in order to satisfy voltage limit
onstraints, while adhering to reactive power limits , as

= min
𝐪𝑔∈

𝑜(𝐪𝑔) (1a)

s. to 𝐠(𝐪𝑔) ≤ 𝟎 (1b)

here 𝐳 denotes the optimal value of 𝐪𝑔 by solving (1). To model the
ystem-wide power flow in (1), one can simplify the accurate nonlinear
ower flow model by adopting the linearized DistFlow (LDF) approxi-
ation [18]. The LDF model represents feeder voltage to be linear with

espect to (wrt) power injections 𝐩 and 𝐪, and has been shown very
ffective for developing algorithms of distribution monitoring [19,20]
nd voltage optimization [21,22]. The per-unit (pu) voltage deviation
rom the reference bus voltage is approximated by the LDF model as

≊ 𝐑𝐩 + 𝐗𝐪 (2)

here matrices 𝐑 ∈ R𝑁×𝑁 and 𝐗 ∈ R𝑁×𝑁 depend on the feeder
opology and line parameters.

For the system-wide objective, one can consider the feeder ohmic
oss which is quadratic wrt 𝐩 and 𝐪 [23]. This is because the line power
low under LDF equivalently aggregates the total down-stream power
njections. Thus, the objective in (1a) becomes a convex quadratic
unction of 𝐪𝑔 , given by

(𝐪𝑔) = (𝐪𝑔)𝖳𝐑𝐪𝑔 − 2(𝐪𝑐 )𝖳𝐑𝐪𝑔 . (3)

n regard to the constraint set , each node 𝑛 has a reactive power limit
epending on the apparent power rating and active power output of its
wn inverter. Collectively, the reactive power limit is set to be

∶= {𝐪𝑔 ∶ |𝑞𝑔| ≤ 𝑞𝑔 , ∀𝑛 = 1,… , 𝑁}. (4)
2

𝑛 𝑛 n
ote that non-controllable nodes can be easily included too by setting
he corresponding limits 𝑞𝑔𝑛 = 0. The inequality constraint in (1b) limits
ll non-reference bus voltage deviations 𝐯 to be within a fixed range
𝐯, 𝐯], by

(𝐪𝑔) =
[

𝐗𝐪𝑔 + 𝐡(𝐲) − 𝐯
−𝐗𝐪𝑔 − 𝐡(𝐲) + 𝐯

]

≤ 𝟎 (5)

where 𝐡(𝐲) = 𝐑(𝐩𝑔 − 𝐪𝑐 ) − 𝐗𝐪𝑐 with 𝐲 ∶= [𝐩𝑐 ; 𝐩𝑞 ; 𝐪𝑐 ] capturing
all system-wide inputs to problem (1) for determining the feeder’s
operating condition (OC).

Clearly, the voltage optimization problem (1) is a linearly-
constrained quadratic program (LCQP) which can be efficiently solved
given the full feeder model and system-wide OC. We will introduce a
risk-aware learning framework to attain scalable and safe decision rules
for real-time DER operations under minimal system-wide information.
Before that, the following remark discusses the generalizability of the
presented models and formulation for voltage optimization.

Remark 1 (Multi-Phase and Nonlinear Models). The optimization prob-
lem (1) can be extended to multi-phase systems by using the general
multi-phase LDF model; see e.g., [15]. Basically, the network matrices
𝐑 and 𝐗 are formed to capture phase-to-phase connections in multi-
phase lines, in a similar fashion to the single-phase case. In addition,
the problem (1) can be formulated using different types of linearized
approximation as well, such as the fixed-point linearization in [24].
Last, one can formulate the problem using nonlinear ac power flow
model too, thanks to the popular convex relaxation based approaches
[25,26]. Regardless of the underlying problem modeling, the proposed
learning-enabled framework can work by using any data samples of
{𝐲, 𝐳} generated by solving the specific voltage optimization problem.

3. Risk-aware learning

Machine learning (ML) techniques have been recently utilized to
attain scalable solutions such that individual nodes can form their own
optimal decisions using minimal real-time information. The centralized
problem (1) is efficiently solvable but requires a wide deployment
of communication resources to connect the DERs. Lacking real-time
communications, each node 𝑛 may resort to a decentralized architecture
by forming its optimal 𝑧𝑛 from local measurements and possibly lim-
ited information elsewhere. Recent work [5,6] has proposed to obtain
decentralized decision rules through supervised learning approaches
such as kernel learning and neural networks (NNs). With a pre-trained
model, these approaches have extremely high computation efficiency
during real-time implementation. Nonetheless, most ML-enabled ap-
proaches for end-to-end distribution system learning aim to minimize
the average losses in predicting the optimal 𝐳. This may fall short in
educing the statistical risks of the resultant decision rules. We consider
risk-aware learning framework to address this issue of ML-based DER
perations.

Specifically, the key of the ML-based solutions is to obtain the
redictive model 𝛷(𝐲) → 𝐳 from the OC 𝐲 to the optimal 𝐳, such
hat it follows a pre-specified scalable structure. Considering fully local
ecision rules for example, we can enforce the model {𝛷𝑛(⋅)}𝑛, one
or each node 𝑛, to use local measurements only as the input features;
.e., the nodal prediction is 𝑧̂𝑛 = 𝛷𝑛(𝐲𝑛) = 𝛷𝑛([𝑝

𝑔
𝑛 , 𝑝𝑐𝑛, 𝑞

𝑐
𝑛]). Local input 𝐲𝑛

can also include other measurements such as nodal voltage or current
magnitude. If certain real-time communications such as broadcasted
messages from the feeder head or other key nodes are possible, then
𝐲𝑛 can also include the aggregated power flow or current magnitude in
these feeder locations. This ML-enabled framework is very scalable to
large networks and flexible to varying communication scenarios.

To construct the individual mapping 𝛷𝑛(⋅), one can adopt the NN
odel known for its superior nonlinear approximation capability [27].
s a multi-layer perceptron (MLP), the NN model is basically a layered

etwork with a linear transformation followed by nonlinear activation
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𝛾

per layer. Per node 𝑛, using the input to the first layer 𝐲0𝑛 as a vector
embedding of 𝐲𝑛, each layer 𝑡 is given by

𝐲𝑡+1𝑛 = 𝜎(𝐖𝑡
𝑛𝐲

𝑡
𝑛 + 𝐛𝑡𝑛), ∀𝑡 = 0,… , 𝑇 − 1 (6)

where 𝐖𝑡
𝑛 and 𝐛𝑡𝑛 are parameters to be learned, while 𝜎(⋅) is the

nonlinear activation such as ReLU. Thus, the training processes is
parallelizable as each mapping 𝛷𝑛(⋅) can be obtained individually. For
simplicity, one can set the parameters to be the same for a subset of
nodes. For example, all the DER nodes within a feeder, or those DER
nodes belonging to the same lateral, can use the same set of parameters.
This way, the nodes with the same parameters will be jointly trained by
a single MLP. For notational simplicity, the rest of paper presents the
individual NN training with 𝝋 collecting all the learnable parameters
{𝐖𝑡

𝑛,𝐛
𝑡
𝑛}. Hence, there is a one-to-one mapping between the model 𝛷(⋅)

and parameter 𝝋, and the goal becomes to obtain the NN parameter 𝝋.
Given the scalable structure of 𝛷(⋅) ∶= {𝛷𝑛(⋅)}, a centralized entity

can learn 𝝋 through offline training using 𝐾 data samples. Each sample
𝑘 consists of all available measurements in 𝐲𝑘 as the input, and the
corresponding optimal 𝐳𝑘 as the output. For simplicity, the rest of
paper will use 𝑘 to index samples. The sample inputs can be from
historic measurements, or the latest load forecasting, while the outputs
are obtained by solving (1) for each input scenario. To learn 𝝋, a
popular metric is to minimize the average loss in predicting 𝐳 over all
𝐾 samples, as given by

min
𝝋

𝑓 (𝝋) ∶= 1
𝐾
∑𝐾

𝑘=1 𝓁
(

𝛷(𝐲𝑘;𝝋), 𝐳𝑘
)

(7)

where 𝓁(⋅) denotes the loss function for each sample’s predicting value
based on the NN parameter 𝝋. Under the 𝐿2-norm based quadratic loss
given by

𝓁
(

𝛷(𝐲𝑘;𝝋), 𝐳𝑘
)

= ‖

‖

𝛷(𝐲𝑘;𝝋) − 𝐳𝑘‖‖
2
2 ,

we form the mean-squared error (MSE) of prediction in (7). Other error
norms such as the 𝐿1-norm or Huber loss can be used as well. Due to the
nonlinearity of 𝛷 wrt 𝝋, the nonconvex problem (7) is typically min-
imized through gradient descent iterations that use backpropagation
to efficiently compute the gradient. From a statistical perspective, this
average loss metric approaches the expected loss if 𝐾 is large enough.
As detailed soon in Remark 2, it does not capture the dispersion of
losses or represent the worst-case scenarios such as the maximum loss.
As shown by Fig. 1, the tail of the sample loss distribution is not directly
dependent on the average value, and thus minimizing the average loss
does not guarantee the reduction of worst-case prediction losses. Under
a small 𝐾 or high variability of the samples, the worst-case prediction
losses can be very large, even if the average is reasonably small. For
the voltage optimization problem, these worst-case scenarios may lead
to high mismatch in 𝐪𝑔 prediction or even severe violations of voltage
limits.

To tackle this issue, we propose to develop a risk-aware learning
approach by including other statistical measures to improve the safety
guarantees of the resultant solutions. To quantify the risk of the sample
distribution, one possible measure is the value-at-risk (VaR), popularly
used in finance for portfolio optimization [11,28]. For a given signif-
icance level 𝛼 ∈ (0, 1), the 𝛼-VaR represents the threshold value for
the (1 − 𝛼)-quantile of a random distribution, as indicated by the blue
dashed line of Fig. 1. Hence, reducing the VAR can directly mitigate the
worst-case sample losses, but unfortunately is difficult to optimize by
using samples due to its lack of smoothness and convexity [11]. Instead,
we will consider the conditional value-at-risk (CVaR), a risk measure
more widely used as in robust optimization and safe reinforcement
learning problems; see e.g., [29–31]. Intuitively, the 𝛼-CVaR represents
the average over the top 𝛼𝐾 sample errors, which is thus an upper
bound of 𝛼-VaR, as shown by Fig. 1. Given 𝝋, the 𝛼-CVaR is analytically
formed by all 𝐾 samples, as

𝛾𝛼(𝝋) ∶=
1

𝐾
∑

𝓁(𝛷(𝐲𝑘;𝝋), 𝐳𝑘) × 1{𝓁(𝛷(𝐲𝑘;𝝋), 𝐳𝑘) ≥ 𝑣} (8)
3

𝛼𝐾 𝑘=1
Fig. 1. Illustration of the 𝛼-VaR and 𝛼-CVaR as compared to average loss.

where 𝑣 is the 𝛼-VaR while 1(⋅) denotes the indicator function. The
CVaR metric can be easily computed after using bisection-typed line
search to find 𝑣. Interestingly, it is equivalent to the following opti-
mization problem, as shown by [11]

𝛾𝛼(𝝋) ∶= min
𝛽∈R

{

𝛽 + 1
𝛼𝐾

𝐾
∑

𝑘=1

[

𝓁
(

𝛷(𝐲𝑘;𝝋), 𝐳𝑘
)

− 𝛽
]

+

}

(9)

where the positive projection operator [𝑎]+ ∶= max{0, 𝑎}. This is
because the optimal 𝛽 to problem (9) turns out to be the 𝛼-VaR. The
objective function of (9) is convex and piecewise-linear wrt 𝛽. Note
that if 𝓁

(

𝛷(𝐲𝑘;𝝋), 𝐳𝑘
)

is linear wrt 𝝋, then (9) can be recast as a
convex linear program by forming the epigraph problem and expressing
{

𝓁
(

𝛷(𝐲𝑘;𝝋), 𝐳𝑘
)

− 𝛽
}𝐾
𝑘=1 as linear inequality constraints. The convexity

property makes CVaR a popular risk measure, while its gradient estima-
tion is also possible. Here, we remark on the generalizability of using
sample-based empirical approximation.

Remark 2 (Empirical Versus Expected). Both the average loss and CVaR
in (7)–(8) are the empirical approximations to their expected-value
counterparts, as given by

𝑓 (𝝋) = E(𝐲,𝐳)
[

𝓁 (𝛷(𝐲;𝝋), 𝐳)
]

,

̌𝛼(𝝋) = E(𝐲,𝐳)

[

𝓁 (𝛷(𝐲;𝝋), 𝐳) ||
|

𝓁 (𝛷(𝐲;𝝋), 𝐳) ≥ 𝑣̌
]

where 𝑣̌ denotes the 𝛼-VaR of the underlying distribution. Without
knowing the actual distribution, the expected terms are approximated
using the sample-based metrics. It is well known such approximation
asymptotically approaches the expected value as 𝐾 → ∞, and similarly
for their respective minimizers. For finite 𝐾, it is also possible to
bound the generalization error, or the difference between the minimiz-
ers to empirical and expected losses using the so-termed Rademacher
complexity defined over the given samples [32]. More recently, the
generalization bounds for the empirical CVaR minimizer have been
similarly analyzed in [33], showing a fixed (slightly higher) scaling of
the Rademacher complexity. Thus, optimizing the empirical CVaR can
achieve guaranteed performance in obtaining the desiderata minimizer
to 𝛾̌𝛼(⋅).

In addition to predicting 𝐳, we can also represent the risk associated
voltage violation wrt the constraint (5). Similarly, we can define the
voltage-related CVaR loss as

𝛾𝑣𝛼 (𝝋) ∶=
1
𝛼𝐾

𝐾
∑

𝑘=1
|𝑣𝑛(𝛷(𝐲𝑘;𝝋))| × 1{|𝑣𝑛(𝛷(𝐲𝑘;𝝋))| ≥ 𝑣} (10)

where the 𝛼-VAR threshold 𝑣 is constructed by the voltage samples
corresponding to the predicted reactive power decision 𝛷(𝐲𝑘;𝝋). Hence,
this loss captures the highest voltage deviations based on the 𝐪𝑔 predic-
tion. As voltage depends on the full system input [cf. (2)], minimizing
the voltage risk would require the joint training of nodal prediction
models {𝛷 (⋅)}.
𝑛
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We consider a general risk-regularized formulation for learning
𝛷(⋅;𝝋), as

min
𝝋

𝑓 (𝝋) + 𝜆𝛾𝛼(𝝋) (11)

here 𝜆 > 0 is a regularization hyperparameter. The CVaR term can
orrespond to either the risk of predicting 𝐳 in (8) or the voltage risk in
10), or the combination of the two. This risk-aware learning approach
lso includes the CVaR-only minimization as a special case with 𝜆 →
. Nonetheless, the hyperparameter 𝜆 nicely balances between the

isk reduction and learning efficiency. Note that the CVaR function
n (9) is estimated over 𝛼𝐾 samples, which is much smaller than 𝐾.
ccordingly, it can incur high variance of estimation error under a
mall 𝛼 value. Hence, purely minimizing CVaR may significantly affect
he learning efficiency and potentially lead to much higher expected
oss due to the trade-off between mean and variance.

.1. Accelerated learning via mini-batch selection

To solve the risk-aware learning problem (11), we adopt the mini-
atch gradient descent method [13,14], which is widely used in prac-
ice for reducing computation complexity and resources. Per iteration
, one can randomly select a subset of samples in 𝑖 ⊂ {1,… , 𝐾}, and

update the NN parameters according to this mini-batch as

𝝋𝑖+1 = 𝝋𝑖 − 𝜂𝜑
(

∇𝑓 (𝝋𝑖) + 𝜆∇𝛾𝛼(𝝋𝑖)
)

(12)

where 𝜂𝜑 is a positive step-size (or, learning rate) that is chosen
to be sufficiently small for convergence. The step-size can also be
adaptively learned for better convergence rates, using e.g., the ADAM
method [34]. Computing the gradient of the average loss in (7) is
the backbone of regular NN training. Similar to the average loss, its
gradient can be formed by averaging over the mini-batch 𝑖, as

∇𝑓 (𝝋𝑖) = 2
|𝑖

|

∑

𝑘∈𝑖
(𝛷(𝐲𝑘;𝝋𝑖) − 𝐳𝑘)⊤∇𝛷(𝐲𝑘;𝝋𝑖), (13)

by evaluating the sample gradient ∇𝛷(𝐲𝑘;𝝋𝑖) using the backpropaga-
tion algorithm.

Unfortunately, the gradient for CVaR requires the knowledge of
the actual distribution of the sample loss 𝓁

(

𝛷(𝐲𝑘;𝝋), 𝐳𝑘
)

based on
𝝋𝑖 [35], with the worst samples depending on 𝝋 in a non-smooth
fashion. Hence, a naive approach by truncating the gradient estimates
for the worst samples may not be numerically stable. One possible
solution is to use the equivalent CVaR definition in (9), which does not
explicitly use the worst samples. This way, 𝛽 should be included as an
optimization variable and updated per iteration 𝑖, as well. In addition,
by approximating [𝑎]+ using the smooth softplus function log(1 + 𝑒𝑎) as
in [36], one can use the gradient ∇𝑎 log(1+ 𝑒𝑎) = 1∕(1+ 𝑒−𝑎) to evaluate

∇𝛾𝛼(𝝋𝑖) = 2
𝛼|𝑖

|

∑

𝑘∈𝑖
(𝛷(𝐲𝑘;𝝋𝑖) − 𝐳𝑘)⊤∇𝛷(𝐲𝑘;𝝋𝑖)

1
1 + exp(−‖𝛷(𝐲𝑘;𝝋𝑖) − 𝐳𝑘‖22 + 𝛽𝑖)

, (14)

In addition, the gradient for 𝛽𝑖 can be formed to update the auxiliary 𝛽
variable. Similar to (13), this smooth CVaR gradient update can be im-
plemented using the backpropagation algorithm. In the numerical tests
later on, we will directly use the Pytorch library in Python that directly
implements backpropagation along with automatic differentiation (AD)
to compute the gradient for CVaR loss.

Notably, the use of mini-batch 𝑖 may make the learning efficiency
ssue more evident for the computation of CVaR’s gradient. This is
ecause by randomly selecting a subset of samples, the worst-case
amples may not be evenly represented by every mini-batch. This is
known issue for risk-aware learning. Recently, [37] has proposed an

daptive sampling approach that selects data points more likely to be
he worst cases for computing the gradient for CVaR.

Inspired by this idea, we propose a mini-batch selection scheme for
ccelerating the learning process under CVaR loss. Intuitively, for a
4

mini-batch 𝑖 with very small CVaR, it implies that the selected samples
n 𝑖 do not well represent the worst-case scenarios of the full dataset.
herefore, this mini-batch could be disregarded in the gradient descent
pdate for 𝝋. This mini-batch selection is simple to implement, and
et our numerical tests have shown that it can effectively reduce the
umber of gradient updates and training time. The algorithmic steps
re tabulated in Algorithm 1. In practice, Algorithm 1 is performed
equentially in each epoch while multiple mini-batches can be gener-
ted simultaneously. Very recently, CVaR based risk-aware learning
as been shown to potentially attain linear convergence rates even for
on-convex loss functions [38]. We plan to pursue the design of NN
rchitecture that could improve the convergence rate analysis in future.

Algorithm 1 Mini-batch Selection for Learning (11)

1: Input: Full data {(𝐲𝑘, 𝐳𝑘)}𝐾𝑘=1, the NN architecture 𝛷(⋅;𝝋), the hyper-
parameters 𝛼, 𝜆, and 𝜂𝜑, as well as an iteration stopping threshold
𝜖.

2: Output: The NN parameters in 𝝋.
3: Initialize: Set the iteration index 𝑖 = 0 with the initial 𝝋0 and CVaR

threshold 𝛾𝛼 .
4: while ‖𝝋𝑖 − 𝝋𝑖−1

‖2 ≥ 𝜖 do
5: Generate the mini-batch 𝑖 and compute its CVaR.
6: if CVaR(𝑖)≥ 𝛾𝛼 then
7: Update the CVaR threshold 𝛾𝛼 ← CVaR(𝑖).
8: Calculate the gradients (13)–(14) over 𝑖 using backpropa-

gation.
9: Update 𝝋𝑖+1 as in (12).

10: Update 𝑖 ← 𝑖 + 1.
11: end if
12: end while
13: Return: the NN model in 𝛷(⋅;𝝋𝑖)

4. Numerical validations

We have tested on the single-phase equivalent of the IEEE 123-
bus test case [39] to demonstrate the effectiveness of the proposed
risk-aware learning algorithm in mitigating the risks of 𝐪𝑔 prediction
and voltage violation. The test system consists of 90 load nodes with
nodes 66, 85, 96, 114, 151, and 250 equipped with inverter-based PV
generation. Real-world active power data for PV output 𝐩𝑔 and non-
PV loads 𝐩𝑐 at the minute-level resolution has been obtained from the
Pecan Street Dataport [40]. The reactive power 𝐪𝑐 for the loads was
synthetically generated by randomly selecting a power factor in the
range [0.9, 0.95]. The optimal reactive power 𝐳 in (1) has been solved
for each sample system OC 𝐲 using the MATLAB® R2020b. 10 days of
data have been used to generate 14,400 samples. Samples from the first
8 days are used to train the NN models in a batch setting, from which
each mini-batch is randomly generated. The remaining 2 days are used
to test the trained models in predicting the reactive power decisions
from nodal measurements.

To attain scalable decision rules, all six PV nodes use the same
NN model with the input 𝐲𝑛 consisting of p/q data locally and from
the feeder head’s broadcast. To allow for efficient training, a simple
graph NN model with the graph filter being an identity matrix (e.g., no
information sharing among nodes) [41] and relu activation function
has been used to set up 𝛷(⋅) for this local architecture.

To evaluate the performance of the proposed algorithm, we have
considered three loss objectives: (i) the (risk-neutral) MSE-only loss
(7) for predicting 𝐪𝑔 ; (ii) the risk-regularized MSE (11) with CVaR on
the error in predicting 𝐪𝑔 , denoted as CVaR(qg); (iii) and the risk-
regularized MSE with CVaR on both 𝐪𝑔 prediction error and voltage
deviation, denoted as CVaR(qg,dv). The CVaR parameter 𝛼 = 0.2
has been picked. For both CVaR-based risk-aware objectives, we have

compared Algorithm 1 with the default mini-batch based algorithm.
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Fig. 2. Test Case 1: Comparisons of the three NN training approaches in terms of (top)
nodal error in predicting 𝑞𝑔𝑛 (mean ± standard deviation) and (bottom) the distribution
of voltage deviations based on the training results.

Table 1
Computation time and error performance in Test Case 1.

Loss obj. Epoch [s] Total [s] 𝑞𝑔 error Max 𝐯

MSE 0.52 46.48 6.62% 5.65%
CVaR(qg) 1.07 38.70 6.78% 5.57%
CVaR(qg)+Alg 1 0.61 35.63 6.97% 5.64%

These algorithms have been implemented using the PyTorch library and
tested on Google Colaboratory using the NVIDIA Tesla P100 GPU for
training acceleration. All models converged in the training process, and
the same convergence criterion for the loss is applied for all test cases.
All results presented here have used the test set to generate the error
performance.1

Test Case 1: We first compare the training objectives (i) MSE and
(ii) CVaR(qg) to demonstrate the benefits of incorporating the CVaR
loss for predicting 𝐪𝑔 , while the CVaR(qg) has also been implemented
by the proposed Algorithm 1. Fig. 2 and Table 1 list the training time
and test error performances. Fig. 2 plots the nodal prediction error
(top) and the corresponding distribution of voltage deviations (bottom).
In general, the error performance in both 𝐪𝑔 prediction and voltage
deviation is very close among the three methods, with the voltage
distribution very similar to that of the optimal decisions. The CVaR
loss has slightly increased the prediction error, also confirmed by the
percentage prediction error and maximum voltage deviation in Table 1.
This change is because the task of predicting 𝐪𝑔 has been very accurate
using the input features to the NN training. Interestingly, although the
CVaR loss increases the average computation time per epoch, Table 1
shows that this regularization actually speeds up the overall training
process as comparing to the MSE loss. More importantly, the proposed
Algorithm 1 has attained the expected CVaR error performance while
reducing the computation time for each epoch (by over 40%) and the

1 The codes and results are available at: https://github.com/ShaohuiLiu/
RiskAwareLearning_VoltageOpt_DistGrid.
5

Fig. 3. Test case 2 with CVaR regularization on both 𝐪𝑔 and voltage deviation 𝐯:
Comparison of the NN-based decentralized controller trained using pure MSE loss, the
CVaR-regularized formulation as well as the CVaR-regularized controller trained using
CVaR-based mini-batch selection algorithm on 𝐪𝑔 in terms of (top figure) predicting 𝐪𝑔
(mean ± standard deviation) and (bottom) the resulting histogram of voltage deviations.

Table 2
Computation time and error performance in Test Case 2.

Loss obj. Epoch [s] Total [s] 𝑞𝑔 error Max 𝐯

MSE 0.54 44.89 4.21% 5.65%
CVaR(qg,dv) 0.77 31.73 10.93% 5.27%
CVaR(qg,dv)+Alg 1 0.51 25.93 4.82% 5.28%

total training time. Thus, the proposed Algorithm 1 has attained faster
learning speed for predicting 𝐪𝑔 .

Test Case 2: We further incorporate the CVaR loss associated with
voltage deviation by comparing the training objectives (i) MSE and (iii)
CVaR(qg,dv). Fig. 3 and Table 2 list the updated training time and test
error performance for this comparison. Notably, Fig. 3 demonstrates
that the CVaR loss introduces additional difficulty to optimize, leading
to higher nodal prediction error over the MSE one. Thanks to the
proposed acceleration scheme, Algorithm 1 has significantly mitigated
the error bias issue by using more statistically important mini-batches.
More importantly, using the additional voltage-risk (10), the proposed
method can reduce the maximum voltage deviation by around 7% over
the MSE one, as shown in Table 2. This is more evident in Fig. 3
where the worst-case voltage deviations (over 0.05) are effectively
reduced in frequency thanks to the CVaR regularization on the worst-
case voltage. Thus, the voltage-based CVaR metric is especially useful
for improving the safety of the resultant decision rules. In addition,
the training time improvement is more significant in this test case,
with the total training time reduced by over 40% from the MSE one.
Hence, the proposed risk-constrained learning framework for designing
decentralized controllers has shown to be effective in attaining safe
decision making for DERs to perform voltage optimization. To sum up,
the proposed CVaR regularization and mini-batch selection scheme can
effectively improve the training speed, while incorporating the voltage
risk can help mitigate the worst-case voltage deviations attained by the
NN-based decision rules.

https://github.com/ShaohuiLiu/RiskAwareLearning_VoltageOpt_DistGrid
https://github.com/ShaohuiLiu/RiskAwareLearning_VoltageOpt_DistGrid
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5. Conclusions and future work

This paper developed a risk-aware learning framework for attaining
scalable decision rules in the distribution grid voltage optimization
problem. For learning the optimal reactive power decision rules using
local data, we propose to account for the worst-case scenarios by con-
sidering the CVaR losses associated with prediction error and voltage
deviation. To solve the resultant risk-regularized problem, we develop
a mini-batch gradient descent algorithm by judiciously selecting the
mini-batches to accelerate the training process. Numerical tests using
real-world data have demonstrated the training accelerations by using
the proposed mini-batch selection algorithm. In addition, the benefits of
using voltage-associated risk have been validated in terms of mitigating
the worst-case voltage deviations.

Several interesting future directions open up for this work. We are
currently investigating the convergence properties of optimizing CVaR
loss. In addition, it is interesting to incorporate the graph structure
of distribution grids to generalize the scalable NN architecture and to
investigate the effects of system topology on our proposed approach.
Last, the proposed risk-aware learning framework can be extended
to optimize active power resources and also dynamical DERs such as
energy storage.
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