
J. Fluid Mech. (2020), vol. 897, R1, doi:10.1017/jfm.2020.409

journals.cambridge.org/rapids

Leveraging reduced-order models for state
estimation using deep learning

Nirmal J. Nair1,† and Andres Goza1

1Department of Aerospace Engineering, University of Illinois at Urbana–Champaign,
Urbana IL 61801, USA

(Received 22 December 2019; revised 25 February 2020; accepted 20 May 2020)

State estimation is key to both analysing physical mechanisms and enabling
real-time control of fluid flows. A common estimation approach is to relate sensor
measurements to a reduced state governed by a reduced-order model (ROM). (When
desired, the full state can be recovered via the ROM.) Current methods in this
category nearly always use a linear model to relate the sensor data to the reduced
state, which often leads to restrictions on sensor locations and has inherent limitations
in representing the generally nonlinear relationship between the measurements and
reduced state. We propose an alternative methodology whereby a neural network
architecture is used to learn this nonlinear relationship. A neural network is a
natural choice for this estimation problem, as a physical interpretation of the reduced
state–sensor measurement relationship is rarely obvious. The proposed estimation
framework is agnostic to the ROM employed, and can be incorporated into any choice
of ROMs derived on a linear subspace (e.g. proper orthogonal decomposition) or a
nonlinear manifold. The proposed approach is demonstrated on a two-dimensional
model problem of separated flow around a flat plate, and is found to outperform
common linear estimation alternatives.
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1. Introduction

In fluid dynamics, the goal of state estimation (SE) is to accurately estimate
the instantaneous flow field using a set of limited sensor measurements. Achieving
this goal can provide insights into key physics and facilitate the prediction and
control of flows in various engineering applications. In many problems where SE
is of interest, a reduced-order model (ROM) of the high-dimensional system is also
typically available. Accordingly, a class of SE strategies that leverage this low-order
representation have emerged – that is, estimation is done on a reduced state obtained
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from the ROM (the full state can be recovered via the ROM when desired). In this
article, we focus on such methods which are particularly promising for real-time
control applications. We note in passing that ROM-based SE approaches are not the
only options; many successful SE methods do not rely on a low-order representation
of the flow state. Examples include sparse identification using SINDy (Loiseau, Noack
& Brunton 2018), identifying problem-specific parameters via an ensemble Kalman
filter (Darakananda et al. 2018) or convolutional autoencoder (Hou, Darakananda &
Eldredge 2019), or SE using a shallow decoder (Erichson et al. 2019). However, it
may be computationally prohibitive to integrate these SE approaches into ROMs due
to an intermediate step that involves the high-dimensional fluid state.

In most model order reduction approaches, the dynamics of the high-dimensional
state are projected onto a low-dimensional linear subspace. A number of bases for this
subspace have been developed, e.g. proper orthogonal decomposition (POD) (Lumley
1967), dynamic mode decomposition (Schmid 2010) and balanced POD (Willcox &
Peraire 2002). More recently, nonlinear ROMs have been developed that utilize local
bases instead of a global basis (Amsallem, Zahr & Farhat 2012), or a global nonlinear
manifold constructed using autoencoders from deep learning (Lee & Carlberg 2019;
Otto & Rowley 2019).

Estimation of the reduced state derived from ROMs can be broadly divided into
two categories: intrusive and non-intrusive. Intrusive SE models such as Kalman
filtering (Kalman 1960) and particle filtering (Gordon, Salmond & Smith 1993)
rely on an observer dynamical system to predict the state (which is later updated
based on observed data). These data-assimilation approaches have been coupled with
POD-based ROMs on various flow problems (Tu et al. 2013; Kikuchi, Misaka &
Obayashi 2015). On the other hand, non-intrusive methods are model-free and can be
further classified into library- and non-library-based approaches.

In library-based approaches, the sensor measurements are approximated with the
same library that is used for the ROM (e.g. obtained from POD modes (Bright, Lin
& Kutz 2013) or the training data itself (Callaham, Maeda & Brunton 2019)). The
resulting optimization problem can be solved in the `1 norm to promote sparsity
(Candes & Tao 2006). Alternatively, the reduced state can be estimated in the `2
norm, termed gappy-POD (Everson & Sirovich 1995). To overcome ill-conditioning
and overfitting in this `2 setting, sensor locations can be chosen through greedy
(Clark et al. 2018), optimal (Brunton et al. 2013) or sparse (Sargsyan, Brunton &
Kutz 2015) sensor placement algorithms, which can outperform `1-based approaches
(Manohar et al. 2018). However, the need for problem-specific sensor locations in
this estimation framework limits its flexibility.

Non-library-based approaches, on the other hand, provide an empirically determined
map between the measurements and reduced state. This alleviates restrictions on
sensor locations and ill-conditioning inherent to library-based methods. One example
is linear stochastic estimation (LSE), which provides a linear map through an `2
minimization of available data (Adrian 1975). Although traditional LSE relates sensor
measurements to the high-dimensional state, recent variants estimate the reduced
state (Taylor & Glauser 2004; Podvin et al. 2018). Quadratic stochastic estimation
(Murray & Ukeiley 2007) provides a specific nonlinear extension to LSE. However,
for complex fluid flow problems, the nonlinear relationship between the sensor
measurements and the reduced state is generally unknown, and a more flexible
framework is necessary.

In this work, we model this nonlinear relationship using neural networks. Neural
networks are a natural candidate for this aim, as they have been posited to act as high-
dimensional interpolators for function approximation (Mallat 2016; Brunton, Noack &
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Koumoutsakos 2020). This approach allows for a lower number of sensors and greater
flexibility in sensor locations compared with its linear counterparts. We demonstrate
the efficacy of our approach on a two-dimensional model problem of separated flow
past a flat plate, and compare results to those obtained via gappy-POD and LSE.
While our results on the model problem are obtained using a POD-based ROM, we
emphasize that our formulation is agnostic to the ROM, and can be incorporated into
either linear or nonlinear ROMs.

2. State estimation: ROM-based framework and prior work

2.1. ROM-based state estimation framework
Consider the dynamical system resulting from the semi-discretization of partial
differential equations such as the Navier–Stokes equations:

ẇ= f (w, t;µ), w(tn;µ)=wn(µ), (2.1a,b)

where w(t; µ) ∈ RNw represents the high-dimensional state that depends on time
t ∈ [0, tmax] and a vector of Nd parameters µ ∈ RNd consisting of, for instance,
Reynolds number, angle of attack, Mach number, etc. The nonlinear function f (w, t;µ)
governs the dynamics of the state w(t; µ). Provided that one has an estimate of an
instantaneous state wn(µ) at an arbitrary time tn, the initial value problem (2.1) can
be used to determine wn+i(µ) for i = 1, 2, . . . . We refer to (2.1) as the full-order
model (FOM).

We consider the scenario where a reduced-order model (ROM) of (2.1) is available.
In this case, the high-dimensional state w(t;µ) is approximated on a low-dimensional
manifold as

w(t;µ)≈wr(t;µ)=Φ(a(t;µ)), (2.2)

where Φ :RNk 7→RNw denotes the nonlinear manifold, a(t;µ)∈RNk is the reduced state
on this manifold, and Nk� Nw is the dimension of the reduced state. To facilitate a
clean presentation of the ROM, we assume that Φ(a) is continuously differentiable
such that Υ (ȧ)= Φ̇(a) for some Υ :RNk 7→RNw . Substituting the ROM approximation
(2.2) in (2.1), and projecting the resulting equation onto a test manifold Λ :RNw 7→RNk

such that ΛΥ is injective, yields

ȧ=Ψ (f (Φ(a), t;µ)), a(tn;µ)= an(µ), (2.3a,b)

where Ψ (·) = (ΛΥ )−1
◦ Λ(·) and an(µ) is the initial condition at time instant tn for

the new initial value problem (2.3). In the case of Galerkin projection, where Φ and
Λ=ΦT are linear and orthogonal, Ψ =ΦT.

Now, the original SE goal of estimating the instantaneous high-dimensional state
wn(µ) reduces to estimating the lower-dimensional state an(µ). That is, the SE
problem amounts to identifying a map G :RNs 7→RNk between the sensor measurements
and the reduced state such that an

= G(sn), where sn(µ) ∈ RNs denotes the sensor
measurements at time instant n, and Ns is the number of sensors in the flow field.
A schematic of the ROM-based SE framework described here is displayed in figure 1.

2.2. Prior work: linear estimation models
The traditional approach of identifying the map G is given by gappy-POD (Everson
& Sirovich 1995). In this approach, Φ is restricted to be linear and the sensors
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FIGURE 1. Schematic of the ROM-based SE framework, which employs a low-
dimensional representation Φ of the high-dimensional state wn. Here G maps sensor
measurements sn to the reduced state an. In the proposed approach described in § 3, G
is nonlinear and constructed from a neural network (as pictured). For traditional linear
estimation models described in § 2.2, G represents a real-valued matrix and the pictured
neural network is no longer valid.

directly measure the high-dimensional state at Ns < Nw flow locations, such that
sn(µ) = Cwn(µ) ≈ CΦan(µ). The matrix C ∈ RNs×Nw contains 1 at measurement
locations and 0 at all other locations. The reduced state an is obtained by the
minimization problem:

an
= arg min

ân
‖sn
− CΦân

‖
2
2. (2.4)

The solution to (2.4) is analytically provided by the Moore–Penrose pseudo-inverse of
CΦ, resulting in the linear map G being defined as an

= G(sn)= (CΦ)+sn.
The LSE can be considered as a generalization of gappy-POD where the sensor

measurements are not restricted to lie in the span of the basis of the high-dimensional
state. In other words, the linear operator (CΦ)+ can be replaced by a more general
matrix G ∈ RNk×Ns ; that is, G is represented via an

= G(sn) = Gsn. In LSE, G is
determined from data via the optimization problem,

G= arg min
Ĝ

‖S − ĜA‖2
2, (2.5)

where S ∈ RNs×M and A ∈ RNk×M are snapshot matrices of sensor measurements
and reduced states, respectively, consisting of M snapshots. The solution to (2.5) is
analytically obtained as G= SA+.

2.2.1. Drawbacks of linear estimation models
In gappy-POD, the sensor locations encoded in C can significantly influence the

condition number of CΦ. In particular, sensor locations are required to coincide
with regions where the columns of Φ have significant non-zero and distinct values.
Sensor locations that do not satisfy this property lead to an inaccurate estimation
of the reduced state, an

= (CΦ)+sn. Furthermore, choosing more library elements
than sensors, Nk > Ns, can result in overfitting. These limitations can be resolved
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by selecting optimal sensor locations that improve the condition number of CΦ

(Manohar et al. 2018) and/or incorporating regularization in (2.4) to mitigate
overfitting. However, the need to select specific sensor locations reduces the flexibility
of gappy-POD.

Unlike gappy-POD, LSE is significantly more robust to sensor locations. However,
it linearly models a (generally non-trivial) nonlinear relationship between the sensor
measurements and the reduced state. Therefore, this approach is limited by the rank
of G, which is at best rank(G) 6 min(Nk, Ns). The estimation performance of LSE
can be improved by increasing the number of sensors, Ns, though this is not always
possible depending on the given application. We propose a method for more robustly
recovering the reduced state by learning a nonlinear relationship using a neural
network.

3. Proposed approach: deep state estimation

In our proposed approach, the map G is further generalized to nonlinearly relate
sensor measurements to the reduced state as

an
= G(sn)= g(sn, θ), (3.1)

where g(·, θ) with g :RNs→RNk denotes the nonlinear function parametrized by a set
of parameters θ . For various complex fluid flow problems, the nonlinear relationship
between sn and an is rarely obvious. Therefore, in this work, we propose to model
g(sn, θ) via a more general approach using neural networks. We refer to this proposed
approach as deep state estimation (DSE).

3.1. Neural network architecture

In this work, we employ a neural network architecture consisting of Nl fully connected
layers represented as a composition of Nl functions,

g(ξ ; θ)= hNl(·;ΘNl) ◦ · · · ◦ h2(·;Θ2) ◦ h1(ξ ;Θ1), (3.2)

where the output vector at the ith layer (i = 1, 2, . . . , Nl) is given by hi(ξ ; Θi) =

σ(Θi[ξ
T, 1]T) with hi(·;Θi) : Rli−1 → Rli . Essentially, an affine transformation of the

input vector followed by a pointwise evaluation of a nonlinear activation function,
σ(·) : R→ R, is performed. Here, li is the size of the output at layer i and Θi ∈

Rli×li−1+1 comprises the weights and biases corresponding to layer i.
A schematic of our proposed DSE approach exhibiting this neural network

architecture with Nl = 3 fully connected layers is shown in figure 1. Sensor
measurements of dimensions l0 = Ns are fed as inputs while the output layer
comprising the reduced state has dimensions lNl =Nk. We note that other architectures
such as graph convolutional or recurrent neural networks for exploiting spatial or
temporal locality of sensor measurements, respectively, could be utilized to construct
the neural network. However, we choose fully connected layers owing to its simplicity
and small dimensions of input and output. The weights θ ≡ (Θ1, . . . , ΘNl) are
evaluated by training the neural network, the details of which are provided in the
next section.
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3.2. Training the neural network
The first step in training is to collect snapshots of high-dimensional states, sensor
measurements and reduced states. The FOM (2.1) is solved at Np sampled parameters
µs and Nt time instants to obtain the snapshots wn(µs

i ) for i = 1, . . . , Np and n =
1, . . . , Nt, resulting in a total of M = NtNp snapshots. Then, sn(µs

i ) is evaluated via
some known transformation of wn(µs

i ) and an(µs
i ) is derived by solving

an(µs
i )= arg min

ân
‖wn
−Φ(ân

)‖2
2. (3.3)

When Φ is linear with orthogonal columns, for instance POD modes, the solution
to (3.3) is obtained by an(µs

i )=ΦTwn(µs
i ). Next, the snapshots of sn(µs

i ) and an(µs
i )

for i = 1, . . . , Np and n = 1, . . . , Nt are standardized via z-score normalization
(Goodfellow, Bengio & Courville 2016) to enable faster convergence while training
the neural network.

Typically, prior to training, the data are divided into training and validation sets,
which are used to evaluate/update the weights θ and test the accuracy of the network,
respectively. Accordingly, for each sampled parameter, µs

i , snapshots at Ntrain and
Nvalid = Nt − Ntrain random time instants are chosen for training and validation,
respectively, resulting in a total of Mtrain = NtrainNp training and Mvalid = NvalidNp
validation snapshots. Once the neural network is trained, it is tested on a set of testing
snapshots, which were utilized in neither training nor validation. Accordingly, we
collect Mtest=NtestN∗p testing snapshots of wn(µ∗i ), sn(µ∗i ) and an(µ∗i ) for i= 1, . . . ,N∗p
and n = 1, . . . , Ntest time instants evaluated at N∗p unsampled parameters such that
µ∗ *µs.

We train the neural network g(·; θ) to evaluate the trainable parameters θ by
minimizing the `2 error between the reduced state and its approximation, given by

θ = arg min
θ̂

Mtrain∑
i=1

‖a(i) − g(s(i), θ̂)‖2
2, (3.4)

where the superscript (i) denotes the ith training snapshot. The problem (3.4) is
solved using the stochastic gradient descent (SGD) method with mini-batching and
early stopping (which acts as a regularizer to avoid overfitting) (Goodfellow et al.
2016).

4. Numerical experiments: flow over a flat plate

In this section, our proposed DSE approach is applied on a test case of a two-
dimensional flow over a flat plate. We choose Φ to be linear containing the first Nk
POD modes of the snapshot matrix, whose columns are given by wn(µs

i ) − w̄ for
i = 1, . . . , Np and n = 1, . . . , Nt, where w̄ = (1/M)

∑i=Np,n=Nt
i=1,n=1 wn(µs

i ) ∈ RNw is the
mean. We again emphasize that POD is chosen for its ubiquity in practice and ease
of presentation; the estimation framework described above can be incorporated into a
range of ROMs.

All results reported in this section are predictive. That is, the estimated states all
lie in parameter regions µ∗ not sampled for training the neural network. The results
generated by DSE are compared with gappy-POD and LSE, described in § 2.2. The
performance of these approaches is analysed by computing the relative error

error (%)=
‖wn(µ∗)−wn

r (µ
∗)‖2

‖wn(µ∗)‖2
× 100, (4.1)

where wn(µ∗) and wn
r (µ

∗) are the FOM and estimated solutions, respectively.
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4.1. Problem description
We consider flow over a flat plate of length 1 unit at Re = 200. The parameter
of interest µ is the angle of attack (AoA) of the flat plate. Two sets of AoA are
considered: (a) µ ∈ [25◦, 27◦] and (b) µ ∈ [70◦, 71◦]. Both parameter sets lead to
separated flow and vortex shedding.

The problem is simulated using the incompressible Navier–Stokes equations in
the immersed boundary framework of Colonius & Taira (2008), which utilizes a
discrete vorticity–streamfunction formulation. The solver employs a fast multi-domain
approach for handling far-field Dirichlet boundary conditions of zero vorticity.
Accordingly, for the two sets of AoA considered, we utilize five grid levels of
increasing coarseness. The grid spacing of the finest domain (and of the flat plate)
is 1x= 0.01, and the time step is 1t= 0.0008. All the snapshots are collected after
roughly five shedding cycles, by which time the system approximately reaches limit
cycle oscillations of vortex shedding (and lift and drag). The domain sizes of the
finest and coarsest grid levels are (a) [−1, 4] × [−2, 2] and [−37.5, 42.5] × [−32, 32],
and (b) [−1, 3] × [−1, 5] and [−30, 34] × [−45, 51]. The total number of grid
points in the finest domain is thus (a) 500× 400 and (b) 400× 600, respectively. All
collected snapshots and SE results correspond to the finest domain only.

Note that all simulations are conducted by placing the flat plate at 0◦ and aligning
the flow at angle µ with respect to the plate. This is done to obtain POD modes that
are a good low-dimensional representation of the high-dimensional flow field for the
range of AoAs considered. However, while displaying the results, the flow fields are
rotated back to align the plate at angle µ for readability.

For SE via DSE, the neural network consists of Nl = 3 layers with dimensions
li = 500 for i = 1, 2, l0 = Ns and lNl = Nk. For the nonlinear activation function
σ , we use rectified linear units (ReLU) (Goodfellow et al. 2016) at the hidden
layers and an identity function at the output layer. Following the data segregation
strategy explained in § 3.2, training data are split into 80 % and 20 % for training
and validation, respectively. For SGD, learning rate is set to 0.1 during the first 500
epochs (for faster convergence), which is then reduced to 0.01 for the remainder
of training, momentum is set to 0.9 and mini-batch size is set to 80. Training is
terminated when the error on the validation dataset does not reduce over 100 epochs,
which is chosen as the early stopping criterion. Overall, the network is trained for
approximately 2000 epochs on Pytorch.

4.2. Flow at µ ∈ [25◦, 27◦]
Here we compare the predictive capabilities of our proposed DSE approach to several
linear SE approaches for AoA µ∈ [25◦, 27◦], and where the sensors measure vorticity
at Ns= 5 locations on the body. The matrix Φ used for the ROM is constructed using
Nk = 25 POD modes of the vorticity snapshot matrix.

The AoAs used for training the SE methods are µs
= {25◦, 25.2◦, . . . , 27◦}, and

those used for testing are µ∗ = {25.5◦, 26.25◦, 26.75◦}*µs. For each AoA, Nt = 250
training snapshots and Ntest = 50 test snapshots are sampled between t = 20 and 28
convective time units. Thus, a total of M = 2750 training and Mtest = 150 testing
snapshots are used, respectively.

Figure 2 shows the vorticity contours produced by the high-fidelity model (FOM),
gappy-POD, LSE and DSE at µ∗ = 26.75◦, t = 27.17. The flow field constructed by
DSE more accurately matches the FOM solution as compared to gappy-POD and LSE.
Moreover, the average relative error of the states estimated at all 150 testing instances
by DSE is only 1.03 % as compared to 34.74 % and 16.84 % due to gappy-POD and
LSE, respectively.
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(a)

FOM Gappy-POD: 34.74 ± 5.8 %

LSE: 16.84 ± 3.42 % DSE: 1.03 ± 0.25 %

(b)

(c) (d)
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FIGURE 2. Comparison of vorticity contours estimated by the high-fidelity model (FOM),
gappy-POD, LSE and DSE at µ∗ = 26.75◦, t = 27.17 and corresponding relative error
(mean and standard deviation of state estimations at all testing instances) with Nk = 25
modes and Ns = 5 sensors that measure vorticity. The contour values are limited between
−8 and +8 for visualizing vortical structures in the wake.

4.3. Flow at µ ∈ [70◦, 71◦]
We now consider a more strenuous test case of flow at large AoA, which exhibits
richer dynamics associated with more complex vortex shedding behaviour; cf.
figure 4(a). For added complexity and application relevance, we consider sensors
that measure the magnitude of surface stress (instead of vorticity) at locations on the
body. The basis Φ is constructed from POD modes of the snapshot matrix containing
vorticity and surface stress. Details of the first six POD modes are provided in
appendix A. The AoAs for training and testing are µs

= {70◦, 70.2◦, . . . , 71◦}
and µ∗ = {70.25◦, 70.5◦, 70.75◦}* µs, respectively. For each AoA, Nt = 400 training
snapshots and Ntest=80 test snapshots are sampled between t=25 and 52.2 convective
time units, resulting in a total of M= 2400 and Mtest= 240 snapshots for training and
SE, respectively.

In figure 3, we compare various methods through vorticity contours at µ∗= 70.75◦,
t = 38.76 obtained by using Nk = 25 POD modes and Ns = 5 sensors. It can be
observed that DSE significantly outperforms gappy-POD and LSE. Moreover, the
average relative error of the states estimated at all 240 testing instances by DSE is
only 2.07 % as compared to 61.75 % and 35.75 % in gappy-POD and LSE approaches,
respectively. Additional details of these results are provided in appendix B, where we
have plotted the error in estimated vorticity.

Finally, we compare the performances of these SE approaches for different numbers
of POD modes, Nk = {15, 25, 35}, and sensors, Ns = {5, 10, 15}. The average relative
errors of the estimated vorticity for these nine permutations are plotted as markers in
figure 4(b). The solid lines connect the markers with lowest errors corresponding to
each Nk, therefore highlighting the best performance among Ns= {5, 10, 15}. We also
compare the results with the optimal reduced states obtained by projection, an

=ΦTwn.
These are called optimal because the POD coefficients are exact, and all error is
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(a) (b)

(c) (d)

FOM Gappy-POD: 61.75 ± 8.68 %

LSE: 35.75 ± 18.40 % DSE: 2.07 ± 0.38 %

FIGURE 3. Analogue of figure 2 for µ∗ = 70.75◦, t= 38.76, Nk = 25 modes, and Ns = 5
sensors that measure the magnitude of surface stress.

2
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(a) (b)
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Gappy-POD LSE
Deep-SE Optimal
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35

100
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FIGURE 4. (a) Demonstration of vortex shedding phenomena computed by FOM: plot
of Cl and Cd versus time at µ= 70◦. (b) Performance comparison of gappy-POD, LSE,
DSE and optimal reconstruction when µ∗ ∈ [70◦, 71◦]: relative error for varying number
of surface stress sensors in Ns = {5, 10, 15}.

incurred from the ROM approximation (2.2). By contrast, ROM-based SE approaches
incur error due to both the ROM approximation and the model error associated with
the map G. Therefore, none of the above-mentioned SE methods can be expected
to estimate a more accurate state than the optimal reconstruction obtained via these
optimal reduced states. The error in optimal reconstruction is plotted in blue and
represents a lower bound of the error, not an SE approach. From the plot, it can be
observed that DSE produces an error of only 1 %–3 % as compared to 10 %–40 % due
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to LSE and 50 %–200 % due to gappy-POD. For all numbers of sensors considered,
DSE produces errors that are comparable to the lower bound. Estimates by LSE do not
improve as the number of modes Nk is increased, due to its rank-related limitations as
described in § 2.2.1. Similar error trends were also observed for the previous simpler
test case of µ∈ [25◦, 27◦], though for conciseness these results are not shown in this
article.

5. Conclusions

In this article, a deep state estimation (DSE) approach was introduced that exploits a
low-order representation of the flow field to seamlessly integrate sensor measurements
into reduced-order models (ROMs). In this method, the sensor data and reduced state
are nonlinearly related using neural networks. The estimated reduced state can
be used as an initial condition to efficiently predict future states or recover the
instantaneous full flow field via the ROM approximation. Numerical experiments
consisted of two-dimensional flow over a flat plate at high angles of attack, resulting
in separated flow and associated vortex shedding processes. At parameter instances
not observed during training, DSE was demonstrated to significantly outperform
traditional linear estimation approaches such as gappy-POD and linear stochastic
estimation (LSE). The robustness of the approach to sensor locations and the physical
quantities measured was demonstrated by placing varying numbers of vorticity- and
surface-stress-measuring sensors on the body of the flat plate. Finally, it is emphasized
that the proposed approach is agnostic to the ROM employed; i.e. while a POD-based
ROM was utilized for the numerical experiments, the general DSE framework allows
for any choice of linear or nonlinear low-dimensional representation.
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Appendix A. POD modes

This section briefly provides a physical intuition of the POD modes utilized in § 4.3
for the µ∈ [70◦,71◦] test case. The first six POD modes along with the relative energy
content corresponding to vorticity is provided in figure 5. We can clearly observe the
vortical structures in the wake due to von Kármán vortex shedding. The first two
dominant modes capture the primary vortex near the upper surface of the plate shed
from the leading and trailing edges. For instance, this structure corresponds to the
leading-edge vortex in figure 3. The remaining modes represent subharmonic spatial
structures of the first two modes. A linear combination of all these modes provides a
temporal flow-field representation of the alternating vortex shedding phenomena.

Appendix B. Additional results: vorticity error plots

In this section we provide the contour plots of the relative error between the
FOM vorticity and vorticity estimated by gappy-POD, LSE and DSE corresponding
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FIGURE 5. POD modes and their relative energy content (provided in parenthesis)
corresponding to vorticity of snapshot matrix containing vorticity and surface stress for
µ∈ [70◦, 71◦]. The contour values are limited between −0.008 and +0.008 for visualizing
vortical structures in the wake.
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FIGURE 6. Comparison of contours of relative error (in %) between FOM vorticity and
vorticity estimated by gappy-POD, LSE and DSE at µ∗ = 26.75◦, t= 27.17 with Nk = 25
modes and Ns = 5 sensors that measure surface stress.

to the results demonstrated in figure 3. Here we define relative error as |wn(µ∗) −

wn
r (µ

∗)|/‖wn(µ∗)‖∞, where wn(µ∗) and wn
r (µ

∗) are the FOM and estimated solutions,
respectively. We can observe that, while DSE produces approximately uniform but
low errors throughout the wake region, gappy-POD and LSE generate very high error,
specifically in the estimation of the most dominant structure, namely the leading-edge
vortex. Since the vortices in the nearest vicinity of the plate contribute most to its
aerodynamic performance, it is crucial to estimate such structures accurately, which
is indeed accomplished by DSE.
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