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ABSTRACT

In this paper, we propose an image-translation-based unsupervised
domain adaptation approach that iteratively trains an image trans-
lation and a classification network using each other. In Phase A,
a classification network is used to guide the image translation to
preserve the content and generate images. In Phase B, the generated
images are used to train the classification network. With each step,
the classification network and generator improve each other to
learn the target domain representation. Detailed analysis and the
experiments are testimony of the strength of our approach.
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1 INTRODUCTION

Deep convolutional neural networks require large labeled image
datasets like ImageNet for training. Large labeled datasets are avail-
able only for certain applications like object recognition, detection,
segmentation, etc. For applications with small datasets, transfer
learning is applied to fine-tune pre-trained deep neural networks.
Unsupervised domain adaptation is a special case of transfer learn-
ing where a deep neural network trained on a source domain is
adapted to predict the labels for images from an unlabeled target
domain whose images belong to a different distribution [33].
Unsupervised domain adaptation has been researched exten-
sively in the past few years [4, 18, 19]. Adaptation is achieved
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Figure 1: The learning paradigm of our approach. The clas-
sifier C extracts content from the input source image. Using
the content extracted from the classifier, the image genera-
tor G is trained to generate target-like images. In next phase,
the target-like generated images are used to train the clas-
sifier on target domain. The cyclic process continues until
convergence.

through some form of alignment of the source and target distri-
butions before the target labels are predicted. Popular approaches
reduce the discrepancy between the features of the source and tar-
get domains either adversarially [5, 32] or using a distance metric
like maximum mean discrepancy [17], Wasserstein distance [14] etc.
While these are feature-based alignment approaches, adaptation
can also be accomplished at the pixel level using image translation
where images in one domain are translated to resemble images
from the other domain. But pixel-level adaptation works well only
on simple problems like digit classification because the images have
limited variations which are nearly all captured in the datasets. Also,
digit datasets from different domains vary mostly in the background
with small changes to the foreground. On the other hand, real-world
object classification datasets for domain adaptation have limited
variations of the objects captured in the datasets. The intra-domain
variations in terms of background are diverse and the inter-domain
differences between the foregrounds (objects) are large [27, 34].
For effective pixel-based domain adaptation, large datasets are re-
quired that capture all the variations of the object, or the domains
need to be very close. Due to these reasons, pixel-based domain
adaptation approaches are mostly limited to digits, traffic signs and
segmentation datasets [2, 9, 26].

Standard approaches in image-translation based unsupervised
domain adaptaion area use coupled generator-discriminator pairs
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from a GAN framework for image translation [37]. While one GAN
translates source images to target, another GAN translates target
images to the source. There is a cyclic loss to ensure consistency
in translation [9, 23, 26]. The consistency loss however does not
preclude the image from changing its category upon translation. For
example, an image of digit 5 (source domain) can get converted to
digit 7 in the target domain and back to digit 5 in the source domain
all the while satisfying the cyclic consistency loss. The translated
images are also of poor quality because the cyclic loss forces the
network to embed non-relevant information like background and
style into the translated image to be able to reconstruct it later.

We propose a model to overcome these problems with a single
GAN framework that translates source images to the target domain.
The classifier module of our model retains the content (category)
information from the source image into the translated target im-
ages using a content-consistency loss. The generator in our GAN
framework ensures the translated image appears to be from the
target domain while preserving the content of the source image. In
an iterative process, we train the classifier on the generated target
images along with source labels, making it a better content extrac-
tor with each update. This way the classifier and the generator
are used to train each other iteratively. Since there is no need for
cyclic translation, the need to preserve the domain-specific con-
tent is eliminated while the generator can introduce target specific
content resulting in superior quality in the translated images. The
procedure is depicted in Fig. 1.

The contributions of our model are as follows: (1) A novel image
translation framework using a classifier to guide the image genera-
tor and vice-versa, (2) a content-consistency loss to retain source
information in the translated image, (3) a three-way discrimina-
tor loss to align the features of the source, target and target-like
source images giving more leeway to the GAN framework in the
alignment space, (4) extensive empirical and subjective analysis to
demonstrate the superiority of our translation framework.

2 RELATED WORK

In this section, we discuss the related work to our approach and also
compare how our approach is similar to the discussed approaches.
We only present image translation-based domain adaptation ap-
proaches here. A survey of unsupervised domain adaptation using
feature level alignment can be found in [33, 35] for the interested
reader.

The image-to-Image translation problem has been become pop-
ular in the era of deep neural networks due to their generative
capabilities. Early methods used style transfer techniques where
content information from one image was presented using style
information from another image. These methods modeled a style
loss and content loss to train the generative models [6, 15]. One of
the most popular adversarial approaches, CycleGAN, proposed to
translate a source domain image to the target domain and then back
to the source domain [37]. The source and the reconstructed source
image have an identity loss called cycle consistency loss which is
responsible for preserving the content across the image translation.
However, since there is no direct constraint in the target domain,
this approach tends to change the content or the category of the
image when applied for domain adaptation.
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To solve this problem, [2] proposed a masked pairwise mean
squared error to preserve the content between the source and the
translated image. This loss function requires a binary mask of the
content of the image which is not easily available and works only
in a few scenarios. Another approach was to add a classifier trained
on the source as the pseudo-labeler for the target domain. It is then
used for the semantic consistency where the generated image needs
to have the same class as the original image as per the classifier
[9]. A procedure to disentangle the source and target images using
a shared content encoder and a pair of private domain-specific
encoders was proposed in [3].

A self-learning based approach was used to train the generators
in [26]. They also used an ensemble of source and target domain
classifiers at test time to make predictions. Xie et al. present an
object preserving image translation model using a self-supervised
CycleGAN [36]. Adversarial image translation for domain adap-
tation has been applied for image segmentation of traffic scenes
[23, 24]. Gong et al. proposed to generate intermediate domains
between the source and target and gradually adapting networks to
the target domain by training on the intermediate domains [8]. Liu
et al. used a pair of Variational Autoencoders to map source and
target domain to a common latent space [16]. This latent space was
used to generate the original images as well as translate the images
to other domains.

In our approach, we use a single GAN framerwork to translate
from the source to the target. Our translation process is not encum-
bered by the need to retain the source style for translating back to
the source domain. The translation is more stable and the images
are of superior quality.

3 METHODOLOGY
3.1 Problem Statement

LetS = {x},y} }fisl denote the source dataset, where N is number of

samples drawn from the source distribution ps and let T = {x;}f\i‘l
be the target dataset, where N; is number of samples drawn from
the target distribution g;. The goal of UDA is to learn the target
labels {yi}ﬁ‘l using S and T. It is known that S and T share the
same number of K classes but ps # g which is why a classifier
trained on S is not sufficient to predict the target labels. To solve
this problem, we use a classifier C, a feature-level discriminator D i
and a pair of image Generator G and discriminator D,,. We pass
the Source dataset S from the generator G to generate fake target
dataset G(S) = {G(x), yﬁ}f.\isl.

We propose an iterative approach involving two phases, A and B,
to translate a source image to a target-like image using a single GAN
framework. In Phase A, we train an image generator to generate
a target-like image using a source image as input while retaining
only the content (category) information from the source image. In
Phase B, we train a classifier to extract the content information
from the input images to be used for generation. We further outline
the steps of our proposed procedure below.

3.2 Content Consistency Loss

We begin with a classifier module C trained with standard cross-
entropy loss on the labeled source images S,



Other Presentation

GAN Loss £,

Target-like
Source

Source Target

{ G

; |

Content-Consistency
Loss £,

Phase A

Source

a

MULL ’21, October 24, 2021, Virtual Event, China

Target-like

Source Target
—
Deep features :
b Feature Alignment
Loss Ly

CrossEntropy £,
+ VAT Loss £, Phase B

Figure 2: The proposed model. Green denotes network is trained and Gray denotes network is not trained during that phase.
During Phase-A, Generator (G) is trained to minimize GAN loss £, along with Content-Consistency loss £... During Phase-B,
the source and the generated target-like source image with source labels are used to train the classifier (C) using cross-entropy
loss L., and Virtual Adversarial Training loss £,. Additionally, the deep features of source, target-like source and target images

are aligned using feature alignment loss L.

L (C) = —E{x,ys}~s [y - log C(xs)]. (1)
We propose to retain content information from the source image
using the principle of consistency regularization, which is a regu-
larization technique from semi-supervised learning [29]. We would
like the source image and its corresponding target-like transformed
image to have the same content. Content in this context refers to
the category of the image. Having extracted the source content
from the classifier in the form of a probability distribution over the
categories, C(x), we train the generator G(.) of our GAN to retain
this content information in the generated target-like image with
the content consistency loss,

Lee(G) = Exy~s [[IC(x5) = C(G(x5))2]- @
Matching the probability distributions alone will not result in the
identical content for the source image and its corresponding target-
like image because the generated images can achieve the same
probability distribution adversarially as well. To avoid this, we train
the classifier using Virtual Adversarial Training [21] by minimizing
the Kullback-Leibler divergence over the classifier predictions using
a tiny perturbation r < €,
L5(C) =Ex,~s[ max Dgr(C(xs)|IC(xs +1))].

[Irfl<e

®)

3.3 Image Generation

For training the generator to produce real-looking target-like im-
ages, we use the least squared loss [20] GAN objective along with
the content consistency loss. The discriminator D is trained to
distinguish between fake target G(x;) images generated by the
generator G and real target images x;. The generator G inputs a
source image along with a noise vector z € N(0,I) to fool the
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discriminator D. The input noise vector is sampled from a random
Gaussian distribution and is up-scaled to the image size using a
linear layer. It is then added as a new channel in the input image.
The noise vector z provides the seed for the variations the generator
produces in the target-like images,

Ly(G,D) =By, -7 [(D(xt) = 1)*] +E x,~5, [(D(G(x5,2)))%]. (4)

ZeN(0,1)

3.4 Learning Target Domain

Although the generated target images are constrained to have the
same content as the source images, all of the images might not have
content preserved. Therefore, select a subset of the most content-
preserving generated images using content-consistency loss as a
filter with a threshold ,

8" = {xs 3 Lee(xs) < 7} (5)

Initially, the classifier was trained using only the source images.
The classifier can now be trained to classify target images using
the generated target-like images. Although the generated images
are not the actual target images, they are the best representation of
the target domain learned by the generator given the constraints.
These images have the same content as that of the source and are
the closest representation to a labeled target domain. We exploit
this fact and further train the classifier on the filtered generated
images along with source labels so that it learns to classify target-
like images. We train the classifier on these subsets of generated
samples along with source labels using cross-entropy loss. We add
VAT loss to it as well for the same reason as the source dataset,

L5(C,G) = Ex~y, [ max Dir(C(G(xs,2))|IC(G(xs) +1))], (6)

zeN(o) |Irll<e

LE(C.G)) = =B,y }~s [Us - 10g C(G(x5))]. ™)
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When the classifier is trained on the generated samples, it helps
the generator to produce images that are even closer to the target
domain. This way, we train the generator and the classifier alterna-
tively and both the networks can learn from each other. With each
update, the generator produces better target-like images and the
classifier learns more about the target from those images.

3.5 Feature Alignment

The iterative pixel-level training does not guarantee that the classi-
fier will have good accuracy on the actual target images because
the generated images may not represent the entire target distri-
bution [9]. The pixel-level alignment alone can be achieved easily
by aligning the generator to only a subset of the target domain
(partial mode collapse). Also, the content variations in the target
may not be entirely represented in the source images. Hence, we
integrate a feature-level alignment loss to align the deep features
of the domains. We consider target-like source images as a separate
domain and implement domain alignment for all three domains -
source, target-like source, and target,

L7a(Df,C) = ~Fy, 5 log D}(C' (x,)) = By, 1 log DH(C” (x1))

~E x,~s log DZ(C"(G(xs,2))). ®
zeN(0,I)
where C’(x) are the deep features of x using classifier C. D} is

a 3-class classification network and D} (x) is the probability of x

belonging to ith class. Our ternary feature alignment is similar to
[30]. While training the discriminator, we use the same loss but
while training the feature extractor, we maximize the loss with
respect to all the domains instead of aligning them all to one do-
main. Eq. 8 helps in the further alignment of the distributions. The
classifier/content extractor starts with knowing only about the
source domain and ends up becoming an expert predictor on the
target domain. The overall objective function brings together the
cross-entropy loss (Lce), the virtual adversarial loss (L), feature
alignment (L), content consistency (L¢c) and GAN loss (L)
for training the network with corresponding A hyper-parameters
controlling relative importance of the terms,

mCi‘n r%ax AsceLge (C) + Atce-ﬁée (C) + AUSLZ(C)
f

+ 2ot L5(C) = Arg Lra(Df, O),

mci;n mgx AceLec(G) + AgLy(G, D). 9)

3.6 Final Training Procedure & Algorithm

We start with training the classifier using Eq.1 and Eq.4. Following
that, the generator is trained with the image generation loss (Eq.3)
and content matching loss (Eq.2). During this time, the generator
is warmed up to learn to generate target-like images and match
the content information. Instead of using fixed A, we increase it
gradually using the e~ (1-p)’ ramp-up function from [31], where p
is the ratio of the iterations completed. Lastly, the network is trained
using Eq.9 iteratively. Figure 2 depicts the overall framework of our
approach and the complete algorithm is in Algorithm 1.
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Algorithm 1: Iterative Image Translation
N
=1

Input :Source dataset S = {(x, y})}.",, target dataset
T= {(xf)}fi’l and networks C, G, D, Dy

Output: Target labels {yl’; }g’l

Train C using Cross Entropy (Eq. 1) + VAT loss (Eq. 4)

Further train G and D using GAN loss (Eq. 3) +
Content-Consistency loss (Eq. 2) using the ramp up
function.

for M iterations do

ms = miniBatch(S)

m; = miniBatch(T)

mst = G(ms)

Train D using Eq. 9

Train G using Eq. 9

mst = G(mg)

my, = Filter mg; using Eq. 5

Train F; using Eq. 9

Train C using Eq. 9

end

Predict target labels y; using C

Return {yi fi’l
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Figure 3: Network Architectures used in our experiments.
From left to right: Classifier, Feature discriminator, Gener-
ator and Pixel-level discriminator. All input images are re-
sized to 32 X 32. K 3%3 refers to 3 X 3 convolution with K
feature maps and Tr K refers to transposed convolution. I, S,
P, BN and C stands for Input, Stride, Pad, Batch normaliza-
tion and channels respectively. All the layers use ReLU acti-
vation except Pixel-level discriminator which uses a IReLU
with a=0.2.
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[ Method [[ MNIST—USPS | USPSSMNIST | MNIST>MNISTM | SVHN—MNIST | MNISTSSVHN [ SyDig—SVHN [ SySigns—GTSRB
Source only 83.1 67.2 63.3 60.9 30.8 88.7 94.2
DANNJ5] 85.1 73.0 76.7 73.9 35.7 91.1 88.7
MMDI[17] 81.1 - 76.9 71.1 - - 91.1
ADDA([32] 89.4 90.1 - 76.0 - - -
ATT[28] - - 94.2 86.2 52.8 93.1 96.2
DRCN[7] || 918 | 737 | - | 820 | 40 | - | -~
PixelDA[2] 95.9 - 98.2 . - - -
DSN[3] - - 83.2 82.7 - 91.2 93.1
121 Adapt[23] 95.1 92.2 - 92.1 - - -
UNITJ[16] 96.0 93.6 - 90.5 - - -
PLR[22] 90.7 91.8 94.3 97.3 63.4 - -
CYCADA[9] 95.6 96.5 - 90.4 - - -
DupGAN[11] 96.0 98.8 - 92.5 62.7 - -
SBADA[26] 97.6 95.0 99.4 76.1 61.1 - 96.7
1T (Ours) 97.8 99.1 99.4 97.4 66.5 95.4 97.2

Table 1: Comparison of classification accuracy of our approach IIT (Iterative Image Translation) with different domain adap-
tation methods. Pixel-based approaches are below the dashed line.

4 EXPERIMENTS AND RESULTS

4.1 Dataset

We test our approach on the following tasks: MNIST < USPS,
MNIST — MNIST-M, SVHN « MNIST, SynDigits — SVHN and
SynSigns — GTSRB. MNIST is a handwritten digits dataset with a
black background [13]. SVHN contains RGB digits dataset extracted
from real-world house number images [25]. MNIST-M was created
by combining MNIST images with patches randomly extracted from
color photos of BSDS500. USPS is a digits dataset developed by rec-
ognizing the digits on the envelopes. Synthetic Digits (SynDigits) is
a synthetically created digits dataset consisting of various English
fonts on random backgrounds. Synthetic Signs (SynSigns) and GT-
SRB are traffic signs datasets where SynSigns contains images from
Wikipedia whereas GTSRB has real-world traffic sign images [10].
All the digit datasets have 10 classes and present different visual
variations in the domains. The traffic signs dataset provides a larger
classification task of 43 classes.

4.2 Training details

We follow the standard unsupervised domain adaptation protocol
i.e. train using the labeled source and unlabelled target training sets
and evaluate on the target test set. All the input images are resized
to 32 X 32. The classifier has a generic architecture of six 3 X 3
convolutional layers containing 32, 32, 64, 64, 128, and 128 feature
maps followed by one fully-connected layer of 128 hidden units and
a classification layer of size K. The Feature discriminator uses the
output of the first fully-connected layer of the classifier as the input.
The generator and the pixel-level discriminator architecture are
inspired from [12, 26, 37]. For MNIST and USPS image generation,
we used a smaller image discriminator by excluding the 256 feature
map layer. The generator uses a 5-dimensional noise vector sampled
from N (0, 1) which is then scaled up to the size of the image using
a linear layer and concatenated channel-wise with the input image.
The network architecture is displayed in Figure 3.

All the networks are trained using a batch size of 128 and Adam
optimizer with f; = 0.5 and f, = 0.99. We use a learning rate of 1e™*
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26@™5

64 5=

Figure 4: Sample generated images. Top to Bottom: USPS <
MNIST, MNIST < MNIST-M, SyDigits < SVHN, SVHN <
MNIST, SySigns <> GTSRB. We show images for each com-
bination on every row. Upper row: Original source images
and Lower row: Generated target images.

to train the classifier, 2¢~* for training the generator and discrimina-
tor (default from CycleGAN[37]). For feature discriminator, we used
a lower learning rate of 107 to prioritize pixel-level adaptation
over feature-level adaptation.

We set the hyperparameters Asce, Asce, Ag to 1. the The hyper-
parameters Ays, Aor, Afd’ €, Aec are set to 0.1, 0.1, 0.01, 3.5 and K2s
respectively based on existing literature which has used similar
loss functions. 7 is the only hyperparameter tuned by use and is
empirically set to 1076,

4.3 Results

The results of our experiments are in Table 1. We compare our
approach with Image translation approaches like CYCADA [9],
SBADA [26] as well as feature alignment approaches like DANN
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[CC VAT FA TOT | M—U [ U->M [ MMM [ S5M |

X X X X 83.1 67.2 63.3 60.9
X v v v 94.2 97.4 98.3 15.5
4 X v v 96.5 98.1 97.7 77.4
v v X v 96.2 95.1 91.3 77.8
v 4 v v 97.8 99.1 99.4 97.4

Table 2: Ablation study of our method on MNIST(M) —
USPS(U), MNIST(M) — MNIST-M(MM) and SVHN(S) —
MNIST(M). CC: Content-consistency loss; VAT: Virtual ad-
versarial training for source and target; FA: feature-level
alignment; TOT: Train on target. The first row represents
source-only.

[5], MMD [17], ADDA [32] and our approach outperforms all the
compared methods on all the combinations. Even for the difficult
combination of MNIST — SVHN, our approach is effective and
beats all the compared baselines. The generated target-like images
can represent the target variations and is an effective way to learn
target domain. The sample translated images can be found in Fig. 4.

5 ANALYSIS
5.1 Ablation Study

For analyzing the significance of each of the loss components, we
perform an ablation study by removing them, one loss component
at a time, from our approach. We use MNIST < USPS, SVHN —
MNIST and MNIST — MNIST-M combinations for this study. The
results are presented in Table 2. We perform the following three
experiments

(1) No content-consistency loss: We replace the content consis-
tency loss with the cycle consistency loss (used for training
CycleGAN) by adding another image generator [37]. Though
this produces decent results for small variation combinations
- MNIST < USPS, MNIST — MNIST-M, but results in shuf-
fling of labels for the high variation combinations like SVHN
— MNIST.

(2) No virtual adversarial training losses: No adversarial training
allows the generator to fool the consistency loss without
matching the content and results in negative transfer, thereby
impacting the final accuracy.

(3) No feature alignment: It is clear from the results that pixel-
level alignment is not sufficient to train the classifier on
target domain.

5.2 Feature Visualization

We use t-SNE plots to visualize the deep features generated by the
classifier before and after the adaptation in Figure 5 and Figure 7.
The deep features are spread across for source, target-like and target
domains before the adaptation. After the adaptation, all three of
them are aligned together to get an indistinguishable representation
across domains.
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Figure 5: t-SNE plots of the deep features of source, target-
like generated and target images along with generated
target-like images for the MNIST — MNIST-M task. Left: de-
picts image features and generated target-like images before
convergence. Right: depicts image features and generated
target-like images after convergence.

H Source Only EMDANN ®Ours

SIS . h . h
0.6
U—M

M—-U S8S—G S—M
Figure 6: The domain discrepancy A-distance between deep
features for the MNIST(M) < USPS(U), SySigns(SS) — GT-
SRB(G) and SVHN(S) — MNIST(M). Smaller is better.

5.3 Generated Images Spectrum

We use the task of MNIST—MNIST-M transfer to understand the
variations in generated images. Fig.5 shows the generated images
before and after the adaptation. Before adaptation, the generated
images look similar to MNIST-M but they are only restricted to
having a darker background and lighter foreground, resembling
MNIST images. We believe it is because the classifier is trained on
MNIST images only and can only detect dark to light edges. Hence,
the generator needs to generate such images to keep the content
loss low. The deep features of these generated images lie between
those of the source (MNIST) and the target (MNIST-M) samples.
They act as a bridge between the source and target domain. After
adaptation, the features are aligned and the generated images cover
the full spectrum of the target images.
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@ Source @® Source-Target @ Target

W i,
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MNIST — USPS USPS — MNIST

SyDigits — SVHN SySigns — GTSRB

Figure 7: t-SNE plots for MNIST — USPS, USPS — MNIST, SVHN — MNIST, MNIST — SVHN, SyDigits — SVHN and SySigns
— GTSRB in English reading order. For every combination, left is before adaptation and right is after adaptation. e denotes
source domain, ¢ denotes source to target-like source translated images, and ¢ denotes Target domain samples.

5.4 Domain Gap are in Fig. 8. For each pair, we use the same noise vectors, and the
linear interpolation results in the same changes in style. For MNIST

[1] defined the A-distance metric for evaluating testing the domain
— MNIST-M combination, the color variations are similar across

discrepancy as 2x(1 — ¢) where ¢ is the generalization error of
a classifier trained to classify deep features. We use 5-fold cross- the two inputs. For SynDigits — SVHN, we can see 1 appearing on
validation using a linear SVM to compute the A-distances. Fig. 6 the left and slowly transforming the background to a box. Similarly,
shows the A-distance between three domains on MNIST < USPS, for USPS — MNIST, we observe equivalent angle rotations for the
SySigns — GTSRB and SVHN(S) — MNIST(M) using Source only, inputs. This confirms that our model can extract the content and
DANN-alignment [5] and our method. Our approach brings the uses the noise vector as the style component.

domains closer while achieving superior performance.

6 CONCLUSION

5.5 Content Extraction Pixel-based unsupervised domain adaptation approaches are fas-
We perform linear interpolation between two random input noise cinating as we can visualize the domain adaptation process. Most
vectors for 3 pairs of source-target combinations and the results of these approaches require two sets of generators, classifiers, and
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Figure 8: Linear Interpolation between two random noise
vectors on MNIST — MNIST-M (Top two rows), SynDigits —
SVHN (Middle two rows), and USPS — MNIST (Bottom two
rows) pairs. Each pair uses the same input noise vector. The
first column is the source image and other columns are gen-
erated target images. The images in the middle are generated
by linear interpolating the random noise vector used for the
first and the last column of the generated images.

discriminators. In this paper, we present an iterative approach that
trains a classifier and image generator in tandem and keeps the size
of the model to a minimum. Our approach can accurately translate
a source image to a target domain while keeping the content pre-
served and classifies the source and target domain using a single
classifier. Its three-way feature alignment ensures that the deep fea-
tures are domain-invariant. The combined pixel and feature-level
alignment establish a successful adaptation to the target domain.
The translated images are of superior quality and our approach
outperforms existing pixel and feature-level adaptation approaches
for digits and traffic signs datasets.
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