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ABSTRACT

Traditional unsupervised domain adaptation methods attempt to
align source and target domains globally and are agnostic to the
categories of the data points. This results in an inaccurate categori-
cal alignment and diminishes the classification performance on the
target domain. In this paper, we alter existing adversarial domain
alignment methods to adhere to category alignment by imputing
category information. We partition the samples based on category
using source labels and target pseudo labels and then apply domain
alignment for every category. Our proposed modification provides
a boost in performance even with a modest pseudo label estimator.
We evaluate our approach on 4 popular domain alignment loss
functions using object recognition and digit datasets.

CCS CONCEPTS

+ Computing methodologies — Object recognition; Image rep-
resentations.

KEYWORDS

Unsupervised domain adaptation; Local alignment; Domain align-
ment; Category alignment

ACM Reference Format:

Sachin Chhabra, Prabal Bijoy Dutta, Baoxin Li, and Hemanth Venkateswara.
2021. Glocal Alignment for Unsupervised Domain Adaptation. In Proceedings
of the 1st Workshop on Multimedia Understanding with Less Labeling (MULL
’21), October 24, 2021, Virtual Event, China. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3476098.3485051

1 INTRODUCTION

In real-world applications, train and test data generally do not be-
long to the same distribution. Even though the classification model
is well-trained on the training dataset (also known as the source),
this change in distribution often yields to the degraded performance
because of the covariance shift [22]. The standard solution is to
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Glocal Alignment

Figure 1: Illustration of the Glocal Method. We identify
pseudo labels to partition the categories and align the do-
mains locally which results in an effective global domain
alignment.

fine-tune the network on the new domain (also known as the target)
but it requires a significant amount of labeled data. This may not
be a viable option as labeling the data is an expensive task. To solve
this problem, Unsupervised Domain Adaptation techniques aim to
learn target labels by using labeled source and unlabelled target
data only [19].

Unsupervised domain adaptation problem has been researched
extensively over the past decade. The standard solution is to classify
samples based on features that are invariant between the source
and target domains. To attain this objective, most techniques, at-
tempt to reduce the distance between the generated features of the
domains using a distance-metric like maximum mean discrepancy
[10], Wasserstein distance [17] or adversarially using a discrimina-
tor [4, 20, 21]. These methods make the features domain-invariant
but the alignment is done without taking category information of
the features into consideration and often leads to jumbled classes.

To improve adversarial global domain alignment, we propose
to align the data points locally using category information - a la,
Think Globally, Act Locally. First, we partition the samples of the
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Method Discriminator Loss Generator Loss
DANN | —E,.p,[InD(G(x))] — Ex~p,[In(1 — D(G(x)))] Gradient Reversal
MDC | =Exp, [In D(G(x))] = Ex~p, [In(1 = D(G(x)))] | =Ex~(p,up,) [3 InD(G(x)) + 3 In(1 — D(G(x)))]
GAN; | =Ex-p,[InD(G(x))] = Ex~p, [In(1 - D(G(x)))] —Ex-p,[InD(G(x))]
GAN; | =Ex-p,[InD(G(x))] = Ex-p, [In(1 = D(G(x)))] | =Ex-p,[In(1 - D(G(x)))] — Ex-p, [InD(G(x))]
Table 1: Traditional Domain Alignment loss functions.
Method Discriminator Loss Generator Loss
G-DANN ~Evp,[2K, 1(i = y) In D' (G(x))] Gradient Reversal using —]Ex~DS.[Z§1 1(i = y) In D'(G(x))]
—Erop, [ZH, 1(i = §") In(1 - D'(G(x)))] | ~EBxep; [ZE; 1(i = §) In(1 - D'(G(x)))]
G-MDC —Ex-p, [Z{il 1(i=y)ln D"(G(x.))] = Ex~(D,uD;) [% >K 1(i = y) In D (G(x))
—Ey-p, [ZE, 1 = §') In(1 - DY(G(x)))] +3 Yie 1 = y) In(1 - D'(G(x)))]
i —Byn, [Xi 1(i = y) In D'(G(x))] _ K (i -t i
GO | B, [5K, 1= ) In(1 - DG Bty 2 10 =59 I DAGEO]
G-GAN, | ~Ex-D. [ZE, 16 = y) In D'(G(x))] ~Ex-p,[Zf, 10 = y) In(1 - D!(G(x)))]
2 —Evp, [ZK, 1(i = ") In(1 - D'(G(x)))] —Ex-p; [ZK 1(i = §*) In D (G(x))]

Table 2: Glocal Domain Alignment loss functions.

source and target that belong to the same classes. In the case of
unsupervised domain adaptation, since the target labels are not
available, we use the pseudo labels instead. Pseudo-Label is a semi-
supervised learning technique that treats network prediction as
a true label if the probability of a predicted category is above a
predetermined threshold [9]. We then align datapoints from each
category for both the domains. The local category alignment, in turn
ensures global domain alignment. This simple modification can be
applied to any adversarial domain alignment techniques and results
in a better alignment. Our approach is depicted in Fig. 1. In this
paper, we experiment on DANN [4], MDC [20], GAN loss functions
[5]. We compare these losses as well as our modification to them on
a common network. These loss functions are discussed in section 3.
In the next section, we discuss the related work. Section 4 outlines
the Glocal alignment method. Section 5 discusses experiments and
results followed by conclusion in Section 6.

2 RELATED WORK

Domain adaptation techniques aim to reduce the distribution dis-
crepancy between source and target domains using a domain align-
ment loss. We discuss four adversarial based alignment techniques
in the Background section. These alignment losses can be com-
bined [12] or applied at multiple layers [10, 12] to further boost
performance. State-of-the-art domain alignment techniques use
additional loss functions for alignment along with the adversarial
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domain alignment loss. Soft labels generated using source samples
were used to train the target in [20]. Maximum Mean Distance
was reduced between source and target in [12]. A combination of
Lipschitz constraint and low entropy based loss function was used
in [18].

Recent approaches have emphasized the problems of mere global
adaptation. A moving class-wise centroid based distance was im-
plemented in [25]. The class-wise centroid distance was reduced
progressively in [2]. The discriminator can also be conditioned on
the class for encouraging class-wise features distinction [11]. An
image-to-image translation based technique ensured a generated
target image has the same class label as the original source im-
age [6]. We promote the local alignment and propose to modify
the existing global adversarial alignment loss functions to operate
locally.

3 BACKGROUND

Let Ds = {(x}, yf)}?:sl be the source domain consisting of ns labeled
images sampled from distribution S. Likewise the target domain
is denoted as D; = {(xlt)};z1 consisting of n; unlabeled images
sampled from distribution T. The goal of unsupervised domain
adaptation is to learn the target labels {yf}?:tl using Ds and Dy.
It is assumed that Ds and D; have an identical label space of K
categories but since S # T, a classifier trained using Ds will under

perform when trying to predict the target data labels.
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We propose to align the source and target distributions using
adversarial feature alignment based on the Generative Adversarial
Network (GAN) [5]. The standard GAN model consists of a Gen-
erator network G(.), and a Discriminator network D(.) which are
pitted against each other in min-max optimization. Traditionally,
generator takes noise as an input and outputs an image but in the
case of unsupervised domain adaptation, the generator acts as a
feature extractor/encoder. It takes image as the input and outputs
deep features which can be classified by a classification module to
appropriate classes. The Discriminator network attempts to distin-
guish between the source and target features and the Generator
attempts to align the features so that they are indistinguishable by
the discriminator. Upon convergence, the marginal distributions of
the source and target are said to be aligned. In the following we
outline 4 popular variants of adversarial alignment.

3.1 Vanilla GAN

The first model GANj is the vanilla GAN model where the Gen-
erator G(.) attempts to align the source and target features and
the Discriminator D(.) learns to distinguish between them. The
system also has a classifier C(.) to classify the aligned features. The
objective function for this model is,

min — Ex.p; [In D(G(x))] =~ Ex-p, [In(1 - D(G(x)))]

Iglg —Agy Bx-p, [InD(G(x))] + LE,. Y]
where Lee = —E(y,y)~p, [y - InC(G(x))] is the cross entropy loss
and Ay, models the importance of the alignment loss. In Eq. 1,
the Generator attempts to align target features to a fixed source
distribution. Alternatively, we get more leverage in the alignment
space when modify both the source and target features [18]. While
the objective function for training D(.) is the same as in Eq. 1, the
objective function to train the Generator G(.) and Classifier C(.) is,

min —Ag, { Ex-p, [In(1 = D(G(x)))] + Bx-p, [In D(G(x) 1} + L3,
@

We refer to Eq. 1 as GAN; and to Eq. 2 as GAN.

3.2 DANN

Our third model is the popular Domain-Adversarial Training of
Neural Networks (DANN) [4]. In DANN the Generator G(.) uses
a reversed gradient to update parameters during training in order
to confuse the Discriminator D(.). The objective function for the
Generator differs from Eq. 1 as,

min ~Ad{ Ex~p; [In D(G(x))] +Ex-p, [In(1 = D(G(x))) 1} + LZ. (3)

3.3 MDC

The 4th model for comparison is the Maximum Domain Confusion
(MDC) [20]. GAN loss is the standard choice for training a network
to mimic a distribution. The MDC introduces maximum domain
confusion through a cross entropy loss between the output of the
discriminator and the uniform distribution. This results in even the
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best discriminator performing poorly, thereby aligning the domains.
The loss function for the Discriminator is identical to the one in Eq.
1. The objective function for the Generator and Classifier is given
by,

im0 ~Am{ Bx(peupy) [510D(G(0) + 5 In(1 = DGEN)]} + L.
@

The summary of these loss functions is presented in Table 1.

4 GLOCAL METHOD

Traditional domain alignment aligns the deep features without any
regards to their category. Such alignment generally results in align-
ing mismatched classes and hurts target performance. To overcome
this issue, we propose Glocal alignment that splits data into classes
and performs category-level (local) adversarial alignment. Since
in case of unsupervised domain adaptation we do not have target
labels, we rely on the pseudo label generated by the network. This
way Glocal alignment achieves global alignment by aligning data
points from each category for the two domains.

We train the classifier on source dataset D using standard cross-
entropy loss L3,. Next, we determine the pseudo-labels for the
target data by applying a threshold on the classifier prediction,

o [ I, it pICD) >«
l -1 otherwise.

We define D; := {(xl.t, yf)}:l:‘1 yf # —1} as the pseudo-labeled target
dataset. To apply alignment on each class, we would need K discrim-
inators and the amount of data available to train each discriminator
will also reduce by a factor of K, making this approach impracti-
cal when K is large. To address this concern, we use multi-task
learning approach and modify the discriminator to multi-headed
logit [15]. Specifically, we change the number of outputs of the
discriminator from 1 (Global) to K and each output head acts as a
decision function for one of K categories. D’ represents the sigmoid
output of the multi-headed discriminator at the i’ h head. The glocal
discriminator loss is defined as,

K

min - By p, [; L(i = y) In D'(G(x))]

K .
~Ex-p, [ 1= §")In(1 - D'(G(x)))] ©)

i=1

Another issue that arises is the class-imbalance problem due to
use of a subset of the target samples only. The reduced number of
target samples introduces a bias in the discriminator towards the
source domain. To overcome this issue, we do not use the threshold
7 while training the discriminator. The discriminator heads are
trained using all the target samples D; based on their pseudo labels,
enabling the discriminator D to learn the actual distributions with-
out any bias. Only confident samples Dj are used for training the
feature extractor G which are aligned with the source. Similar to the
discriminator, we modify the generator loss functions by adding the
condition to select the appropriate discriminator head and use D;
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Figure 2: Model diagram of our approach. The flow of the source is denoted in Red and target using Green. The dotted lines
indicate the flow of the labels. The generator G generates features that are classified by the classifier C and Glocally aligned by
the discriminator D. The classifier C is trained using the cross-entropy loss on the source dataset and generates pseudo-labels
for target samples. The discriminator D is a multi-headed binary classifier and trained using the Glocal domain-alignment
loss function. The discriminator head D’ to train is selected using the input label and trained to classify between source and
target’s features belonging to i cateogry. The generator G uses both Glocal domain-alignment loss and cross-entropy loss
for training,. It is trained to fool the discriminator and minimize the source cross-entropy loss on the classification task. Best

viewed in Color.

instead of D;. Using these simple adjustments, any global alignment
technique can be used at a local level.

The glocal loss functions are in Table 2. The discriminator head
is selected based on the source label and target pseudo label. The
generator is trained with the cross-entropy loss along with the
glocal generator loss. The weighing coefficients for the generator
are same as the traditional alignment losses.

5 EXPERIMENTS AND RESULTS
5.1 Datasets

We test our approach on the following classification tasks:

5.1.1 Digits and Traffic Signs. For digits experiments, we use 5
datasets - SVHN, MNIST, USPS, MNIST-M and Synthetic digits
(SyDigits). MNIST is a handwritten digits dataset consisting of
28x28 grayscale images [8]. SVHN contains 32x32 real-colored
images extracted from house numbers of Google Street View Images
[14]. USPS is a 16x16 grayscale digit dataset obtained by scanning
the digits from envelopes of the U.S. Postal Service. MNIST-M is
a variation on MNIST created by reinforcing MNIST digits with
the patches randomly extracted from color pictures of Berkeley
Segmentation Data Set (BSDS500). Synthetic Digits (SynDigits) is a

sythetic dataset of colored images with digits written in English font.

All the digits datasets have 10 classes and present various visual
variations in the images. Synthetic Signs (SynSigns) and GTSRB are
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traffic signs datasets containing 43 classes. The difference is that
SySigns contains Wikipedia images whereas GTSRB has real-world
traffic sign images [7].

We test our approach on the standard tasks: MNIST « USPS,
MNIST — MNIST-M, SVHN — MNIST, SynDigits — SVHN and
SynSigns — GTSRB. Digits and Traffic sign images are scaled to
32x32 using bilinear interpolation and normalized to be in the
range [—1, 1]. The G(Small) network is trained for these tasks (see
below).

5.1.2  Office-31. Office-31 [16] is a real-world object classification
dataset that contains 31 classes in three different domains — Ama-
zon, DSLR and Webcam. Amazon domain contains images captured
with a clean background; DSLR domain contains low-noise high
resolution images and webcam domain has low resolution images
with significant noise and color as white balance artifacts. The ex-
periments are conducted using ResNet-50 pretrained on ImageNet.
Standard random-crop and horizontal-flips are applied for training
and center-crop for testing.

5.1.3  Office-Home. Office-Home [23] is another challenging real-
world object classification dataset with 4 domains - Art (Ar), Clipart
(Cl), Product (Pr) and Real-world (Rw) images. It consists of 15,500
images from 65 different categories that are found typically in Office
and Home settings. ResNet-50 pretrained on ImageNet is used for
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Method MNIST—USPS USPS—MNIST MNIST—-MNIST-M SVHN—MNIST SyDigits—>SVHN SySigns—GTSRB
Source 81.4 54.0 59.3 64.8 86.2 89.9
DANN[4] 93.5 96.2 83.2 75.3 91.7 92.3
G-DANN 96'7T 97'3T 85'3T 88'2T 92‘8T 96'4T
MDC[20] 96.3 97.9 - 72.8 91.9 93.7
G-MDC 97'3T 98'4T = 89'7T 92'8T 95'9T
GAN; [5] 96.8 98.1 81.7 65.9 92.3 95.2
G-GAN; 97'1T 98.1 82'0T 88'9T 93'2T 95'8T
GAN3[5] 97.1 98.3 81.9 73.1 92.5 93.6
G-GAN, 97.2¢ 98.7¢ 83.0¢ 89.1¢ 93.4¢ 97.1¢
Table 3: Target classification accuracies on Digits and Traffic-Signs. The Glocal model is denoted as G-(model). (“—” did not
converge.)
Method Amazon—Webcam DSLR—Webcam Webcam—DSLR Amazon—DSLR DSLR—Amazon Webcam—Amazon Mean
Source 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DANNTJ4] 82.5 97.6 99.6 81.5 67.9 71.7 83.5
G-DANN 92.6; 97.5 99.7; 89.8 69.81 72.61 87.01
MDC[20] 87.0 97.4 99.8 83.3 70.0 72.7 85.0
G-MDC 90.41 98.5; 99.8 88.61 73.7; 72.8; 87.3;
GAN; [5] 85.5 97.1 99.8 84.3 68.4 72.4 84.6
G-GAN; 90.17 97.9; 99.8 88.61 69.17 72.9; 86.41
GAN;[5] 85.5 97.2 99.8 83.1 69.7 72.8 84.7
G-GAN, 92.07 98.2 99.8 88.21 72.61 73.2 87.3;

Table 4: Target classification accuracies for Office-31 using ResNet-50. The Glocal model is denoted as G-(model).

these experiments. Standard random-crop and horizontal-flips are
applied for training and center-crop for testing.

5.2 Training Setup

To ensure fair comparison, we train all the alignment loss ap-
proaches (including the baselines) using the following architecture:

G (Small): K(32) —K(32) —P(2,2)—K(64)— K(64)—
K(128)—K(128)—P(2,2)—FC(128)

G (Office-31): ResNet50—FC(512)

G (Office-Home): ResNet50—FC(512)

D(Global): FC(500)—FC(500)—FC(1)
D(Glocal): FC(500)—FC(500)—FC(K)

C: FC(K)

K(n) represents n kernels of size 3 with padding 1, P(2, 2) is a max
pool with kernel size 2 and stride 2. FC(n) is a fully connected layer
with n neurons. Classifier C and Discriminator D use the output of
the generator G as the input. Classifier C is a one-layer network
with K classes. Discriminator uses 1 neuron for global alignment
and K neurons for local alignment. We use ReLU activation in the
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Generator and Softmax activation for the classifier. The discrimina-
tor uses Leaky ReLU with a = 0.2 in the hidden layers and Sigmoid
activation for the output.

The G(Small) and G(Office-31 & Office-Home) are trained with
a batch size of 128 and 36 respectively. We use the Adam optimizer
with 107* learning rate and fs = (0.5, 0.999). The learning rate for
pretrained layers of ResNet-50 is set to 107> to ensure smooth fine-
tuning. We set Ag, = Ag, = A, = 0.01, Ay = 1 and 7 = 0.9 for all our
experiments based on the existing literature. However, tuning ¢
should lead to further performance gains.

5.3 Target Classification Accuracy

Our experiment results are shown in Table 3, 4 and 5. In all cases,
the Glocal alignment outperforms the category-agnostic global
alignment. For the small-resolution images’ experiments, the per-
formance gain is the highest in case of SVHN—MNIST, which is
the hardest adaptation task among them. For the diverse case of
SynSigns—GTSRB with 43 classes, we did not experience any over-
fitting showcasing the strength of the multi-binary discriminator. In
case of Office-31 and Office-Home experiments, Glocal alignment
improves over global alignment with an average increase of 2.5%.
The Glocal performance is comparable and in some cases is better
than more complex approaches like ADDA [21], CDAN [11], TADA
[24] and ALDA [3].
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Source Ar ‘ Cl ‘ Pr ‘ Rw Mean
Target Cl Pr Rw 1 Ar Pr Rw 1 Ar Cl Rw 1 Ar Cl Pr

Source 349 50.0 58.0 i 374 419 46.2 i 38.5 31.2 604 i 539 41.2 599 | 46.1
DANNJ[4] | 48.3 635 732 ' 563 654 64.4 ' 53.7 500 729 ' 685 55.6 80.5 62.7
G-DANN | 55.6; 68.01 7571 61.6; 68.6; 72.0; 58.8; 55.5; 78.4;  70.8; 58.8; 82.67 | 67.2;
MDC[20] | 48.3 67.8 74.7 : 56.7 654 65.6 : 56.6 51.6 74.0 : 68.8 58.6 81.1 64.1
G-MDC | 553; 6857 7551 57.9; 69.0; 7051 56.2] 54.07 782;,69.9; 588 82.1; | 66.31
GAN; [5] 485 67.0 74.8 : 57.1 659 66.7 : 548 538 754 : 69.6 579 79.8 | 64.3
G-GAN; | 53.5; 66.5, 7531 1 57.41 67.5; 689115507 5451 758;69.87 57.5, 80.8 | 65.2
GANy[5] | 48.4 674 747 ' 565 66.0 667 ' 556 529 745 ' 685 58.1 80.4 | 64.
G-GAN, |553; 68.31 75.9;1 5831 682 7l4; 15747 547 78.61169.9; 5847 81.7; | 66.5;

Table 5: Results of Glocal domain alignment on Office-Home. The Glocal model is denoted as G-(model).

5.4 A-distance

A-distance is a metric to measure the domain gap, defined as
2%(1 — ¢) where ¢ is the generalization error of a classifier trained
to distinguish the features of the domains [1]. We perform 5-fold
cross-validation using a linear SVM for GAN on SVHN — MNIST
transfer task. As depicted in Fig. 3, Global and Glocal alignments
achieve similar low A-distance (Fig. 3 (left)), which signifies that
domains are well-aligned. However, when compared using the
mean A-distance for each category (Fig. 3 (right)), we observe a
significant domain gap.

A-distances for GAN, on SVHN—MNIST task

2.5
2

15

A-distance

Global A-distance Mean Categorical A-distance

B Source W GANy H G-GANy

Figure 3: A-distances for G-GAN; on SVHN— MNIST task.

5.5 Pseudo Label Accuracy

In almost all cases, the pseudo label accuracy of the mini-batch was
similar to the mini-batch accuracy. Even with moderate pseudo

label accuracy, the Glocal method achieves excellent performance.

Fig. 4 shows training progress comparing pseudo-label accuracy
with target accuracy for G-GANz on SVHN—MNIST task.

5.6 Domain Alignment Feature Visualization

We use t-SNE [13] plots to visualize feature alignment of the Glocal
model for the SVHN—MNIST task in Fig. 5. Global alignment mixes
the two domains well but also misaligns the individual categories,
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Trammmg Graph for G-GAN2 on SVHN—MNIST Task

ri2s
0.9
r120
g
. =3
2 0.8 115 2
E =
3 ]
g H110 =
0.7 5—,}‘
— T Mini Batch Acc r105
T Mini Batch Pscudo Label Ace
0.6 —— T Mini Batch Pscudo Labels Count | 100
Target Test set Acc

40000 60000 80000

Iterations

0 20000

Figure 4: Training graphs comparing pseudo-label and tar-
get accuracies for G-GAN; on SVHN— MNIST task.

whereas our approach provides better alignment for individual
categories along with the global alignment.

6 CONCLUSIONS

We presented the Glocal domain alignment technique with a salient
modification to global alignment loss functions. Glocal alignment
uses the most confident target pseudo labels and aligns individ-
ual categories which in turn improves global alignment. Through
extensive experiments on various small and large datasets, we show-
case the strength of the Glocal alignment. In all the cases, Glocal
alignment results in superior performance compared to Global ad-
versarial alignment.
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Figure 5: t-SNE plots for SVHN—MNIST task. Each color represents a class. Source is represented by e and target by +.

REFERENCES [13] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

[1] ShaiBen-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Journal of machine learning research 9, Nov (2008), 2579-2605.
Jennifer Wortman Vaughan. 2010. A theory of learning from different domains. [14] Yuval Netzer, Tao Wang’ Adfim Qoates, Alessandro Exssacco, Bo Wu, and An-
Machine learning 79, 1-2 (2010, 151-175. drew Y Ng. 2011. Reading digits in natural images with unsupervised feature

[2] Chaogi Chen, Weiping Xie, Wenbing Huang, Yu Rong, Xinghao Ding, Yue Huang, learning. In NeurIPS Workshop on Deep Learning and Unsupervised Feature Learn-

Tingyang Xu, and Junzhou Huang. 2019. Progressive feature alignment for unsu- ing.

pervised domain adaptation. In Proceedings of the IEEE Conference on Computer (15] Sebastian Ruder. 2017. An Overview of lelti'TaSk Learning in De‘ep Neural
Vision and Pattern Recognition. 627-636. Networks. CoRR abs/1706.05098 (2017). arXiv:1706.05098 http://arxiv.org/abs/

[3] Minghao Chen, Shuai Zhao, Haifeng Liu, and Deng Cai. 2020. Adversarial-learned 1706.05098 . . Lo . .
loss for domain adaptation. In Proceedings of the AAAI Conference on Artificial [16] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. 2010. Adapting visual
Intelligence, Vol. 34. 3521-3528. category models to new domains. In European conference on computer vision.

[4] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Springer, 213-226. ) o
Larochelle, Frangois Laviolette, Mario Marchand, and Victor Lempitsky. 2016. (17] Jlafl Shen, Yanru QP’ Wemap Zhang, andAYong Yu. ?018‘ Was-serstem distance
Domain-Adversarial Training of Neural Networks. The Journal of Machine Learn- guided representaAtloAn learnlpg for domain adaptation. In Thirty-Second AAAI
ing Research 17, 1 (2016), 2096-2030. Corlference on Ar{lﬁqal Intelllgenqe.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, (18] RuiShu, H““fé Bui, Hir olfazu Narui, fmd Stefano Er mon. 2018. ADIRT-T Appr oa'ch
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial to Unsupervised Domain Adaptation. In International Conference on Learning
Nets. In Advances in neural information processing systems. 2672-2680. Represer}tatlon&

[6] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, [19] Chuaqql Tan, Fuchun Sun, Tao Kong, Wenchang ‘Zhang, Chao Yfmg, and Chun-
Alexei Efros, and Trevor Darrell. 2018. Cycada: Cycle-consistent adversarial fang L}u. 42018' A Survey on Deep Transfer Learning. In International conference
domain adaptation. In International conference on machine learning. PMLR, 1989~ on artificial neural networks. Springer, 270~279. .

1998. [20] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. 2015. Simultaneous

[7] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Chris- Deep Transfer Across DomlaiAns and Tasks. In Proceedings of the IEEE International
tian Igel. 2013. Detection of Traffic Signs in Real-World Images: The German Co.nf erence on Computer Vision. 4068-4076.

Traffic Sign Detection Benchmark. In International Joint Conference on Neural (21] F,r 1c frzgng, Jufiy Hoﬂman, Kate S.aenko, and Trévor Darrell. 2017. Adversar-
Networks. ial discriminative domain adaptation. In Proceedings of the IEEE Conference on

[8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient- Computer Vision and Pattern Recognition. 7167-7176.
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278— [22] Hemanth Venkateswara, Shayok Chakraborty, and Sethuraman Panchanathan.
2324, 2017. Deep-learning systems for domain adaptation in computer vision: Learning

[9] Dong-Hyun Lee. 2013. Pseudo-label: The simple and efficient semi-supervised transferable feature representations. IEEE Signal Processing Magazine 34, 6 (2017),

117-129.

learning method for deep neural networks. In Workshop on challenges in repre- .
sentation learning, ICML, Vol. 3. 2. [23] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman

Panchanathan. 2017. Deep hashing network for unsupervised domain adaptation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
5018-5027.

[24] Ximei Wang, Liang Li, Weirui Ye, Mingsheng Long, and Jianmin Wang. 2019.
Transferable attention for domain adaptation. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, Vol. 33. 5345-5352.

[25] Shaoan Xie, Zibin Zheng, Liang Chen, and Chuan Chen. 2018. Learning semantic
representations for unsupervised domain adaptation. In International Conference
on Machine Learning. 5423-5432.

[10] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning
transferable features with deep adaptation networks. In International conference
on machine learning. 97-105.

[11] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. 2018.

Conditional adversarial domain adaptation. In Advances in neural information

processing systems. 1640-1650.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2017. Deep

transfer learning with joint adaptation networks. In International conference on

machine learning. PMLR, 2208-2217.

[12

51


https://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Vanilla GAN
	3.2 DANN
	3.3 MDC

	4 Glocal Method
	5 Experiments and Results
	5.1 Datasets
	5.2 Training Setup
	5.3 Target Classification Accuracy
	5.4 A-distance
	5.5 Pseudo Label Accuracy
	5.6 Domain Alignment Feature Visualization

	6 Conclusions
	Acknowledgments
	References



