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ABSTRACT
Traditional unsupervised domain adaptation methods attempt to
align source and target domains globally and are agnostic to the
categories of the data points. This results in an inaccurate categori-
cal alignment and diminishes the classification performance on the
target domain. In this paper, we alter existing adversarial domain
alignment methods to adhere to category alignment by imputing
category information. We partition the samples based on category
using source labels and target pseudo labels and then apply domain
alignment for every category. Our proposed modification provides
a boost in performance even with a modest pseudo label estimator.
We evaluate our approach on 4 popular domain alignment loss
functions using object recognition and digit datasets.
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1 INTRODUCTION
In real-world applications, train and test data generally do not be-
long to the same distribution. Even though the classification model
is well-trained on the training dataset (also known as the source),
this change in distribution often yields to the degraded performance
because of the covariance shift [22]. The standard solution is to
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Figure 1: Illustration of the Glocal Method. We identify
pseudo labels to partition the categories and align the do-
mains locally which results in an effective global domain
alignment.

fine-tune the network on the new domain (also known as the target)
but it requires a significant amount of labeled data. This may not
be a viable option as labeling the data is an expensive task. To solve
this problem, Unsupervised Domain Adaptation techniques aim to
learn target labels by using labeled source and unlabelled target
data only [19].

Unsupervised domain adaptation problem has been researched
extensively over the past decade. The standard solution is to classify
samples based on features that are invariant between the source
and target domains. To attain this objective, most techniques, at-
tempt to reduce the distance between the generated features of the
domains using a distance-metric like maximum mean discrepancy
[10], Wasserstein distance [17] or adversarially using a discrimina-
tor [4, 20, 21]. These methods make the features domain-invariant
but the alignment is done without taking category information of
the features into consideration and often leads to jumbled classes.

To improve adversarial global domain alignment, we propose
to align the data points locally using category information - à la,
Think Globally, Act Locally. First, we partition the samples of the
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Method Discriminator Loss Generator Loss

DANN −E𝑥∼𝐷𝑠
[ln𝐷 (𝐺 (𝑥))] − E𝑥∼𝐷𝑡

[ln(1 − 𝐷 (𝐺 (𝑥)))] Gradient Reversal

MDC −E𝑥∼𝐷𝑠
[ln𝐷 (𝐺 (𝑥))] − E𝑥∼𝐷𝑡

[ln(1 − 𝐷 (𝐺 (𝑥)))] −E𝑥∼(𝐷𝑠∪𝐷𝑡 ) [ 12 ln𝐷 (𝐺 (𝑥)) + 1
2 ln(1 − 𝐷 (𝐺 (𝑥)))]

GAN1 −E𝑥∼𝐷𝑠
[ln𝐷 (𝐺 (𝑥))] − E𝑥∼𝐷𝑡

[ln(1 − 𝐷 (𝐺 (𝑥)))] −E𝑥∼𝐷𝑡
[ln𝐷 (𝐺 (𝑥))]

GAN2 −E𝑥∼𝐷𝑠
[ln𝐷 (𝐺 (𝑥))] − E𝑥∼𝐷𝑡

[ln(1 − 𝐷 (𝐺 (𝑥)))] −E𝑥∼𝐷𝑠
[ln(1 − 𝐷 (𝐺 (𝑥)))] − E𝑥∼𝐷𝑡

[ln𝐷 (𝐺 (𝑥))]

Table 1: Traditional Domain Alignment loss functions.

Method Discriminator Loss Generator Loss

G-𝐷𝐴𝑁𝑁 −E𝑥∼𝐷𝑠
[∑𝐾

𝑖=1 1(𝑖 = 𝑦) ln𝐷𝑖 (𝐺 (𝑥))]
−E𝑥∼𝐷𝑡

[∑𝐾
𝑖=1 1(𝑖 = 𝑦𝑡 ) ln(1 − 𝐷𝑖 (𝐺 (𝑥)))]

Gradient Reversal using −E𝑥∼𝐷𝑠
[∑𝐾

𝑖=1 1(𝑖 = 𝑦) ln𝐷𝑖 (𝐺 (𝑥))]
−E𝑥∼𝐷′

𝑡
[∑𝐾

𝑖=1 1(𝑖 = 𝑦𝑡 ) ln(1 − 𝐷𝑖 (𝐺 (𝑥)))]

G-𝑀𝐷𝐶 −E𝑥∼𝐷𝑠
[∑𝐾

𝑖=1 1(𝑖 = 𝑦) ln𝐷𝑖 (𝐺 (𝑥))]
−E𝑥∼𝐷𝑡

[∑𝐾
𝑖=1 1(𝑖 = 𝑦𝑡 ) ln(1 − 𝐷𝑖 (𝐺 (𝑥)))]

−E𝑥∼(𝐷𝑠∪𝐷′
𝑡 ) [

1
2
∑𝐾
𝑖=1 1(𝑖 = 𝑦) ln𝐷𝑖 (𝐺 (𝑥))

+ 1
2
∑𝐾
𝑖=1 1(𝑖 = 𝑦) ln(1 − 𝐷𝑖 (𝐺 (𝑥)))]

G-𝐺𝐴𝑁1
−E𝑥∼𝐷𝑠

[∑𝐾
𝑖=1 1(𝑖 = 𝑦) ln𝐷𝑖 (𝐺 (𝑥))]

−E𝑥∼𝐷𝑡
[∑𝐾

𝑖=1 1(𝑖 = 𝑦𝑡 ) ln(1 − 𝐷𝑖 (𝐺 (𝑥)))] −E𝑥∼𝐷′
𝑡
[∑𝐾

𝑖=1 1(𝑖 = 𝑦𝑡 ) ln𝐷𝑖 (𝐺 (𝑥))]

G-𝐺𝐴𝑁2
−E𝑥∼𝐷𝑠

[∑𝐾
𝑖=1 1(𝑖 = 𝑦) ln𝐷𝑖 (𝐺 (𝑥))]

−E𝑥∼𝐷𝑡
[∑𝐾

𝑖=1 1(𝑖 = 𝑦𝑡 ) ln(1 − 𝐷𝑖 (𝐺 (𝑥)))]
−E𝑥∼𝐷𝑠

[∑𝐾
𝑖=1 1(𝑖 = 𝑦) ln(1 − 𝐷𝑖 (𝐺 (𝑥)))]

−E𝑥∼𝐷′
𝑡
[∑𝐾

𝑖=1 1(𝑖 = 𝑦𝑡 ) ln𝐷𝑖 (𝐺 (𝑥))]

Table 2: Glocal Domain Alignment loss functions.

source and target that belong to the same classes. In the case of
unsupervised domain adaptation, since the target labels are not
available, we use the pseudo labels instead. Pseudo-Label is a semi-
supervised learning technique that treats network prediction as
a true label if the probability of a predicted category is above a
predetermined threshold [9]. We then align datapoints from each
category for both the domains. The local category alignment, in turn
ensures global domain alignment. This simple modification can be
applied to any adversarial domain alignment techniques and results
in a better alignment. Our approach is depicted in Fig. 1. In this
paper, we experiment on DANN [4], MDC [20], GAN loss functions
[5]. We compare these losses as well as our modification to them on
a common network. These loss functions are discussed in section 3.
In the next section, we discuss the related work. Section 4 outlines
the Glocal alignment method. Section 5 discusses experiments and
results followed by conclusion in Section 6.

2 RELATEDWORK
Domain adaptation techniques aim to reduce the distribution dis-
crepancy between source and target domains using a domain align-
ment loss. We discuss four adversarial based alignment techniques
in the Background section. These alignment losses can be com-
bined [12] or applied at multiple layers [10, 12] to further boost
performance. State-of-the-art domain alignment techniques use
additional loss functions for alignment along with the adversarial

domain alignment loss. Soft labels generated using source samples
were used to train the target in [20]. Maximum Mean Distance
was reduced between source and target in [12]. A combination of
Lipschitz constraint and low entropy based loss function was used
in [18].

Recent approaches have emphasized the problems of mere global
adaptation. A moving class-wise centroid based distance was im-
plemented in [25]. The class-wise centroid distance was reduced
progressively in [2]. The discriminator can also be conditioned on
the class for encouraging class-wise features distinction [11]. An
image-to-image translation based technique ensured a generated
target image has the same class label as the original source im-
age [6]. We promote the local alignment and propose to modify
the existing global adversarial alignment loss functions to operate
locally.

3 BACKGROUND
Let𝐷𝑠 = {(𝑥𝑠

𝑖
, 𝑦𝑠
𝑖
)}𝑛𝑠
𝑖=1 be the source domain consisting of𝑛𝑠 labeled

images sampled from distribution 𝑆 . Likewise the target domain
is denoted as 𝐷𝑡 = {(𝑥𝑡

𝑖
)}𝑛𝑡
𝑖=1 consisting of 𝑛𝑡 unlabeled images

sampled from distribution 𝑇 . The goal of unsupervised domain
adaptation is to learn the target labels {𝑦𝑖𝑡 }

𝑛𝑡
𝑖=1 using 𝐷𝑠 and 𝐷𝑡 .

It is assumed that 𝐷𝑠 and 𝐷𝑡 have an identical label space of 𝐾
categories but since 𝑆 ≠ 𝑇 , a classifier trained using 𝐷𝑠 will under
perform when trying to predict the target data labels.
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We propose to align the source and target distributions using
adversarial feature alignment based on the Generative Adversarial
Network (GAN) [5]. The standard GAN model consists of a Gen-
erator network 𝐺 (.), and a Discriminator network 𝐷 (.) which are
pitted against each other in min-max optimization. Traditionally,
generator takes noise as an input and outputs an image but in the
case of unsupervised domain adaptation, the generator acts as a
feature extractor/encoder. It takes image as the input and outputs
deep features which can be classified by a classification module to
appropriate classes. The Discriminator network attempts to distin-
guish between the source and target features and the Generator
attempts to align the features so that they are indistinguishable by
the discriminator. Upon convergence, the marginal distributions of
the source and target are said to be aligned. In the following we
outline 4 popular variants of adversarial alignment.

3.1 Vanilla GAN
The first model GAN1 is the vanilla GAN model where the Gen-
erator 𝐺 (.) attempts to align the source and target features and
the Discriminator 𝐷 (.) learns to distinguish between them. The
system also has a classifier𝐶 (.) to classify the aligned features. The
objective function for this model is,

min
𝐷

−E𝑥∼𝐷𝑠 [ln𝐷 (𝐺 (𝑥)) ] − E𝑥∼𝐷𝑡 [ln(1 −𝐷 (𝐺 (𝑥))) ]

min
𝐺,𝐶

−𝜆𝑔1 E𝑥∼𝐷𝑡 [ln𝐷 (𝐺 (𝑥)) ] + L𝑠
𝑐𝑒 , (1)

where L𝑐𝑒 = −E(𝑥,𝑦)∼𝐷𝑠
[𝑦 · ln𝐶 (𝐺 (𝑥))] is the cross entropy loss

and 𝜆𝑔1 models the importance of the alignment loss. In Eq. 1,
the Generator attempts to align target features to a fixed source
distribution. Alternatively, we get more leverage in the alignment
space when modify both the source and target features [18]. While
the objective function for training 𝐷 (.) is the same as in Eq. 1, the
objective function to train the Generator𝐺 (.) and Classifier𝐶 (.) is,

min
𝐺,𝐶

−𝜆𝑔2
{
E𝑥∼𝐷𝑠 [ln(1 −𝐷 (𝐺 (𝑥))) ] + E𝑥∼𝐷𝑡 [ln𝐷 (𝐺 (𝑥)) ]

}
+ L𝑠

𝑐𝑒

(2)

We refer to Eq. 1 as GAN1 and to Eq. 2 as GAN2.

3.2 DANN
Our third model is the popular Domain-Adversarial Training of
Neural Networks (DANN) [4]. In DANN the Generator 𝐺 (.) uses
a reversed gradient to update parameters during training in order
to confuse the Discriminator 𝐷 (.). The objective function for the
Generator differs from Eq. 1 as,

min
𝐺,𝐶

−𝜆𝑑
{
E𝑥∼𝐷𝑠 [ln𝐷 (𝐺 (𝑥)) ] + E𝑥∼𝐷𝑡 [ln(1 −𝐷 (𝐺 (𝑥))) ]

}
+ L𝑠

𝑐𝑒 . (3)

3.3 MDC
The 4th model for comparison is the Maximum Domain Confusion
(MDC) [20]. GAN loss is the standard choice for training a network
to mimic a distribution. The MDC introduces maximum domain
confusion through a cross entropy loss between the output of the
discriminator and the uniform distribution. This results in even the

best discriminator performing poorly, thereby aligning the domains.
The loss function for the Discriminator is identical to the one in Eq.
1. The objective function for the Generator and Classifier is given
by,

min
𝐺,𝐶

−𝜆𝑚
{
E𝑥∼(𝐷𝑠∪𝐷𝑡 )

[ 1
2
ln𝐷 (𝐺 (𝑥)) + 1

2
ln(1 −𝐷 (𝐺 (𝑥)))

]}
+ L𝑠

𝑐𝑒 .

(4)

The summary of these loss functions is presented in Table 1.

4 GLOCAL METHOD
Traditional domain alignment aligns the deep features without any
regards to their category. Such alignment generally results in align-
ing mismatched classes and hurts target performance. To overcome
this issue, we propose Glocal alignment that splits data into classes
and performs category-level (local) adversarial alignment. Since
in case of unsupervised domain adaptation we do not have target
labels, we rely on the pseudo label generated by the network. This
way Glocal alignment achieves global alignment by aligning data
points from each category for the two domains.

We train the classifier on source dataset 𝐷𝑠 using standard cross-
entropy loss L𝑠𝑐𝑒 . Next, we determine the pseudo-labels for the
target data by applying a threshold on the classifier prediction,

𝑦𝑡𝑖 =


argmax

𝑦
𝑝 (𝑦 |𝐶 (𝑥𝑡

𝑖
)), if max 𝑝 (𝑦 |𝐶 (𝑥𝑡

𝑖
)) > 𝜏

−1 otherwise.
(5)

We define𝐷 ′
𝑡 := {(𝑥𝑡

𝑖
, 𝑦𝑡
𝑖
)}𝑛

′
𝑡

𝑖=1
��𝑦𝑡
𝑖
≠ −1} as the pseudo-labeled target

dataset. To apply alignment on each class, we would need𝐾 discrim-
inators and the amount of data available to train each discriminator
will also reduce by a factor of 𝐾 , making this approach impracti-
cal when 𝐾 is large. To address this concern, we use multi-task
learning approach and modify the discriminator to multi-headed
logit [15]. Specifically, we change the number of outputs of the
discriminator from 1 (Global) to 𝐾 and each output head acts as a
decision function for one of𝐾 categories.𝐷𝑖 represents the sigmoid
output of the multi-headed discriminator at the 𝑖𝑡ℎ head. The glocal
discriminator loss is defined as,

min
𝐷

−E𝑥∼𝐷𝑠
[
𝐾∑
𝑖=1

1(𝑖 = 𝑦) ln𝐷𝑖 (𝐺 (𝑥))]

−E𝑥∼𝐷𝑡
[
𝐾∑
𝑖=1

1(𝑖 = 𝑦𝑡 ) ln(1 − 𝐷𝑖 (𝐺 (𝑥)))] (6)

Another issue that arises is the class-imbalance problem due to
use of a subset of the target samples only. The reduced number of
target samples introduces a bias in the discriminator towards the
source domain. To overcome this issue, we do not use the threshold
𝜏 while training the discriminator. The discriminator heads are
trained using all the target samples 𝐷𝑡 based on their pseudo labels,
enabling the discriminator 𝐷 to learn the actual distributions with-
out any bias. Only confident samples 𝐷 ′

𝑡 are used for training the
feature extractor𝐺 which are aligned with the source. Similar to the
discriminator, we modify the generator loss functions by adding the
condition to select the appropriate discriminator head and use 𝐷 ′

𝑡
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Figure 2: Model diagram of our approach. The flow of the source is denoted in Red and target using Green. The dotted lines
indicate the flow of the labels. The generator𝐺 generates features that are classified by the classifier𝐶 and Glocally aligned by
the discriminator 𝐷 . The classifier𝐶 is trained using the cross-entropy loss on the source dataset and generates pseudo-labels
for target samples. The discriminator 𝐷 is a multi-headed binary classifier and trained using the Glocal domain-alignment
loss function. The discriminator head 𝐷𝑖 to train is selected using the input label and trained to classify between source and
target’s features belonging to 𝑖𝑡ℎ cateogry. The generator 𝐺 uses both Glocal domain-alignment loss and cross-entropy loss
for training. It is trained to fool the discriminator and minimize the source cross-entropy loss on the classification task. Best
viewed in Color.

instead of𝐷𝑡 . Using these simple adjustments, any global alignment
technique can be used at a local level.

The glocal loss functions are in Table 2. The discriminator head
is selected based on the source label and target pseudo label. The
generator is trained with the cross-entropy loss along with the
glocal generator loss. The weighing coefficients for the generator
are same as the traditional alignment losses.

5 EXPERIMENTS AND RESULTS
5.1 Datasets
We test our approach on the following classification tasks:

5.1.1 Digits and Traffic Signs. For digits experiments, we use 5
datasets - SVHN, MNIST, USPS, MNIST-M and Synthetic digits
(SyDigits). MNIST is a handwritten digits dataset consisting of
28×28 grayscale images [8]. SVHN contains 32×32 real-colored
images extracted from house numbers of Google Street View Images
[14]. USPS is a 16×16 grayscale digit dataset obtained by scanning
the digits from envelopes of the U.S. Postal Service. MNIST-M is
a variation on MNIST created by reinforcing MNIST digits with
the patches randomly extracted from color pictures of Berkeley
Segmentation Data Set (BSDS500). Synthetic Digits (SynDigits) is a
sythetic dataset of colored images with digits written in English font.
All the digits datasets have 10 classes and present various visual
variations in the images. Synthetic Signs (SynSigns) and GTSRB are

traffic signs datasets containing 43 classes. The difference is that
SySigns contains Wikipedia images whereas GTSRB has real-world
traffic sign images [7].

We test our approach on the standard tasks: MNIST ↔ USPS,
MNIST → MNIST-M, SVHN → MNIST, SynDigits → SVHN and
SynSigns → GTSRB. Digits and Traffic sign images are scaled to
32×32 using bilinear interpolation and normalized to be in the
range [−1, 1]. The 𝐺 (Small) network is trained for these tasks (see
below).

5.1.2 Office-31. Office-31 [16] is a real-world object classification
dataset that contains 31 classes in three different domains – Ama-
zon, DSLR and Webcam. Amazon domain contains images captured
with a clean background; DSLR domain contains low-noise high
resolution images and webcam domain has low resolution images
with significant noise and color as white balance artifacts. The ex-
periments are conducted using ResNet-50 pretrained on ImageNet.
Standard random-crop and horizontal-flips are applied for training
and center-crop for testing.

5.1.3 Office-Home. Office-Home [23] is another challenging real-
world object classification dataset with 4 domains - Art (Ar), Clipart
(Cl), Product (Pr) and Real-world (Rw) images. It consists of 15,500
images from 65 different categories that are found typically in Office
and Home settings. ResNet-50 pretrained on ImageNet is used for
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Method MNIST→USPS USPS→MNIST MNIST→MNIST-M SVHN→MNIST SyDigits→SVHN SySigns→GTSRB

Source 81.4 54.0 59.3 64.8 86.2 89.9

DANN[4] 93.5 96.2 83.2 75.3 91.7 92.3
G-DANN 96.7↑ 97.3↑ 85.3↑ 88.2↑ 92.8↑ 96.4↑
MDC[20] 96.3 97.9 − 72.8 91.9 93.7
G-MDC 97.3↑ 98.4↑ − 89.7↑ 92.8↑ 95.9↑
GAN1[5] 96.8 98.1 81.7 65.9 92.3 95.2
G-GAN1 97.1↑ 98.1 82.0↑ 88.9↑ 93.2↑ 95.8↑
GAN2[5] 97.1 98.3 81.9 73.1 92.5 93.6
G-GAN2 97.2↑ 98.7↑ 83.0↑ 89.1↑ 93.4↑ 97.1↑

Table 3: Target classification accuracies on Digits and Traffic-Signs. The Glocal model is denoted as G-(model). (“−” did not
converge.)

Method Amazon→Webcam DSLR→Webcam Webcam→DSLR Amazon→DSLR DSLR→Amazon Webcam→Amazon Mean

Source 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DANN[4] 82.5 97.6 99.6 81.5 67.9 71.7 83.5
G-DANN 92.6↑ 97.5↓ 99.7↑ 89.8↑ 69.8↑ 72.6↑ 87.0↑
MDC[20] 87.0 97.4 99.8 83.3 70.0 72.7 85.0
G-MDC 90.4↑ 98.5↑ 99.8 88.6↑ 73.7↑ 72.8↑ 87.3↑
GAN1[5] 85.5 97.1 99.8 84.3 68.4 72.4 84.6
G-GAN1 90.1↑ 97.9↑ 99.8 88.6↑ 69.1↑ 72.9↑ 86.4↑
GAN2[5] 85.5 97.2 99.8 83.1 69.7 72.8 84.7
G-GAN2 92.0↑ 98.2↑ 99.8 88.2↑ 72.6↑ 73.2↑ 87.3↑

Table 4: Target classification accuracies for Office-31 using ResNet-50. The Glocal model is denoted as G-(model).

these experiments. Standard random-crop and horizontal-flips are
applied for training and center-crop for testing.

5.2 Training Setup
To ensure fair comparison, we train all the alignment loss ap-
proaches (including the baselines) using the following architecture:

𝐺 (Small): K(32)→K(32)→P(2,2)→K(64)→ K(64)→
K(128)→K(128)→P(2,2)→FC(128)

𝐺 (Office-31): ResNet50→FC(512)

𝐺 (Office-Home): ResNet50→FC(512)

𝐷 (𝐺𝑙𝑜𝑏𝑎𝑙): FC(500)→FC(500)→FC(1)
𝐷 (𝐺𝑙𝑜𝑐𝑎𝑙): FC(500)→FC(500)→FC(𝐾)

𝐶: FC(𝐾)

K(n) represents n kernels of size 3 with padding 1, P(2,2) is a max
pool with kernel size 2 and stride 2. FC(n) is a fully connected layer
with n neurons. Classifier 𝐶 and Discriminator 𝐷 use the output of
the generator 𝐺 as the input. Classifier 𝐶 is a one-layer network
with 𝐾 classes. Discriminator uses 1 neuron for global alignment
and 𝐾 neurons for local alignment. We use ReLU activation in the

Generator and Softmax activation for the classifier. The discrimina-
tor uses Leaky ReLU with 𝛼 = 0.2 in the hidden layers and Sigmoid
activation for the output.

The𝐺(Small) and𝐺(Office-31 & Office-Home) are trained with
a batch size of 128 and 36 respectively. We use the Adam optimizer
with 10−4 learning rate and 𝛽s = (0.5, 0.999). The learning rate for
pretrained layers of ResNet-50 is set to 10−5 to ensure smooth fine-
tuning. We set 𝜆𝑔1 = 𝜆𝑔2 = 𝜆𝑚 = 0.01, 𝜆𝑑 = 1 and 𝜏 = 0.9 for all our
experiments based on the existing literature. However, tuning 𝜏
should lead to further performance gains.

5.3 Target Classification Accuracy
Our experiment results are shown in Table 3, 4 and 5. In all cases,
the Glocal alignment outperforms the category-agnostic global
alignment. For the small-resolution images’ experiments, the per-
formance gain is the highest in case of SVHN→MNIST, which is
the hardest adaptation task among them. For the diverse case of
SynSigns→GTSRB with 43 classes, we did not experience any over-
fitting showcasing the strength of the multi-binary discriminator. In
case of Office-31 and Office-Home experiments, Glocal alignment
improves over global alignment with an average increase of 2.5%.
The Glocal performance is comparable and in some cases is better
than more complex approaches like ADDA [21], CDAN [11], TADA
[24] and ALDA [3].
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Source Ar Cl Pr Rw MeanTarget Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr
Source 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN[4] 48.3 63.5 73.2 56.3 65.4 64.4 53.7 50.0 72.9 68.5 55.6 80.5 62.7
G-DANN 55.6↑ 68.0↑ 75.7↑ 61.6↑ 68.6↑ 72.0↑ 58.8↑ 55.5↑ 78.4↑ 70.8↑ 58.8↑ 82.6↑ 67.2↑
MDC[20] 48.3 67.8 74.7 56.7 65.4 65.6 56.6 51.6 74.0 68.8 58.6 81.1 64.1
G-MDC 55.3↑ 68.5↑ 75.5↑ 57.9↑ 69.0↑ 70.5↑ 56.2↓ 54.0↑ 78.2↑ 69.9↑ 58.8↑ 82.1↑ 66.3↑
GAN1[5] 48.5 67.0 74.8 57.1 65.9 66.7 54.8 53.8 75.4 69.6 57.9 79.8 64.3
G-GAN1 53.5↑ 66.5↓ 75.3↑ 57.4↑ 67.5↑ 68.9↑ 55.0↑ 54.5↑ 75.8↑ 69.8↑ 57.5↓ 80.8↑ 65.2↑
GAN2[5] 48.4 67.4 74.7 56.5 66.0 66.7 55.6 52.9 74.5 68.5 58.1 80.4 64.1
G-GAN2 55.3↑ 68.3↑ 75.9↑ 58.3↑ 68.2↑ 71.4↑ 57.4↑ 54.7↑ 78.6↑ 69.9↑ 58.4↑ 81.7↑ 66.5↑

Table 5: Results of Glocal domain alignment on Office-Home. The Glocal model is denoted as G-(model).

5.4 A-distance
A-distance is a metric to measure the domain gap, defined as
2×(1 − 𝜀) where 𝜀 is the generalization error of a classifier trained
to distinguish the features of the domains [1]. We perform 5-fold
cross-validation using a linear SVM for GAN2 on SVHN → MNIST
transfer task. As depicted in Fig. 3, Global and Glocal alignments
achieve similar low A-distance (Fig. 3 (left)), which signifies that
domains are well-aligned. However, when compared using the
mean A-distance for each category (Fig. 3 (right)), we observe a
significant domain gap.

Figure 3: A-distances for G-GAN2 on SVHN→ MNIST task.

5.5 Pseudo Label Accuracy
In almost all cases, the pseudo label accuracy of the mini-batch was
similar to the mini-batch accuracy. Even with moderate pseudo
label accuracy, the Glocal method achieves excellent performance.
Fig. 4 shows training progress comparing pseudo-label accuracy
with target accuracy for G-GAN2 on SVHN→MNIST task.

5.6 Domain Alignment Feature Visualization
We use t-SNE [13] plots to visualize feature alignment of the Glocal
model for the SVHN→MNIST task in Fig. 5. Global alignment mixes
the two domains well but also misaligns the individual categories,

Figure 4: Training graphs comparing pseudo-label and tar-
get accuracies for G-GAN2 on SVHN→ MNIST task.

whereas our approach provides better alignment for individual
categories along with the global alignment.

6 CONCLUSIONS
We presented the Glocal domain alignment technique with a salient
modification to global alignment loss functions. Glocal alignment
uses the most confident target pseudo labels and aligns individ-
ual categories which in turn improves global alignment. Through
extensive experiments on various small and large datasets, we show-
case the strength of the Glocal alignment. In all the cases, Glocal
alignment results in superior performance compared to Global ad-
versarial alignment.
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Figure 5: t-SNE plots for SVHN→MNIST task. Each color represents a class. Source is represented by • and target by +.
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