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Abstract—Trust in autonomous teammates has been shown to
be a key factor in human-autonomy team (HAT) performance,
and anthropomorphism is a closely related construct that is
underexplored in HAT literature. This study investigates whether
perceived anthropomorphism can be measured from team
communication behaviors in a simulated remotely piloted aircraft
system task environment, in which two humans in unique roles
were asked to team with a synthetic (i.e., autonomous) pilot agent.
We compared verbal and self-reported measures of
anthropomorphism with team error handling performance and
trust in the synthetic pilot. Results for this study show that trends
in verbal anthropomorphism follow the same patterns expected
from self-reported measures of anthropomorphism, with respect
to fluctuations in trust resulting from autonomy failures.
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[. INTRODUCTION

Autonomy in machines has been a driving force behind
scientific milestones since the industrial revolution of the late
1800s. The Perseverance rover, for instance, is a highly
autonomous robot for remote exploration of geological
formations and the search for signs of extraterrestrial life on the
Martian surface [1]. But the prevalence of increasing machine
autonomy (referred to as “autonomy” hereafter, following [2])
in human-machine systems does not mean that the path forward
is to supplant humans in new technological frontiers. Rather, we
are moving from systems characterized by human supervision
over automation towards those with cooperative structures in
which humans and autonomy work interdependently [3], [4].

Capabilities of autonomy have increased with rapid
advances in machine learning and artificial intelligence (AL [5].
This is to the extent that they can now function more like
teammates rather than tools in dynamic task environments, such
as in human-virtual agent teams in remotely piloted aircraft
systems (RPASs; [6]) and human-robot teams in marine
operations [7]. Called human-autonomy teams (HATs), these
are characterized by human and autonomous team members
(i.e., autonomy) with distinct roles working interdependently
towards a common goal [2]. Various team constructs have been
described for HATSs, including interaction dynamics like
communication and coordination [8], as well as trust [9], [10]
and anthropomorphism [11].
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This study focuses on team communication dynamics and its
relationship with trust and anthropomorphism. We describe an
experiment that aimed to examine the relationship between
perceived anthropomorphism as an observational and a self-
reported measure, self-reported trust in an autonomous agent,
and communication behaviors in HAT interactions. Based on
our results, we discuss how to build mechanisms to make HATs
more effective in dynamic task environments.

A. Team Communication Dynamics

Team interactions comprise communication and
coordination in the face of changing environmental demands
[12]. Interactive team cognition theory [13] posits that effective
team interactions are needed to maintain team performance, and
identifies team interactions in the form of explicit
communication as team cognition itself. Effective teaming in
dynamic task environments thus requires effective
communication and coordination processes. Previous studies of
teaming in command-and-control environments have indicated
that team communication can predict team situation awareness
and team performance, whether in human-human teams [13] or
HATs [14]. Additionally, various team cognitive constructs
have been measured through team communication data,
including team situational awareness [14], team workload [15],
and team trust [10]. It should be noted that for HATS, social
communication is likely to be even more prevalent compared to
classical human-automation interaction paradigms [16], [17].

However, team communications not only serve as exchanges
of critical task information between team members as a primary
work of teaming [13]; it also serves to build and repair trust
between teammates through different forms of communication,
such as explanations [9], [18]. For instance, explanations can
affect a team member’s perceptions of an agent’s ability to help
accomplish a team task [18], [19]. These perceptions
subsequently affect the ability of HATs to communicate
effectively and could undermine team situation awareness and
performance, among others. Demir et al [10] showed that
predictability and timeliness of team communication in HATs
were correlated with increased trust, whereas abnormal
communication behaviors prevented effective recovery of trust
following autonomy failures. In other words, communication
behaviors in HATs affect trust and trust calibration in real-time.



B. Trust in HAT Interaction Dynamics

Trust is an important factor for effective interactions in
HATs. Unlike in supervisory structures, humans cannot veto all
decisions made in more lateral team structures because such an
arrangement does not require seeking human approval before
executing many of its actions [20]. Additionally, operational
contexts may involve rapid decision-making, such that not all
actions by autonomy can be inspected or addressed by human
counterparts, as is also the case for supervisory control over
higher levels of automation [20]. Thus, trust is especially
important in HATs, due to their more lateral interaction
structure, and the need to minimize communication and
coordination overhead [21].

Interactions with autonomy are therefore characterized by a
heightened vulnerability, making trust more critical for
performance, and similar to the types of trust dynamics observed
between human teammates. However, trust has been theorized
to develop in opposite directions between humans and non-
humans. For example, interpersonal trust (i.e., between humans)
is initially based on perceived short-term reliability, eventually
accruing into a more static, faith-based trust as the relationship
grows [22]. Meanwhile, trust in machines is initially more faith-
based—perhaps as a result of “positivity bias” towards
unfamiliar automation [23]. Then, as familiarity is developed,
trust becomes more localized to situational reliability [24].
Supposing humans apply human-human rules of interaction
with autonomy [9], trust in HATs may be more affected by the
quality of humanlike team communication behaviors.

C. Anthropomorphism in HAT Communication Behaviors

Anthropomorphism is the attribution of humanlike qualities
to inanimate objects, and has been identified as a distinct factor
of human trust in automation and robots [19], [24]. People
anthropomorphize an entity according to their perception of its
capacity for anthropocentric knowledge, along with their desire
to understand it and socially engage with it [25]. De Visser et al
[11] found that while people initially had greater trust in agents
that do not appear humanlike, automation failures for more
visually humanlike agents were associated with less drastic
changes in trust levels, suggesting that anthropomorphism aids
in tempering trust. However, they also showed that the use of
humanlike apologetic behavior eliminates the differences in
drops in trust associated with visual appearance [11]; hence,
communication behaviors may have a more powerful
relationship with trust than visual appearance.

There is no standard measurement for perceived
anthropomorphism across the literature, and it is typically
measured through self-report scales [26], as is the case for trust
[27]. However, behavioral measures of trust, such as compliance
and reliance rates, have also been used. Kulms and Kopp [28]
studied the effects of different levels of humanlike appearance
on trust in a virtual game advisor, and showed inconsistencies
between self-reported and behavioral measures. Though the
appearance of agents bolstered self-reported trust, it did not have
effects on actual trusting behavior [28].

We believe that perceived anthropomorphism can likewise
be found in communication behaviors, which we refer to as

verbal anthropomorphism. This has a potential for allowing real-
time measurements of perceived anthropomorphism in HATS.
The use of gendered and second-person pronouns, for instance,
has been shown to be an indicator of a learner’s perceived
inclusion or exclusion of a virtual agent within their group in
real-time [29].

II. CURRENT STUDY

A. Simulated RPAS Environment

This study used the Cognitive Engineering Research on
Team Tasks RPAS Synthetic Task Environment [30], which is
composed of three consoles separated by task role, and four
experimenter consoles. Participants communicated through a
text chat system to simulate teamwork aspects of RPAS
operations, and were also given communication “cheat sheets”,
to aid in communicating with a supposedly verbally limited
synthetic teammate. Participants were tasked to take
photographs of strategic targets shown on a color-coded map on
their console screens. Three different team roles were involved
in this task: (1) a navigator, who was responsible for the dynamic
flight plan and providing waypoint related information to the
pilot, including name, altitude, airspeed, and effective radius; (2)
a pilot, who was tasked with monitoring and adjusting the
altitude, airspeed, effective radius, fuel, gears, and flaps, as well
as negotiating altitude and airspeed with the photographer to
enable proper conditions for a clear photograph of the target,
and; (3) a photographer, who was in charge of taking clear
photos of the target by monitoring and adjusting the camera and
providing feedback to the team. The team task flow between the
team members is as follows: (1) the navigator provides
information regarding speed and altitude restrictions of the
waypoints to the pilot; (2) the pilot negotiates with a
photographer in terms of adjusting altitude and airspeed of the
RPA; and (3) the photographer sends feedback to other team
members whether a good or bad photo of the target has been
taken [30].

We used a Wizard of Oz paradigm [31], in which the two
participants per team were informed that the pilot was a
“synthetic” agent, when it was a highly trained experimenter
mimicking a synthetic agent from a separate room. This
teammate used restricted vocabulary to mimic computer
language capabilities similar to an ACT-R synthetic pilot in a
previous experiment [32]. This reduced language ability also
facilitated the story that the pilot was a synthetic agent.

B. Design

The primary study manipulation was the application of three
failure types in ten 40-minute missions: (1) automation failures,
or role level display failures for specific targets, (2) autonomy
failures, or abnormal behavior of the autonomous synthetic pilot
for specific targets (e.g., providing wrong information to other
team members or misaction), and (3) malicious cyber-attacks,
or external hijacking of the RPAS causing the pilot to provide
false, detrimental information to the team, in addition to
committing indirect automation errors by not being responsive.
An example malicious cyber-attack involves the pilot prompting
for input about the next target while already initiating movement
towards hostile territory. The agent, upon being corrected by its



human teammates, might falsely claim that it is following
corrected directives while still proceeding to enemy zones.

Each mission had between 12 to 20 targets, and each failure
type was applied to pre-selected target waypoints according to a
set schedule (Table I), with the malicious cyber-attack appearing
only as the last failure of the last mission. Teams had a limited
amount of time to discover a solution and overcome each failure.
Because they were repeated multiple times, we focus on
automation and autonomy failures in this paper.

TABLE 1. FAILURE TYPES PER MISSION
Automation | Autonomy | Malicious Cyber
Failure Failure Attack
Training No Failure No Failure  |No Failure
Mission 1 [No Failure No Failure  |No Failure
Session I |Mission2  [2nd target 4th target No Failure
Mission 3 |4th target 2nd target No Failure
Mission 4 Ist target 3rd target No Failure
Mission 5 |2nd target 4th target No Failure
Mission 6 |4th target 2nd target No Failure
Mission 7 Ist target 3rd target No Failure
Session IT| .
Mission 8  (3rd target Ist target No Failure
Mission 9 (3rd target Sth target No Failure
Mission 10  [2nd target 4th target Last 10 minutes
II. METHOD

A. Participants

A total of 44 participants from a large Southwestern
University and the surrounding community, split into 22 teams,
completed the experiment. Participation required normal or
corrected-to-normal vision and fluency in English. Participants
ranged from 18 to 36 years old (Muge = 23, SDgge = 3.90), with
21 males and 23 females.

Participant team members were assigned the roles of
photographer and navigator, and each team was completed with
an autonomous synthetic pilot, which in reality was a well-
trained experimenter who mimicked an autonomous synthetic
agent's communication and coordination behaviors. Each team
participated in two seven-hour sessions and was compensated
$10 per hour for their time.

B. Procedure

The experiment was split into ten 40-minute missions
distributed across two sessions with a one or two-week interval
in between (Table II). Each team completed a one-hour training
specific to each role before the actual experiment. To ensure that
participants were capable of performing their roles,
experimenters used a checklist during the training.

C. Measures

Various measures were obtained in this experiment, from
team performance (mission and target level scores) to process
measures (situation awareness, communication behaviors, and
flow, process ratings), NASA Task Load Index (TLX [36]),
trust, and demographics. For this particular study, we consider
the following measures:

1) Team performance. The number of failures the team
overcomes. If a team successfully overcame a failure by the end
of a mission, then we counted “1” and took the sum across 10
missions. Therefore, we only considered the sum of the failures
overcome by each team.

2) Self-reported trust and anthropomorphism. Participants
took a survey after the final mission of each session, with seven
Likert-scale, self-report measures of trust (adapted from Mayer
et al [37]) and anthropomorphism. Anthropomorphism-related
questions were developed specifically for this study, and
included whether communicating with the agent felt like talking
to a real human, if it possessed a sense of humor, and if it
displayed masculine or feminine characteristics.

3) Verbal anthropomorphism. Team communication
behaviors in chat messages were coded in real-time by two
experimenters, who inspected individual statements for
anthropomorphizing and objectifying content. Inter-rater
agreement was measured through Cohen’s «, and a fair and
substantial agreement was found between the two
experimenters’ observations on anthropomorphizing (x = 0.512
(95% CI, 0.414 t0 0.610), p < 0.001) and objectifying (x =0.738
(95% CI, 0.667 to 0.809), p < 0.001) communication behaviors.
Anthropomorphisms included the use of gendered pronouns
(i.e., he, she, they), attributing human-like states to the Pilot
(e.g., “What do you feel?”), and the use of polite requests
directed to the Pilot (e.g., “Please”, “Sorry”), while
objectification included the use of the phrase “synthetic agent”
or the pronoun “it” to refer to the pilot role.

TABLE II. EXPERIMENTAL SESSIONS AND TASK DURATION

Session 1T
(Total time with breaks: ~7 hours)
1) Mission 5 (40 min)
2) NASA TLX-I (15 min)

Session I
(Total time with breaks: ~7 hours)
1) Consent forms (15 min)
2) PowerPoint (30 min) and hands-

on training (30 min) 3) Mission 6 (40 min)
3) Mission 1 (40 min) 4) Mission 7 (40 min)
4) NASA TLX-I (15 min) 5) Mission 8 (40 min)
5) Mission 2 (40 min) 6) Mission 9 (40 min)

6) Mission 3 (40 min)

7) Mission 4 (40 min)

8) NASA TLX-II, Demographics,
Trust, Anthropomorphism (30 min)

7) Mission 10 (40 min)

8) NASA TLX-II, Demographics,
Trust, Anthropomorphism,
Debriefing (30 min)

Note. Between two sessions, there were one or two-week intervals. From the
hands-on training through the post-check procedure, a 15-minute break was
applied after each task; and we also gave a half-hour lunch break. Therefore,
the total approximate time for the experimental session was eight hours.

IV. RESULTS

A. Team Performance

We briefly summarize team performance findings because
of space constraints. Teams demonstrated better performance on
overcoming automation and autonomy failures than the
malicious attacks. Performance in overcoming automation
failures increased across missions but decreased for autonomy
failures; however, the proportions of automation and autonomy
failures overcome were roughly equal when considered in
aggregate [35].



B. Self-Reported Anthropomorphism and Trust

We report mixed MANOVA results (between roles and
within sessions) for questionnaire responses at the end of each
session per role. Box’s M test provided no strong evidence that
the covariance matrices differed, M(1.33), F(105, 5212) =1.12,
p = 0.201. We then proceeded under the assumption of
homogeneity of covariance and that Wilk’s A is an appropriate
test to use (see Table III for the multivariate test statistics).
Between- and within-subject effects (Table IV) indicate that
only question and session main effects were statistically
significant, as well as the question by role interaction effect.

TABLE III. MULTIVARIATE TEST STATISTICS
dj f Between d] f Within A F p p2
Question 6 36 048 6.51 0.000 0.52
Session 1 41 091 421 0.047 0.09
Question by Role 36 0.81 138 0.249 0.19
Session by Role 41 1.00  0.15 0.700 0.00

Question by Session

6

1

6 36 0.87 0.87 0.526 0.13
Question by Session by Role 6

36 0.83 1.25 0.303 0.17

TABLE IV. BETWEEN- AND WITHIN-SUBJECTS EFFECTS
dj f Between d f Within A F p p2
Question 4.05 165.97 10.62 0.000 021 4.05
Session 1.00  41.00 4.21 0.047 0.09 1.00
Question by Role 1.00 41.00 2.18 0.147 0.05 1.00
Session by Role 6.00 246.00 2.18 0.045 0.05 6.00
Question by Session 1.00  41.00 0.15 0.700 0.00 1.00
Question by Session by Role  4.27 174.94 0.78 0.550 0.02 4.27

Based on the significant interaction effect, the pairwise
comparisons (LSD) indicate that only the response for the
question, “I trusted the synthetic pilot” differed between roles
and that the photographer initially trusted the synthetic agent
more than the navigator did. At the end of Session II,
photographer trust significantly declined from Session I (p =
0.048) and was no longer significantly different from the
navigator’s trust (p = 0.224; see Figure 1).
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Fig. 1. Role by session response to “I trusted the synthetic pilot.”

C. Verbal Anthropmorphism

We applied repeated measures of Multivariate Analysis of
Variance (MANOVA) to analyze anthropomorphizing and
objectifying communication behaviors across the ten missions
per session. Multivariate test statistics did not provide any

evidence for statistically reliable differences across the factors
(anthropomorphizing and objectifying), Wilk’s A = 0.93, F(1,
21)=1.66, p = 0.211, across the missions, Wilk’s A = 0.44, F(9,
13)=2.14, p = 0.156, nor the interaction between them, Wilk’s A
=0.502, F(9, 13)=1.44, p= 0.268. Mauchly’s test also indicated
that the assumption of sphericity was not satisfied for mission
[x2(44) = 173, p < 0.001, ¢ = 0.378] and for factor by mission
[x2(44) = 186, p < 0.001, ¢ = 0.431]. Degrees of freedom were
corrected using the Greenhouse-Geisser correction for within-
subjects effects. Accordingly, all the three effects were not
statistically significant, including: the factor main effect (F(1,
21) = 1.66, p = 0.211), mission main effect (F(3.40, 71.43) =
1.89, p = 0.131), and the interaction effect between them
(F(3.88, 81.4) = 1.84, p = 0.132); however, we still considered
LSD pairwise comparisons within interaction effects to provide
exploratory descriptions for the mission main effect (Figure 2).

1.20 -
1.00 1
0.80 +
0.60 <

0.40 +

Mean Percent of Communication Behavior

0.00

Mission
=B—Anthropomorphism  =s#=Objectification

Fig. 2. Anthropomorphizing and objectifying communication behaviors as a
mean percentage, n =22, of all communications across ten missions, aggregated
on a team level. Note that the spike in anthropomorphisms and objectifications
in Mission 10 coincides with a malicious cyber attack.

A significant finding from LSD pairwise comparisons was
that human team members used less anthropomorphizing
dialogue to refer to the synthetic team member from Mission 2
to Mission 8 (p = 0.036) and Mission 2 to Mission 9 (p=0.039).
However, anthropomorphic communication behaviors also
significantly increased from Mission 8 to Mission 10 (p = 0.045)
and Mission 9 to Mission 10 (p = 0.011). On the other hand,
objectifications referring to the synthetic agent increased over
time: from Mission 1 to Mission 4 (p = 0.018) and to Mission 10
(p = 0.004), and from Mission 4 to Mission 10 (p = 0.008).

V. DISCUSSION

We Dbelieve that the general declines in verbal
anthropomorphisms, autonomy failure performance, and
photographer trust in the synthetic pilot are not coincidental.
These declines may indicate that as participants became more
aware of autonomy failures but increasingly failed to overcome
them, a calibration of their perceptions of the pilot occurred.
Such calibration may have resulted in perceiving the pilot as less
humanlike and consequently more tool-like, as seen in the slight
increase in objectifying communication over time. As reported
in an earlier analysis of this data that this decline in trust was



related to autonomy failures alone and not with the automation
failures [10], this suggests that verbal anthropomorphisms and
objectifications may be indirect indicators of evolving
perceptions of the autonomy’s competency. Other studies have
shown that lower levels of perceived trustworthiness are
associated with less humanlike perceptions of automation on
self-reported scales [36], [37]. However, Salem et al [38]
showed contrarian results and explained that it is possibly
because seemingly errant behaviors make autonomous agents
appear more “alive”. Nevertheless, the observed trends for trust
and verbal anthropomorphism considering the repeated
autonomy failures suggests the feasibility of the latter as a
behavioral indicator of trust in real time.

Our findings also indicate that the degree of interdependence
between a human and a synthetic teammate may result in
different trust calibration trajectories for each unique human role
in HATs. There is support in the literature that increases in
highly consequential interactions with an agent may result in
increased trust calibration towards it [4]. Thus, the decrease in
photographer trust over time may be associated with the role’s
relatively more interactive relationship with the synthetic pilot.
This may also explain why the navigator, whose interactions
with the pilot are more unidirectional (i.e., the navigator
generally only pushed information towards the pilot), did not
have clear differences in trust levels. The dampening effect that
anthropomorphism has on trust calibration [11] may result in
different trends per role in verbal anthropomorphism as well,
provided that human roles vary in their degree of interactions
with the autonomy. A future analysis using more discrete
measures of trust, as well as the frequency and direction of each
role’s verbal communications may show this more clearly.

The relatively small proportions of anthropomorphizing and
objectifying behaviors observed throughout the ten missions
may be attributed to participants’ use of a “cheat sheet” to
structure their chat messages with the synthetic teammate.
Anthropomorphizing and objectifying contents were in fact not
found on the said sheet, and thus were all spontaneous
manifestations of participants’ levels of perceived
anthropomorphism of the agent. The spike of both behaviors
observed in Mission 10 coincided with the previously
unencountered malicious cyber-attack. This shows that drastic
changes in an autonomous agent’s behavior may trigger
increased unscripted verbalizations among human teammates.
Further work is recommended to investigate the effects of novel
problematic situations on perceptions of humanlikeness in
autonomy, both in self-reported and behavioral measures.

While our results are suggestive of a potential three-way
relationship between our dependent variables, the exploratory
nature of our analysis means that further investigation is merited.
For instance, team  performance and  behavioral
anthropomorphism measures were aggregated within each
mission, but self-reported measures were collected after four
missions for Session I and six missions for Session II. The
congruence in the lack of significant differences in both mission
main effects in verbal anthropomorphisms and session effects in
self-reported perceived anthropomorphism may not necessarily
hold when these variables are measured on the same level of
granularity (i.e., if verbal anthropomorphisms were aggregated
per session or if its self-reported counterpart was measured per

mission). Potential mismatches between behavioral and self-
reported measures have already been observed for trust and may
also be possible for perceived anthropomorphism [28]. The use
of more established self-report scales for anthropomorphism,
such as the Godspeed scales [26], is suggested for future studies,
provided that they are adapted for virtual synthetic agents. This
would align verbal anthropomorphism as defined in this study
better with self-reported measures for validation purposes.

Likewise, the significant pairwise differences in verbal
anthropomorphisms across some missions and the significant
difference in trust between sessions may be more meaningful if
trust was also measured at the mission level. However, this
presents a possible methodological dilemma: should we use self-
reported measures of trust at such frequencies, given the threats
to internal validity posed by repeatedly administering such
surveys [39]? Behavioral trust measures may be a better
alternative, though it has been argued that traditional ones (e.g.,
reliance and compliance rates) may not be applicable to the
interdependent interaction structures of HATs [40].

Verbal anthropomorphisms could be used to inform adaptive
algorithms in autonomy Al towards strengthening team
resilience. For instance, an observed decrease in
anthropomorphisms or increase in objectifications may be used
as trigger for a virtual agent to initiate automation trust repair
mechanisms by including explanations and apologies for errors
made [9]. Similarly, increases in both anthropomorphizing and
objectifying behaviors could signal the need to cue or guide
human members to intervene with autonomy, following
adaptable automation models [41]. A validation study on the use
of verbal anthropomorphism as a measure of perceived
anthropomorphism is thus recommended in earnest. This might
entail an expansion of its definition to include paralanguage
components of communication, particularly for text-based
systems as in this study. However, doing so may allow for
multiple dimensions of analysis that would better inform the
adaptive HATs of the future.

VI. CONCLUSION

This study investigated the potential utility of
anthropomorphic content in human communications as an
online measure of perceived anthropomorphism and
subsequently of trust. It is suggested that future studies obtain
self-reported and behavioral measures of anthropomorphism at
the same level of granularity to establish generalizable direct
correlations between the two. Once further established, the
relationship between verbal anthropomorphism and trust can be
the basis for robust Al models capable of initiating trust repair
and adaptive cueing mechanisms for future HATs.
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