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Abstract—Trust in autonomous teammates has been shown to 
be a key factor in human-autonomy team (HAT) performance, 
and anthropomorphism is a closely related construct that is 
underexplored in HAT literature. This study investigates whether 
perceived anthropomorphism can be measured from team 
communication behaviors in a simulated remotely piloted aircraft 
system task environment, in which two humans in unique roles 
were asked to team with a synthetic (i.e., autonomous) pilot agent. 
We compared verbal and self-reported measures of 
anthropomorphism with team error handling performance and 
trust in the synthetic pilot. Results for this study show that trends 
in verbal anthropomorphism follow the same patterns expected 
from self-reported measures of anthropomorphism, with respect 
to fluctuations in trust resulting from autonomy failures. 
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I. INTRODUCTION 
Autonomy in machines has been a driving force behind 

scientific milestones since the industrial revolution of the late 
1800s. The Perseverance rover, for instance, is a highly 
autonomous robot for remote exploration of geological 
formations and the search for signs of extraterrestrial life on the 
Martian surface [1]. But the prevalence of increasing machine 
autonomy (referred to as “autonomy” hereafter, following [2]) 
in human-machine systems does not mean that the path forward 
is to supplant humans in new technological frontiers. Rather, we 
are moving from systems characterized by human supervision 
over automation towards those with cooperative structures in 
which humans and autonomy work interdependently [3], [4]. 

Capabilities of autonomy have increased with rapid 
advances in machine learning and artificial intelligence (AI; [5]. 
This is to the extent that they can now function more like 
teammates rather than tools in dynamic task environments, such 
as in human-virtual agent teams in remotely piloted aircraft 
systems (RPASs; [6]) and human-robot teams in marine 
operations [7]. Called human-autonomy teams (HATs), these 
are characterized by human and autonomous team members 
(i.e., autonomy) with distinct roles working interdependently 
towards a common goal [2]. Various team constructs have been 
described for HATs, including interaction dynamics like 
communication and coordination [8], as well as trust [9], [10] 
and anthropomorphism [11].  

This study focuses on team communication dynamics and its 
relationship with trust and anthropomorphism. We describe an 
experiment that aimed to examine the relationship between 
perceived anthropomorphism as an observational and a self-
reported measure, self-reported trust in an autonomous agent, 
and communication behaviors in HAT interactions. Based on 
our results, we discuss how to build mechanisms to make HATs 
more effective in dynamic task environments. 

A. Team Communication Dynamics 
Team interactions comprise communication and 

coordination in the face of changing environmental demands 
[12]. Interactive team cognition theory [13] posits that effective 
team interactions are needed to maintain team performance, and 
identifies team interactions in the form of explicit 
communication as team cognition itself. Effective teaming in 
dynamic task environments thus requires effective 
communication and coordination processes. Previous studies of 
teaming in command-and-control environments have indicated 
that team communication can predict team situation awareness 
and team performance, whether in human-human teams [13] or 
HATs [14]. Additionally, various team cognitive constructs 
have been measured through team communication data, 
including team situational awareness [14], team workload [15], 
and team trust [10]. It should be noted that for HATs, social 
communication is likely to be even more prevalent  compared to 
classical human-automation interaction paradigms [16], [17]. 

However, team communications not only serve as exchanges 
of critical task information between team members as a primary 
work of teaming [13]; it also serves to build and repair trust 
between teammates through different forms of communication, 
such as explanations [9], [18]. For instance, explanations can 
affect a team member’s perceptions of an agent’s ability to help 
accomplish a team task [18], [19]. These perceptions 
subsequently affect the ability of HATs to communicate 
effectively and could undermine team situation awareness and 
performance, among others. Demir et al [10] showed that 
predictability and timeliness of team communication in HATs 
were correlated with increased trust, whereas abnormal 
communication behaviors prevented effective recovery of trust 
following autonomy failures. In other words, communication 
behaviors in HATs affect trust and trust calibration in real-time. 
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B. Trust in HAT Interaction Dynamics 
Trust is an important factor for effective interactions in 

HATs. Unlike in supervisory structures, humans cannot veto all 
decisions made in more lateral team structures because such an 
arrangement does not require seeking human approval before 
executing many of its actions [20]. Additionally, operational 
contexts may involve rapid decision-making, such that not all 
actions by autonomy can be inspected or addressed by human 
counterparts, as is also the case for supervisory control over 
higher levels of automation [20]. Thus, trust is especially 
important in HATs, due to their more lateral interaction 
structure, and the need to minimize communication and 
coordination overhead  [21].  

Interactions with autonomy are therefore characterized by a 
heightened vulnerability, making trust more critical for 
performance, and similar to the types of trust dynamics observed 
between human teammates. However, trust has been theorized 
to develop in opposite directions between humans and non-
humans. For example, interpersonal trust (i.e., between humans) 
is initially based on perceived short-term reliability, eventually 
accruing into a more static, faith-based trust as the relationship 
grows [22]. Meanwhile, trust in machines is initially more faith-
based—perhaps as a result of “positivity bias” towards 
unfamiliar automation [23]. Then, as familiarity is developed, 
trust becomes more localized to situational reliability [24]. 
Supposing humans apply human-human rules of interaction 
with autonomy [9], trust in HATs may be more affected by the 
quality of humanlike team communication behaviors.  

C. Anthropomorphism in HAT Communication Behaviors 
Anthropomorphism is the attribution of humanlike qualities 

to inanimate objects, and has been identified as a distinct factor 
of human trust in automation and robots [19], [24]. People 
anthropomorphize an entity according to their perception of its 
capacity for anthropocentric knowledge, along with their desire 
to understand it and socially engage with it [25]. De Visser et al 
[11] found that while people initially had greater trust in agents 
that do not appear humanlike, automation failures for more 
visually humanlike agents were associated with less drastic 
changes in trust levels, suggesting that anthropomorphism aids 
in tempering trust. However, they also showed that the use of 
humanlike apologetic behavior eliminates the differences in 
drops in trust associated with visual appearance [11]; hence, 
communication behaviors may have a more powerful 
relationship with trust than visual appearance. 

There is no standard measurement for perceived 
anthropomorphism across the literature, and it is typically 
measured through self-report scales [26], as is the case for trust 
[27]. However, behavioral measures of trust, such as compliance 
and reliance rates, have also been used. Kulms and Kopp [28] 
studied the effects of different levels of humanlike appearance 
on trust in a virtual game advisor, and showed inconsistencies 
between self-reported and behavioral measures. Though the 
appearance of agents bolstered self-reported trust, it did not have 
effects on actual trusting behavior [28]. 

We believe that perceived anthropomorphism can likewise 
be found in communication behaviors, which we refer to as 

verbal anthropomorphism. This has a potential for allowing real-
time measurements of perceived anthropomorphism in HATs. 
The use of gendered and second-person pronouns, for instance, 
has been shown to be an indicator of a learner’s perceived 
inclusion or exclusion of a virtual agent within their group in 
real-time [29]. 

II. CURRENT STUDY 

A. Simulated RPAS Environment 
This study used the Cognitive Engineering Research on 

Team Tasks RPAS Synthetic Task Environment [30], which is 
composed of three consoles separated by task role, and four 
experimenter consoles. Participants communicated through a 
text chat system to simulate teamwork aspects of RPAS 
operations, and were also given communication “cheat sheets”, 
to aid in communicating with a supposedly verbally limited 
synthetic teammate. Participants were tasked to take 
photographs of strategic targets shown on a color-coded map on 
their console screens. Three different team roles were involved 
in this task: (1) a navigator, who was responsible for the dynamic 
flight plan and providing waypoint related information to the 
pilot, including name, altitude, airspeed, and effective radius; (2) 
a pilot, who was tasked with monitoring and adjusting the 
altitude, airspeed, effective radius, fuel, gears, and flaps, as well 
as negotiating altitude and airspeed with the photographer to 
enable proper conditions for a clear photograph of the target, 
and; (3) a photographer, who was in charge of taking clear 
photos of the target by monitoring and adjusting the camera and 
providing feedback to the team. The team task flow between the 
team members is as follows: (1) the navigator provides 
information regarding speed and altitude restrictions of the 
waypoints to the pilot; (2) the pilot negotiates with a 
photographer in terms of adjusting altitude and airspeed of the 
RPA; and (3) the photographer sends feedback to other team 
members whether a good or bad photo of the target has been 
taken [30].  

We used a Wizard of Oz paradigm [31], in which the two 
participants per team were informed that the pilot was a 
“synthetic” agent, when it was a highly trained experimenter 
mimicking a synthetic agent from a separate room. This 
teammate used restricted vocabulary to mimic computer 
language capabilities similar to an ACT-R synthetic pilot in a 
previous experiment [32]. This reduced language ability also 
facilitated the story that the pilot was a synthetic agent.  

B. Design 
The primary study manipulation was the application of three 

failure types in ten 40-minute missions: (1) automation failures, 
or role level display failures for specific targets, (2) autonomy 
failures, or abnormal behavior of the autonomous synthetic pilot 
for specific targets (e.g., providing wrong information to other 
team members or misaction), and (3) malicious cyber-attacks, 
or external hijacking of the RPAS causing the pilot to provide 
false, detrimental information to the team, in addition to 
committing indirect automation errors by not being responsive. 
An example malicious cyber-attack involves the pilot prompting 
for input about the next target while already initiating movement 
towards hostile territory. The agent, upon being corrected by its 



human teammates, might falsely claim that it is following 
corrected directives while still proceeding to enemy zones.  

Each mission had between 12 to 20 targets, and each failure 
type was applied to pre-selected target waypoints according to a 
set schedule (Table I), with the malicious cyber-attack appearing 
only as the last failure of the last mission. Teams had a limited 
amount of time to discover a solution and overcome each failure. 
Because they were repeated multiple times, we focus on 
automation and autonomy failures in this paper.    

TABLE I.  FAILURE TYPES PER MISSION 

 Automation 
Failure 

Autonomy 
Failure 

Malicious Cyber 
Attack 

Session I 

Training No Failure No Failure No Failure 
Mission 1 No Failure No Failure No Failure 
Mission 2 2nd target 4th target No Failure 
Mission 3 4th target 2nd target No Failure 
Mission 4 1st target 3rd target No Failure 

Session II 

Mission 5 2nd target 4th target No Failure 
Mission 6 4th target 2nd target No Failure 
Mission 7 1st target 3rd target No Failure 
Mission 8 3rd target 1st target No Failure 
Mission 9 3rd target 5th target No Failure 
Mission 10 2nd target 4th target Last 10 minutes 

III. METHOD 

A. Participants 
A total of 44 participants from a large Southwestern 

University and the surrounding community, split into 22 teams, 
completed the experiment. Participation required normal or 
corrected-to-normal vision and fluency in English. Participants 
ranged from 18 to 36 years old (Mage =  23, SDage = 3.90), with 
21 males and 23 females.  

Participant team members were assigned the roles of 
photographer and navigator, and each team was completed with 
an autonomous synthetic  pilot, which in reality was a well-
trained experimenter who mimicked an autonomous synthetic 
agent's communication and coordination behaviors. Each team 
participated in two seven-hour sessions and was compensated 
$10 per hour for their time. 

B. Procedure 
The experiment was split into ten 40-minute missions 

distributed across two sessions with a one or two-week interval 
in between (Table II). Each team completed a one-hour training 
specific to each role before the actual experiment. To ensure that 
participants were capable of performing their roles, 
experimenters used a checklist during the training. 

C. Measures 
Various measures were obtained in this experiment, from 

team performance (mission and target level scores) to process 
measures (situation awareness, communication behaviors, and 
flow, process ratings), NASA Task Load Index (TLX [36]), 
trust, and demographics. For this particular study, we consider 
the following measures: 

1) Team performance. The number of failures the team 
overcomes. If a team successfully overcame a failure by the end 
of a mission, then we counted “1” and took the sum across 10 
missions. Therefore, we only considered the sum of the failures 
overcome by each team.  

2) Self-reported trust and anthropomorphism. Participants 
took a survey after the final mission of each session, with seven 
Likert-scale, self-report measures of trust (adapted from Mayer 
et al [37]) and anthropomorphism. Anthropomorphism-related 
questions were developed specifically for this study, and 
included whether communicating with the agent felt like talking 
to a real human, if it possessed a sense of humor, and if it 
displayed masculine or feminine characteristics.  

3) Verbal anthropomorphism. Team communication 
behaviors in chat messages were coded in real-time by two 
experimenters, who inspected individual statements for 
anthropomorphizing and objectifying content. Inter-rater 
agreement was measured through Cohen’s κ, and a fair and 
substantial agreement was found between the two 
experimenters’ observations on anthropomorphizing (κ = 0.512 
(95% CI, 0.414 to 0.610), p < 0.001) and objectifying (κ = 0.738 
(95% CI, 0.667 to 0.809), p < 0.001) communication behaviors. 
Anthropomorphisms included the use of gendered pronouns 
(i.e., he, she, they), attributing human-like states to the Pilot 
(e.g., “What do you feel?”), and the use of polite requests 
directed to the Pilot (e.g., “Please”, “Sorry”), while 
objectification included the use of the phrase “synthetic agent” 
or the pronoun “it” to refer to the pilot role. 

TABLE II.  EXPERIMENTAL SESSIONS AND TASK DURATION 

Session I 
(Total time with breaks: ~7 hours) 

Session II 
(Total time with breaks: ~7 hours) 

1) Consent forms (15 min) 
2) PowerPoint (30 min) and hands-
on training (30 min) 
3) Mission 1 (40 min) 
4) NASA TLX-I (15 min) 
5) Mission 2 (40 min) 
6) Mission 3 (40 min) 
7) Mission 4 (40 min) 
8) NASA TLX-II, Demographics, 
Trust, Anthropomorphism (30 min) 

1) Mission 5 (40 min) 
2) NASA TLX-I (15 min) 
3) Mission 6 (40 min) 
4) Mission 7 (40 min) 
5) Mission 8 (40 min) 
6) Mission 9 (40 min) 
7) Mission 10 (40 min) 
8) NASA TLX-II, Demographics, 
Trust, Anthropomorphism, 
Debriefing (30 min) 

Note. Between two sessions, there were one or two-week intervals. From the 
hands-on training through the post-check procedure, a 15-minute break was 
applied after each task; and we also gave a half-hour lunch break. Therefore, 
the total approximate time for the experimental session was eight hours. 

IV. RESULTS 

A. Team Performance 
We briefly summarize team performance findings because 

of space constraints. Teams demonstrated better performance on 
overcoming automation and autonomy failures than the 
malicious attacks. Performance in overcoming automation 
failures increased across missions but decreased for autonomy 
failures; however, the proportions of automation and autonomy 
failures overcome were roughly equal when considered in 
aggregate [35]. 



B. Self-Reported Anthropomorphism and Trust 
We report mixed MANOVA results (between roles and 

within sessions) for questionnaire responses at the end of each 
session per role. Box’s M test provided no strong evidence that 
the covariance matrices differed, M(1.33), F(105, 5212) = 1.12, 
p = 0.201. We then proceeded under the assumption of 
homogeneity of covariance and that Wilk’s Λ is an appropriate 
test to use (see Table III for the multivariate test statistics). 
Between- and within-subject effects (Table IV) indicate that 
only question and session main effects were statistically 
significant, as well as the question by role interaction effect.  

TABLE III.  MULTIVARIATE TEST STATISTICS 
 

dfBetween dfWithin  Λ F p p2 
Question 6 36 0.48 6.51 0.000 0.52 
Session 1 41 0.91 4.21 0.047 0.09 
Question by Role 6 36 0.81 1.38 0.249 0.19 
Session by Role 1 41 1.00 0.15 0.700 0.00 
Question by Session 6 36 0.87 0.87 0.526 0.13 
Question by Session by Role 6 36 0.83 1.25 0.303 0.17 

TABLE IV.  BETWEEN- AND WITHIN-SUBJECTS EFFECTS 
 

dfBetween dfWithin  Λ F p p2 
Question 4.05 165.97 10.62 0.000 0.21 4.05 
Session 1.00 41.00 4.21 0.047 0.09 1.00 
Question by Role 1.00 41.00 2.18 0.147 0.05 1.00 
Session by Role 6.00 246.00 2.18 0.045 0.05 6.00 
Question by Session 1.00 41.00 0.15 0.700 0.00 1.00 
Question by Session by Role 4.27 174.94 0.78 0.550 0.02 4.27 

Based on the significant interaction effect, the pairwise 
comparisons (LSD) indicate that only the response for the 
question,  “I trusted the synthetic pilot” differed between roles 
and that the photographer initially trusted the synthetic agent 
more than the navigator did. At the end of Session II, 
photographer trust significantly declined from Session I (p = 
0.048) and was no longer significantly different from the 
navigator’s trust (p = 0.224; see Figure 1). 

 
Fig. 1. Role by session response to “I trusted the synthetic pilot.” 

C. Verbal Anthropmorphism 
We applied repeated measures of Multivariate Analysis of 

Variance (MANOVA) to analyze anthropomorphizing and 
objectifying communication behaviors across the ten missions 
per session. Multivariate test statistics did not provide any 

evidence for statistically reliable differences across the factors 
(anthropomorphizing and objectifying), Wilk’s Λ = 0.93, F(1, 
21)= 1.66, p = 0.211, across the missions, Wilk’s Λ = 0.44, F(9, 
13)= 2.14, p = 0.156, nor the interaction between them, Wilk’s Λ 
= 0.502, F(9, 13) = 1.44, p = 0.268. Mauchly’s test also indicated 
that the assumption of sphericity was not satisfied for mission 
[χ2(44) = 173, p < 0.001, ε = 0.378] and for factor by mission 
[χ2(44) = 186, p < 0.001, ε = 0.431]. Degrees of freedom were 
corrected using the Greenhouse-Geisser correction for within-
subjects effects. Accordingly, all the three effects were not 
statistically significant, including: the factor main effect (F(1, 
21) = 1.66, p = 0.211),  mission main effect (F(3.40, 71.43) = 
1.89, p = 0.131), and the interaction effect between them 
(F(3.88, 81.4) = 1.84, p = 0.132); however, we still considered 
LSD pairwise comparisons within interaction effects to provide 
exploratory descriptions for the mission main effect (Figure 2).  

 
Fig. 2. Anthropomorphizing and objectifying communication behaviors as a 
mean percentage, n = 22, of all communications across ten missions, aggregated 
on a team level. Note that the spike in anthropomorphisms and objectifications 
in Mission 10 coincides with a malicious cyber attack. 

A significant finding from LSD pairwise comparisons was 
that human team members used less anthropomorphizing 
dialogue to refer to the synthetic team member from Mission 2 
to Mission 8 (p = 0.036) and Mission 2 to Mission 9 (p = 0.039). 
However, anthropomorphic communication behaviors also 
significantly increased from Mission 8 to Mission 10 (p = 0.045) 
and Mission 9 to Mission 10 (p = 0.011). On the other hand, 
objectifications referring to the synthetic agent increased over 
time: from Mission 1 to Mission 4 (p = 0.018) and to Mission 10 
(p = 0.004), and from Mission 4 to Mission 10 (p = 0.008).  

V. DISCUSSION 
We believe that the general declines in verbal 

anthropomorphisms, autonomy failure performance, and 
photographer trust in the synthetic pilot are not coincidental. 
These declines may indicate that as participants became more 
aware of autonomy failures but increasingly failed to overcome 
them, a calibration of their perceptions of the pilot occurred. 
Such calibration may have resulted in perceiving the pilot as less 
humanlike and consequently more tool-like, as seen in the slight 
increase in objectifying communication over time. As reported 
in an earlier analysis of this data that this decline in trust was 



related to autonomy failures alone and not with the automation 
failures [10], this suggests that verbal anthropomorphisms and 
objectifications may be indirect indicators of evolving 
perceptions of the autonomy’s competency. Other studies have 
shown that lower levels of perceived trustworthiness are 
associated with less humanlike perceptions of automation on 
self-reported scales [36], [37]. However, Salem et al [38] 
showed contrarian results and explained that it is possibly 
because seemingly errant behaviors make autonomous agents 
appear more “alive”. Nevertheless, the observed trends for trust 
and verbal anthropomorphism considering the repeated 
autonomy failures suggests the feasibility of the latter as a 
behavioral indicator of trust in real time. 

Our findings also indicate that the degree of interdependence 
between a human and a synthetic teammate may result in 
different trust calibration trajectories for each unique human role 
in HATs. There is support in the literature that increases in 
highly consequential interactions with an agent may result in 
increased trust calibration towards it [4]. Thus, the decrease in 
photographer trust over time may be associated with the role’s 
relatively more interactive relationship with the synthetic pilot. 
This may also explain why the navigator, whose interactions 
with the pilot are more unidirectional (i.e., the navigator 
generally only pushed information towards the pilot), did not 
have clear differences in trust levels. The dampening effect that 
anthropomorphism has on trust calibration [11] may result in 
different trends per role in verbal anthropomorphism as well, 
provided that human roles vary in their degree of interactions 
with the autonomy. A future analysis using more discrete 
measures of trust, as well as the frequency and direction of each 
role’s verbal communications may show this more clearly.  

The relatively small proportions of anthropomorphizing and 
objectifying behaviors observed throughout the ten missions 
may be attributed to participants’ use of a “cheat sheet” to 
structure their chat messages with the synthetic teammate. 
Anthropomorphizing and objectifying contents were in fact not 
found on the said sheet, and thus were all spontaneous 
manifestations of participants’ levels of perceived 
anthropomorphism of the agent. The spike of both behaviors 
observed in Mission 10 coincided with the previously 
unencountered malicious cyber-attack. This shows that drastic 
changes in an autonomous agent’s behavior may trigger 
increased unscripted verbalizations among human teammates. 
Further work is recommended to investigate the effects of novel 
problematic situations on perceptions of humanlikeness in 
autonomy, both in self-reported and behavioral measures. 

While our results are suggestive of a potential three-way 
relationship between our dependent variables, the exploratory 
nature of our analysis means that further investigation is merited. 
For instance, team performance and behavioral 
anthropomorphism measures were aggregated within each 
mission, but self-reported measures were collected after four 
missions for Session I and six missions for Session II. The 
congruence in the lack of significant differences in both mission 
main effects in verbal anthropomorphisms and session effects in 
self-reported perceived anthropomorphism may not necessarily 
hold when these variables are measured on the same level of 
granularity (i.e., if verbal anthropomorphisms were aggregated 
per session or if its self-reported counterpart was measured per 

mission). Potential mismatches between behavioral and self-
reported measures have already been observed for trust and may 
also be possible for perceived anthropomorphism [28]. The use 
of more established self-report scales for anthropomorphism, 
such as the Godspeed scales [26], is suggested for future studies, 
provided that they are adapted for virtual synthetic agents. This 
would align verbal anthropomorphism as defined in this study 
better with self-reported measures for validation purposes.  

Likewise, the significant pairwise differences in verbal 
anthropomorphisms across some missions and the significant 
difference in trust between sessions may be more meaningful if 
trust was also measured at the mission level. However, this 
presents a possible methodological dilemma: should we use self-
reported measures of trust at such frequencies, given the threats 
to internal validity posed by repeatedly administering such 
surveys [39]? Behavioral trust measures may be a better 
alternative, though it has been argued that traditional ones (e.g., 
reliance and compliance rates) may not be applicable to the 
interdependent interaction structures of HATs [40].  

Verbal anthropomorphisms could be used to inform adaptive 
algorithms in autonomy AI towards strengthening team 
resilience. For instance, an observed decrease in 
anthropomorphisms or increase in objectifications may be used 
as trigger for a virtual agent to initiate automation trust repair 
mechanisms by including explanations and apologies for errors 
made [9]. Similarly, increases in both anthropomorphizing and 
objectifying behaviors could signal the need to cue or guide 
human members to intervene with autonomy, following 
adaptable automation models [41]. A validation study on the use 
of verbal anthropomorphism as a measure of perceived 
anthropomorphism is thus recommended in earnest. This might 
entail an expansion of its definition to include paralanguage 
components of communication, particularly for text-based 
systems as in this study. However, doing so may allow for 
multiple dimensions of analysis that would better inform the 
adaptive HATs of the future. 

VI. CONCLUSION 
This study investigated the potential utility of 

anthropomorphic content in human communications as an 
online measure of perceived anthropomorphism and 
subsequently of trust. It is suggested that future studies obtain 
self-reported and behavioral measures of anthropomorphism at 
the same level of granularity to establish generalizable direct 
correlations between the two. Once further established, the 
relationship between verbal anthropomorphism and trust can be 
the basis for robust AI models capable of initiating trust repair 
and adaptive cueing mechanisms for future HATs. 
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