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Abstract— This research examines the relationship between
anticipatory pushing of information and trust in human-
autonomy teaming in a remotely piloted aircraft system - synthetic
task environment. Two participants and one Al teammate
emulated by a confederate executed a series of missions under
routine and degraded conditions. We addressed the following
questions: (1) How do anticipatory pushing of information and
trust change from human to human and human to autonomous
team members across the two sessions? and (2) How is
anticipatory pushing of information associated with the trust
placed in a teammate across the two sessions? This study
demonstrated two main findings: (1) anticipatory pushing of
information and trust differed between human-human and
human-Al dyads, and (2) anticipatory pushing of information and
trust scores increased among human-human dyads under
degraded conditions but decreased in human-Al dyads.

Keywords—Artificial Intelligence, Communication, Human-
Machine Teaming, Trust, Teamwork

I. INTRODUCTION

Technology continues to advance at a rapid rate. Much of
this advancement can be seen in the field of machine learning,
and artificial intelligence (Al), as highly autonomous machines
(e.g., Al robots, synthetic agents) permeate nearly all aspects of
everyday life. There are many current examples of how Al and
robots advance in high-risk environments, such as the new Mars
Perseverance Rover [1]. This new rover differs from its
predecessor, Mars Curiosity Rover, in that it has the
independence to cover ground and make decisions without being
directly controlled by its human operators on Earth. It also has
planning features that allow it to shift its daily activities around
to be more efficient with openings in its daily schedule. Another
example is urban search and rescue (USAR) robots [2]. These
robots are deployed in damaged buildings that are too dangerous
for human rescuers to enter. The robots are responsible for
mapping the environment, locating victims, and navigating the
environment. The Mars Perseverance and Curiosity Rovers and
USAR robots are just a few examples out of many of advanced
autonomous technology that provides opportunities for studying
how these advanced technologies might assist, collaborate, and
team with humans.

A team can be defined as a sociotechnical system that
contains two or more heterogeneous and interdependent
members (either human or nonhuman, e.g., machines and
canines) who interact with each other to complete a common
goal or task [3]. Therefore, there are also other mixed-teams,
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such as human-machine teaming (HMT) [4]. HMT is a
sociotechnical system in which at least one machine act as
heterogeneous and interdependent team members and interact
with human team members to accomplish a common goal or task
[5]. In order to design better HMTs, it is important to understand
their team processes, such as team communication and trust.
Consequently, the main focus of the current study is to
empirically examine the relationship between communication
and trust in an HMT within a simulated remotely piloted aircraft
system (RPAS) context.

II.  HUMAN-MACHINE TEAMING

HMT is a broad term that we apply to a specific team
definition that considers task role heterogeneity,
interdependence, and a common team goal or task. This section
clarifies the machine concept and how it can be a teammate
within this definition. To understand how people might team
with autonomous technology and how trust might be an
important construct to consider when studying HMT, it is
important to understand what autonomous technology is
(traditionally referred to as ‘machine’) and how a machine can
be classified as automation or autonomy [6]-[8]. A machine is
a “device, having a unique purpose, that augments or replaces
human or animal effort for the accomplishment of physical
tasks” [9]. Sheridan (2002) underlines a three-part definition of
what automation is: “(1) the mechanization and integration of
the sensing of environmental variables (by artificial sensors);
(2) data processing and decision making (by computers); and
(3) mechanical action (by motors or devices that apply forces
on the environment)” [11; p.9]. On the other hand, autonomy
can be thought of as a machine that can carry out tasks
independently or in conjunction with human input and
oversight beyond that of what is traditionally considered
“automation” [6].

Beyond definitions, though, the difference between
automation and autonomy can be thought of as a spectrum. In
this spectrum, automation is on the low end where the
technology is not autonomous and requires human oversight and
intervention, whereas autonomy is on the high end and is
technology that is independent of human input and oversight
[11]-{14]. Accordingly, the overlap with all of these taxonomies
seems to be that: (1) on the low end, the human does everything;
(2) in the middle, the autonomous technology carries out a task
or informs the human of certain variables to help the human
make a decision; and (3) at the higher levels, the autonomous
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technology has complete autonomy and does not require the
permission of humans to carry out tasks, but can work with the
human in a team like setting.

Autonomy is becoming more sophisticated and better at
complementing humans in team-like settings by doing things
that the humans cannot do or prefer not to do. And as autonomy
continues this trend, it might mean that autonomy might work
with humans as a teammate and an independent entity fulfilling
a role not completed by any other teammate(s) on the team [6].
This is important, especially in the context of trust, because in a
team, team members have heterogeneous roles, meaning that
each team member has a specific task and is responsible for
executing that task within the team [15]. If a teammate cannot
be trusted to fulfill their role, the team cannot achieve its overall
goals effectively. Furthermore, an autonomous teammate is
interdependent with other teammates, which helps the team
achieve their overall goals [6], [16], [17]. Research has indicated
that interdependence with an autonomous agent helps human
teammates perceive the autonomous agent as more cooperative,
friendlier, and as if the technology provided the human
teammate with high-quality information [18]. Although these
outcomes might seem beneficial in the sense that they will make
the human trust the autonomy more, increased trust does not
necessarily equate with appropriately calibrated trust.

III.  TRUST IN HUMAN-MACHINE TEAMING

Trust is another critical dimension in effective HMT. One
commonly accepted definition of trust is “the willingness of a
party to be vulnerable to the actions of another party based on
the expectation that the other will perform a particular action
important to the trustor, irrespective of the ability to monitor or
control that other party” [19, p. 712]. This definition alone,
however, does not capture the essence of what trust is. To fully
understand trust as a cognitive process, it is important to
understand the structural elements of trust.

One of the structural elements of trust is interpersonal trust,
which is “the generalized expectancy held by an individual that
the word, promise, oral or written statement of another
individual or group can be relied on” [20, p. 651]. Risk is the
main factor in understanding interpersonal trust. Rousseau and
colleagues (1998) argued that uncertainty is the source of risk,
and only when there is risk can one trust. When someone
chooses to trust, they engage in risk-taking behavior. This aligns
with another study that indicates that trust is not actually taking
a risk, but rather it is a willingness to take a risk [19]. That is,
the willingness to take a risk (trust) precedes the actual taking of
risk (trusting behavior); trust (or trusting) is not a behavior but
rather leads to behavior. Therefore, in order for one party to truly
trust another party, the other party must be seen as trustworthy.

Trustworthiness and interpersonal trust are integrated;
interpersonal trust is the belief that someone will do what they
say they will do [20]. Interpersonal trust, therefore, not only
serves as a foundation for being perceived as initially
trustworthy, but also for being perceived as trustworthy in the
future. Indeed, trustworthiness is time-based. For instance, one’s
reputation is based on actions and behaviors that one has done
in the past. If those actions and behaviors lead to one having a
positive reputation, the individual will be perceived as
trustworthy. This perceived trustworthiness based on a person’s

reputation will lead to others initially having high interpersonal
trust towards that person even though they may not have
previously interacted with that person [21]. Although risk and
trustworthiness are indeed structural elements that can explain
the nature of trust, they are limited in their capacity to define it
for trust in a machine teammate in HMT.

Trust in a machine teammate is a complex idea that has many
dimensions worth considering, such as trust calibration between
two team members and trust in other team members. Autonomy
can be considered as a team member because of the conceptual
similarities of “teams” and ‘“autonomy” as seen in the
aforementioned definitions provided in this paper (e.g.,
interdependence, task completion, interaction/communication,
etc.). Chen and Barnes (2014) describe multiple factors that
influence trust in autonomous teammates, such as having a
shared cognitive architecture; so that the beliefs, desires, and
intentions of the humans and the autonomy are compatible [22].
Demir et al. (2021) discuss this multidimensional perspective in
the taskwork and teamwork of HMT [23]. The results of their
study were mixed in that the researchers found stable team
interactions to be negatively associated with trust development,
but beyond an inflection point, they were positively associated
with trust development. Results also showed that recovery from
autonomy failures was related to a moderate amount of trust, but
too little or too much trust led to poorer recovery from autonomy
failures. These results indicate that trusting an autonomous
teammate is somewhat linked to team interactions, and it is an
evolving process. In this study, we also consider trust as an
evolving process that is related to team communication.

IV. COMMUNICATION IN HUMAN-MACHINE TEAMING

Behavioral and physiological measures play an important
role in assessing trust from a dynamic perspective. Several
studies [23]-[25] indicate that team interaction based on
communication and coordination can give a bigger picture of
trust in the light of the theory of interactive team cognition
(ITC; [26]). Interactions are vital to team success and
performance. Because of this, in order to reflect interactions
within a team, Cooke et al., 2009 developed a communication
analysis that looks at who is talking to whom, what is being said
(behavior/ content), and communication flow [15].

In this study, we focus on specific types of communication,
i.e., anticipatory pushing of information. We define
anticipatory pushing as pushing information from Teammate-A
to Teammate-B based on Teammate-A’s anticipation that
Teammate-B requires the information. It is hypothesized that
the anticipation of information for a teammate stems from a
good shared mental model among teammates that leads to
implicit coordination (i.e., coordination that is not preplanned
or explicitly communicated but rather arises out of the shared
understanding of a given situation) [27]. Anticipatory pushing
of information is an example of implicit coordination because
one team member is anticipating the informational needs of
another teammate helping another teammate, perhaps by
adjusting to a change by notifying them of the change in the
situation and possibly recommending an action that addresses
the change in the situation [6].



With that in mind, the following novel definition of trust in
a teammate based on anticipation is proposed for the current
study. Trust in a teammate is the expectation that teammates
will share anticipated and needed information with each other
such that the sharing of information facilitates goal
accomplishment, safety, and task continuation and completion.
Furthermore, this definition of trust is context-free and can be
applied to any team. Indeed, regardless of context, all teams
need to share information to accomplish their overarching
goal(s), which is why the team was formed in the first place.
Teammates need to keep each other safe, not only physically
but also mentally and emotionally. Sharing information based
on anticipated needs certainly can help with this goal of
teammate preservation. And finally, information sharing is
necessary for task continuation, as task continuation and
completion help the team accomplish its goal(s) in a timely
manner. Because the current study is focused on information
sharing as to how trust is formed, maintained, and calibrated, a
corresponding measure of trust has to be implemented.

V. CURRENT STUDY

A. Synthetic Team Task and Roles

The experiment took place in the RPAS-Synthetic Task
Environment (RPAS-STE) testbed, which mimics the individual
and team cognitive tasks in an RPAS ground station. The RPAS
ground station comprises three heterogeneous and
interdependent task roles (Fig. 1 for the role definitions; [28]).
The task was to take good photos of targets while navigating the
remotely piloted aircraft (RPA) along a safe route.

Predator Remotely Piloted

Photographer Aircraft (RPA)
takes photographs
of targets and e

manages the RPA

camera settings

Navigator plans and
monitors the route of
the RPA as it moves
between waypoints
while avoiding hazards

Human
Navigator

Human
Photographer

Pilot controls the RPA
by monitoring flight
systems and controlling
the altitude, airspeed,
and direction of travel.

Fig. 1. The Ground Station Consoles in RPAS-STE /30]/. Each of the three-
team members communicated via a touch-screen text-chat interface.

In this study, the pilot role was an “AI” teammate that was
simulated by a trained confederate utilizing the “Wizard of Oz”
methodology (WoZ) [29]. The confederate followed a script that
indicated when and what to communicate throughout the task
and described behaviors for controlling the flight of the RPA.
This allowed us to consistently and reliably introduce the same
autonomy failures across teams. For this experiment, the
capabilities of the Al were limited in verbal comprehension,
production, and piloting behaviors. Misspellings and unclear

communications were ignored, and the pilot’s behaviors were
generally limited to the script.

B. Design and Research Question

This study consists of between-and within-subjects design
manipulations. However, we only consider the within-subjects
design manipulations because of the main focus of the current
study and page limit. There are three between-subjects design
effects based on the pre-mission training, including coordination
training, calibration training, and control training—all defined
by manipulating pre-mission training [31]. The within-subjects
design includes routine conditions (i.e., missions with no
technology failures) and degraded conditions (i.e., missions with
technology failures; see Table I). Because the focus of this study
was to identify the relationship between anticipatory pushing of
information and trust under routine and degraded conditions in
HMT, we combined all six types of technology failures together
into one condition (see Table I [31]). This allowed us to analyze
the data more simply and match the dimension of the trust
measure, which was obtained via questionnaire once following
routine conditions and again following degraded conditions (as
within-subjects design).

TABLE L. FAILURES WITHIN THE DEGRADED CONDITION [31].

Type Description

Automation Prevented display of flight information such as airspeed,
altitude, or heading to the photographer or pilot.

Automation A one-way communication cut between photographer and pilot.

Automation A gradual power-down and subsequence power-up of all six
workstation screens, affecting all experimental positions.

Autonomy  Simulated a malfunction in the Al teammate’s capacity for
properly responding to messages from teammates.

Autonomy  Simulated a hijacking of the RPAS by moving it to an enemy
waypoint while the Al agent provided deceptive responses.

Hybrid A combination of both automation and autonomy failures into

a single failure.

The current study focuses on trust in a teammate,
regardless of whether a teammate is a human or machine, and
how to measure trust. The goal is to assess whether a proposed
trust metric is a valid metric for measuring trust in a teammate,
using interactions as measurement units. The specific
interactions being used as the units of measure are interactions
where information pushing based on anticipated needs occurs.
It is assumed that as a teammate anticipates another teammates’
needs and pushes information to that teammate based on
anticipated needs, there will be increased trust towards the
teammate who pushed the information. This will lead to higher
levels of interpersonal trust towards that teammate.

VI. METHOD

A. Participants

Sixty-four participants were recruited from Arizona State
University and surrounding areas. Participants ranged in age
from 18 to 33 (Mage = 22.53, SDgae = 3.55). A total of 60
participants, divided into 30 teams, completed the study.
Participants were randomly assigned to the roles of navigator



or photographer. An experimenter filled the pilot role. Each
team completed approximately a seven-hour session.
Participants were compensated $10 per hour for participation.

B. Procedure

After providing their informed consent, participants were
randomly assigned to their respective workstations separated by
a partition. The confederate pilot was located in a different
room as a part of the WoZ methodology. The participants then
completed training according to their assigned roles. Training
consisted of an interactive slideshow that described their roles
and tasks and a 40-minute hands-on training mission that
familiarized the participants with the interfaces, roles, and
communication in the RPAS task environment. A trained
experimenter guided them using a script to ensure the
participants understood the task. Participants were also aware
of a checklist relating to their roles and guidance for
communicating with the Al teammate. The first mission was a
baseline mission with no failures. Each mission consisted of
11-20 targets. Short breaks (15min) were given to participants
between each mission. Following the first and fifth mission,
questionnaires assessing trust and workload were administered.
After the fifth mission, trust and demographics questionnaire
was also completed, and participants were debriefed.

TABLE II. EXPERIMENTAL SESSION AND FAILURES

Session Order Failure 1 Failure I1
Mission 1 (Routine) No Failure No Failure
Pre-Questionnaires (Trust Questionnaire)

Mission 2 (Degraded) Automation Autonomy
Mission 3 (Degraded) Autonomy Automation
Mission 4 (Degraded) Hybrid Automation
Mission 5 (Degraded) Automation Autonomy

Pre-Questionnaires (Trust Questionnaire)

C. Measures

In this study, we collected several measures, including
individual and team performance scores, team situation
awareness, process measures (team communication behaviors
and flow, coordination, process ratings, sensor-based metrics
(electrocardiogram and facial expressions), NASA Task Load
Index [32], trust [33], and demographic questions. To address
the research questions, we only considered the measures of (1)
trust and (2) anticipatory pushing. Trust was measured based
on the questionnaire used by [30], a modified version of the [19]
questionnaire. The questionnaire used by [30] consisted of 18
items (9 items per teammate) and used a scoring scale of one to
five. To obtain the means of the participants’ reported trust
score, 4 of the 18 items were reverse-scored to align with the
scale for the remaining 14 questions.

Anticipatory pushing refers to text-chat data that shows the
pushing of information from one teammate to another without
being explicitly asked. It is important to note here that because
the Al teammate essentially followed a script and only
answered questions pertaining to its role and responsibilities, it

did not do any anticipatory pushing of information to either
human teammate in either of the two conditions. Two
experimenters recorded communication behaviors. Inter-rater
reliability was assessed for agreement between experimenters
when recording anticipatory pushing of information. Fleiss’
Kappa showed a good agreement between the experimenters’
judgments, k=0.869 (95% ClI, 0.842 to 0.895), p < 0.0001.

VII. DATA ANALYTICS AND RESULTS

A Multivariate Analysis of Variance (MANOVA) was
applied to address the following questions: (1) How does
anticipatory pushing of information and trust change from
human to human and human to autonomous team member
across the two sessions (i.e., routine and degraded)?, and (2)
How is anticipatory pushing of information associated with
trust in a teammate across the two sessions? The test statistics
show that all the effects were statistically significant (Table III).
Mauchly’s test indicated that the assumption of sphericity were
not satisfied for pair [x(5)=41.3, p <0.001, ¢ = 0.501], factor
by pair [(5)= 65.4, p < 0.001, ¢ = 0.435], pair by session
[x:(5)= 48.02, p < 0.001, ¢ = 0.506], and factor by pair by
session [(5)=52.8, p < 0.001, ¢ = 0.457]. Therefore, degrees
of freedom were corrected using the Greenhouse-Geisser
correction for within-subjects effects. Accordingly, all the
within-subjects effects were statistically significant (Table V).

TABLE III. MULTIVARIATE TEST STATISTICS

Effect Wilk’s A dfiypotiesis dfcreor  p-value 15

Factor 0.084 1 27 0.000 0916
Pair 0.480 3 25 0.000 0.520
Session 0.670 1 27 0.001  0.330
Factor by Pair 0.447 3 25 0.000 0.553
Factor by Session 0.567 1 27 0.000 0.433
Pair by Session 0.562 3 25 0.002 0.438
Factor by Pair by Session 0.469 3 25 0.000 0.531

Based on the significant interaction effect of factor by pair
and by session, we evaluated Least Significant Difference
(LSD) pairwise comparisons. First, we evaluated interaction
effects for anticipatory pushing of information across the pairs
and sessions (see Fig. 2). Across all the pairs (except from the
photographer to the pilot, p = 0.060), anticipatory pushing of
information was significantly higher in the degraded conditions
than the routine conditions (p < 0.05). Also, for all of the pairs,
the highest pushing of information occurred from the navigator
to the pilot (p < 0.001). Due to the WoZ manipulation, there
was no anticipatory pushing of information from the Al
teammate to a human team member. The navigator did more
anticipatory pushing of information to the photographer and
pilot (p < 0.05) than the other pairs. The overall findings
indicate that human team members pushed more information
during the degraded conditions and demonstrated more control
over the Al teammate because of its abnormal behaviors (i.e.,
autonomy failures), perhaps viewing it more as automation and
not an autonomous team member they were interdependent
with. The human team members in the routine conditions



anticipated each other’s needs significantly less than the needs
of the Al team member (p <0.05). A possible reason might be
that the pilot role of the Al was central in interaction because it
needed information from both human teammates in order to
complete each task.

TABLEIV. TEST OF WITHIN-SUBJECTS EFFECTS
Effect dftypotnesis dferror  F-Test  p-value nf,
Factor 1 27  294.65 0.000 0.916
Pair 1.51 81 14.11 0.000 0.343
Session 1 27 1331 0.001 0.330
Factor by Pair 1.31 81 21.61 0.000 0.445
Factor by Session 1 27 20.62 0.000 0.433
Pair by Session 1.52 81 5.72 0.011 0.175
Factor by Pair by Session 1.37 81 6.49 0.009 0.194
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Fig. 2. Anticipatory pushing of information across the pairs and sessions.
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However, the findings for trust contrasted with the
anticipatory pushing of information (Fig. 3). In degraded
conditions, trust in the Al team member was associated with
significantly lower trust in a human team member by the same
individual (p < 0.05). This was especially seen under degraded
conditions in comparison to routine conditions. Another finding
showed that trust from the navigator to the photographer was
significantly higher in routine conditions as compared to
degraded conditions (p < 0.05). This finding makes sense when
it is compared with the pushing of information. Anticipatory

pushing of information increased from the navigator to the
photographer and vice versa over time (p < 0.05). Overall, these
findings indicate that anticipatory pushing of information was
associated with increased trust between the human teammates
but not trust from humans to autonomy.

VIIL

Effective human—machine teaming requires that teammates
anticipate one another’s needs, share information proactively,
and have appropriate trust. This research explored the
relationship between anticipatory pushing of information and
trust in in a teammate in a remotely piloted aircraft system
synthetic task environment. Teams of two participants and one
Al teammate(emulated by a confederate) executed a series of
missions under routine and degraded conditions, and measures
of anticipatory pushing and trust were analyzed.

DISCUSSION AND CONCLUSION

Out first research question was concerned with how trust and
anticipatory pushing compared between human-human dyads
and human-autonomy dyads in routine and degraded
conditions. Our finding indicated that the human participants
exhibited more anticipatory pushing behaviors when conditions
were degraded compared to when they were not. These pushes
were directed to both their human and machine counterparts.
Anticipatory pushing of information has been associated with
the development of more implicit coordination strategies as
teams become more familiar [27], and may have helped teams
compensate when task load was increased due to degraded
conditions and coordination costs were higher. The highest
number of pushes was observed from the navigator role to the
pilot. This demonstrates the importance of how the availability
and interdependence of information provided to operators may
play a role in both their individual taskwork and also how they
coordinate with others in the HMT. In this case, the pilot may
have required more direction under degraded conditions, but
the navigator was often the only one who could provide it. We
also found that trust in the Al teammate appeared to diminish
when conditions were degraded, whereas trust in human
teammates tended to increase. The reduction in trust in the Al
teammate may have been due to the failures of the autonomous
agent that resulted in undesirable behaviors (autonomy
failures). Research suggests that trust violations are treated
differently when a team member is an artificial agent, and that
trust repair strategies can improve performance [7]. In contrast,
trust between the human teammates may have evolved over
time due to shared experiences and positive interactions over
the course of the study. This suggests that degraded conditions
may impact trusts dynamics in HMTs differently, depending on
the makeup of the team.

Our second research question was concerned with whether
anticipatory pushing of information was associated with trust.
Our findings suggest that anticipatory pushing of information
was associated with increased trust between the human
teammates, but not trust from humans to autonomy. However,
the direction of causality is not clear. Trust may increase
anticipatory pushing behaviors. Trust is probably necessary to
enable effective coordination and communication. Or vise



versa, anticipatory pushing of information may increase trust.
Therefore, it is possible that anticipatory pushing of
information could be used as a metric for measuring trust.
Future research looking at how varying levels of anticipatory
pushing correlate with self-reported trust scores could be
conducted to validate this claim. Additionally, it might be
possible to determine how anticipatory pushing of information
as a metric and trust as a team concept relate to team
performance. Previous research has shown that communication
and trust are essential components of good team performance.

There were several limitations in this study. One is the linear
and nonlinear relationship between anticipatory pushing and
trust. It is possible that there is a positive correlation between
trust and anticipatory pushing of information up to a point, but
then an inflection point is reached where there is a negative
correlation. Furthermore, we did not consider anticipatory
pushing from the autonomous agent to the human participants.
Researchers in the future might be interested in employing a
WoZ methodology to determine this. Finally, these results also
need to be evaluated in between-subjects effects (i.e., training).
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