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Abstract— This research examines the relationship between 
anticipatory pushing of information and trust in human–
autonomy teaming in a remotely piloted aircraft system - synthetic 
task environment. Two participants and one AI teammate 
emulated by a confederate executed a series of missions under 
routine and degraded conditions. We addressed the following 
questions: (1) How do anticipatory pushing of information and 
trust change from human to human and human to autonomous 
team members across the two sessions? and (2) How is 
anticipatory pushing of information associated with the trust 
placed in a teammate across the two sessions? This study 
demonstrated two main findings: (1) anticipatory pushing of 
information and trust differed between human-human and 
human-AI dyads, and (2) anticipatory pushing of information and 
trust scores increased among human-human dyads under 
degraded conditions but decreased in human-AI dyads.   

Keywords—Artificial Intelligence, Communication, Human-
Machine Teaming, Trust, Teamwork 

I. INTRODUCTION 
Technology continues to advance at a rapid rate. Much of 

this advancement can be seen in the field of machine learning, 
and artificial intelligence (AI), as highly autonomous machines 
(e.g., AI, robots, synthetic agents) permeate nearly all aspects of 
everyday life. There are many current examples of how AI and 
robots advance in high-risk environments, such as the new Mars 
Perseverance Rover [1]. This new rover differs from its 
predecessor, Mars Curiosity Rover, in that it has the 
independence to cover ground and make decisions without being 
directly controlled by its human operators on Earth. It also has 
planning features that allow it to shift its daily activities around 
to be more efficient with openings in its daily schedule. Another 
example is urban search and rescue (USAR) robots [2]. These 
robots are deployed in damaged buildings that are too dangerous 
for human rescuers to enter. The robots are responsible for 
mapping the environment, locating victims, and navigating the 
environment. The Mars Perseverance and Curiosity Rovers and 
USAR robots are just a few examples out of many of advanced 
autonomous technology that provides opportunities for studying 
how these advanced technologies might assist, collaborate, and 
team with humans.  

 A team can be defined as a sociotechnical system that 
contains two or more heterogeneous and interdependent 
members (either human or nonhuman, e.g., machines and 
canines) who interact with each other to complete a common 
goal or task [3]. Therefore, there are also other mixed-teams, 

such as human-machine teaming (HMT) [4]. HMT is a 
sociotechnical system in which at least one machine act as 
heterogeneous and interdependent team members and interact 
with human team members to accomplish a common goal or task 
[5]. In order to design better HMTs, it is important to understand 
their team processes, such as team communication and trust. 
Consequently, the main focus of the current study is to 
empirically examine the relationship between communication 
and trust in an HMT within a simulated remotely piloted aircraft 
system (RPAS) context. 

II. HUMAN-MACHINE TEAMING 
HMT is a broad term that we apply to a specific team 

definition that considers task role heterogeneity, 
interdependence, and a common team goal or task. This section 
clarifies the machine concept and how it can be a teammate 
within this definition. To understand how people might team 
with autonomous technology and how trust might be an 
important construct to consider when studying HMT, it is 
important to understand what autonomous technology is 
(traditionally referred to as ‘machine’) and how a machine can 
be classified as automation or autonomy [6]–[8]. A machine is 
a “device, having a unique purpose, that augments or replaces 
human or animal effort for the accomplishment of physical 
tasks” [9]. Sheridan (2002) underlines a three-part definition of 
what automation is: “(1) the mechanization and integration of 
the sensing of environmental variables (by artificial sensors); 
(2) data processing and decision making (by computers); and 
(3) mechanical action (by motors or devices that apply forces 
on the environment)” [11; p.9]. On the other hand, autonomy 
can be thought of as a machine that can carry out tasks 
independently or in conjunction with human input and 
oversight beyond that of what is traditionally considered 
“automation” [6].  

Beyond definitions, though, the difference between 
automation and autonomy can be thought of as a spectrum. In 
this spectrum, automation is on the low end where the 
technology is not autonomous and requires human oversight and 
intervention, whereas autonomy is on the high end and is 
technology that is independent of human input and oversight 
[11]–[14]. Accordingly, the overlap with all of these taxonomies 
seems to be that: (1) on the low end, the human does everything; 
(2) in the middle, the autonomous technology carries out a task 
or informs the human of certain variables to help the human 
make a decision; and (3) at the higher levels, the autonomous 
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technology has complete autonomy and does not require the 
permission of humans to carry out tasks, but can work with the 
human in a team like setting. 

Autonomy is becoming more sophisticated and better at 
complementing humans in team-like settings by doing things 
that the humans cannot do or prefer not to do. And as autonomy 
continues this trend, it might mean that autonomy might work 
with humans as a teammate and an independent entity fulfilling 
a role not completed by any other teammate(s) on the team [6]. 
This is important, especially in the context of trust, because in a 
team, team members have heterogeneous roles, meaning that 
each team member has a specific task and is responsible for 
executing that task within the team [15]. If a teammate cannot 
be trusted to fulfill their role, the team cannot achieve its overall 
goals effectively. Furthermore, an autonomous teammate is 
interdependent with other teammates, which helps the team 
achieve their overall goals [6], [16], [17]. Research has indicated 
that interdependence with an autonomous agent helps human 
teammates perceive the autonomous agent as more cooperative, 
friendlier, and as if the technology provided the human 
teammate with high-quality information [18]. Although these 
outcomes might seem beneficial in the sense that they will make 
the human trust the autonomy more, increased trust does not 
necessarily equate with appropriately calibrated trust. 

III. TRUST IN HUMAN-MACHINE TEAMING 
Trust is another critical dimension in effective HMT. One 

commonly accepted definition of trust is “the willingness of a 
party to be vulnerable to the actions of another party based on 
the expectation that the other will perform a particular action 
important to the trustor, irrespective of the ability to monitor or 
control that other party” [19, p. 712]. This definition alone, 
however, does not capture the essence of what trust is. To fully 
understand trust as a cognitive process, it is important to 
understand the structural elements of trust.  

One of the structural elements of trust is interpersonal trust, 
which is “the generalized expectancy held by an individual that 
the word, promise, oral or written statement of another 
individual or group can be relied on” [20, p. 651]. Risk is the 
main factor in understanding interpersonal trust. Rousseau and 
colleagues (1998) argued that uncertainty is the source of risk, 
and only when there is risk can one trust. When someone 
chooses to trust, they engage in risk-taking behavior. This aligns 
with another study that indicates that trust is not actually taking 
a risk, but rather it is a willingness to take a risk [19]. That is, 
the willingness to take a risk (trust) precedes the actual taking of 
risk (trusting behavior); trust (or trusting) is not a behavior but 
rather leads to behavior. Therefore, in order for one party to truly 
trust another party, the other party must be seen as trustworthy.  

Trustworthiness and interpersonal trust are integrated; 
interpersonal trust is the belief that someone will do what they 
say they will do [20]. Interpersonal trust, therefore, not only 
serves as a foundation for being perceived as initially 
trustworthy, but also for being perceived as trustworthy in the 
future. Indeed, trustworthiness is time-based. For instance, one’s 
reputation is based on actions and behaviors that one has done 
in the past. If those actions and behaviors lead to one having a 
positive reputation, the individual will be perceived as 
trustworthy. This perceived trustworthiness based on a person’s 

reputation will lead to others initially having high interpersonal 
trust towards that person even though they may not have 
previously interacted with that person [21]. Although risk and 
trustworthiness are indeed structural elements that can explain 
the nature of trust, they are limited in their capacity to define it 
for trust in a machine teammate in HMT.  

Trust in a machine teammate is a complex idea that has many 
dimensions worth considering, such as trust calibration between 
two team members and trust in other team members. Autonomy 
can be considered as a team member because of the conceptual 
similarities of “teams” and “autonomy” as seen in the 
aforementioned definitions provided in this paper (e.g., 
interdependence, task completion, interaction/communication, 
etc.). Chen and Barnes (2014) describe multiple factors that 
influence trust in autonomous teammates, such as having a 
shared cognitive architecture; so that the beliefs, desires, and 
intentions of the humans and the autonomy are compatible [22]. 
Demir et al. (2021) discuss this multidimensional perspective in 
the taskwork and teamwork of HMT [23]. The results of their 
study were mixed in that the researchers found stable team 
interactions to be negatively associated with trust development, 
but beyond an inflection point, they were positively associated 
with trust development. Results also showed that recovery from 
autonomy failures was related to a moderate amount of trust, but 
too little or too much trust led to poorer recovery from autonomy 
failures. These results indicate that trusting an autonomous 
teammate is somewhat linked to team interactions, and it is an 
evolving process. In this study, we also consider trust as an 
evolving process that is related to team communication. 

IV. COMMUNICATION IN HUMAN-MACHINE TEAMING 
Behavioral and physiological measures play an important 

role in assessing trust from a dynamic perspective. Several 
studies [23]–[25] indicate that team interaction based on 
communication and coordination can give a bigger picture of 
trust in the light of the theory of interactive team cognition 
(ITC; [26]). Interactions are vital to team success and 
performance. Because of this, in order to reflect interactions 
within a team, Cooke et al., 2009 developed a communication 
analysis that looks at who is talking to whom, what is being said 
(behavior/ content), and communication flow [15].  

In this study, we focus on specific types of communication, 
i.e., anticipatory pushing of information. We define 
anticipatory pushing as pushing information from Teammate-A 
to Teammate-B based on Teammate-A’s anticipation that 
Teammate-B requires the information. It is hypothesized that 
the anticipation of information for a teammate stems from a 
good shared mental model among teammates that leads to 
implicit coordination (i.e., coordination that is not preplanned 
or explicitly communicated but rather arises out of the shared 
understanding of a given situation) [27]. Anticipatory pushing 
of information is an example of implicit coordination because 
one team member is anticipating the informational needs of 
another teammate helping another teammate, perhaps by 
adjusting to a change by notifying them of the change in the 
situation and possibly recommending an action that addresses 
the change in the situation [6].  



With that in mind, the following novel definition of trust in 
a teammate based on anticipation is proposed for the current 
study. Trust in a teammate is the expectation that teammates 
will share anticipated and needed information with each other 
such that the sharing of information facilitates goal 
accomplishment, safety, and task continuation and completion. 
Furthermore, this definition of trust is context-free and can be 
applied to any team. Indeed, regardless of context, all teams 
need to share information to accomplish their overarching 
goal(s), which is why the team was formed in the first place. 
Teammates need to keep each other safe, not only physically 
but also mentally and emotionally. Sharing information based 
on anticipated needs certainly can help with this goal of 
teammate preservation. And finally, information sharing is 
necessary for task continuation, as task continuation and 
completion help the team accomplish its goal(s) in a timely 
manner. Because the current study is focused on information 
sharing as to how trust is formed, maintained, and calibrated, a 
corresponding measure of trust has to be implemented. 

V. CURRENT STUDY 

A. Synthetic Team Task and Roles 
The experiment took place in the RPAS-Synthetic Task 

Environment (RPAS-STE) testbed, which mimics the individual 
and team cognitive tasks in an RPAS ground station. The RPAS 
ground station comprises three heterogeneous and 
interdependent task roles (Fig. 1 for the role definitions; [28]). 
The task was to take good photos of targets while navigating the 
remotely piloted aircraft (RPA) along a safe route.  

 
Fig. 1. The Ground Station Consoles in RPAS-STE [30]. Each of the three-

team members communicated via a touch-screen text-chat interface. 

In this study, the pilot role was an “AI” teammate that was 
simulated by a trained confederate utilizing the “Wizard of Oz” 
methodology (WoZ) [29]. The confederate followed a script that 
indicated when and what to communicate throughout the task 
and described behaviors for controlling the flight of the RPA. 
This allowed us to consistently and reliably introduce the same 
autonomy failures across teams. For this experiment, the 
capabilities of the AI were limited in verbal comprehension, 
production, and piloting behaviors. Misspellings and unclear 

communications were ignored, and the pilot’s behaviors were 
generally limited to the script. 

B. Design and Research Question 
This study consists of between-and within-subjects design 

manipulations. However, we only consider the within-subjects 
design manipulations because of the main focus of the current 
study and page limit. There are three between-subjects design 
effects based on the pre-mission training, including coordination 
training, calibration training, and control training—all defined 
by manipulating pre-mission training [31]. The within-subjects 
design includes routine conditions (i.e., missions with no 
technology failures) and degraded conditions (i.e., missions with 
technology failures; see Table I). Because the focus of this study 
was to identify the  relationship between anticipatory pushing of 
information and trust under routine and degraded conditions in 
HMT, we combined all six types of technology failures together 
into one condition (see Table I [31]). This allowed us to analyze 
the data more simply and match the dimension of the trust 
measure, which was obtained via questionnaire once following 
routine conditions and again following degraded conditions (as 
within-subjects design).  

TABLE I.  FAILURES  WITHIN THE DEGRADED CONDITION [31]. 

Type Description  

Automation Prevented display of flight information such as airspeed, 
altitude, or heading to the photographer or pilot.  

Automation  A one-way communication cut between photographer and pilot. 

Automation  A gradual power-down and subsequence power-up of all six 
workstation screens, affecting all experimental positions. 

Autonomy Simulated a malfunction in the AI teammate’s capacity for 
properly responding to messages from teammates. 

Autonomy Simulated a hijacking of the RPAS by moving it to an enemy 
waypoint while the AI agent provided deceptive responses. 

Hybrid A combination of both automation and autonomy failures into 
a single failure. 

The current study focuses on trust in a teammate, 
regardless of whether a teammate is a human or machine, and 
how to measure trust. The goal is to assess whether a proposed 
trust metric is a valid metric for measuring trust in a teammate, 
using interactions as measurement units. The specific 
interactions being used as the units of measure are interactions 
where information pushing based on anticipated needs occurs. 
It is assumed that as a teammate anticipates another teammates’ 
needs and pushes information to that teammate based on 
anticipated needs, there will be increased trust towards the 
teammate who pushed the information. This will lead to higher 
levels of interpersonal trust towards that teammate. 

VI. METHOD 

A. Participants 
Sixty-four participants were recruited from Arizona State 

University and surrounding areas.  Participants ranged in age 
from 18 to 33 (Mage = 22.53, SDage = 3.55). A total of 60 
participants, divided into 30 teams, completed the study.  
Participants were randomly assigned to the roles of navigator 



or photographer.  An experimenter filled the pilot role. Each 
team completed approximately a seven-hour session. 
Participants were compensated $10 per hour for participation. 

B. Procedure 
After providing their informed consent, participants were 

randomly assigned to their respective workstations separated by 
a partition. The confederate pilot was located in a different 
room as a part of the WoZ methodology. The participants then 
completed training according to their assigned roles. Training 
consisted of an interactive slideshow that described their roles 
and tasks and a 40-minute hands-on training mission that 
familiarized the participants with the interfaces, roles, and 
communication in the RPAS task environment. A trained 
experimenter guided them using a script to ensure the 
participants understood the task. Participants were also aware 
of a checklist relating to their roles and guidance for 
communicating with the AI teammate.  The first mission was a 
baseline mission with no failures. Each mission consisted of 
11–20 targets. Short breaks (15min) were given to participants 
between each mission. Following the first and fifth mission, 
questionnaires assessing trust and workload were administered. 
After the fifth mission, trust and demographics questionnaire 
was also completed, and participants were debriefed. 

TABLE II.  EXPERIMENTAL SESSION AND FAILURES 

Session Order Failure I Failure II 

Mission 1 (Routine) No Failure No Failure 

Pre-Questionnaires (Trust Questionnaire) 

Mission 2 (Degraded) Automation Autonomy 

Mission 3 (Degraded) Autonomy Automation 

Mission 4 (Degraded) Hybrid Automation 

Mission 5 (Degraded) Automation Autonomy 

Pre-Questionnaires (Trust Questionnaire) 

C. Measures 
In this study, we collected several measures, including 

individual and team performance scores, team situation 
awareness, process measures (team communication behaviors 
and flow, coordination, process ratings, sensor-based metrics 
(electrocardiogram and facial expressions), NASA Task Load 
Index [32], trust [33], and demographic questions. To address 
the research questions, we only considered the measures of (1) 
trust and (2) anticipatory pushing. Trust was measured based 
on the questionnaire used by [30], a modified version of the [19] 
questionnaire. The questionnaire used by [30] consisted of 18 
items (9 items per teammate) and used a scoring scale of one to 
five. To obtain the means of the participants’ reported trust 
score, 4 of the 18 items were reverse-scored to align with the 
scale for the remaining 14 questions.  

Anticipatory pushing refers to text-chat data that shows the 
pushing of information from one teammate to another without 
being explicitly asked. It is important to note here that because 
the AI teammate essentially followed a script and only 
answered questions pertaining to its role and responsibilities, it 

did not do any anticipatory pushing of information to either 
human teammate in either of the two conditions. Two 
experimenters recorded communication behaviors. Inter-rater 
reliability was assessed for agreement between experimenters 
when recording anticipatory pushing of information. Fleiss’ 
Kappa showed a good agreement between the experimenters’ 
judgments, κ=0.869 (95% CI, 0.842 to 0.895), p < 0.0001. 

VII. DATA ANALYTICS AND RESULTS 

A Multivariate Analysis of Variance (MANOVA) was 
applied to address the following questions: (1) How does 
anticipatory pushing of information and trust change from 
human to human and human to autonomous team member 
across the two sessions (i.e., routine and degraded)?, and (2) 
How is anticipatory pushing of information associated with 
trust in a teammate across the two sessions? The test statistics 
show that all the effects were statistically significant (Table III). 
Mauchly’s test indicated that the assumption of sphericity were 
not satisfied for pair [χ2(5)= 41.3, p < 0.001, ε = 0.501], factor 
by pair [χ2(5)= 65.4, p < 0.001, ε = 0.435], pair by session 
[χ2(5)= 48.02, p < 0.001, ε = 0.506], and factor by pair by 
session [χ2(5)= 52.8, p < 0.001, ε = 0.457]. Therefore, degrees 
of freedom were corrected using the Greenhouse-Geisser 
correction for within-subjects effects. Accordingly, all the 
within-subjects effects were statistically significant (Table IV). 

TABLE III.  MULTIVARIATE TEST STATISTICS 

Effect Wilk’s Λ dfHypothesis dfError p-value 𝜼𝒑
𝟐 

Factor 0.084 1 27 0.000 0.916 

Pair 0.480 3 25 0.000 0.520 

Session 0.670 1 27 0.001 0.330 

Factor by Pair 0.447 3 25 0.000 0.553 

Factor by Session 0.567 1 27 0.000 0.433 

Pair by Session 0.562 3 25 0.002 0.438 

Factor by Pair by Session 0.469 3 25 0.000 0.531 

Based on the significant interaction effect of factor by pair 
and by session, we evaluated Least Significant Difference 
(LSD) pairwise comparisons. First, we evaluated interaction 
effects for anticipatory pushing of information across the pairs 
and sessions (see Fig. 2). Across all the pairs (except from the 
photographer to the pilot, p = 0.060), anticipatory pushing of 
information was significantly higher in the degraded conditions 
than the routine conditions (p < 0.05). Also, for all of the pairs, 
the highest pushing of information occurred from the navigator 
to the pilot (p < 0.001). Due to the WoZ manipulation, there 
was no anticipatory pushing of information from the AI 
teammate to a human team member. The navigator did more 
anticipatory pushing of information to the photographer and 
pilot (p < 0.05) than the other pairs. The overall findings 
indicate that human team members pushed more information 
during the degraded conditions and demonstrated more control 
over the AI teammate because of its abnormal behaviors (i.e., 
autonomy failures), perhaps viewing it more as automation and 
not an autonomous team member they were interdependent 
with. The human team members in the routine conditions 



anticipated each other’s needs significantly less than the needs 
of the AI team member (p <0.05). A possible reason might be 
that the pilot role of the AI was central in interaction because it 
needed information from both human teammates in order to 
complete each task.   

TABLE IV.  TEST OF WITHIN-SUBJECTS EFFECTS 

Effect dfHypothesis dfError F-Test p-value 𝜼𝒑
𝟐 

Factor 1 27 294.65 0.000 0.916 

Pair 1.51 81 14.11 0.000 0.343 

Session 1 27 13.31 0.001 0.330 

Factor by Pair 1.31 81 21.61 0.000 0.445 

Factor by Session 1 27 20.62 0.000 0.433 

Pair by Session 1.52 81 5.72 0.011 0.175 

Factor by Pair by Session 1.37 81 6.49 0.009 0.194 

 
Fig. 2. Anticipatory pushing of information across the pairs and sessions. 

 
Fig. 3. Trust in a teammate across the pairs and sessions. 

However, the findings for trust contrasted with the 
anticipatory pushing of information (Fig. 3). In degraded 
conditions, trust in the AI team member was associated with 
significantly lower trust in a human team member by the same 
individual (p < 0.05). This was especially seen under degraded 
conditions in comparison to routine conditions. Another finding 
showed that trust from the navigator to the photographer was 
significantly higher in routine conditions as compared to 
degraded conditions (p < 0.05). This finding makes sense when 
it is compared with the pushing of information. Anticipatory 

pushing of information increased from the navigator to the 
photographer and vice versa over time (p < 0.05). Overall, these 
findings indicate that anticipatory pushing of information was 
associated with increased trust between the human teammates 
but not trust from humans to autonomy.   

VIII. DISCUSSION AND CONCLUSION 
Effective human–machine teaming requires that teammates 

anticipate one another’s needs, share information proactively, 
and have appropriate trust. This research explored the 
relationship between anticipatory pushing of information and 
trust in in a teammate in a remotely piloted aircraft system 
synthetic task environment. Teams of two participants and one 
AI teammate(emulated by a confederate) executed a series of 
missions under routine and degraded conditions, and measures 
of anticipatory pushing and trust were analyzed. 

Out first research question was concerned with how trust and 
anticipatory pushing compared between human-human dyads 
and human-autonomy dyads in routine and degraded 
conditions. Our finding indicated that the human participants 
exhibited more anticipatory pushing behaviors when conditions 
were degraded compared to when they were not. These pushes 
were directed to both their human and machine counterparts. 
Anticipatory pushing of information has been associated with 
the development of more implicit coordination strategies as 
teams become more familiar [27], and may have helped teams 
compensate when task load was increased due to degraded 
conditions and coordination costs were higher. The highest 
number of pushes was observed from the navigator role to the 
pilot. This demonstrates the importance of how the  availability 
and interdependence of information provided to operators may 
play a role in both their individual taskwork and also how they 
coordinate with others in the HMT. In this case, the pilot may 
have required more direction under degraded conditions, but 
the navigator was often the only one who could provide it. We 
also found that trust in the AI teammate appeared to diminish 
when conditions were degraded, whereas trust in human 
teammates tended to increase. The reduction in trust in the AI 
teammate may have been due to the failures of the autonomous 
agent that resulted in undesirable behaviors (autonomy 
failures). Research suggests that trust violations are treated 
differently when a team member is an artificial agent, and that 
trust repair strategies can improve performance [7]. In contrast, 
trust between the human teammates may have evolved over 
time due to shared experiences and positive interactions over 
the course of the study. This suggests that degraded conditions 
may impact trusts dynamics in HMTs differently, depending on 
the makeup of the team. 

Our second research question was concerned with whether 
anticipatory pushing of information was associated with trust. 
Our findings suggest that anticipatory pushing of information 
was associated with increased trust between the human 
teammates, but not trust from humans to autonomy. However, 
the direction of causality is not clear. Trust may increase 
anticipatory pushing behaviors. Trust is probably necessary to 
enable effective coordination and communication. Or vise 



versa, anticipatory pushing of information may increase trust. 
Therefore, it is possible that anticipatory pushing of 
information could be used as a metric for measuring trust. 
Future research looking at how varying levels of anticipatory 
pushing correlate with self-reported trust scores could be 
conducted to validate this claim. Additionally, it might be 
possible to determine how anticipatory pushing of information 
as a metric and trust as a team concept relate to team 
performance. Previous research has shown that communication 
and trust are essential components of good team performance. 

There were several limitations in this study. One is the linear 
and nonlinear relationship between anticipatory pushing and 
trust. It is possible that there is a positive correlation between 
trust and anticipatory pushing of information up to a point, but 
then an inflection point is reached where there is a negative 
correlation. Furthermore, we did not consider anticipatory 
pushing from the autonomous agent to the human participants. 
Researchers in the future might be interested in employing a 
WoZ methodology to determine this. Finally, these results also 
need to be evaluated in between-subjects effects (i.e., training).  
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