
End-to-End Jet Classification of Boosted Top Quarks
with the CMS Open Data

M. Andrews,1 B. Burkle,2 Y. Chen,3 D. DiCroce,4 S. Gleyzer,4 U. Heintz,2

M. Narain,2 M. Paulini,1 N. Pervan,2 Y. Shafi,3 W. Sun,3 E. Usai,2 and K. Yang3

1Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
2Department of Physics, Brown University, Providence, Rhode Island 02912, USA

3Google Inc., Mountain View, California 94043, USA
4Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA

(Dated: January 24, 2022)

We describe a novel application of the end-to-end deep learning technique to the task of discrim-
inating top quark-initiated jets from those originating from the hadronization of a light quark or
a gluon. The end-to-end deep learning technique uses low-level detector representation of high-
energy collision event as inputs to deep learning algorithms. In this study, we use low-level detector
information from the simulated CMS Open Data samples to construct the top jet classifiers. To
optimize classifier performance we progressively add low-level information from the CMS tracking
detector, including pixel detector reconstructed hits and impact parameters, and demonstrate the
value of additional tracking information even when no new spatial structures are added. Relying
only on calorimeter energy deposits and reconstructed pixel detector hits, the end-to-end classifier
achieves an AUC score of 0.975±0.002 for the task of classifying boosted top quark jets. After
adding derived track quantities, the classifier AUC score increases to 0.9824±0.0013, serving as the
first performance benchmark for these CMS Open Data samples.

I. INTRODUCTION

The Large Hadron Collider (LHC) is a prolific top
quark factory: since the beginning of data-taking in 2010,
over 108 top quarks have been produced. The measure-
ment of the top quark’s properties and production rates
at the LHC remains one of the main research priorities
at experiments like the Compact Muon Solenoid (CMS)
at the LHC. Moreover, investigating high transverse mo-
ment top quark production offers potential hints of the
presence of new physics that may lie beyond the Standard
Model.

Top quarks are unique in that they decay before they
have time to hadronize, always decaying to a bottom
quark and a W-boson. During the top decay chain, the
W-boson will decay hadronically to quarks 66.5% or lep-
tonically to a lepton and neutrino pair 33.5% of the time
[1]. At hadron colliders, like the LHC, the low produc-
tion cross section of prompt electrons and muons can be
exploited to boost tagging efficiency when identifying top
quarks with a leptonically decaying W-boson in its de-
cay chain. However, hadronic decays of top quarks can
be much harder to identify, since the primary features
used to identify them are the topology of its decay prod-
ucts and the track features of the bottom quark decay
products. In particular, at high transverse momenta, the
hadronic decay of highly a Lorentz-boosted top quark can
lead to a single merged cluster of particles in the detector,
hereby referred to as jets, offering a unique and challeng-
ing view into the study of the top quark’s properties. Be-
cause of this, discriminating boosted top quark-jets from
light flavour- or gluon-jets has become an important chal-
lenge for the LHC experiments, and a popular benchmark
for data analysis techniques involving machine learning.

Most jet identification techniques rely on inputs pro-
vided by the Particle Flow (PF) algorithm used to con-
vert detector level information to physics objects [2]. The
Particle Flow algorithm has many advantages due to its
ability to greatly reduce the size and complexity of parti-
cle physics data while providing a physically intuitive and
easy to use representation in physics analyses. Many of
the modern machine learning approaches to jet discrim-
ination are based on PF-based inputs [3–10]. However,
there is some invariable loss of information from reduc-
ing the data set complexity. Despite the very high re-
construction efficiency of PF algorithms, some physics
objects may fail to be reconstructed, are reconstructed
imperfectly, or exist as fakes [11]. For that reason it is
advantageous to consider end-to-end reconstruction that
allows a direct application of machine learning algorithms
to low-level data representation in the detector.

In this work, we extend the end-to-end deep learning
approach for particle and event classification [12]. Specif-
ically, we extend the use of end-to-end jet images intro-
duced for quark- vs. gluon-jet discrimination [13] to the
task of boosted top quark- vs. light quark- or gluon-jet
discrimination. In previous work [13], we found that the
track information was the leading contributor to the clas-
sifier’s performance. Due to this insight and the impor-
tance of identifying displaced tracks associated with bot-
tom quark decays, this new work introduces a number of
key features from the CMS tracking detectors to exploit
the full topology of hadronically decaying top quarks.

II. OPEN DATA SIMULATED SAMPLES

The end-to-end deep learning technique relies on high-
fidelity simulated detector data, which in this work comes

ar
X

iv
:2

10
4.

14
65

9v
3

 [p
hy

si
cs

.d
at

a-
an

]
21

 Ja
n

20
22

2

from the simulated Monte Carlo in the CMS Open Data
Portal [14, 15]. We use a sample of SM top-antitop (tt̄)
pair production as a source of boosted top quarks, where
the W boson from the top quark decay is required to
decay to quarks [16]. Additionally, the reconstructed
top quark transverse momentum (pT) is required to be
greater than 400 GeV. At this momentum, we expect
that a large fraction of the W - and b-jets produced in
the top quark decay chain will be suitably merged. The
Monte Carlo sample was generated with Madgraph 2.6.6
[17] and uses Pythia6 for parton showering [18] with
the Z2Star tune. For the light-flavour and gluon jets,
we use three samples of QCD dijet production in dif-
ferent ranges of the hard-scatter transverse momentum
(p̂T): 300 < p̂T < 600 GeV, 400 < p̂T < 600 GeV, and
600 < p̂T < 3000 GeV [19–21]. Like the tt sample, these
samples were generated and showered with Pythia6 [18]
using the same Z2Star tune. For all samples, the de-
tector response is simulated using Geant4 with the full
CMS geometry and is processed through the CMS PF
reconstruction algorithm using CMSSW release 5 3 32
[22]. An average of ten additional background collisions
or pileup (PU) interactions are added to the simulated
hard-scatter event, which are sampled from a realistic
distribution of simulated minimum bias events. For this
study, we use a custom CMS data format which includes
the low-level tracker detector information, specifically,
the reconstructed clusters from the pixel and silicon strip
detectors [23]. From the tracker clusters, we perform a
parametric estimate of the position of the hit on the sen-
sor surface.

Category Top quark jets QCD jets Total Jets
Train 1280830 1279170 2560000
Validation 319819 320181 640000

TABLE I. Number of jets used for training and validating the
top quark and non-top quark jet categories. When training
the network on subsets of layers, only 198k jets were used for
validation.

We take reconstructed jets clustered using the anti-kt
algorithm [24] with a radius parameter R of 0.8, or so-
called AK8 jets, and require pT > 400 GeV and |η| < 1.37
for our event selection. Here, η is the pseudorapidity and
equates to the polar angle of the CMS detector accord-
ing to η = − ln(tan θ

2). This η cut is to ensure that
the jet image does not extend beyond the |η| < 2.4 ac-
ceptance limit of the current CMS tracker. Addition-
ally, for the top jets we require the generator-level top
quark, its bottom quark and W -boson daughters, and W -
boson’s daughters to be within an angular separation of

∆R =
√

∆η2 + ∆φ2 < 0.8 from the reconstructed AK8
jet axis, where φ is the azimuthal angle of the CMS de-
tector. In order to avoid biases caused by the different pT
distributions of the jets, we pseudo-randomly drop jets
from the three QCD samples such that the total number
of jets and pT distribution of the tt sample is reproduced.
After the pT-resampling, the QCD and tt̄ jets are split

into the training and validation sets detailed in Table I.

III. CMS DETECTOR, IMAGES, AND
NETWORK TRAINING

CMS is a multi-purpose detector composed of several
cylindrical subdetector layers, with both barrel and end-
cap sections, encasing a primary interaction point. It fea-
tures a large B = 3.8 T solenoid magnet to bend the tra-
jectories of charged particles that aid in pT measurement
[25]. At the innermost layers there is a silicon tracker
used to reconstruct the trajectory of charged particles
and find their interaction vertices. The tracker can be
divided in two parts the silicon pixel detector and sili-
con strip detector [26]. The silicon pixel detector is the
inner most part and, for the data taking years used in
this study, composed of three layers in the barrel region
(BPIX) and three disks in the endcap region (FPIX).
Each layer is composed of pixel sensors that provide a
precise position of the passage of a charged particle. The
pixel detector provides crucial information for vertexing
and track seeding. The outer part of the tracking system
is composed of several layers of silicon strip sensors. This
is followed by the electromagnetic calorimeter (ECAL)
to measure the energy of electromagnetically interacting
particles, then the hardonic calorimeter (HCAL) to mea-
sure the energy of hadrons [27, 28]. These are surrounded
by the solenoid magnet which is finally encased by the
muon chambers to detect the passage of muons [29].

Following our previous work [12, 13], we construct jet
images using low-level detector information where each
subdetector is projected onto an image layer, or several
layers in the case of the tracker, in a grid of 125 x 125
pixels with the image centered around the most energetic
HCAL deposit of the jet. Each pixel corresponds to the
span of an ECAL barrel crystal which covers a 0.0174 ×
0.0174 in the η − φ plane, giving our images an effective
∆R of 2.175. Reconstructed particle tracks are weighted
by their reconstructed pT and their location is projected
to an ECAL crystal. To improve the identification of
tracks coming from the hadronization of b quarks, we
added additional layers motivated by the long flight dis-
tance of b hadrons producing reconstructed tracks that
do not converge to the primary vertex. These new layers
can be split into two categories: derived track quantities
and reconstructed hits.

We first add two new layers corresponding to the re-
constructed tracks weighted by the transverse (d0) and
longitudinal (dZ) components of their impact parameter
(IP) significance. The IP is defined as the distance vec-
tors of minimum approach between the track helix and
the primary vertex. To obtain the IP significance, the
d0 and dZ values are divided by their respective uncer-
tainties. For this study, any d0 (dZ) values larger than
10 cm (20 cm) are suppressed to zero to prevent train-
ing degradation caused by the inclusion of tracks with a
superfluously large IP. Such tracks are expected to origi-

3

FIG. 1. Composite images of a simulated boosted top quark event. Images are produced for a single cropped jet image (left)
and the full CMS detector (right).

nate from photon conversions in the tracker or from poor
track reconstruction, and these cuts are not expected to
negatively impact network performance.

In an effort to extract as much information as possi-
ble from the tracking subdetector, we include additional
low-level detector information in the form of tracking
hits, traditionally used in track reconstruction. There
are multiple steps in the conversion from charge clus-
ters produced via charged particles passing through the
tracker to fully reconstructed tracks.

In this study, we consider the RecHit information from
the three layers of the BPIX, but not from the FPIX or
the silicon strip detector, as network inputs. BPIX Re-
cHits are obtained by first clustering nearby pixels of a
given sensor which pass an adjustable charge threshold.
A straight line fits the pixel cluster to center of the beam,
and it’s angle with the sensor surface is used to compute
a hit location which is corrected for the Lorentz drift
the charges experience before being read off the sensor.
Given the hit location on the sensor and location of the
sensor in the detector, the location of the RecHit is ob-
tained. An in depth explanation of the tracker RecHits
and how they were calculated can be found in [23].

For this study, the η and φ position of the RecHit is
re-calculated with respect to the primary vertex of the
collision rather than the geometric center of the detector.
This is done so that the η and φ of the RecHits better
match the η and φ of their corresponding tracks when
reaching the ECAL, which would otherwise deviate due
to the pixel detectors closeness to the beamline. From
the RecHits three new image layers are produced, one for
each layer of the BPIX, where each image pixel intensity
is set to the number of RecHits per η–φ image resolution
in the corresponding layer.

After these additions, the images used in this study are
composed of eight separate layers. Three for the BPIX
RecHits, three for the tracks weighted by their pT, d0,

and dZ values, and two for the calorimeters. Figure 1
shows an end-to-end image featuring all the image layers
considered in this work for a single jet and the full de-
tector. The only layers that cannot be seen are the track
d0 and dZ values due to their overlap with the track pT
layer.

The network architecture and hyperparameters used
in this work closely follow what was previously used in
[12, 13], making use of a ResNet-15 convolutional neural
network [30] trained with the ADAM optimizer [31]. The
initial learning rate is 5×10−4 and is explicitly reduced by
half every 10 epochs. We found training for 20 epochs to
be sufficient for convergence. However, for our final net-
work evaluations we used models trained for 40 epochs.
The network was developed using the TensorFlow library
[32]. The detailed description of the network training as
well as a timing comparison between multiple GPU and
TPU architectures can be found in the appendix of this
manuscript. We found that the TPUv3-8 trained the
model roughly 35% faster than an NVIDIA Tesla V100,
but both the TPU and V100 had training speeds that
were roughly 20 times faster than an NVIDIA Tesla P100.

To compare our results to a more traditional ap-
proach to jet identification, we additionally train a fully-
connected network with eight layers and a total of
843,602 trainable parameters with binary cross entropy
loss and ADAM optimizer [31]. A standard rectified lin-
ear unit (relu) activation function was used between each
of the fully-connected layers, and the output was passed
through the softmax function. The network was trained
on the jet softdrop mass [33], the ratio of 2-subjettiness
to 3-subjettiness [34], and the d0 and dz values of the
tracks with the five highest IPs. These variables were
chosen because they are typically used to better identify
jets originating from the hadronization of top and bottom
quarks [35].

4

Layer Combinations ROC-AUC Sig-eff at 1%
Track pT (baseline) 0.955±0.002 39.6%
Track pT + ECAL + HCAL (nominal) 0.967±0.002 49.5%
Track pT + d0 + dZ 0.972±0.002 57.2%
Track pT + d0 + dZ + ECAL + HCAL 0.981±0.002 64.4%
BPIX 0.947±0.002 38.3%
BPIX + Track pT 0.965±0.002 47.6%
BPIX + ECAL + HCAL 0.975±0.002 56.9%
BPIX + Track pT+d0+dZ 0.977±0.002 61.3%
BPIX + Track pT+d0+dZ + ECAL + HCAL 0.9824±0.0013 66.41%
Fully-Connected Network (groomed mass, substructure, track IPs) 0.9258±0.0013 43.10%

TABLE II. Performance of the classifier trained up to 20 epochs. Results are shown for different combinations of tracking and
calorimeter layers and evaluated on a sample of 198k jets.

IV. JET IDENTIFICATION RESULTS

Table II shows the area under the receiver operator
curve (AUC) and signal efficiency at 1% background
misidentification rate for the end-to-end classifier using
different combinations of track and calorimeter layers.
When training on a subset of layers the networks were
trained for 20 epochs and evaluated on the 198k jet sub-
set of the jets used for validation as described in Table
I. When training on the full combination of eight image
layers and for the fully connected-network, the networks
were trained for 40 epochs and evaluated on the full 640k
jet validation sample. A statistical uncertainty is ob-
tained on the AUC score by inverting the square-root of
the number of jets used to evaluate the network, and the
signal efficiency is given for the AUC score central value.

Our previous end-to-end deep learning results showed
that the Track pT layer gave the best single layer perfor-
mance for jet discrimination [13]. Therefore, we choose
track pT layer performance as a baseline for our models’
performance. From Table II, we observe that the largest
single-subdetector performance increase comes with the
inclusion of the d0 and dZ track information, leading to
an AUC score improvement of 0.014–0.017. Comparing
rows 2 and 3, the combination of track pT, d0, and dZ
outperforms the nominal combination layers despite the
fact that the pT + d0 + dZ images are agnostic to neu-
tral particles. This is in agreement with [13] where the
tracks were observed as the most important feature for
jet discrimination, and other jet tagging approaches that
require the presence of a b-tagged subjet tagged using IP
variables [35–37].

Models trained only on BPIX produced a weaker per-
formance than those trained using the track pT infor-
mation. However, we observe multiple improvements in
network performance after combining BPIX with other
layers. When training the network on BPIX1–3, ECAL,
and HCAL layers we find that it outperforms the nom-
inal baseline in [13], improving the AUC score by 0.008
and the signal efficiency from 49.5% to 56.9%. Compar-
ing rows 3 and 8 of Table II shows that adding the BPIX
to the track pT + d0 + dZ images improves the AUC by
0.005 and the signal efficiency from 57.2% to 61.3%.

The bottom two rows of Table II show the performance
of network trained on all 8 channels and a fully-connected
network. The network trained on all 8 channels attains
an AUC score of 0.9824±0.0013 and a signal efficiency
of 66.41% at 1% misidentification. Comparing this to a
fully-connected deep learning based top tagger, we find
that all of the combination of layers explored outper-
form the fully-connected network’s AUC score metric of
0.9258± 0.0013.

V. INTERPRETATION AND DISCUSSION

An in depth look at the performance of neural networks
trained on different layer combinations provides insight
into which features the network is learning. The obser-
vation that the strongest single subdetector performance
comes from the reconstructed tracks weighted by their
pT and IP variables is in agreement with expectations
based on the current understanding of high momentum
top jets. We expect a large number of high pT tracks,
due to the jet containing three merged subjets, and a
small subset of tracks having large IP values, attributed
to a decaying B-meson. What is particularly interesting
is that the network is able to successfully extract this IP
information from the addition of the d0 and dZ layers
to the track pT image layer. The track-only images are
composed of a set of perfectly overlapping sparse layers,
and our initial intuition was that the 2D convolutional
layers would have difficulty extracting new information
due to its lack of new spatial structure. We instead ob-
serve that this is not the case, and that these track-only
images achieved an AUC of 0.972±0.002. This shows a
large performance boost over our baseline comparison,
and outperforms the nominal combination of layers that
instead added new non-sparse spatial information to the
baseline track pT images.

Further insight into the utility of IP variables can be
observed by comparing a networks AUC performance to
it’s signal efficiency. When comparing performance be-
tween networks, we sometimes observe that the network
with a higher AUC score does not always possess a higher
signal efficiency as well. As mentioned in Section IV,

5

we observe that the fully-connected network has a lower
AUC score than any of the end-to-end networks, but that
its signal efficiency is slightly larger than the networks
trained only on track pT or BPIX1–3. We also observe
this when comparing the network trained on the BPIX1–
3, ECAL, and HCAL layers to the network trained on
track pT + d0 + dZ. The BPIX1–3, ECAL, and HCAL
network has a larger AUC score, but lower signal effi-
ciency. In both of these cases, we find that the networks
with direct access to IP information have larger signal
efficiencies at 1% background rejection, but still have a
lower AUC value. Further investigation into the Receiver
Operator Curves showed that the addition of IP variables
primarily improves the networks background rejection
at discriminator values with very high signal efficiency
greater than 90%. However, this has a smaller impact
on the networks background rejection at discriminator
values with lower signal efficiency.

The second insight comes from the performance of the
BPIX RecHits. As mentioned in Section IV, the BPIX do
not show a strong standalone single sub-detector perfor-
mance. However, this is to be expected for multiple rea-
sons. The pixel detector has an η and φ resolution of 10
µm, giving the inner most layers a 1D spatial resolution
that is almost eight times finer than the ECAL [26, 27].
Furthermore, we only considered the barrel region of the
pixel detector, and do not include any RecHits from the
forward region of the pixel detector. Any jets that bor-
der the η acceptance of this study will be missing RecHits
from portions of the BPIX layers. Finally, our network
is agnostic to each layer’s distance from the beamline,
giving the network incomplete information about the Re-
cHits global positioning. For example, the RecHits will
drift in φ as the charged particle bends in the CMS de-
tector’s magnetic field. But unless more layers are added
to the image, the network does not have enough informa-
tion to know the order of each hit nor the direction in φ
the particle is moving. But despite the shortcomings of
our current RecHit implementation, we find remarkable
results. With the exception of the final layer combina-
tion, where BPIX RecHits are added to images composed
of track pT + d0 + dZ + ECAL + HCAL information,
we note that adding the BPIX RecHits gives a statisti-
cally significant increase in network performance. The
most notable are cases where BPIX RecHits are added
on top of the tracking variables (1), and the case where
BPIX RecHits are used in lieu of the derived tracking
information (2).

In the first case (1), we see that the network is able to
use the BPIX to exploit jet features which it could not
parse from the derived track quantities alone. One pos-
sible feature is the track charge, where motion through
φ can be combined with the final location of the track to
determine its direction of curvature of the track. How-
ever, more abstract features may also exist in these im-
ages. In the case of (2), the network does not use any
reconstructed variables for its inputs. We see that de-
spite the lack of derived variables, the network outper-

forms the track pT + d0 + dZ images, and only performs
marginally worse than the final performance on the full
images. The overall success of our network’s ability to
learn from BPIX RecHits paves the foundation for future
studies of end-to-end taggers where no derived variables
are used.

VI. CONCLUSIONS

In this work we have extended the end-to-end deep
learning technique to top quark jet classification. To en-
hance the performance of the classifier we added addi-
tional layers containing information about track param-
eters and pixel detector reconstructed hits, marking the
first top-tagging algorithm which uses tracking RecHits
as input variables. The model was trained using CMS
Open Data datasets containing low-level tracking infor-
mation [16, 19–21].

The end-to-end classifier trained on all input features
achieves an AUC performance of 0.9824±0.0013. We find
that the addition of d0 and dZ variables gives the largest
boost to network performance when compared to subde-
tector information used in previous end-to-end jet dis-
crimination studies [13]. At ECAL granularity, BPIX
RecHits do not provide the network with information
that is not present in the combination of track pT , d0,
dZ, ECAL, and HCAL layers. However, we find that it
still improves subgroups of these layers, and the network
achieves an AUC score of 0.975±0.002 when training on
images void of derived variables. These findings lay the
ground work for future studies which look to incorpo-
rate RecHits from the full CMS tracker, higher-resolution
training, and to explore new deep learning architectures
that can fully exploit the tracker granularity.

ACKNOWLEDGMENTS

We would like to thank the CMS Collaboration and
the CERN Open Data group for releasing their simu-
lated data under an open access policy. We strongly
support initiatives to provide such high-quality simulated
datasets that can encourage the development of novel but
also realistic algorithms, especially in the area of machine
learning. We believe their continued availability will be
of great benefit to the high energy physics community in
the long run.

We would also like to thank Google for access to Google
Cloud and TPU computing nodes which helped us speed
up the training of machine learning models used in this
study.

6

Appendix A: Timing Performance Comparison

A number of factors affect the training speeds of the
classifiers and their memory requirements: The number
of events used during training, the number of image lay-
ers in each event, and the resolution of each of the im-
ages. Compared to our previous work [13], the number
of training events has increased by a factor of 3.2 and
the number of image layers has increased by a factor
2.7. For a single 125 x 125 pixel image, we can see that
the size of an uncompressed image has increased from
183 kB in [13] to 488 kB. These factors combined lead
to a significant computational cost increase for training
the network, both in training time and memory require-
ments. For this task training was carried out on multi-
ple accelerated hardware architectures as a benchmark
to compare their performance. The comparison was per-
formed on two different graphical processing units (GPU)
and a tensor processor unit (TPU), whose specifications
are summarized in Table III. Additionally, a test was
performed where we trained a single network on multi-
ple V100 GPUs in parallel to observe how the training
speeds scaled with number of processing units. A discus-
sion on the differences of the architectures and a detailed
description on the external input/output (I/O) pipeline
used when utilizing each architecture is described below.

1. Architectures and I/O Pipeline

The NVIDIA Tesla P100 is a GPU that utilizes the
Pascal architecture [38]. The Tesla P100 GPU was ac-
cessed on a shared cluster at the Fermilab National Ac-
celerator Laboratory LHC Physics Center via a dedi-
cated GPU worker node. The node accessed the GPU
through a 12 GB/s PCIe connection using the CUDA
Toolkit v9.1 drivers. During training, data was stored
and read from an HGST 1W10002 hard disc drive [39] lo-
cated on the GPU machine. Images were uncompressed,
pre-processed, and sent to the GPU using a single In-
tel(R) Xeon(R) Silver 4110 8-core CPU [40].

The NVIDIA Tesla V100 uses the Volta architecture,
incorporating eight tensor cores and an all-around higher
performance than the Pascal architecture [41]. Unlike the
P100, the V100 is able to make use of mixed precision
operations, which were utilized for this comparison, to
drastically increase the number of floating point opera-
tions per second (FLOPS). During training, images were
read from a solid state drives with better random I/O
operations per second than traditional disc drives. The
computing node ran Cuda v11.0.2 drivers and used four
Intel(R) Xeon(R) Gold 5118 12-core CPUs [42] to per-
form data loading and pre-processing tasks, which were
parallelized using the NVIDIA DGX-1 architecture [43].
Of the 48 available CPU cores, 20 were used for data
loading. When training the network on multiple GPUs
we chose to train on one, two, four, and eight V100s using
the the Horovod framework [44]. For the scaling tests a

larger batch size of 1024 tf examples was used.
The TPU is a type of AI-accelerated architecture de-

signed by Google with the purpose of training and run-
ning inference on machine learning models [46], and can
be accessed through the Google Cloud platform [47].
TPUs boast a high number of FLOPS, made possible
by dedicated matrix multiplication units which make use
of the bfloat16 data type [48]. Unlike GPU based archi-
tectures, the CPU cores used to fetch and pre-process
batches all live on TPU board creating a low latency
I/O pipeline which does not have to compete for CPU
resources. For this work, a TPUv3-8 running TPU soft-
ware v1.14 was run using a type n1-standard-1 Google
Cloud virtual machine node. Data used to train the net-
works was stored in Google Cloud buckets located in the
same region as the virtual machine and TPU nodes to
decrease time associated with transferring data during
the training. This gives the cloud storage buckets com-
parable performance to persistent HDs in the local VM
storage area [49].

2. GPU Scaling Performance

The Horovod framework [44] was used to perform the
GPU scaling, as it provides flexibility of scaling the train-
ing of the network to multiple GPUs. Horovod takes ad-
vantage of the inter-GPU and inter-node communication
methods such as NCCL (Nvidia Collective Communica-
tions Library) and MPI (Message Passing Interface) to
distribute the deep learning model parameters between
various workers and aggregate them accordingly.

Figure 2 shows the training time when the final opti-
mised model was scaled to multiple GPUs. Going from
one to two GPUs, we observe a roughly 50% decrease in
training speeds. However, as we continue to double the
GPUs, we observe diminishing returns in improvement.
This is primarily due to the underlying input bottlenecks
which are not addressed by improving computation par-
allelization. Additionally, adding more GPUs increases

Number of GPUs

S
ec

on
ds

 s
pe

nt
 to

 tr
ai

n
on

e
ep

oc
h

0

500

1000

1500

1 GPU 2 GPUs 4 GPUs 8 GPUs

Scalability Test

FIG. 2. Scaling end-to-end deep learning training on multiple
GPUs.

7

Processor Manufacturer Year Released HBM Memory Performance
Tesla P100 NVIDIA 2016 16 GB 9.3 Single-Precision TeraFLOPS
Tesla V100 NVIDIA 2017 32 GB / 16 GB 125 Mixed-Precision TeraFLOPS
TPUv3-8 Google 2018 128 GB 420 Mixed-Precision TeraFLOPS

TABLE III. Comparison of architecture specification for the NVIDIA Tesla P100 [38], NVIDIA Tesla V100 [41], and Google
TPUv3-8 [45] architectures. The floating point operations per second speed (FLOPS) are quoted based on the data type and
architecture setup used during training.

Ti
m

e
(s

)

0

0.1

0.2

0.3

0.4

0.5

NVidia P100 NVidia V100 Google TPUv3-8

Total Time I/O Time

Single Batch Train Speed

FIG. 3. Comparison of time taken to train over a single batch
on the GPU and TPU architectures.

the output latency associated with averaging gradients.

3. Computing Architecture Comparison

Table IV and Figure 3 provide a timing comparison for
training machine learning models using the three differ-
ent architectures. The training performed on the P100
were drastically longer, partially stemming from low I/O
speeds caused by the inefficient random reads associated
with disk HDs [50] as well the weaker CPU used for build-
ing batches and sending them to the GPU. When utiliz-
ing the Tesla P100, we observe that improvements to the
computing clusters I/O infrastructure could decrease the
required time to train on a single epoch by up to 2.6
hours.

The Tesla V100 and TPUv3-8 give much stronger
performance and were accessed utilizing I/O pipelines
with comparable performance. However, in both cases
we see that over half of the time associated with training
a batch is spent on I/O. By subtracting the single batch
I/O time from the single batch train time, we obtain an
approximate computation time. From this, we see that

the TPUv3-8 spent approximately 2.6 ms to perform
forwards and backwards propagation calculations, which
is a factor of four faster than the 11 ms required by the
Tesla V100.

Category Tesla P100 Tesla V100 TPUv3-8
Training Batch Size 32 jets 64 jets 64 jets
Batches Per Epoch 80k 40k 40k
I/O Time (batch) 0.119 s 0.0180 s 0.0176 s
Train Time (batch) 0.481 s 0.0290 s 0.0202 s
Train Time (epoch) 321 min 19 min 14 min

TABLE IV. Comparison of I/O and training time for different
computing architectures. A larger batch size was used when
training on the Tesla V100 and TPUv3-8. Training times
were found to vary by approximately 10% between epochs.

4. Timing Conclusion

Identical copies of the model were trained on a single
NVIDIA Tesla P100 GPU, a single NVIDIA Tesla V100
GPU, and a TPUv3-8 accessed through the Google Cloud
platform. We observe that one of the largest training
speed improvements come from the utilization of a more
optimized I/O infrastructures. For many existing com-
puting clusters, improvements to the I/O pipeline could
serve as a relatively cheap way to greatly improve train-
ing speeds.

We find that both the Tesla V100 GPU and the
TPUv3-8 offer a significant training time improvement
over a Tesla P100 GPU when training on end-to-end
jet images, but that the TPUv3-8 still maintained faster
computation times. We also trained a identical copies
of the network in parallel on multiple NVIDIA Tesla
V100 GPUs to observe the relationship between number
of GPUs and training speeds. From this, we were able to
see a roughly linear relationship between the number of
GPUs utilized and the time it took to train the network.
However, at high number of GPUs a plateau starts to
occur as I/O becomes the performance bottleneck.

[1] Particle Data Group Collaboration, “Review of Particle
Physics”, Phys. Rev. D 98 (2018), no. 3, 030001,
doi:10.1103/PhysRevD.98.030001.

[2] CMS Collaboration, “Particle-flow reconstruction and

global event description with the CMS detector”,
JINST 12 (Jun, 2017) P10003. 82 p,
doi:10.1088/1748-0221/12/10/P10003.

[3] CMS Collaboration Collaboration, “Boosted jet

http://dx.doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1088/1748-0221/12/10/P10003
https://doi.org/10.1088/1748-0221/12/10/P10003
http://cds.cern.ch/record/2295725

8

identification using particle candidates and deep neural
networks”,.

[4] A. Butter et al., “The Machine Learning Landscape of
Top Taggers”, SciPost Phys. 7 (2019) 014,
doi:10.21468/SciPostPhys.7.1.014, arXiv:1902.09914.

[5] G. Kasieczka, T. Plehn, M. Russell, and T. Schell,
“Deep-learning Top Taggers or The End of QCD?”,
JHEP 05 (2017) 006, doi:10.1007/JHEP05(2017)006,
arXiv:1701.08784.

[6] P. T. Komiske, E. M. Metodiev, and J. Thaler, “Energy
flow networks: deep sets for particle jets”, Journal of
High Energy Physics 2019 (Jan, 2019)
doi:10.1007/jhep01(2019)121.

[7] A. Butter, G. Kasieczka, T. Plehn, and M. Russell,
“Deep-learned Top Tagging with a Lorentz Layer”,
SciPost Phys. 5 (2018), no. 3, 028,
doi:10.21468/SciPostPhys.5.3.028, arXiv:1707.08966.

[8] CMS Collaboration Collaboration, “New Developments
for Jet Substructure Reconstruction in CMS”,.

[9] ATLAS Collaboration, “Performance of top-quark and
W-boson tagging with ATLAS in Run 2 of the LHC”,
The European Physical Journal C 79 (Apr, 2019)
doi:10.1140/epjc/s10052-019-6847-8.

[10] CMS Collaboration, “Identification of heavy, energetic,
hadronically decaying particles using machine-learning
techniques”, JINST 15 (2020), no. 06, P06005,
doi:10.1088/1748-0221/15/06/P06005,
arXiv:2004.08262.

[11] CMS Collaboration, “CMS Physics: Technical Design
Report Volume 1: Detector Performance and Software”.
Technical Design Report CMS. CERN, Geneva, 2006.

[12] M. Andrews, M. Paulini, S. Gleyzer, and B. Poczos,
“End-to-End Physics Event Classification with CMS
Open Data: Applying Image-Based Deep Learning to
Detector Data for the Direct Classification of Collision
Events at the LHC”, 2018.

[13] M. Andrews et al., “End-to-end jet classification of
quarks and gluons with the CMS Open Data”, Nuclear
Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and
Associated Equipment 977 (Oct, 2020) 164304,
doi:10.1016/j.nima.2020.164304.

[14] CERN, “CERN OpenData portal”, (2019).
[15] CMS Collaboration, “CMS data preservation, re-use

and open access policy”, 2014.
doi:10.7483/opendata.cms.udbf.jkr9.

[16] CMS Collaboration, “Tracker-hit-enriched
TTJets HadronicMGDecays 8TeV-madgraph”, 2019.
doi:10.7483/OPENDATA.CMS.OPKY.OJMJ.

[17] J. Alwall et al., “The automated computation of
tree-level and next-to-leading order differential cross
sections, and their matching to parton shower
simulations”, Journal of High Energy Physics 2014
(Jul, 2014) doi:10.1007/jhep07(2014)079.

[18] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4
physics and manual”, Journal of High Energy Physics
2006 (May, 2006) 026–026,
doi:10.1088/1126-6708/2006/05/026.

[19] CMS Collaboration, “Tracker-hit-enriched 300 to 600
bin of
QCD Pt-15to3000 TuneZ2star Flat 8TeV pythia6”,
2019. doi:10.7483/OPENDATA.CMS.HUED.7R3E.

[20] CMS Collaboration, “Tracker-hit-enriched 400 to 600
bin of

QCD Pt-15to3000 TuneZ2star Flat 8TeV pythia6”,
2019. doi:10.7483/OPENDATA.CMS.YWDZ.KSLK.

[21] CMS Collaboration, “Tracker-hit-enriched 600 to 3000
bin of
QCD Pt-15to3000 TuneZ2star Flat 8TeV pythia6”,
2019. doi:10.7483/OPENDATA.CMS.CWTT.8Q3E.

[22] CMS Collaboration, “CMS Software Version 5 3 32
(CMSSW 5 3 32)”, 2016.
doi:10.7483/OPENDATA.CMS.WYJG.FYK9.

[23] E. Usai et al., “Samples with full event information
including tracker hits for tracking, ML, and top quark
tagging studies”, 2019.
doi:10.7483/OPENDATA.CMS.CHC3.5KPG.

[24] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-ktjet
clustering algorithm”, Journal of High Energy Physics
2008 (Apr, 2008) 063–063,
doi:10.1088/1126-6708/2008/04/063.

[25] CMS Collaboration, “The CMS magnet project:
Technical Design Report”. Technical Design Report
CMS. CERN, Geneva, 1997.

[26] CMS CollaborationV. Karimäki, et al., “The CMS
tracker system project: Technical Design Report”.
Technical Design Report CMS. CERN, Geneva, 1997.

[27] CMS Collaboration, “The CMS electromagnetic
calorimeter project: Technical Design Report”.
Technical Design Report CMS. CERN, Geneva, 1997.

[28] CMS Collaboration, “The CMS hadron calorimeter
project: Technical Design Report”. Technical Design
Report CMS. CERN, Geneva, 1997.

[29] CMS Collaboration, J. G. Layter, “The CMS muon
project: Technical Design Report”. Technical Design
Report CMS. CERN, Geneva, 1997.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition”, 2015.

[31] D. P. Kingma and J. Ba, “Adam: A Method for
Stochastic Optimization”, 2014.

[32] M. Abadi et al., “TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems”, 2015. Software
available from tensorflow.org.

[33] A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler,
“Soft Drop”, JHEP 05 (2014) 146,
doi:10.1007/JHEP05(2014)146, arXiv:1402.2657.

[34] J. Thaler and K. Van Tilburg, “Identifying boosted
objects with N-subjettiness”, Journal of High Energy
Physics 2011 (Mar, 2011)
doi:10.1007/jhep03(2011)015.

[35] A. Sirunyan et al., “Identification of heavy-flavour jets
with the CMS detector in pp collisions at 13 TeV”,
Journal of Instrumentation 13 (May, 2018)
P05011–P05011, doi:10.1088/1748-0221/13/05/p05011.

[36] C. Weiser, “A Combined Secondary Vertex Based
B-Tagging Algorithm in CMS”, Technical Report
CMS-NOTE-2006-014, CERN, Geneva, Jan, 2006.

[37] CMS Collaboration, “Boosted Top Jet Tagging at
CMS”, 2014.

[38] “NVIDIA Tesla P100: The Most Advanced Data Center
Accelerator”. Accessed: 28 August 2020.

[39] “Western Digital DC HA210 Datasheet, 3.5 Inch Data
Center Hard Drives”. Accessed: 30 August 2020.

[40] “Intel® Xeon® Silver 4110 Processor (11M Cache,
2.10 GHz) Product Specifications”. Accessed: 16
September 2020.

[41] “NVIDIA V100 | NVIDIA”. Accessed: 16 September
2020.

http://cds.cern.ch/record/2295725
http://cds.cern.ch/record/2295725
http://dx.doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.21468/SciPostPhys.7.1.014
http://www.arXiv.org/abs/1902.09914
http://dx.doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1007/JHEP05(2017)006
http://www.arXiv.org/abs/1701.08784
http://dx.doi.org/10.1007/jhep01(2019)121
https://doi.org/10.1007/jhep01(2019)121
http://dx.doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.21468/SciPostPhys.5.3.028
http://www.arXiv.org/abs/1707.08966
https://cds.cern.ch/record/2275226
https://cds.cern.ch/record/2275226
http://dx.doi.org/10.1140/epjc/s10052-019-6847-8
https://doi.org/10.1140/epjc/s10052-019-6847-8
http://dx.doi.org/10.1088/1748-0221/15/06/P06005
https://doi.org/10.1088/1748-0221/15/06/P06005
http://www.arXiv.org/abs/2004.08262
http://dx.doi.org/10.1016/j.nima.2020.164304
https://doi.org/10.1016/j.nima.2020.164304
http://opendata.cern.ch
http://dx.doi.org/10.7483/opendata.cms.udbf.jkr9
https://doi.org/10.7483/opendata.cms.udbf.jkr9
http://dx.doi.org/10.7483/OPENDATA.CMS.OPKY.OJMJ
https://doi.org/10.7483/OPENDATA.CMS.OPKY.OJMJ
http://dx.doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007/jhep07(2014)079
http://dx.doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.7483/OPENDATA.CMS.HUED.7R3E
https://doi.org/10.7483/OPENDATA.CMS.HUED.7R3E
http://dx.doi.org/10.7483/OPENDATA.CMS.YWDZ.KSLK
https://doi.org/10.7483/OPENDATA.CMS.YWDZ.KSLK
http://dx.doi.org/10.7483/OPENDATA.CMS.CWTT.8Q3E
https://doi.org/10.7483/OPENDATA.CMS.CWTT.8Q3E
http://dx.doi.org/10.7483/OPENDATA.CMS.WYJG.FYK9
https://doi.org/10.7483/OPENDATA.CMS.WYJG.FYK9
http://dx.doi.org/10.7483/OPENDATA.CMS.CHC3.5KPG
https://doi.org/10.7483/OPENDATA.CMS.CHC3.5KPG
http://dx.doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
http://tensorflow.org/
http://tensorflow.org/
http://dx.doi.org/10.1007/JHEP05(2014)146
https://doi.org/10.1007/JHEP05(2014)146
http://www.arXiv.org/abs/1402.2657
http://dx.doi.org/10.1007/jhep03(2011)015
https://doi.org/10.1007/jhep03(2011)015
http://dx.doi.org/10.1088/1748-0221/13/05/p05011
https://doi.org/10.1088/1748-0221/13/05/p05011
http://cds.cern.ch/record/927399
http://cds.cern.ch/record/927399
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/data-center-drives/ultrastar-dc-ha200-series/data-sheet-ultrastar-dc-ha210.pdf
https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/data-center-drives/ultrastar-dc-ha200-series/data-sheet-ultrastar-dc-ha210.pdf
https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123547/intel-xeon-silver-4110-processor-11m-cache-2-10-ghz.html
https://www.nvidia.com/en-us/data-center/v100/

9

[42] “Intel® Xeon® Gold 5118 Processor (16.5M Cache,
2.30 GHz) Product Specifications”. Accessed: 16
September 2020.

[43] “NVIDIA DGX-1: Deep Learning Server for AI
Research”. Accessed: 16 September 2020.

[44] A. Sergeev and M. D. Balso, “Horovod: fast and easy
distributed deep learning in TensorFlow”, 2018.

[45] “Cloud Tensor Processing Units (TPUs)”,
https://cloud.google.com/tpu/docs/tpus. Accessed:
30 August 2020.

[46] N. P. Jouppi et al., “In-Datacenter Performance
Analysis of a Tensor Processing Unit”,
arXiv:1704.04760.

[47] “Google Cloud Computing Services”,
https://cloud.google.com/. Accessed: 30 August

2020.
[48] “BFloat16: The secret to high performance on Cloud

TPUs | Google Cloud Blog”. Accessed: 18 September
2020.

[49] “Storage classes — Google Cloud”,
https://cloud.google.com/compute/docs/disks.
Accessed: 29 September 2020.

[50] S.-W. Lee, B. Moon, and C. Park, “Advances in Flash
Memory SSD Technology for Enterprise Database
Applications”, in Proceedings of the 2009 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’09, p. 863–870. Association for
Computing Machinery, New York, NY, USA, 2009.
doi:10.1145/1559845.1559937.

https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold-5118-processor-16-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold-5118-processor-16-5m-cache-2-30-ghz.html
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://cloud.google.com/tpu/docs/tpus
http://www.arXiv.org/abs/1704.04760
https://cloud.google.com/
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/compute/docs/disks
http://dx.doi.org/10.1145/1559845.1559937
https://doi.org/10.1145/1559845.1559937

	End-to-End Jet Classification of Boosted Top Quarks with the CMS Open Data
	Abstract
	I Introduction
	II Open Data Simulated Samples
	III CMS Detector, Images, and Network Training
	IV Jet Identification Results
	V Interpretation and Discussion
	VI Conclusions
	 Acknowledgments
	A Timing Performance Comparison
	1 Architectures and I/O Pipeline
	2 GPU Scaling Performance
	3 Computing Architecture Comparison
	4 Timing Conclusion

	 References

