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Abstract— In recent years, traffic flow prediction has attracted
more and more interest from both academia and industry
since such information can provide effective guidance for traffic
management or driving planning and enhance traffic safety
and efficiency. But due to the complicated spatial-temporal
dependence in actual roads and the limitation of intersection
monitoring equipment, there are still many challenges in spatial-
temporal traffic flow prediction. In this paper, we propose a novel
hierarchical traffic flow prediction protocol based on spatial-
temporal graph convolutional network (ST-GCN), which incor-
porates both spatial and temporal dependence of intersection
traffic to achieve a more accurate traffic flow prediction. Different
from existing works, our proposed protocol with the Adjacent-
Similar algorithm can also effectively predict the traffic flow of
the intersections without historical data. Experiments based on
practical traffic data of the city of Qingdao, China demonstrate
that our proposed ST-GCN-based traffic flow prediction protocol
outperforms the state-of-the-art baseline models. Moreover, as for
the intersections without historical data, we can also obtain a
good prediction accuracy.

Index Terms— Graph convolutional network, intersection with-
out historical data, spatial-temporal dependence, traffic flow
prediction.

I. INTRODUCTION

W ITH the development of urbanization and vehicular
technology, the number of urban vehicles is rapidly

increasing in recent years. Traffic congestion has then become
a big issue in daily urban transportation. Traffic forecasting,
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Fig. 1. Example of intersection map.

as an efficient means for transportation planning, traffic man-
agement, and traffic control, has attracted more and more
interest from both academia and industry [1]. Accurate traffic
flow prediction can provide effective guidance for traffic
management or driving planning, and enhance the traffic safety
and efficiency in Intelligent Transportation Systems (ITS) [2].
However, due to the complex spatial-temporal dependency

in actual roads and the limitation of monitoring equipments,
there are still many challenges in spatial-temporal traffic flow
prediction.
In terms of spatial dependence, the topology of the city

determines the interdependence among intersections. The traf-
fic flow output at the upstream intersection directly affects the
traffic input at the downstream intersection, and the traffic flow
at the downstream intersection also feeds back to the upstream
intersection. As shown in Fig. 1, the vehicles at the intersection
A flow in four directions, respectively into the four adjacent
intersections, while there are also vehicles in the corresponding
four directions that merge into the intersection A. Therefore,
the flow at the intersection A is closely related to the traffic at
the intersections B, C, D, and E. Due to the mutual influence
among intersections, they share similar traffic flow trends.
In terms of temporal dependence, the traffic flow changes

dynamically with time, mainly as periodicity. For example,
there may be a certain pattern in the flow of some specific
time periods. The flow statistics of the two intersections on
8:00 am from September 1st to September 20th are illustrated
in the Fig. 2. It can be seen that the overall trend of the
20-days traffic at the two intersections is similar. There may
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Fig. 2. Traffic flow at two intersections from 8:00 am on September 1 to 20.

be a time-dependent relationship between the traffic flow of
current period and that of some previous periods.
In terms of intersection data, due to complicated geographic

location and limited monitoring equipments, some intersec-
tions often fail to obtain historical traffic data. It is usually
difficult to predict the flow data of no-data intersections.
Although many current works have contributed to traffic

flow forecasting problems, there are still many challenges in
spatial-temporal traffic flow prediction due to the complicated
spatial-temporal dependence in actual roads and the limitation
of intersection monitoring equipments. Therefore, in this
paper, we propose a novel hierarchical traffic flow prediction
protocol based on Spatial-Temporal Graph Convolutional Net-
work (ST-GCN), which incorporates both spatial and temporal
dependence of traffic flow to achieve a more accurate traffic
flow prediction model. Moreover, our proposed protocol with
the Adjacent-Similar algorithm can also effectively predict
the traffic flow of the intersections without historical data,
which has not been investigated in the literature. The main
contributions of the paper can be summarized as follows:

• Different from existing works, we focus on a more
challenging but practical traffic flow prediction scenario,
which includes both the urban intersections with and
without historical data. To the best knowledge of the
authors, this is the first attempt to deal with the traffic
flow prediction issue of intersections without historical
data.

• In order to achieve effective traffic flow prediction
for both intersections with and without historical data,
we propose a novel ST-GCN-based hierarchical protocol
for traffic flow prediction. The designed ST-GCN model
is used to predict traffic flow of intersections with
historical data, which exploits GCN to extract spatial
dependence and GRU to extract temporal dependence.
Moreover, we further provide an Adjacent-Similar algo-
rithm to predict the intersections without historical data
through their spatial-temporal correlations with the ones
with historical data.

• We conduct various experiments based on practical traffic
data of the city of Qingdao, China. The results have
demonstrated that our proposed ST-GCN-based traffic
flow prediction protocol outperforms the state-of-the-art
baseline models. Moreover, as for the intersections with-
out historical data, we can also obtain a good prediction

accuracy. Our dataset and tensorflow implementation of
ST-GCN are available at https://github.com/Wautumn/ST-
GCN.

II. RELATED WORKS

Traffic flow prediction is an important topic in ITS and
many achievements have been made in the literature. The
methods of traffic flow prediction can be mainly divided into
two categories: parametric models and non-parametric models.
The parametric models presuppose the regression function

and simplify problem to a known function form. The main
methods include Autoregressive Integrated Moving Average
(ARIMA), Kalman filter, and so on. The ARIMA model
needs stationary time series data and it can only capture
linear relationship. In [3], the authors used different time-
oriented temporal data to predict the traffic flow by the
ARIMA model. The Kalman filter model predicts future traffic
conditions based on the traffic state of the previous and current
moments [4]. In [5], Gong et al. analyzed the influence factors
of traffic volume based on grey entropy and selected the main
influencing factors to establish the prediction model based on
Kalman filter. These models are simple and fast, but they
cannot take the spatial features of the road networks into
consideration.
The non-parametric models are able to learn any function

form freely from training data without strong assumptions, and
thus they can fit most of the function forms and automatically
learn statistical rules from traffic data. The main models
include K-Nearest Neighbor (KNN), Support Vector Machine
(SVM), and so on. In [6], the authors proposed a three-stage
framework based on KNN. This structure use information of
related stations by introducing the distance metric. The main
function of SVM is to get the optimal separating hyperplane
such that the margin between the training data is maximum [7].
In [8], a model to predict the short-time traffic flow volume
by the introduction of SVM with a time-dependent structure
was proposed.
The development of neural networks provides a better

solution for traffic flow forecasting. These models can achieve
more complicated data modeling and higher prediction accu-
racy. In [9], traffic flows among adjacent road links in a
transportation network were modeled as a Bayesian network.
The joint probability distribution between the cause nodes
(data utilized for forecasting) and the effect node (data to be
forecasted) in a constructed Bayesian network was described
as a Gaussian Mixture Model (GMM). Huang et al. [10]
proposed a network architecture consisting of a Deep Belief
Network (DBN) and verified that the network can cap-
ture random features from traffic data on multiple datasets.
In [11], a deep-learning-based traffic flow prediction method
was proposed, which considered the spatial and temporal
correlations inherently. A stacked autoencoder model was
used to learn generic traffic flow features. Long Short-Term
Memory (LSTM) network is a deep learning approach which
is capable of learning long-term dependencies [12]. Poonia
et al. [13] applied the LSTM for momentary traffic stream
forecast. In [14], a traffic forecast model based on LSTM net-
work was proposed. The proposed LSTM network considered
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temporal-spatial correlation in the traffic system via a two-
dimensional network which was composed of many memory
units. Gated Recurrent Unit (GRU) is a variant of LSTM. GRU
has only two gates: update gate and reset gate [15]. In [16],
the authors combined the spatio-temporal analysis with GRU.
In this model, time correlation analysis and spatial correlation
analysis were performed on the collected traffic flow data,
and the GRU was used to process the spatio-temporal feature
information.
However, these networks are not well-performing in dealing

with spatial dependence. Instead, Convolutional Neural Net-
work (CNN) can deal with spatial dependence better. In [17],
a ST-ResNet model to collectively forecast the inflow and
outflow of crowds in each and every region of a city was
proposed. This model employs the residual neural network
framework to model the temporal closeness, period, and trend
properties of crowd traffic and residual convolutional units to
model the spatial properties of crowd traffic. In [18], the
authors proposed a multitask deep-learning framework that can
simultaneously predict the node flow and edge flow throughout
a spatio-temporal network. In [19], the authors applied 3D
CNNs to learn the spatio-temporal correlation features jointly
from low-level to high-level layers for traffic data and designed
an end-to-end structure, named as MST3D by multiple 3D
CNNs.
Considering the superiority of CNN in dealing with the

spatial dependence and the superiority of LSTM in dealing
with the temporal dependence, recent studies combined these
two models to exploit the spatial-temporal dependence of
urban traffic for prediction. In [20], the authors proposed an
end-to-end framework called DeepTransport, in which CNN
and LSTM are utilized to obtain spatial-temporal traffic infor-
mation within a transport network topology and an attention
mechanism is introduced to align spatial and temporal infor-
mation. Yao et.al [21] proposed a Spatial-Temporal Dynamic
Network (STDN), in which a flow gating mechanism is
introduced to learn the dynamic similarity between locations,
and a periodically shifted attention mechanism is designed to
handle long-term periodic temporal shifting.
Despite CNN makes great progress in traffic prediction

tasks, CNN is essentially applicable to Euclidean spaces such
as images and regular grids, and has certain limitations for
complex topological traffic networks. In recent years, Graph
Convolutional Network (GCN) has been proposed based on
CNN, which solves the problem of non-Euclidean structure
through the adjacency matrix among nodes [22]. GCN can
learn node feature information and structure information at
the same time, and it is extremely suitable for structure of
any topology. In the prediction of urban traffic using GCN,
the intersections are regarded as vertices in the graph, and
the roads between the intersections are represented by the
edges. Through the graph convolution operation, the spatial
dependence between the intersections is obtained. In [23],
Yu et.al. proposed a deep learning framework, i.e., Spatio-
Temporal Graph Convolutional Networks (STGCN), to tackle
the time series prediction problem in traffic domain. The
authors formulated the problem on graphs. In [24], the
authors proposed a Attention based Spatial-Temporal Graph

Fig. 3. Intersection distribution map.

Convolutional Network (ASTGCN) model, which can process
the traffic data directly on the original graph-based traffic
network and effectively capture the dynamic spatial-temporal
features. In [25], the authors enhanced the traditional GCN
with node adaptive parameter learning and data-adaptive graph
generation modules and proposed the Adaptive Graph Convo-
lutional Recurrent Network (AGCRN), which can learn node-
specific patterns and is applicable to separate traffic series
sources.
Inspired by GCN, in this paper, we propose a novel spatial-

temporal traffic flow prediction protocol based on GCN, which
incorporates both spatial and temporal dependence of intersec-
tion traffic to achieve a more accurate traffic flow prediction.
Moreover, our proposed protocol with the Adjacent-Similar
algorithm can also effectively predict the traffic flow of
the intersections without historical data, which has not been
investigated in the literature.

III. PRELIMINARIES

A. Problem Formulation

In this paper, the objective of our investigation is to predict
the future traffic flow of urban intersections in a generalized
and practical scenario that some of the intersections have
historical traffic flow data while others do not. As shown in
Fig. 3, circle points represent intersections with historical data,
and triangle points represent intersections without historical
data. In our assumption, there is no certain distribution pattern
among circle and triangle points in our investigated scenario.
The relevant definition involved in the problem scenario

is explained. The feature matrix X ∈ R
T ∗N∗P represents the

traffic flow matrix at time T , where N represents the number
of intersections and P denotes the number of intersection
features.

B. Spatial-Temporal Dependence Modeling

In order to effectively exploit both spatial and tempo-
ral information for traffic flow prediction of intersections,
we employ an efficient spatial-temporal dependence model to
explore the spatial and temporal correlations from the road
topology and the limited historical traffic data. It mainly
includes spatial dependence modeling, temporal dependence
modeling, and other influencing factors modeling.
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Fig. 4. Graph convolution to obtain first-order neighborhood information of
central node.

1) Spatial Dependence Modeling: CNN is often used to
deal with spatial dependence problems, but it can only process
data of Euclidean structure. However the actual structure of the
city is non-Euclidean, and thus we exploit GCN to model the
spatial dependence of the topology of intersections.
The objective of GCN is to extract the spatial features

of irregular topological graphs. At present, there are two
mainstream implementation methods: spatial domain method
and spectrum domain method. These two methods understand
graphs from two different perspectives.
The spatial domain method extracts the spatial features by

finding the neighboring points of each vertex and extracting
the neighbor node features [27]. However, each node has a
different number of neighbors, and the calculation must target
each node. Hence this method is suitable for situations with a
simple graph structure and few nodes.
The spectrum domain method uses graph theory to realize

the convolution on graphs and utilizes the eigenvalues and
eigenvectors of the Laplacian matrix of graphs to study the
properties of graphs [28]. We implement the graph convolution
from the perspective of the spectrum domain.
The propagation rules of each convolutional layer are as

follows:
H (l+1) = σ(˜D−1/2

˜A˜D−1/2H (l)W (l)) (1)

where σ represents the activation function, W (l) represents the
parameter matrix of layer l, ˜A is A + IN , A is the adjacency
matrix of the undirected graph G, IN is the identity matrix,
and ˜D is the degree matrix of ˜A.
By multiplying the adjacency matrix A and the feature

matrix H (l) of layer l, each layer of GCN obtains the summary
of the neighboring features of each vertex. Then a matrix
H (l+1) that aggregates the features of adjacent vertices can
be obtained by multiplying a parameter matrix W (l). We add
an identity matrix IN to the adjacency matrix A, that is ˜A,
therefore the feature information of each node is retained.
The normalization of the adjacency matrix is to maintain the
original distribution of features when multiplying with the
feature matrix. Therefore, we multiply the adjacency matrix
by ˜D−1 and obtain a symmetric and normalized adjacency
matrix: ˜D−1/2

˜A˜D−1/2.
As shown in Fig. 1, one-layer graph convolution operation

can obtain the spatial information of its own node and the
first-order neighborhood for the center point.

Fig. 5. Temporal dependence feature.

Therefore, the propagation rule of a two-layer GCN can be
expressed as:

f (X, A) = σ( ÂRelu( ÂXW0)W1) (2)

where Â = ˜D−1/2
˜A˜D−1/2, X is the feature matrix of the

traffic flow, X ∈ R
T ∗N∗P , and W0 and W1 represent the weight

matrices of the first layer and second one in GCN, respectively.
2) Temporal Dependence Modeling: According to the peri-

odicity of historical traffic, we extract three characteristic
periods of the flow time period. The time intervals are lc, lt , l p ,
and the corresponding time spans are sc, st , sp , respectively.

Thus, the temporal dependence of traffic flow data is
reflected in Fig. 5. For example, we suppose lc is five minutes,
lt is one day, and l p is one week. Then the traffic flow at time
t is periodically correlated with the traffic flow of the previous
sc five minutes, the previous st day, and the previous sp week.
Therefore, the temporal-dependent flow characteristics of

time t are:
{[Xt−lc , Xt−2∗lc , . . . , Xt−sc∗lc ],

[Xt−lt , Xt−2∗lt , . . . , Xt−st∗lt ],
[Xt−l p , Xt−2∗l p , . . . , Xt−sp∗l p ]} (3)

where Xt ∈ R
N∗P represents the traffic feature matrix at time

t . lc, lt and l p are the time intervals of three periodicity, and
sc, st and sp are the corresponding time periods.
Moreover, we use GRU to capture the dependence of the

large time step distance. It controls the information flow
through gates that can be learned. GRU introduces the reset
gate and update gate, which can modify the calculation method
of hidden state in Recurrent Neural Network (RNN). For
the historical traffic data in three time periods, we establish
three corresponding GRU models to learn the temporal traffic
information of different periods.
3) Extra Influencing Factors Modeling: In addition to

spatial-temporal dependence, traffic flow is also affected by
weather conditions, holidays, and other factors. Therefore,
extra influencing factors are also added to the provided
network. The daily weather is coded according to the average
temperature of the day and the weather conditions, and the
date is coded according to holiday information.

C. Intersection Without Historical Data

Different from existing works on traffic flow prediction
that merely investigated the intersections with historical data,
in our work, we consider a more general traffic flow prediction
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Fig. 6. Intersection without historical data.

scenario that includes the intersections both with and without
historical data, and exploit the topology and similarity infor-
mation of the road network to achieve effective traffic flow
prediction of intersections without historical data. According
to the situation of adjacent intersections, the intersections
without historical data can be divided into the following two
categories:
1) Lucky-Neighbor Intersections: As shown in the left side

of Fig. 6, circle points are intersections with historical data,
and triangle points are intersections without historical data.
In some directions of a Lucky-Neighbor intersection, there
are adjacent intersections with historical data.
2) Isolated Intersections: As shown in the right side of

Fig. 6, for an Isolated intersection, there is no adjacent
intersection with historical data in any direction of it.

IV. HIERARCHICAL TRAFFIC FLOW PREDICTION

PROTOCOL

A. Hierarchical Traffic Flow Prediction Architecture

To achieve effective traffic prediction for both intersections
with and without historical data, we propose a hierarchical
prediction architecture as shown in Fig. 7. First, we construct
the ST-GCN model to predict future flow of intersections with
historical data. Then, we design an Adjacent-Similar algorithm
to predict the future traffic of intersections without historical
data.

B. Design of the ST-GCN Network

1) ST-GCN Cell: As shown in Fig. 8(a), we first use graph
convolution to obtain the spatial dependence, and then update
the current state according to the GRU to obtain the new state
and output.
2) GRU Network: Taking the time interval of sc as

an example, the time series are (Xt−sc∗lc , Xt−(sc−1)∗lc ,
Xt−(sc−2)∗lc , . . . , Xt−lc). Then put this sequence data into
GCN model with GCN Cell as the unit in chronological
order, and the time dependence relationship with sc is finally
obtained.
3) ST-GCN Network: The complete structure of ST-GCN

is shown in Fig. 8(b). The input data are a time series of
three periodic features and extra influencing factors features.
The structure of three periodic features has been introduced in
the GRU network. In our proposed model, extra influencing
factors include weather and holidays factors. For weather
factors, considering both the weather conditions and the tem-
perature, we categorize every-hour weather into four weather

conditions, that is sunny, cloudy, rainy, and foggy, which
correspond to weather codes 0 to 3, respectively. Moreover,
we count the temperature value per hour. For holiday factors,
we label every day holiday or not. Holiday factors mainly
consider the influence of working days and holidays, where
the working day feature corresponds to 0, and the holiday
feature corresponds to 1. Hence, for each moment, we can
obtain the characteristics of extra influencing factors and put
them into the network after standardization.
We construct three GRU networks with the same structure

and get the sum of these models. Then, we add the obtained
results and other influencing factors. Finally, we get the output
through the activation function.

C. Adjacent-Similar Algorithm

We further propose an Adjacent-Similar algorithm including
the Adjacent algorithm and the Similar algorithm to predict
the traffic flow of intersections without historical data based
on the traffic flow of intersections with historical data from
the ST-GCN model.
1) Adjacent Algorithm: After the traffic prediction of inter-

sections with historical data, we propose an Adjacent algo-
rithm to predict the traffic of Lucky-Neighbor intersections.
For Lucky-Neighbor intersections, we use urban taxi tra-

jectory data as auxiliary data. As shown in Fig. 9, there are
adjacent intersections with historical data in the north, south,
and west directions of intersection A, and there is no adjacent
intersection in the east direction.
Firstly, we meature the distance cross intersections by

auxiliary data. The time required for vehicles of intersections
B,C and D arrive at intersection A can be estimated from the
urban taxi trajectory. Therefore, we can calculate a part of the
flow at the intersection A. We use f t,dirloa to indicate the flow
of intersection loa in the direction of dir at time t . Among
them, the directional flow at the intersection is the total flow
divided equally by the number of branches. Assuming that the
number of branches at the intersection is m, taking the north
direction as an example, the directional flow is:

f t,northloa = f t,allloa ∗ 1

m
. (4)

Therefore, a part of the flow at the intersection A can be
calculated as follows:

f1
t
A = f t−�t1,north

D + f t−�t2,east
C + f t−�t3,south

B . (5)

We can find that there is an intersection in the east of the
intersection A. However, due to the lack of data, we cannot
obtain the flow data of the adjacent intersection in this
direction. Therefore, we need to compensate the total flow.
We make the average distribution of the flow in (5), assuming
that there are m branches in the actual center intersection.
When f1tA calculates n branches, the total flow f tA can be
expressed as:

f tA = f1
t
A ∗ m

n
. (6)

Hence, as shown in Fig. 9 step 3, the yellow arrow
represents the compensation flow, and thus we can estimate
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Fig. 7. Hierarchical traffic flow prediction protocol architecture.

Fig. 8. ST-GCN network.

Fig. 9. Adjacent algorithm for Lucky-Neighbor intersections.

the flow of the intersection A by the flow of the adjacent
intersection with historical data.
After the calculation of Lucky-Neighbor intersections, the

attributes of these intersections can be updated as intersections
with historical data. Therefore, some Isolated intersections can
be transformed to Lucky-Neighbor intersections. As shown
in Fig 10, the intersection A originally belonged to Iso-
lated intersections. However, since the traffic calculation of
the intersection B and intersection C have been completed,
the intersection A has transformed to a Lucky-Neighbor
intersection. Thus, we can calculate the traffic flow of the
intersection A using the above algorithm for Lucky-Neighbor
intersections.

Fig. 10. Adjacent algorithm for isolated intersections.

2) Similar Algorithm: However, there is a special case of
the Isolated intersections, that is, after processing all existing
Lucky-Neighbor intersections, some Isolated intersections still
have no adjacent intersections. We cannot utilize the Adjacent
algorithm for Lucky-Neighbor intersections to calculate their
traffic flow. Therefore, we propose to predict their traffic by
exploring their similar intersections according to the topolog-
ical structure and location factors.
In urban intersections, some intersections may share similar

traffic flow tendency. For example, most of the flow changes
in the business center area of the city are similar. People flow
from the living area into the central area during the morning
rush hour, and return to the living area from the central area
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during the evening rush hour. Another example is that the
traffic flow in the commercial area is mostly from afternoon
to evening, with less traffic during the day.
Therefore, since there is no historical data for this type

of intersection, we try to find their similar intersections. The
future traffic at these Isolated intersections can be similarly
predicted by the future traffic at the similar intersection.
We take taxi trajectory data as a small sample of urban

traffic. Based on the urban taxi data, calculate the taxi traffic at
each intersection in the past, and then compare the difference
between taxi traffic of intersections without historical data
and taxi traffic of intersections with historical data. The
intersection with the smallest difference is selected as the most
similar intersection. Hence, the traffic flow of these Isolated
intersection can be replaced by their similar intersection.
3) Adjacent-Similar Algorithm: We combine the proposed

Adjacent algorithm and the Similar algorithm to obtain the
Adjacent-Similar algorithm. For intersection without historical
data, we first judge whether it is a Lucky-Neighbor inter-
section. If it is a Lucky-Neighbor intersection, we calculate
its future traffic flow based on the traffic of its adjacent
intersections, and update its attributes. If it is not a Lucky-
Neighbor intersection, we wait until the calculation of all the
Lucky-Neighbor intersections has been finished.
After processing all Lucky-Neighbor intersections,

we judge the attributes of remaining intersections again.
At this time, the attributes of some Isolated intersections may
change to the Lucky-Neighbor intersections. Thus we can
still calculate their traffic flow through the Adjacent algorithm
based on the traffic volume of their adjacent intersections.
We repeat the above iterations until no Isolated intersection
can be converted into a Lucky-Neighbor intersection.
For the remaining Isolated intersections, we cannot use the

Adjacent algorithm to predict their traffic flow. Therefore we
look for their similar intersections among the intersections
with historical data through the Similar algorithm, and employ
the traffic flow of similar intersections as their future traffic.

V. EXPERIMENTS AND ANALYSIS

A. Data Sets

In this section, we evaluate the performance of the hierar-
chical traffic flow prediction protocol by conducting various
experiments based on real traffic data. We use the traffic data
from Qingdao, China for specific prediction experiments.
The data sets mainly include two parts:
• Traffic information of intersections. The data descributes
the vehicle passing information of 100 intersections in
Qingdao, China from September 1st to September 20th
including the intersection ID, vehicle ID, timestamp, and
so on.

• Taxi trajectory information. The data descributes the
Global Positioning System (GPS) information of some
taxis from September 1st to 20th, including the latitude,
longitude, vehicle ID, timestamp, and so on.

The forecast target is the traffic volume of all intersections,
including 100 intersection with historical data and 35 inter-
section without historical data from September 21st to 24th.

Fig. 11. Map intersection projection (Qingdao, China).

The distribution of these intersections are shown in Fig. 11.
We can find that there is no certain distribution pattern between
intersections with historical data and intersections without
historical data in our investigated scenario.

B. Data Preprocessing

The traffic flow passing by every intersection every five
minutes from 7:00 am to 19:00 pm is counted as the traffic
information of the intersection. We construct the adjacency
matrix for the 100 intersections. According to the urban
network structure, if the intersection i is adjacent to the
intersection j , the Aij of the adjacency matrix is 1, otherwise
the Aij = 0.

So the experimental data mainly includes a 100*100 urban
adjacency matrix composed of the neighboring relations of
100 intersections, and the daily five-minute traffic data of each
intersection. We divide the training set, validation set and test
set in a ratio of 6:2:2.

C. Evaluation Metrics

In order to evaluate the accuracy of the model, we use
the Root Mean Square Error (RMSE) and the Mean Absolute
Error (MAE) to evaluate the result.
The smaller the RMSE and MAE values are, the better

prediction result is.

D. Model Parameters

1) Training Parameters: The basic parameters of the model
mainly include learning rate, batch size, training epoch, and
so on. In this experiment, the learning rate is 0.001, the batch
size is 32, and the training epoch is 2000. We use the Adam
optimizer for training.
2) GCN Parameters: The number of hidden units has a

great effect on the model. In order to find the best parameter
results, we do experiments on different parameter selections on
the validation set. Fig. 12 show the experiment results. It can
be seen that the best number of hidden layer units is 32.
3) Time Periodic Parameters: According to equ. 5, we pre-

suppose lc is five minutes, lt is one day, l p is one week. When
sc = 5, st = 3, sp = 1, the error is the smallest.
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Fig. 12. The relationship between the number of hidden units and RMSE
and MAE.

TABLE I

EXPERIMENTS ON EXTRA INFLUENCING FACTORS

4) Extra Influencing Factors: We compare the results of
the model with and without extra influencing factors on the
validation set. As illustrated in Table I, the addition of weather
and holiday features has a good effect on the improvement of
the model performance.

E. Experimental Results

1) Intersections With Historical Data: We compare our
proposed ST-GCN model with the ARIMA, GRU, GCN, CNN,
LSTM, ST-ResNet, STGCN, ASTGCN models.

• ARIMA [3]: This model uses time-oriented temporal data
to explore the linear relationship among traffic flow.

• GRU: In the GRU model, we only consider the temporal
dependence of the model. A unified GRU model is
established for all intersections to excavate the peri-
odic dependence contained in the historical flow data.
We choose the same periodic length as the ST-GCN
model.

• GCN: In the GCN model, we only consider the spatial
dependence of the model. Without considering the long-
term and short-term time dependence of traffic flow,
it only uses the traffic flow of all intersections at the
previous time to predict the traffic flow of all intersections
at the next time.

• CNN: We use a two-layer CNN to replace the graph
convolution in the ST-GCN model. The CNN structure is
Conv2d-Pooling-Conv2d-Pooling-FC-Activation. Conv2d
is the convolution layer, Pooling is the max-pooling
layer, FC is the fully connected layer, and Activation is
the activation layer. This model is consistent with the
ST-GCN model in temporal dependence.

• LSTM: We use LSTM instead of the GRU module in
the ST-GCN model. In LSTM, information retention is
determined by the input gate and forget gate. In terms
of spatial dependence, we still use graph convolution to
explore spatial dependence, which is consistent with the
ST-GCN model.

TABLE II

COMPARSION WITH BASELINES

• ST-ResNet [17]: This model employs convolution-based
residual networks to model nearby and distant dependen-
cies between any two regions in a city.

• STGCN [23]: The authors formulated the problem on
graphs and built the model with complete convolutional
structures.

• ASTGCN [24]: ASTGCN mainly consists of three inde-
pendent components to respectively model three temporal
properties of traffic flows and each component contains
the spatial-temporal attention mechanism.

We compare our proposed ST-GCN model with above
models. The result can be found in Table II. We conclude
that out model has the following advantages:

• High prediction precision: It can be found in Table II that
the error of the ST-GCN model is smaller than almost
most baseline models, which indicates that the prediction
precision result of the ST-GCN model is remarkable. For
example, the RMSE of ST-GCN is 22.29% less than
ARIMA, and the MAE is 35.56% less than ARIMA. This
is because the ARIMA model can’t excavate the complex
temporal and spatial dependence in traffic flow.

• Spatial-temporal dependence prediction capability: To
verify whether the ST-GCN model has the ability to
portray spatial and temporal features from traffic data,
we compare the ST-GCN model with the GRU model, the
GCN model, and other spatial-temporal models. In terms
of spatial dependence, we compare the ST-GCN model
with the GRU model. The GRU model shares the same
temporal dependence with the ST-GCN model, but it can
not capture the spatial dependence among intersections.
From Table II, we can see that compared with the GRU
model, the RMSE of ST-GCN is reduced by 25.57% and
the MAE of ST-GCN is reduced by 31.79%. The ST-
GCN model achieves better results in terms of spatial
dependence because it introduces the GCN to obtain
the spatial relationship among intersections. In terms of
temporal dependence, we compare the ST-GCN model
with the GCN model. These two models adopt the
same GCN structure for spatial dependence processing.
In terms of time dependence, the GCN model does
not consider the periodic characteristics of time series.
According to the experimental results, the RMSE of ST-
GCN is reduced by 46.44% compared to GCN and the
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TABLE III

EXPERIMENTS ON 30MIN PREDICTION

MAE is reduced by 57.40%. The ST-GCN model achieves
better results in terms of temporal dependence because it
takes into account the periodicity of the time series and
fully exploits the time dependence of the historical traffic
sequence.
We also compare our ST-GCN model with some other
spatial-temporal traffic prediction models, such as the
ST-ResNet, STGCN and ASTGCN models. Compared
with the ST-ResNet model, the RMSE and MAE of our
designed ST-GCN model are reduced by 29.83% and
34.75%, respectively. This is because as a contrast to
GCN employed in our model, CNN used in ST-ResNet
ignores the actual arrangement of intersections, so this
model is more suitable for regional traffic prediction.
Compared with the STGCN model, the RMSE and MAE
of our ST-GCN model are less than the STGCN model.
In terms of capturing temporal dependence, the GRU
model is better than convolution, and CNN is not very
sensitive to long time series. Therefore, it is better to
use GRU for mining temporal dependence. Compared
with the ASTGCN model, we can find that the RMSE
of the ASTGCN model is a little less than that of our
ST-GCN, but the ASTGCN model needs to calculate the
spatial-temporal attention matrix among intersections at
each moment, and thus it requires much more time and
space complexity that is not appropriate for our short-
term and real-time traffic prediction problems.

• The superiority of components: To verify the superiority
of the component of GCN and GRU in our ST-GCN
model, we replace the GCN in ST-GCN with a two-layer
CNN structure, and the GRU with LSTM, corresponding
to the CNN model and LSTM model in Table II. It can
be seen from the results that compared with the two-
layer CNN, the RMSE of ST-GCN is reduced by 11.94%,
and the MAE is reduced by 20.19%, which indicates that
the results of the two-layer GCN are much better than
CNN, and the effect is better in mining the dependency
relationship among non-Euclidean structure nodes. Com-
pared with LSTM, the RMSE and MAE of ST-GCN are
reduced by 27.86% and 37,21%, respectively. Moreover,
the processing speed of GRU is faster and the model
complexity is lower than LSTM. This is because GRU
combines the forget gate and the input gate of LSTM
into a single update gate, and also mixes the cell state and
hidden state. Therefore, the final model is simpler than
the standard LSTM model and can get better results.

• Long-term prediction capability: Although our problem
is mainly targeted at short-term forecasting, we also do
experiments to verify the long-term forecasting ability
of our proposed ST-GCN model. We have experimented
with ST-GCN, ST-ResNet, and ASTGCN models for

TABLE IV

NO DATA INTERSECTION ALGORITHM RESULTS

30-min traffic prediction, and the experimental results
are shown in Table III. We can see that our model
also achieves a better performance in a relatively long-
term prediction, which indicates that our method is not
sensitive to the prediction time intervals. Therefore, our
ST-GCN model can be applied not only for short-term
prediction but also for long-term prediction.

In general, compared with other traffic prediction methods,
our ST-GCN model has a smaller error and performs better
in terms of spatial-temporal dependence. Therefore, for short-
term prediction, the ST-GCN model can achieve quick and
real-time prediction with high accuracy. At the same time,
in the long-term prediction, our model also has a great
performance, which shows that our model is the most suitable
for short-term and real-time traffic prediction.
2) Intersections Without Historical Data: The result of the

intersections without historical data is obtained in Table IV.
We analyze the Adjacent-Similar algorithm through the analy-
sis of the Adjacent algorithm and the Similar algorithm,
respectively.
The logic of the Adjacent algorithm particularly conforms

to the actual flow of traffic flow. The main reasons for errors
of this algorithm are the calculation of directional flow and the
limitation of taxi data. In terms of the calculation of directional
flow, in this algorithm, the traffic flow of each direction is
evenly distributed. Actually, the flow of traffic is not the same
in each direction. If we can obtain the direction flow of each
intersection, the error will be significantly reduced. In terms of
the taxi data, the taxi trajectory data is used to calculate the
time required for vehicles cross two intersections. However,
taxis may pick up and wait for passengers, so the time required
cross two intersections may have errors. Complete taxi data or
more accurate measurement of distance between intersections
may greatly improve the algorithm result.
According to the Similar algorithm, the flow similarity

between intersections is compared mainly based on taxi
trajectory data. From the similarity sorting results, it can be
seen that most of the alternative intersections are adjacent
intersections, or intersections share similar structures.
For example, as shown in Fig. 13, intersection 100060 is an

intersection with historical data, and intersection 100061 is an
intersection without historical data. According to the Similar
algorithm, intersection 100060 is the most similar intersection
with intersection 100061. It can be seen from the map that
intersection 100061 is the adjacent intersection of 100060,
so they share the similar traffic change trend. And the structure
of the two intersections is also basically similar. Therefore the
future traffic flow of the intersection 100061 can be approx-
imately replaced by the predicted traffic flow of intersection
100060.
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Fig. 13. Example of similar intersections.

The error of the Similar algorithm is mainly due to the
limitation of reference intersections. For each intersection
without historical data, we can find a most similar intersection
according to the result of taxi flow error sorting. Project-
ing these intersections on the map, we can find that most
of the similar intersections with small errors are adjacent
intersections, or non-adjacent intersections but with close dis-
tances and similar structures. But for intersections with large
errors, most of the them are non-adjacent, or the distances
are relatively far. In other words, the intersection with the
smallest flow difference may cannot replace the flow of this
intersection. To solve this question, we need to obtain enough
reference intersections so that for each intersection without
historical data, we can always find the intersection with the
similar flow.
The Adjacent-Similar algorithm is the combination of the

Adjacent algorithm and the Similar algorithm. The RMSE of
the Adjacent-Similar algorithm is 65.21 and the MAE is 53.79.
The prediction accuracy with our designed Adjacent-Similar
algorithm is acceptable and can provide efficient guidance for
practical applications.

VI. CONCLUSION

In this paper, we focused on a more challenging but
practical traffic flow prediction scenario, which includes both
intersections with and without historical data. In order to
achieve effective traffic flow prediction for these intersections,
we proposed a novel ST-GCN-based hierarchical traffic flow
prediction protocol. The designed Adjacent-Similar algorithm
therein is able to predict the intersections without historical
data with a good prediction accuracy through their spatial-
temporal correlations with the ones with historical data.
We further conducted various experiments based on practical
traffic data of the city of Qingdao, China. The results have
verified that the efficiency and advantages of our proposed
ST-GCN-based traffic flow prediction protocol compared with
many existing baseline models.
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