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A B S T R A C T   

The flux of ions and molecules in and out of the cell is vital for maintaining the basis of various biological 
processes. The permeation of substrates across the cellular membrane is mediated through the function of 
specialized integral membrane proteins commonly known as membrane transporters. These proteins undergo a 
series of structural rearrangements that allow a primary substrate binding site to be accessed from either side of 
the membrane at a given time. Structural insights provided by experimentally resolved structures of membrane 
transporters have aided in the biophysical characterization of these important molecular drug targets. However, 
characterizing the transitions between conformational states remains challenging to achieve both experimentally 
and computationally. Though molecular dynamics simulations are a powerful approach to provide atomistic 
resolution of protein dynamics, a recurring challenge is its ability to efficiently obtain relevant timescales of large 
conformational transitions as exhibited in transporters. One approach to overcome this difficulty is to adaptively 
guide the simulation to favor exploration of the conformational landscape, otherwise known as adaptive sam
pling. Furthermore, such sampling is greatly benefited by the statistical analysis of Markov state models. His
torically, the use of Markov state models has been effective in quantifying slow dynamics or long timescale 
behaviors such as protein folding. Here, we review recent implementations of adaptive sampling and Markov 
state models to not only address current limitations of molecular dynamics simulations, but to also highlight how 
Markov state modeling can be applied to investigate the structure–function mechanisms of large, complex 
membrane transporters.   

1. Introduction 

Membrane transport proteins, or transporters, are integral mem
brane proteins that regulate the movement of ions and small molecules 
across the cellular membrane. Despite adopting diverse structural to
pologies, transporters operate via a universal paradigm known as the 
alternating access mechanism (Jardetzky, 1966). In this model, the 
transport of substrates across the membrane involves a series of struc
tural rearrangements that enable access of the primary binding site from 
either side of the membrane at a given time. As such, the transporter 
adopts characteristic conformational states: an outward-facing (OF) 
state in which the pathway to the binding site is opened from the 
extracellular space; an occluded (OC) intermediate state in which the 

binding site is closed from both sides of the membrane; and an inward- 
facing (IF) state in which the binding site is accessible from the intra
cellular space (Fig. 1). Biophysical characterization of various trans
porters further supports a mechanism of alternative access among this 
diverse class of proteins. Structural biology techniques, such as X-ray 
crystallography and cryogenic electron microscopy, have historically 
paved the way in establishing the structural basis of transporter func
tion. Despite these advancements, an experimentally obtained structure 
provides only a static conformation of the transporter, a glimpse into its 
intrinsic, dynamic nature. Therefore, a single structure cannot provide 
the mechanistic basis of conformational transitions and substrate 
transport, and as such, the understanding of transporter dynamics is 
limited. 
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2. Investigating protein dynamics with molecular simulations 

The use of molecular dynamics (MD) simulations as a biophysical 
method to probe protein dynamics has been effective in addressing this 
gap of knowledge. MD simulations model the motion of atoms by 
numerically solving Newton’s equations of motion. The interactions that 
act upon atoms (bonds, angles, torsions, electrostatics, van der Waals, 
etc.) are represented by force field models that are parameterized based 
on experimental and/or quantum mechanical calculations (Tian et al., 
2019). Each iteration of a MD timestep, δt, first involves calculating all 
the forces acting upon all atoms at time t. Newton’s equations of motion 
are then integrated to obtain positions at t + δt. This updates the 
simulation with the new positions. The simulations are then extended by 
progressing the time to t + δt until sufficient sampling has been observed 
for a desired process. To further investigate systems of larger size, 
coarse-grained simulations, which represents groups of atoms as 
”beads”, can be employed to sample longer timescales. In the past de
cades, improvements in algorithms and computational hardware, most 
notably graphical processing units (GPUs), have greatly increased the 
performance and accuracy of MD simulations (Phillips et al., 2020), 
further solidifying it as an attractive method to characterize protein 
structure and function at atomistic resolution. 

The timescales associated with large structural rearrangements and 
substrate transport may occur up to hundreds of nanoseconds (10−9 

seconds) to microseconds (10−6 seconds) and beyond. Thus, obtaining 
sufficient sampling of such long timescale events remains a reoccurring 
challenge among MD simulations. For reference, a typical integration 
timestep of all-atom MD simulations is of the order of femtoseconds 
(10−12 seconds). In its purest sense, MD simulations model the equilib
rium behavior of the simulated system, and thus the sampling will favor 
processes with low free energy barriers. When an energetic barrier is too 
high, the system will remain trapped in a local energy minimum and 
may not yield insightful observables. Such energetic barriers decrease 
the probability of observing certain conformational states and their 
related transition paths which occur either in vitro or in vivo but cannot 
be observed directly in experiments because of resolution differences 
between simulation and experiments. Common approaches to enhance 
the conformational sampling is to conduct non-equilibrium simulations 
in which an external force or energy bias is introduced (Yang et al., 
2019). Examples include using accelerated MD and metadynamics to 
enable the system to overcome higher free energy barriers, string 
method path optimization to identify an transition path between states, 
and steered MD, targeted MD, and umbrella sampling to restrict the 
simulation along specified reaction coordinates to directly sample 

Fig. 1. Alternating access mechanisms of membrane transporters. Membrane transporters undergo a series of conformational transitions that allow the primary 
substrate binding site to be accessed from either the extracellular or intracellular space. (A) Conformational transitions in the rocker-switch scheme are enabled by 
two domains (colored green and pink) that cooperatively open and close the transporter. The rocker-switch mechanism is identified in the major-facilitator su
perfamily (MFS) of transporters as shown in sugar transporters FucP (PDB 3O7Q) and LacY (PDB 2V8N). The two rocker domains are shown as a cartoon repre
sentation, colored in green and pink. The lipid bilayer is shown in yellow sticks, with the phospholipid head shown in spheres. (B) In the rocking-bundle mechanism, 
access to the substrate binding site is mediate by gating helices (red) that pivot towards and away the stationary scaffold domain (blue). The rocking-bundle 
mechanism is commonly observed in transporters that adopt the LeuT fold (PDB 3TT1,3TT3). The gating helices are colored in red cartoons, the two-fold sym
metric scaffold domain is colored in cyan and dark blue. (C) Transporters that adopt an elevator-like mechanism involve a rigid transport domain (purple) that 
translates across a stationary scaffold domain (yellow), thereby transporting the substrate across the membrane. A monomeric unit of the glutamate transporter 
homolog GltTk (PDB 6XWN) is shown in cartoon representation. The transport domain is colored in purple, with characteristic hairpins that surround the substrate 
binding site colored in red and cyan. The scaffold domain is colored in yellow. 
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relevant dynamics (Yang et al., 2019). However, with many biased 
techniques, the appropriate reaction coordinates in which to sample 
along may not be intuitive or involve several degrees of freedom. Thus 
sampling along inappropriate reaction coordinates may affect the sys
tem to produce unphysical conformations and dynamics. 

Adaptive sampling is an alternative unbiased sampling technique in 
which the simulations are guided towards relevant conformations or 
observables (Fig. 2E) (Hruska et al., 2018). The adaptive sampling 
scheme is an iterative approach in which multiple, short, unbiased 
simulations are conducted. These simulations may be initiated from 
different starting structures or initial velocities to increase diversity 
among trajectories. The ensemble of simulations are then clustered into 
states based on the reaction coordinates of interest. Next, structures for 
the subsequent iteration of adaptive sampling are seeded based on 
various criteria. For example, least-counts based adaptive sampling se
lects structures from clusters with the lowest populations, thereby 
increasing the probability of exploring undiscovered regions of the 
conformational landscape. Alternatively, the adaptive sampling can be 
guided through evolutionary (Shamsi et al., 2017) or experimental 
constraints (Zhao and Shukla, 2018) to maximize the efficiency of 
sampling relevant conformations. Lastly, adaptive sampling may further 
optimize the conformational exploration by utilizing reward-based al
gorithms to systematically select poorly sampled states along a 

designated reaction coordinate (Shamsi et al., 2018; Zimmerman and 
Bowman, 2015). Once the structures are selected for the next iteration, 
the procedure is repeated until the sampling is deemed sufficient or 
converges. Compared to traditional “long-MD” simulation, adaptive 
sampling allows for robust combination of exploration and exploitation 
of the landscape to sufficiently sample rare transition states and identify 
alternate conformational pathways (Zimmerman et al., 2018). 

3. Markov state model: A statistical approach to characterize 
protein dynamics 

With the increased performance of algorithms and computational 
hardware over the past decades, the collection of MD data has become 
more accessible to researchers. However, large datasets, such as ones 
obtained from MD simulations, present inherent difficulties in analyzing 
and obtaining relevant insights. Markov state models (MSMs) provide a 
powerful approach to efficiently process and quantify large MD trajec
tory datasets. Having historically been applied to study protein folding 
(Voelz et al., 2010), MSMs may also be implemented to model long 
timescale behaviors such as catalytic or transport cycles, substrate 
binding pathways, protein–protein association, allosteric modulation, 
and intrinsically disordered protein dynamics. An MSM is a statistical 
framework that expresses the kinetics of the system as transition 

Fig. 2. Molecular dynamics simulations. (A) A fully atomistic molecular dynamics system of a sugar transporter osSWEET2b (represented in purple cartoons) 
embedded in a phospholipid bilayer membrane (gray sticks). The system is solvated with water molecules and sodium and chloride ions, depicted as yellow and cyan 
spheres, respectively. The substrate for osSWEET2b, glucose, is also added to the system and shown as green and red spheres. (B-E) Examples of molecular dynamics 
techniques to explore a simple conformational landscape. (B) In unbiased molecular dynamics, no external energy or force is supplemented to the system. As such, the 
simulation initiated from state A is restricted to exploring pathways of lower free energy barriers. Furthermore, a majority of the simulation is spent trapped in a 
energetic minimum before reaching to state B. (C) Accelerated molecular dynamics is an enhanced sampling method that introduces a potential energy bias when the 
system falls under an designated threshold. As a result, the free energy barrier of transitions is decreased, increasing the probability of observing the pathway from 
state A to state C. (D) If a particular pathway between two states (A and D) is desired, the transition path must first be identified before sampling. Shown here is an 
example of four iterations of utilizing the string method optimize an initial pathway, shown as a black dashed line, and obtain a minimal free energy path between the 
two states (orange dashed line). (E) The adaptive sampling methodology involves the simulations to be iteratively guided to explore the landscape. In this example, 
five initial starting structures for simulations are selected. The simulations are conducted in parallel and often of relatively short length to increase efficiency. Next, 
the simulation trajectories are clustered based on a metric or reaction coordinate of interest. The starting structures for the subsequent round of simulations are 
selected. For the example shown, the simulation data were grouped into eight clusters, and five structures were chosen based on least populated clusters. Other 
selection criteria for obtaining starting structures included evolutionary-coupling guided (Shamsi et al., 2017), experimental-guided (Zhao and Shukla, 2018), or 
reinforcement or reward-based learning (Shamsi et al., 2018; Zimmerman and Bowman, 2015). The process is repeat until the sampling is deemed converged or 
sufficient. In all, adaptive sampling leverages the utility of distributive simulations to provides an unbiased approach in exploring multiple transition pathways and 
increasing the sampling of rare events. 
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probabilities between states (Husic and Pande, 2018). MSMs utilize the 
Markovian property, in which the system becomes “memoryless” and 
the transitions to a state do not depend on its past transitions, only the 
current state itself. This method greatly complements adaptive sampling 
as multiple rounds of adaptive sampling can be unified into a repre
sentative model. 

The construction of the MSM involves a series of statistical calcula
tions (Fig. 3A) (Husic and Pande, 2018; Wehmeyer et al., 2019). The 
initial step is to represent the Cartesian coordinates of the MD trajectory 
as a collection of metrics that best describes the processes of the system. 
Such feature metrics may include contact distance pairs, dihedral angles, 
and root-mean-square deviation (RMSD). MSMs are highly dependent 
on the selected features, and for complex or elusive dynamics, dis
tinguishing such relevant metrics may not always be intuitive. Machine 
learning algorithms offer an alternative approach to systematically 
identify relevant features of the system. For example, a genetic algo
rithm searches among all possible contact distances to obtain the most 
optimal features for MSM construction (Chen et al., 2018). Ward et al. 
developed self-supervised autoencoders to automatically identify fea
tures that distinguish multiple datasets (Ward et al., 2021). Another 
effective approach, named VAMPnets, decomposes the coordinate space 
with the use of variational encoders (Mardt et al., 2018). In many cases, 

a set of features consist of many degrees of freedom; therefore, reducing 
the dimensionality, not only improves computational efficiency, but also 
amplifies principle features that describe the overall dynamics of the 
system. A popular decomposition method is time-lagged independent 
component analysis (tICA) in which linear combinations of the features 
are constructed to maximize the autocorrelation between features thus 
yielding reaction coordinates that best represent slow dynamic pro
cesses (Pérez-Hernández et al., 2013). 

The transformed dataset is subsequently clustered into kinetically 
relevant microstates using a clustering algorithm such as k-means. The 
number of microstates influences the resolution of the system’s dy
namics: increasing number of microstates discretizes the feature space 
into finer-grained clusters, while decreasing number of microstates 
trends to a coarse-grained resolution. Finally, the MSM is estimated in 
which the number of transitions between microstates at an interval of 
the Markovian lag time τ is counted from the trajectories. The value of τ 
is determined when the relaxation timescales of the system are 
approximately constant with respect to τ. The normalized counts to and 
from each microstate are collectively known as the probability transition 
matrix which is of size n x n, where n is the number of microstates. 
Typically, to enforce detailed balance among discretized states, a 
maximum likelihood estimate is used to calculate the counts and 

Fig. 3. Construction of the Markov state model (MSM). An MSM is a kinetic model that represents a system as a series of discretized states that are each related by a 
transition probability. (A-D) Given sufficient sampling of the system, an MSM is constructed through a sequence of statistical modeling. A simplified example of the 
MSM workflow is presented. (A) First, a selection of features that represent the dynamics of the system are chosen. Example features include contact distance pairs, as 
shown, or torsion angles of the protein backbone. (B) The high dimensional feature space is then transformed into a reduced dimensional space to increase efficiency 
and identify key featurization components. A popular decomposition method is time-lagged component analysis (tICA) which constructs linear combinations of the 
features to identify the reactions coordinates of the slow timescale processes. Shown here, a three dimensional feature space of distances is reduced by tICA and 
projected onto a two dimensional tICA space defined by the first two time-lagged components (tICs). (C) The simulation trajectories are then discretized in the tICA 
space using a clustering algorithm such as k-means. As such, structures of similar conformational are grouped in the same cluster. The frames of the simulations are 
also assigned based on their designated cluster. As an example shown here, the tICA space has been clustered in 12 states and are colored independently. (D) For the 
calculated Markovian lag time, the transitions between clusters are counted and converted to transition probabilities. The transition probabilities are calculated for 
all transitions to and from every state, including self-transitions. The transitions probabilities can be visualized as a graph, where the nodes represents each MSM 
state, the size of the nodes represents the self-transition probability, and the thickness of the directed edges are the transition probability from two states. (E-G) 
Further analysis of the MSM provides powerful thermodynamic and kinetic observables of the dynamics of the simulated system. (E) Trajectories, typically obtained 
from adaptive sampling, may be reweighted by the equilibrium probability to obtain a MSM-weighted conformational free energy landscape. (F) Kinetic analysis such 
as transition path theory examines the probability flux from an initial to an end state. An example of the transition fluxes for osSWEET2b when initialized from the 
inward-facing (IF) state and ending at the outward-facing (OF) state is shown. The relative flux is indicated by arrow thickness, signifying that conformational 
transitions are promoted by the binding of the substrate, glucose (green spheres). (G) Rates of substrate transport, as showed in sticks and colored based on simulated 
time, or conformations changes can be measured by calculating the mean first passage time of the MSM. 
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transition probabilities (Bowman et al., 2009). After validating the MSM 
to ensure proper Markovian behavior, the model is a host for several 
thermodynamic and kinetic analyses, including free energy surface 
projection along defined reaction coordinates, flux analysis with tran
sition path theory, and kinetic measurements by calculating mean first 
passage times (Fig. 3B). 

4. Applications of Markov state models on membrane 
transporters 

The synergistic combination of efficient conformational exploration 
by adaptive sampling followed with robust statistical analysis from 
MSMs presents an effective method to computationally investigate 
membrane transporters. Recent applications of Markov state modeling 
on transporters have characterized the conformational heterogeneity 
and how substrates induced modulations in the conformational free 
energy landscapes (Selvam et al., 2018; Selvam et al., 2019; Chan et al., 
2020; Young et al., 2021). An example is illustrated with the sugar 
transporter from Oryza sativa, OsSWEET2b (Fig. 4A,B) (Selvam et al., 
2019). Simulations show, in the absence of the substrate, OsSWEET2b 

freely transitions from inward-facing to occluded conformations. How
ever, the formation of the outward-facing state is greatly destabilized 
with free energy barriers of ∼4 kcal/mol (Fig. 4A). In the presence of the 
substrate, glucose, the outward-facing state is stabilized to ∼1–2 kcal/ 
mol, thus promoting the complete transitions from inward-facing to 
outward-facing (Fig. 4B). Similar observations of how the substrate 
promotes the conformational transitions of transporters are seen in 
simulations of the human serotonin transporter, hSERT (Fig. 4C,D) 
(Chan et al., 2020). While transitions from outward-facing to occluded 
remain relatively low in free energy with and without the substrate se
rotonin, the most significant influence of the substrate is observed in the 
stabilization of the inward-facing state to promote substrate transport 
(Fig. 4D). When transporting the fluorescent neurotransmitter analog, 
APP+, the outward-facing and occluded states are further stabilized; 
however hSERT adopts a conformational landscape that closely re
sembles to an inhibitor-bound transporter with restricted transitions to 
the inward-facing state (Fig. 4E) (Young et al., 2021). Taken together, 
the Markov state modeling of these transporters show how the substrate 
facilitates the necessary structural rearrangements by decreasing the 
free energy barriers of transitions. Furthermore, the conformational free 

Fig. 4. Substrate-induced changes of the conformational free energy landscape. The Markov state model-weighted free energy landscapes of two transporters, sugar 
transporter OsSWEET2b and neurotransmitter reuptake transporter hSERT, are recreated from (Selvam et al., 2019; Chan et al., 2020; Young et al., 2021) and 
projected on the coordinates defined by the extracellular and intracellular gating distances. Color represents the relative free energy as estimated by the MSM- 
weighted simulation data. (A) Conformational transitions of the sugar transporter from Oryza sativa, OsSWEET2b in the absence of the substrate. The inward- 
facing (IF) and occluded (OC) states of OsSWEET2b are relative stable with relative free energy values of <1 kcal/mol. However, transitions to the outward- 
facing state are restricted with high free energy barriers of >4 kcal/mol. (B) As OsSWEET2b transports the substrate glucose, the transition free energy barriers 
decrease, most notably the transitions between occluded to outward-facing conformations. (C) Similarly, in simulations of the human serotonin transporter (hSERT), 
transitions to the inward-facing state are of relatively higher free energy as compared to outward-facing and occluded transitions. (D) In the presence of the substrate 
serotonin, the inward-facing state is further stabilized to promote conformational transitions and substrate transport. (E) When hSERT transports an unphysiological 
substrate such as APP+, a fluorescent neurotransmitter analog, the outward-facing and occluded states are further stabilized. Furthermore, the increased rigidity of 
APP+ restricts transitions to the inward-facing state, ultimately decreasing the rate of transport. 
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energy landscapes highlight how evolution has optimized its selectivity 
to efficiently transport its endogenous substrate. 

The kinetic and thermodynamic insights obtained from MSM pro
vides a powerful means to characterize slow conformational transitions, 
and in doing so presents opportunities to complement biochemical and 
biophysical experiments. Electron paramagnetic resonance techniques 
utilize site-directed spin probes to obtain distance measurements upon 
structural rearrangement of the protein. As such, the placement of the 
spin probes directly influences the observed distance measurements; 
however, often times, the placement the spin probes is not intuitive. 
Using a genetic algorithm, MSMs can be leveraged to systemically obtain 
probe placements that best captures characteristic conformational 
changes of proteins (Fig. 5) (Mittal and Shukla, 2017). Classically 
implemented to model population genetics, the genetic algorithm in
corporates the existing principles of mutation, crossover, and selection 
to achieve the set of features that best describe the dynamics of the 
system. First, a population of sets of randomly selected distance pairs is 
initialized. A subset of the population is then “mutated” in which certain 
residue pairs are randomly replaced by other residue pairs. In the 
“crossover” step, residue pairs among sets are swapped with one another 
to further increase genetic diversity. The sets of distances are used to 
construct a respective MSM and evaluated based on how successful the 
model identifies the slowest timescales of the system. To do this, the 

generalized matrix Rayleigh quotient (GMRQ) for each MSM is calcu
lated (Husic and Pande, 2018). The GMRQ is a variational cross- 
validated quantity that is equal to the sum of eigenvalues of the tran
sition probability matrix. Models that fail to identify the slow dynamics 
will overfit and result in a low GMRQ, whereas GMRQ values that 
approach the upper limit signify MSMs that capture long timescale 
processes. As such, MSMs with the top GMRQ scores are retained for the 
next iteration of the genetic algorithm and its associated distance pairs 
serve as the next generation of the population. The process is then 
repeated until convergence of the highest GMRQ score is obtained. In 
doing so, identifying optimal probe placements for various spectroscopy 
techniques not only aids in design of biophysical experiments to study 
transporter function, but may serve as additional validation of the MSM 
(Selvam et al., 2018). 

Understanding the fundamentals of substrate transport is essential 
for characterizing all cellular processes. Structural determination tech
niques provide invaluable atomic details of the structural architecture of 
transporters, and more so, the recent emergence of deep learning algo
rithms has not only impressively accelerated accurate protein structure 
predictions (Jumper et al., 2021), but also expand the applicability of 
Markov state models (Konovalov et al., 2021). As computational effi
ciency continues to increase over time, the atomistic resolution of pro
tein dynamics obtained from molecular dynamics simulations and 

Fig. 5. Markov state model (MSM)-guided experimental design for optimal placement of spin labelling probes. An advantage of the MSM is its ability to characterize 
long timescale behavior, such as conformational transitions observed in electron paramagnetic resonance spectroscopy. Shown here is a genetic algorithm imple
mentation to utilize MSM to objectively identify key probe positions for distance measurement (Mittal and Shukla, 2017). (1) MD simulations are first conducted to 
explore the conformational heterogeneity of the transporter. (2) A set of residue pairs are randomly chosen from all possible pair combinations. This step is analogous 
to natural selection in population genetics. Only residue pairs that can be experimentally measured will be considered. For example, residues buried in the transporter 
core or transmembrane-spanning regions will not selected. (3) In some sets, a residue pair will be “mutated” in which that pair will be replaced with a new residue 
pair. (4) “Crossover” allows sets to combine residue pairs to further increase genetic diversity. (5) The sets of residue pairs are used to construct a MSM. Each MSM is 
quantitatively scored with the generalized matrix Rayleigh quotient (GMRQ), which measures the MSM ability to capture long-timescales processes (Husic and 
Pande, 2018). For the next iteration, the population of distances that obtained the highest GMRQ score ”survives” as the next generation and progresses through the 
subsequent iteration of the genetic algorithm. (6) Upon convergence of the GMRQ score, the genetic algorithm stops and the distance pairs that obtained the highest 
GMRQ score are suggested for optimal probe placement. 
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Markov state models provides unparalleled insights to complement 
biophysical experiments, furthering our understanding of membrane 
transporter structure and function. 
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