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In this paper, the realization of any specified planar compliance with two 3R serial elastic
mechanisms is addressed. Using the concept of dual elastic mechanisms, it is shown that the
realization of a compliant behavior with two serial mechanisms connected in parallel is
equivalent to its realization with a 6-spring fully parallel mechanism. Since the spring
axes of a 6-spring parallel mechanism indicate the geometry of a dual 3R serial mechanism,
a new synthesis procedure for the realization of a stiffness matrix with a 6-spring parallel
mechanism is first developed. Then, this result is extended to a geometric construction-
based synthesis procedure for two 3-joint serial mechanisms. [DOI: 10.1115/1.4053284]
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1 Introduction
In robotic manipulation, some form of compliance is needed to

provide accurate relative positioning for constrained motion and
to avoid excessive contact forces when interacting with other
objects. A general model of compliance is a rigid body suspended
by an elastic system. In robotic applications, compliance can be
attained by the robot itself and/or by an elastic device at the robot
end-effector. An elastic behavior is characterized by the relationship
between a wrench w (force and torque) applied to the body and the
resultant twist t (translation and rotation) of the body. If small dis-
placement from an equilibrium is considered, the elastic behavior
can be described by a linear mapping:

w =Kt or t = Cw (1)

where the stiffness K and compliance C (the inverse of K) are sym-
metric positive semi-definite (PSD) matrices.
An elastic suspension can be obtained by a general network of

passive elastic components. The elastic behavior of the network is
determined by (1) the way components are connected (in parallel
or in series), (2) the geometric configuration of components, and
(3) the elastic properties (joint or spring stiffness) of each compo-
nent. Each of these needs to be identified to achieve a desired Car-
tesian compliant behavior at the reference body. The two networks
with the simplest topology are as follows: (1) a fully parallel mech-
anism having springs independently connected to the reference
body (Fig. 1(a)), and (2) a fully serial mechanism having compli-
ances at each joint ultimately connected to the reference body
(Fig. 1(b)).
A significant amount of prior work has addressed compliance

realization with serial mechanisms having kinematic redundancy.
Unlike a redundant fully parallel mechanism, a redundant serial
mechanism can change its configuration without end-point
motion. Therefore, a larger space of compliances can be attained
not only by adjusting the joint compliances, but also by varying
the configuration of this type of mechanism. Also, a redundant
serial mechanism can continuously provide a desired compliance
when the suspended reference body (the end-effector) is moving
in space. However, a fully serial mechanism has the following sig-
nificant limitations relative to fully parallel mechanisms.

(1) The suspended weight of the mechanism is larger, especially
when the mechanism has more joints and longer links. The
suspending joint forces may result in relatively large defor-
mation and thus influence the accuracy of the manipulator;

(2) The set of realizable elastic behaviors is more restricted. A
relatively large set of compliant behaviors cannot be achieved
even if each joint compliance has infinite range [1–4].

The set of realizable compliant behaviors using fully serial mech-
anisms is restricted in that a desired planar compliant behavior can
be realized by a serial mechanism only if the center of compliance
(the location where the compliance matrix is diagonal) is inside the
convex hull formed by the mechanism joint locations [1–4]. If the
center of a desired compliance is beyond the mechanism workspace,
the compliance cannot be realized regardless of the values of joint
compliances. This restriction prevents serial mechanisms from pro-
viding the appropriate compliance in many tasks, since most manip-
ulations require that the compliance center be projected away from
the mechanism (e.g., Ref. [5]).
The two limitations of fully serial elastic mechanisms do not exist

for multi-serial parallel mechanisms. As such, two or more serial
mechanisms connected in parallel can be used to support and
move an object as well as attain a much larger set of compliant
behaviors. Using two serial mechanisms, the forces and moments
at each joint due to the weight are reduced, enabling the dexterous
manipulation of larger and heavier objects, and the space of realiz-
able compliant behaviors is dramatically increased.
As stated previously, a planar compliance (or stiffness) center is

the location at which the compliance (or stiffness) matrix can be
expressed in diagonal form, i.e., the location at which translational
and rotational aspects are completely decoupled. Figure 2 illustrates

Fig. 1 Compliant mechanisms having simple topology: (a) fully
parallel mechanism and (b) fully serial mechanism
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the space of realizable compliance centers associated with a 3R
serial mechanism (Fig. 2(a)) and the space of realizable compliance
centers associated with two 3R serial mechanisms connected in par-
allel (Fig. 2(b)). For the fully serial mechanism shown in Fig. 2(a),
the locus of the compliance centers achievable by the mechanism is
the triangle J1J2J3 [1]. The mechanism cannot realize a compliance
with a center located above the end-effector. When two serial mech-
anisms are used, the space of the realizable centers is not just the
union of the center spaces associated with each serial mechanism,
i.e., the two triangles J1J2J3 and J4J5J6. It is the union of the trian-
gles formed by all combinations of the straight lines along the sides
of the two triangles [2,3] as shown in Fig. 2(b). It can be seen that
the locus of compliance center locations achievable by the multi-
serial parallel mechanism extends far beyond the workspaces of
the two serial mechanisms.

1.1 Related Work. In the analysis of general compliant beha-
vior, screw theory [6–9] and Lie groups [10,11] have been used. In
recent work on the realization of compliance, the design of mecha-
nisms to achieve a specified elastic behavior has been addressed.
Most early approaches were based on a rank-1 decomposition of
the compliance/stiffness matrix [12–18]. In some work on the
synthesis of compliance [16–18], geometric constraints on the
mechanisms were considered in the procedures. In Ref. [19], a
fully geometric construction-based approach to the realization of
spatial compliance was developed.
In Refs. [20,21], approaches to attain an isotropic compliance in a

Euclidean space with a fully serial mechanism were presented. In
Refs. [22,23], compliance analysis and synthesis for flexure mech-
anisms were addressed. In Refs. [24,25], stiffness synthesis for par-
allel mechanisms was presented.
In closely related work in the realization of planar compliance

[1–4], geometry-based approaches were used in the design of mech-
anisms (both fully serial and fully parallel) having three to six
elastic components. Necessary and sufficient conditions on the cor-
responding mechanism geometry were identified for the realization
of an arbitrary compliance. It was shown that, as the number of the
elastic components n increases, the dimension of the space of real-
izable compliances is similarly increased for n≤ 6.
In almost all prior work, mechanisms considered for the realiza-

tion of compliance were either fully parallel or fully serial. Very
little work has addressed the compliance synthesis with multiple
serial mechanisms. When compliance realization of multi-serial
parallel mechanisms has been addressed [26], optimization has
been used to select mechanism geometry and elastic behavior that
is unlikely to attain the desired Cartesian compliance.

1.2 Partial-Geometric Approach. For two serial mechanisms
that are independently connected to a suspended body, if Ci is the

compliance matrix of each serial mechanism, then the Cartesian
stiffness K of the system is

K =K1 +K2 (2)

where Ki = C−1
i is the stiffness matrix associated with each serial

mechanism. Thus, if a given stiffness K is algebraically decom-
posed arbitrarily into two rank-3 matrices as in Eq. (2), then, each
Ki can be realized with a 3R serial mechanism using a systematic
geometric construction process [1]. As such, any stiffness K can
be achieved with limited geometric considerations by two serial
mechanisms by varying the mechanism geometry and its inherent
passive compliant behavior in each component.
Although a decomposition of K into the form of Eq. (2) yields

two serial mechanisms that realize the behavior, the algebraic
decomposition process of Eq. (2) does not take into account the geo-
metric properties of the mechanisms. It is known that for any given
symmetric PSD matrix, there are infinitely many algebraic decom-
positions of the matrix in the form of Eq. (2). The geometry of each
serial mechanism would largely depend on how the stiffness matrix
is decomposed. A purely algebraic decomposition of a stiffness
matrix may result in mechanisms that are geometrically awkward
or violate task-imposed geometric constraints. Therefore, an
approach that takes into account the geometry of components in
each step of the synthesis process is needed.

1.2.1 Full-Geometric Approach. In this paper, a new approach
to realize a given compliance with a multi-serial parallel mechanism
is developed. The mechanism considered consists of two 3-joint
serial mechanisms connected in parallel. The approach allows one
to select the geometry of each component.
The main contributions of the paper are as follows:

(1) Identification of the elastic duality between a manipulator
consisting of two 3-joint compliant arms and a fully parallel
mechanism consisting of 6 springs.

(2) Development of a geometry-based procedure for the realiza-
tion of an arbitrary planar compliance with a two-arm
manipulator.

Additional contributions include the following: (1) identification
of necessary conditions on spring geometry for the realization of an
arbitrary elastic behavior with any number of springs connected in
parallel; (2) identification of a new set of necessary and sufficient
conditions for the realization of any elastic behavior with six
springs connected in parallel.

1.3 Overview. In this paper, a geometry-based synthesis pro-
cedure for the realization of any given planar compliance with
two 3R serial mechanisms connected in parallel is developed. The
synthesis is based on the concept of dual elastic mechanisms [1].
The paper is outlined as follows. In Sec. 2, screw representation

of planar mechanism configurations and the concept of dual elastic
mechanisms are reviewed. In Sec. 3, necessary conditions on spring
geometry of any parallel mechanism for the realization of a speci-
fied elastic behavior and a new set of necessary and sufficient con-
ditions for the realization of any specified compliance with a
six-spring parallel mechanism are identified. In Sec. 4, a geometry-
based synthesis procedure for a two-arm mechanism to realize a
given compliance is developed. In Sec. 5, a numerical example is
provided to demonstrate the synthesis procedure. Finally, a discus-
sion and summary are presented in Sec. 6.

2 Technical Background
In this section, the background needed for planar compliance

realization with a multi-serial parallel mechanism is provided.
First, screw representation of a planar mechanism configuration is
reviewed. Next, the duality relationship between a planar parallel

Fig. 2 Space of compliance centers associated with two types
of elastic suspensions: (a) a simple fully serial mechanism with
elastic joints. The compliance center locus is the triangle J1J2J3
formed by the three joints and (b) two fully serial mechanisms
with elastic joints. The compliance center locus is the union of
triangles formed by all combinations of lines along the sides of
triangles J1J2J3 and J4J5J6.
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elastic mechanism and a planar serial elastic mechanism is
presented.

2.1 Stiffness Realization With Parallel Connections.
Consider a planar parallel mechanism consisting of a set of n line
springs connected to a single reference body. The geometry of
each spring can be represented by a unit wrench wi defined as a
spring wrench. In Plücker ray coordinates, the planar spring
wrench associated with a line spring has the form:

w =
n
d

[ ]
(3)

where the unit vector n indicates the direction of the wrench (spring
axis) and where

d = (r × n) · k̃ (4)

where r is the position vector from the origin to any point on the line
and k̃ is the unit vector orthogonal to the plane.
It can be seen that the line-of-action (axis) of wrench w uniquely

defines a line in the plane. Conversely, any line in the plane is repre-
sented by a unique unit wrenchw in the form of Eq. (3) such that the
line is the axis of w. Thus, a unit wrench w can be used to represent
the axis of a spring, and geometrically, represent a line in the plane.
If a stiffness matrix K is realized with a fully parallel mechanism

having n springs wi (1, …, n), then [15]

K = k1w1wT
1 + k2w2wT

2 + · · · + knwnwT
n (5)

where ki≥ 0 is the stiffness of spring wi.
Conversely, if a stiffness matrix K can expressed in the form of

Eq. (5) with each ki≥ 0, then the stiffness is realized with a parallel
mechanism having its geometry described by spring wrenches wi.
Thus, to realize a specified stiffness K with a parallel mechanism,
a set of spring wrenches wi’s and the corresponding spring rates
ki must be identified such that Eq. (5) is satisfied.

2.2 Compliance Realization With Serial Connections.
Consider a planar serial mechanism consisting of n revolute
joints. The location of a joint can be represented by a unit twist ti
defined as a joint twist. In Plücker axis coordinates, the planar
motion joint twist associated with a joint has the form:

t =
u
1

[ ]
(6)

where u = r × k̃, k̃ is the unit vector orthogonal to the plane and r is
the position vector of the revolute joint with respect to the coordi-
nate frame:

r =Ωu (7)

where Ω is the 2 × 2 skew-symmetric matrix defined as follows:

Ω =
0 −1
1 0

[ ]
(8)

Thus, for any given unit twist in Eq. (6), the corresponding instan-
taneous center location r is determined by Eq. (7).
Since Ω−1=ΩT=−Ω, Eq. (7) can be expressed as

u = −Ωr (9)

Thus, the location of a point uniquely describes a unit twist.
If a compliance matrixC is realized with a fully serial mechanism

having n joints described by joint twists ti, (1, …, n), then [15]

C = c1t1tT1 + c2t2tT2 + · · · + cntntTn (10)

where ci≥ 0 is the joint compliance at joint ti.
Conversely, if a compliance matrix C can be expressed in the

form of Eq. (10) with each ci≥ 0, then the compliance is realized

at the serial mechanism configuration described by joint twists ti.
Thus, to realize a specified compliance C with a serial mechanism,
the mechanism configuration ti’s and the corresponding joint com-
pliances ci’s must be identified such that Eq. (10) is satisfied.

2.3 Reciprocal Screws. A wrench w expressed in Plücker ray
coordinates and a twist t expressed in Plücker axis coordinates are
reciprocal if and only if

tTw = 0 (11)

Geometrically, the reciprocal condition Eq. (11) for the planar case
indicates that the line defined by wrench w passes through the point
defined by twist t.
If a line passes through two points Ji and Jj that are represented by

unit twists ti and tj respectively, the wrench wij associated with the
line must satisfy:

tTi wij = 0, tTj wij = 0 (12)

Thus, for planar screws, wrench wij can be uniquely determined by
the cross product operation:

wij = ti × tj (13)

Similarly, if a point is located at the intersection of two lines that are
represented by wrenches wi and wj, respectively, the twist tij asso-
ciated with the point must satisfy:

tTijwi = 0, tTijwj = 0 (14)

The planar twist tij can be determined by

tij = wi × wj (15)

For planar screws, a unit twist reciprocal to two non-parallel
wrenches is unique. These properties will be used in the description
of realization conditions in planar parallel, serial, and multi-serial
parallel mechanisms. The reciprocal relation between spring
wrenches in a parallel mechanism and joint twists in a serial mech-
anism is the foundation for the concept of dual elastic mechanisms
[1] as reviewed below.

2.4 Planar Dual Elastic Mechanisms. Suppose a three-spring
planar parallel mechanism has spring wrenches w1, w2, and w3. The
lines of action of wi form a triangle. Consider the three unit twists
(t1, t2, t3) centered at the triangle vertices, i.e., ti is centered at the
intersection ofwj andwp. Then, ti is reciprocal to wrenches (wj,wp).
Also consider a planar serial mechanism having these same three

joint twists t1, t2, and t3. The triangle formed by the three line spring
axes in the parallel mechanism is coincident with the triangle
formed by the vertices identified by the three revolute joints in the
serial mechanism. A pair of parallel and serial elastic mechanisms
satisfying these conditions are defined as dual elasticmechanisms [1].
Figure 3 illustrates a pair of dual elastic mechanisms for the

generic case. The triangle A1A2A3 in the three-spring parallel mech-
anism of Fig. 3(a) is coincident with triangle J1J2J3 in the three-joint
serial mechanism of Fig. 3(b). Each spring wrench wi in the parallel
mechanism is reciprocal to two joint twists (tj, tp) in the serial
mechanism.
Given a pair of dual elastic mechanisms with spring wrenches

(w1, w2, w3) and joint twists (t1, t2, t3), for a given elastic behavior
described in stiffness matrix K or compliance matrix C=K−1, it is
proved [1] that

tTi Ktj = 0⇐⇒wT
i Cwj = 0, ∀i ≠ j (16)

and that an elastic behavior can be realized with one mechanism if
and only if it can be realized with its dual elastic mechanism. When
their elastic properties have infinite variability, the space of realiz-
able elastic behaviors for each mechanism is exactly the same.
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Also, it can be proved that, if ki is the spring constant associated
with spring wrench wi in the parallel mechanism and ci is the
joint compliance associated with joint twist ti, then ki and ci satisfy:

kici =
1

(wT
i ti)

2 , i = 1, 2, 3 (17)

2.5 Application of Dual Elastic Mechanisms. Since any
three-joint serial elastic mechanism can be replaced with its dual
parallel elastic mechanism (and vice versa) without changing the
realizability of compliant behaviors, a multi-serial manipulator
system can be replaced by a fully parallel mechanism. Therefore,
two 3-joint serial manipulators can be replaced by a six-spring par-
allel manipulator and the existing synthesis procedures for compli-
ance realization with a six-spring parallel mechanism can be
modified to achieve the desired elastic behavior with a two-arm
manipulator. This process does not require a matrix inverse (as in
Eq. (2)) for which the geometric significance of spring wrenches
or joint twists is lost.
The transformation of two 3R serial mechanisms to a six-spring

parallel mechanism is unique; whereas, the reverse transformation
is not.
Figure 4 illustrates the transformation of a six-spring parallel

mechanism into two 3R serial mechanisms. The six springs are
separated into two groups (w1, w2, w3) and (w4, w5, w6). The three-
spring system (w1, w2, w3) is converted into its dual three-joint
serial mechanism J1J2J3, and the three-spring system (w4, w5, w6)
is converted into its dual three-joint serial mechanism J4J5J6.
Since the locations of joints in each serial mechanism are at the
intersection of the corresponding two spring axes, the twist centered
at joint Jp can be determined using Eq. (15),

t̃p = wi × wj (18)

By normalizing t̃p, the corresponding joint twist (unit twist), tp is
obtained. The joint compliances can be calculated using Eq. (17),

ci =
1

ki(wT
i ti)

2 , i = 1, 2, . . . , 6 (19)

Because the separation of the six springs into two 3-spring
systems is not unique, if two different three-spring systems (w1,
w2, w4) and (w3, w5, w6) are instead considered, two different
serial mechanisms will be obtained.

3 Stiffness Realization With a Parallel Mechanism
In this section, stiffness realization with a parallel mechanism is

addressed. First, new relationships between mechanism geometry
and the location of the compliance center are presented. These rela-
tionships yield a set of necessary conditions on spring positions and
orientations relative to the stiffness center that must be satisfied in
order to achieve a given compliance. Then, a new set of necessary
and sufficient conditions on spring configurations for the realization
of stiffness with a six-spring parallel mechanism is identified.

3.1 Mechanism Geometry and Stiffness Center. In the real-
ization of a stiffness with a parallel mechanism, the springs must
surround the center of stiffness. Below, we show that an additional
requirement on the distribution of springs relative to the center of
stiffness must be satisfied.
Consider a planar parallel mechanism with n springs. The axis of

each spring can be represented by a unit wrench wi having the form
of Eq. (3):

wi =
ni
di

[ ]
(20)

where di= (ri × ni) · k̃ indicates the distance from the coordinate
frame to the spring axis, and ri is the perpendicular position
vector from the coordinate frame to the spring axis. Since both ni
and k̃ are unit vectors,

‖ri‖ = |di| (21)

If each spring wrench wi and corresponding spring stiffness ki are
given, the Cartesian stiffness K of the mechanism is as follows:

K = k1w1wT
1 + k2w2wT

2 + · · · + knwnwT
n (22)

If the coordinate frame origin is located at the center of stiffness,
then each vector ri in Eq. (21) is the perpendicular position vector
from the stiffness center to the axis of wrench wi. As proved in
Ref. [27],

k1r1 + k2r2 + · · · + knrn = 0 (23)

Thus, the center of stiffness is the center of the n spring axes
weighted by the corresponding spring rate values ki. Additional
requirements on the distribution of spring locations are identified
below.
At the stiffness center, a coordinate frame can be oriented such

that the stiffness matrix has diagonal form:

K = diag(kx, ky, kτ) (24)

where kx and ky are the two translational principal stiffnesses and kτ
is the rotational principal stiffness. If we denote

rmin =min {‖r1‖, . . . , ‖rn‖} (25)

rmax =max {‖r1‖, . . . , ‖rn‖} (26)

then, we have:
PROPOSITION 1. Suppose a stiffness K is realized by an n-spring

parallel mechanism. If rmin and rmax are the minimum and

Fig. 3 Planar dual elasticmechanisms in parallel and serial con-
struction: (a) a 3-spring parallel mechanism and (b) dual elastic
3R serial mechanism. The triangle formed by the three spring
axes in the parallel mechanism is coincident with the triangle
formed by the three joints in the serial mechanism. The two
mechanisms have the exact same space of realizable compliant
behaviors when ki in (a) and ci in (b) have infinite variability.

Fig. 4 A six-spring parallel mechanism transformed into a two-
serial parallel mechanism using dual elastic mechanisms. Each
set of three springs is replaced by a three-joint serial mechanism
having three elastic joints (and vice versa).
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maximum distances from the stiffness center to the spring axes, then

rmin ≤

��������
kτ

kx + ky

√
≤ rmax (27)

where kx, ky, and kτ are the principal stiffnesses of K.
Proof. Proof. Consider the coordinate frame located at the stiffness
center for which the stiffness matrix is diagonal:

K = diag(kx, ky, kτ) (28)

Each spring wrench described in this frame is

wi =
ni
di

[ ]
(29)

Then,

K =
∑n
i=1

kiwiwT
i =

∑n
i=1

ki
ni
di

[ ]
nTi , di
[ ]

=

∑n
i=1 kinin

T
i

∑n
i=1 kidini∑n

i=1 kidin
T
i

∑n
i=1 kid

2
i

[ ]

Since ni is a unit vector, trace(ninTi ) = 1,

kx + ky = trace

(∑n
i=1

kininTi

)
= k1 + k2 + · · · + kn

The value of the (3, 3) entry of K is

kτ = k1d
2
1 + k2d

2
2 + · · · + knd

2
n (30)

Since d2i = ‖ri‖2,
(k1 + · · · + kn)r

2
min ≤ kτ ≤ (k1 + · · · + kn)r

2
max

which is equivalent to

r2min ≤
kτ

kx + ky
≤ r2max

and leads to

rmin ≤

��������
kτ

kx + ky

√
≤ rmax

▪
Thus, to realize a given stiffness with a parallel mechanism, the

spring axes in the mechanism must enclose the stiffness center
Ck, and some, but not all, spring axes must intersect circle Γk of
radius

rk =

��������
kτ

kx + ky

√
(31)

centered at the stiffness center Ck (Fig. 5).
For a given elastic behavior, the principal stiffnesses not only

restrict the distances between the springs and the stiffness center
but also the directions of spring axes. Suppose e1 and e2 are the
unit vectors along the two principal axes. In the principal frame at
the stiffness center, let θi be the angle between the (perpendicular)
position vector ri and the principal axis e1, as shown in Fig. 6(a).
Then, the direction of ri is

ui = cos θi, sin θi[ ]T (32)

Since ri is perpendicular to wrench wi, the unit direction two-vector
ni in Eq. (29) can be expressed as follows:

ni = −sin θi, cos θi[ ]T (33)

Thus,

kx 0
0 ky

[ ]
=
∑

kininTi =
∑

ki
−sin θi
cos θi

[ ]
−sin θi, cos θi[ ]

which leads to

kx =
∑

ki sin
2 θi (34)

Let

sin θmin =min{| sin θi|, i = 1, 2, . . . , n} (35)

sin θmax =max {| sin θi|, i = 1, 2, . . . , n} (36)

then,

kx =
∑

ki sin
2 θi ≤

(∑
ki
)
sin2 θmax = (kx + ky) sin

2 θmax (37)

Therefore,

sin θmax ≥

��������
kx

kx + ky

√
(38)

Similarly,

sin θmin ≤

��������
kx

kx + ky

√
(39)

Let

θx = sin−1
��������
kx

kx + ky

√( )
(40)

and denote l−θ and l+θ to be the two lines passing through stiffness
center Ck and having angles −θx and θx with respect to the x-axis
respectively, then, the two lines separate the plane into two areas
Λx and Λy as illustrated in Fig. 6(b). The perpendicular vectors ri
from the stiffness center to the springs cannot be either all in area
Λx or all in area Λy.
Also, the perpendicular position vectors ris cannot all be within a

half plane defined by a line passing through the compliance center,
i.e, the space positively spanned by ris must be contain at least a half
plane. This can be proved by Eq. (23). In fact, if all ris are inside a
half plane, then Eq. (23) cannot hold for coefficients ki> 0.
In summary, we have:
PROPOSITION 2. Suppose a stiffness K is realized by an n-spring

parallel mechanism and ri is the perpendicular vector from the
stiffness center to the spring axis of wi. Then, the set of ri vectors
must

(i) Be located in both areasΛx andΛy bounded by lines l+θ and l−θ
as illustrated in Fig. 6(b);

Fig. 5 Spring axes in a parallel mechanism. At least one spring
axismust intersect circle Γk and at least one spring axis must not
intersect Γk.
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(ii) Span a space of at least a half plane.

Figure 7 illustrates four cases in which the given compliance
cannot be achieved by the illustrated parallel mechanism regardless
of the values of spring rates.
In the case of Fig. 7(a), all spring axes intersect circle Γk deter-

mined by Eq. (31); therefore, Propositions 1 is not satisfied. The
spring locations in the parallel mechanism will not yield sufficient
moment about the stiffness center required by the stiffness matrix.
Thus, the behavior cannot be achieved by the mechanism regardless
the values of the spring constants.
In the cases of Figs. 7(b) and 7(c), Proposition 1 is satisfied in

both cases. In the case of Fig. 7(b), all perpendicular position
vectors of springs are located in the area Λy, therefore, condition
(i) of Proposition 2 is not satisfied. The springs in this case will
yield excessive force in the x-direction relative to the y-direction
regardless of the spring rate values. Similarly, in the case of
Fig. 7(c), all spring position vectors are located in the area Λx.
The springs in this case will yield excessive force in the y-direction
relative to the x-direction regardless of the spring rate values.
In the case of Fig. 7(d ), Proposition 1 and condition (i) of Prop-

osition 2 are both satisfied, however, the spring position vectors (ri,
rj, rp) do not span more than a half plane, therefore, condition (ii) of
Proposition 2 is not satisfied. Thus the compliant behavior cannot
be realized by the mechanism.

Note that the conditions in Propositions 1 and 2 are only neces-
sary conditions on the distribution of spring locations of a parallel
mechanism. To realize a given elastic behavior, additional condi-
tions are required [1–4].

3.2 Realization Conditions for Six-Spring Mechanisms. In
previous work [4], sets of realization conditions for six-spring parallel
mechanisms to achieve an arbitrary compliance were presented.
Since the realization of a stiffness matrix with six parallel springs
is essential for the synthesis of two 3-joint serial mechanisms, a
more physically intuitive set of conditions for the realization of a stiff-
ness with a six-spring parallel mechanism is developed below.
If a given stiffness matrix K is realized by a six-spring parallel

mechanism with spring wrenches wi and spring rates ki, then,

K = k1w1wT
1 + k2w2wT

2 + · · · + k6w6wT
6 (41)

where each ki≥ 0.
For any given mechanism geometry, the coefficients kis in

Eq. (41) can be uniquely determined using the following procedure.
For an arbitrary 3 × 3 symmetric matrix A having entries aij,

denote â as the six-vector of the six independent entries of A:

â = [a11, a12, a13, a22, a23, a33]T (42)

With this representation, symmetric matrices K and wiwT
i can be

described as six-vectors k̂ and ŵi. Denote

k = [k1, k2, . . . , k6]T , Ŵ = [ŵ1, ŵ2, . . . , ŵ6] ∈ R6×6 (43)

Then, Eq. (41) can be equivalently expressed as follows:

k̂ = Ŵk (44)

For the generic case in which Ŵ is full rank, the spring rate vector k
can be determined by

k = Ŵ
−1
k̂ (45)

Thus, for any given symmetric matrix K and any set of six spring
wrenches wi, K can be expressed in the form of Eq. (41) and the
coefficients ki are uniquely determined by Eq. (45) if Ŵ is full rank.
The coefficients kis from Eq. (45), however, are not guaranteed to

be non-negative, a requirement for passive realization. Thus, K can
be passively realized by the six springs if and only if

Ŵ
−1
k̂ ≥ 0 (46)

Condition (46) imposes six inequalities on the six spring wrenches
wis. These inequalities cannot be directly used in the synthesis of a
mechanism for the realization of a given stiffness because the phys-
ical meaning of these inequalities is lost in the matrix inverse
operation.
In the synthesis procedure presented in Sec. 4, a set of six spring

wrenches is first selected based on two geometric considerations
that ensure a physically realizable solution is obtained. One
ensures that Ŵ is full rank, and the other ensures that the stiffness
coefficients calculated by Eq. (45) are positive. After the wrench
locations are selected, the corresponding spring rates are determined
using Eq. (45).

3.2.1 Solution Existence and Uniqueness. Equation (45) indi-
cates that when the six spring wrenches wi are determined and
the corresponding set of six-vectors ŵi are linearly independent,
each coefficient ki can be uniquely determined for any given K.
If, however, the six 6-vectors ŵis are not linearly independent, Ŵ
is not full rank, and an arbitrary stiffness matrix K cannot be
expressed in the form of Eq. (41).
The linear independence of the set of six-vectors ŵi (i =

1, 2, . . . , 6) is equivalent to the linear independence of the six
rank-1 matrices wiwT

i in R3×3. Below, a geometric necessary and

Fig. 6 The restriction on the directions of springs related to the
principal stiffnesses: (a) angle θi between position vector ri and
the principal axis and (b) areas Λx and Λy defined by lines l−θ
and l+θ . At least one ri must be in Λx and at least one ri must be
in Λy.

Fig. 7 Cases in which a given stiffness cannot be achieved by
the parallel mechanisms: (a) all spring axes intersect circle Γk,
(b) all position vectors ri from the stiffness center to the spring
axes are located in area Λy, (c) all vectors ri are located in area
Λx, and (d ) the set of ris do not span more than a half plane
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sufficient condition for the set of wiwT
i s to be linearly dependent is

identified.
If the wiwT

i s are dependent, then one matrix wiwT
i can be

expressed as a linear combination of the other five matrices. Here,
we suppose, without loss of generality, that

w6wT
6 = α1w1wT

1 + α2w2wT
2 + · · · + α5w5wT

5 (47)

Consider the intersection of two spring wrencheswi andwj repre-
sented by twist tij. Then,

tTijwi = 0, tTijwj = 0 (48)

Multiplying Eq. (47) with tT12 from the left and t34 from the right
yields

(tT12w6)(wT
6 t34) = α5(tT12w5)(wT

5 t34) (49)

Similarly,

(tT13w6)(wT
6 t24) = α5(tT13w5)(wT

5 t24) (50)

Equating α5 in Eqs. (49) and (50) yields

(tT12w5)(tT34w5)(tT13w6)(tT24w6) = (tT12w6)(tT34w6)(tT13w5)(tT24w5)

(51)

Conversely, it can be proved that if Eq. (51) is satisfied, wiwT
i s

must be linearly dependent (proved in the Appendix). Thus, Condi-
tion (51) is the necessary and sufficient condition for the linear
dependence of the six rank-1 matrices wiwT

i s. The necessary and
sufficient condition for Eq. (44) to be solvable then is that
Eq. (51) is not satisfied.
To obtain the geometric significance of condition (51), consider

the mapping from the wrench space W into the real field R defined
as follows:

F6(w) = (tT12w)(t
T
34w)(t

T
13w5)(tT24w5)

− (tT12w5)(tT34w5)(tT13w)(t
T
24w) (52)

where w ∈ W is an arbitrary wrench. For any given five wrenches
wi (i= 1, 2, …, 5), Eq. (52) defines a function F6(w) :W → R.
Let B6 be the 3 × 3 matrix defined as

B6 = (tT13w5)(tT24w5)t12tT34 − (tT12w5)(tT34w5)t13tT24 (53)

and the corresponding symmetric matrix is

M6 = B6 + BT
6 (54)

Then, the function defined in Eq. (52) can be expressed in quadratic
form:

F6(w) = wTM6w (55)

It can be seen that

F6(wi) = 0, for i = 1, 2, 3, 4, 5 (56)

and that w6wT
6 can be expressed as a linear combination of the other

five matrices w1wT
1 , w2wT

2 , . . . , w5wT
5 if and only if

F6(w6) = 0 (57)

Consider the mapping from twist space T to wrench space W
defined as follows:

w =M−1
6 t (58)

Then,

wTM6w = 0⇐⇒ tTM−1
6 t = 0 (59)

If an arbitrary unit twist t defined in the xy-plane is

t = [y, −x, 1]T (60)

then,

f6(x, y) = tTM−1
6 t = 0 (61)

defines a quadratic curve in the xy-plane. Then, w6 satisfies Eq. (57)
if and only if it is tangent to the quadratic curve f6= 0 defined by
Eq. (61). Equation (44) is unsolvable if and only if the sixth
spring wrench w6 is tangent to the quadratic curve determined by
the other five spring wrenches. Thus, when the first five spring
wrenches are determined, the sixth spring must be selected such
that it either crosses the quadratic curve f6= 0 or does not meet
the curve.
Since a quadratic curve tangent to five given non-concurrent lines

is unique and the spring wrenches can be numbered arbitrarily, the
six rank-1 matrices wiwT

i (i= 1, 2, …, 6) are linearly dependent if
and only if the six spring axes are all tangent to a single quadratic
curve. Therefore, Eq. (44) is solvable for an arbitrary stiffness if
and only if the six spring axes are not all tangent to any quadratic
curve (Fig. 8).
In a six-spring parallel mechanism, for any spring wrench ws, the

quadratic curve fs tangent to the other five spring wrenches can be
determined as follows:

Bs = (tTipwr)(tTjqwr)tijtTpq − (tTijwr)(tTpqwr)tiptTjq (62)

where (i, j, p, q, r) is an arbitrary permutation of the set {1, 2, 3, 4, 5,
6} excluding s. The corresponding symmetric matrix is

Ms = Bs + BT
s (63)

The quadratic curve is determined by the equation:

fs = tTM−1
s t = 0 (64)

where t is the unit twist defined in Eq. (60).
Note that the tangent condition for six springs only ensures the

existence and uniqueness of the solution to Eq. (44); it does not
ensure that each ki obtained by Eq. (45) is non-negative. For
passive realization, additional conditions to ensure a non-negative
solution ki≥ 0 are needed.

3.2.2 The Coefficient Signs and Spring Geometry. As shown in
Ref. [4], for any PSD matrix K and a set of six springs {wi, i= 1, 2,
…, 6}, ifK is expressed in the form of Eq. (41), the number of coef-
ficients kis that are negative cannot exceed 3. Thus, if all six kis have
the same sign, they must all be positive. Below, the relation between
the sign of ki and the spring geometry is identified.
For a given stiffness K and a six-spring parallel mechanism, any

four spring wrenches (wi, wj, wp, wq) define a quadratic curve as
follows.
Consider the 3 × 3 matrix Gijpq defined as follows:

Gijpq = (tTijKt pq)(tiptTjq) − (tTipKt jq)(tijtTpq) (65)

Fig. 8 The six rank-1 matrices wiwT
i (i = 1, 2, . . . , 6) are linearly

dependent if and only if the six spring axes are all tangent to a
quadratic curve: (a) a quadratic curve with one branch and (b)
a quadratic curve with two branches
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where tij is the unit twist centered at the intersection of wrenches wi

and wj. The symmetric matrix associated with Gijpq is follows:

Hijpq =Gijpq +GT
ijpq (66)

For an arbitrary unit twist t defined in Eq. (60), the equation

hijpq(x, y) = tTH−1
ijpqt = 0 (67)

defines a quadratic curve in the plane. This curve depends on the
given stiffness matrix K and, as proved in Ref [4], is tangent to
the four spring wrenches (wi, wj, wp, wq).
Note the quadratic curve hijpqmay have a single branch (ellipse or

parabola) or two branches (hyperbola). As proved in Ref. [4], two
coefficients kr and ks have the same sign if and only if, of the two
wrenches wr and ws, only one intersects a single branch of the qua-
dratic curve hijpq determined by the other four spring wrenches
defined in Eq. (67).
Consider the selection of the sixth spring location when the other

five have already been selected. In order to obtain the coefficient k6
associated withw6, multiplying Eq. (41) by tT12 and t34 (from the left
and right, respectively) yields

tT12Kw34 = (tT12w5)(wT
5 t34)k5 + (tT12w6)(wT

6 t34)k6 (68)

Similarly,

tT13Kt24 = (tT13w5)(wT
5 t24)k5 + (tT13w6)(wT

6 t24)k6 (69)

Solving Eqs. (68)–(69) for k6 yields

k6 =
(tT13w5)(tT24w5)(tT12Kt34) − (tT12w5)(tT34w5)(tT13Kt24)

F6(w6)
(70)

where the denominator F6(w) is the function defined in Eq. (52).
Since the five spring wrenches (w1, w2, …, w5) are already

selected, the numerator of Eq. (70) is constant and the sign of k6
only depends on the denominator F6(w6). To ensure the existence
of a solution, w6 must either (i) intersect the quadratic curve f6=
0 or (ii) have no intersection with the curve. The coefficient k6
changes sign if and only if w6 changes its intersection case (i) to
case (ii) or vice versa.
Figure 9 illustrates the relations between the signs of kis and the

curves h1234 and f6. Coefficients k5 and k6 have the same sign if and
only if either only w5 or only w6 intersects a single branch of h1234
(Fig. 9(a)). If the first five wrenches are selected, k6 changes sign if
and only ifw6 moves from a location where it intersects curve f6 to a
location w6

′ where it does not intersect the curve or vice versa
(Fig. 9(b)).
In summary, for a stiffness matrix K and a six-spring parallel

mechanism with spring wrenches wi (i= 1, 2, …, 6), if K is
expressed in the form of Eq. (41), then,

(1) Any two coefficients kr and ks have the same sign if and only
if either only wr or only ws intersects the curve of Eq. (67)
determined by the other 4 wrenches;

(2) When ws varies in the plane while all the other five springs
are constant, the corresponding ks does not change its sign
if and only if ws maintains its intersection property with
the quadratic curve fs of Eq. (64) tangent to the other five
spring wrenches.

3.2.3 Realization Conditions. The linear independence condi-
tion on the distribution of springs described in Sec. 3.2.1 ensures
the solution existence and uniqueness. The separation conditions
on any two spring axes described in Sec. 3.2.2 ensure the solution
is positive valued. In summary, we have:
PROPOSITION 3. Consider a parallel mechanism described by

six spring wrenches wi. A stiffness matrix K can be realized by
the mechanism if and only if the following two conditions are
satisfied:

(i) All six spring axes are not tangent to any quadratic curve;
(ii) For any combination of two springs, only one spring axis

crosses a single branch of the quadratic curve of Eq. (67)
determined by the other four springs.

Note that, in a six-spring parallel mechanism, there are 15 combi-
nations of two springs (wi, wj). In a synthesis procedure, however, it
is not necessary to check all combinations. If the combinations of one
spring with each of the others ensure that these kis have the same sign,
then the six spring constants must be all positive (since K is positive
definite). For example, if each of the five springs paired with the sixth
spring (e.g., (wi, w6), i= 1, 2, 3, 4, 5) satisfies Condition (ii) of Prop-
osition 3, then all ki must be positive.

4 Stiffness Synthesis for Two 3-Joint Serial
Mechanisms
In this section, a synthesis procedure for the realization of an arbi-

trary stiffness matrixK with two 3-joint serial mechanisms is devel-
oped. First, a new geometry-based procedure for the synthesis of a
six-spring parallel mechanism is presented. Then, using the concept
of dual elastic mechanisms, the obtained six-spring parallel mecha-
nism is converted into two 3-joint serial mechanisms.

4.1 Synthesis With a Six-Spring Parallel Mechanism. In
Ref. [4], a synthesis procedure for six-spring parallel mechanisms
was presented. In the process of Ref. [4], several sufficient condi-
tions were used to ensure that the spring rates ki are positive.
Here, a new six-spring mechanism synthesis procedure that uses
only the necessary and sufficient conditions of Proposition 3 is
presented.
A planar stiffness matrix K can be partitioned as follows:

K =
A b
bT k33

[ ]

for which the location of the center of stiffness is given by

rc = −ΩA−1b (71)

whereΩ is the 2 × 2 matrix defined in Eq. (8). The unit twist tc asso-
ciated with the stiffness center Ck is calculated using Eqs. (6) and
(9).
The steps for spring selections are outlined below and illustrated

in Fig. 10.

(1) Select four spring axes (w1, w2, w3, w4) with the guidance
provided below and obtain the quadratic curve associated
with these four springs.
(i) Since the stiffness center must be surrounded by the

spring axes, wrench locations relative to the stiffness
center should be considered. The four spring locations
should be selected such that: (1) the conditions of

Fig. 9 The sign of ki and the quadratic curves: (a) k5 and k6 have
the same sign if and only if either only w5 or only w6 intersects
curve h1234 determined by the other four springs and (b) if the
first five spring are selected, k6 changes sign if and only if w6
varies from a location of intersecting curve f6 to a location w6

′
not intersecting the curve or vice versa
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Propositions 1 and 2 are easily satisfied and (2) knowl-
edge that the intersection of all six wrenches will even-
tually correspond to the joint locations of two serial
mechanisms.

(ii) For the selected four spring wrenches wi (i= 1, 2, 3, 4),
the corresponding quadratic curve h1234= 0 is obtained
using Eq. (67).

(2) Select w5 and w6 such that k5 and k6 are positive.
(i) Choose w5 such that it does not intersect curve h1234= 0;

choose w6 such that it only intersects a single branch
of the curve. These selections ensure that coefficients
k5 and k6 have the same sign. Evaluate the value of k6
using Eq. (70). If k6 > 0, then both k5 and k6 are positive.
Go to Step 3.

(ii) If k6 < 0, obtain the quadratic curve f6 associated with the
five spring wrenches (w1,w2,w3,w4,w5) using Eq. (61).
Then, move w6 such that it changes the intersection rela-
tion with curve f6. For example, ifw6 intersects f6 at loca-
tion l6 as shown in Fig. 10, then move it to a location that
does not meet the curve such as location l6′. In this
process, the geometric condition for w5 and w6 with
respect to curve h1234 described in (i) should be main-
tained. In satisfying these conditions, both k5 and k6
are positive.

(3) Adjust the spring locations to ensure that all coefficients kis
are positive. For the obtained six spring wrenches, calculate
the six coefficients ki using Eq. (45).
(i) If one coefficient is negative, obtain the quadratic curve

determined by four of the other five spring wrenches and
then move a corresponding spring wrench based on the
curve. For example, if k1 < 0, obtain curve h2345= 0
determined by (w2, w3, w4, w5); then move w6 such
that condition (ii) of Proposition 3 is satisfied. As such,
k1 > 0.

(ii) If two coefficients are negative, then use the process
described in Step 2(ii) for w5 and w6 to make the two
coefficients positive. For example, if k1 and k2 are nega-
tive, then move either w1 or w2 relative to f1 or f2 defined
in Eq. (64) to change its intersection property with the
curve. In this process, the intersection property of w1

and w2 with curve h3456 should be maintained. As
such, both k1 and k2 are positive.

Since the number of negative coefficients does not exceed 3, at
most two adjustment iterations are needed.
With the final step, the six spring wrenches wi and the corre-

sponding stiffnesses ki are identified.

4.2 Conversion to Two 3-Joint Serial Mechanisms. Using
the concept of dual elastic mechanisms, the six-spring parallel

mechanism obtained in Sec. 4.1 is converted into two serial
mechanisms.

(1) Separate the six springs into two groups (w1, w2, w3) and
(w4, w5, w6).

The separation is not unique. Different groupings will
yield different serial mechanisms. One can separate the
springs based on the desired serial mechanism geometry
and constraints.

(2) Obtain the dual serial mechanism for each group.
(i) For (w1, w2, w3), the three joint locations (J1, J2, J3) are

determined by the twists:

t̃1 = w2 × w3, t̃2 = w1 × w3, t̃3 = w1 × w2

The corresponding joint compliances are calculated
using Eq. (19).

(ii) Similarly, for (w4, w5, w6), the joint locations and corre-
sponding joint compliances are obtained.

With this final step, two serial mechanisms that realize the given
stiffness K are obtained.

5 Example
In this section, a numerical example is provided to illustrate the

synthesis procedures. In a global frame, the compliance matrix to
be realized is

K =
3 −2 −8

−2 6 11
−8 11 30

⎡
⎣

⎤
⎦

In the realization of K, it is desired that the obtained two 3-joint
serial mechanisms are below the center of the stiffness.
Using Eq. (71), the stiffness center is calculated to be

rc = [1.2143, 1.8571]T

The unit twist at the center is

tc = [1.8571, −1.2143, 1]T

The two principal axes and the corresponding two translational
principal stiffnesses are as follows:

[e1, e2] =
0.8944 −0.4472
0.4472 0.8944

[ ]
, [kx, ky] = [2, 7]

and the rotational principal stiffness is kτ= 1.7857. Using Eqs. (31)
and (40), the radii of circle Γk and angle θx are calculated to be

Γk : rk = 0.4725, θx = 28.1255 deg

The stiffness center Ck, the circle Γk, the principal axes (e1, e2), and
the two lines l−θ and l+θ for this stiffness matrix are illustrated in
Fig. 11.
Following the procedure described in Sec. 4, a six-spring parallel

mechanism that realizes the given behavior is first obtained. Then,
the parallel mechanism is converted into two 3-joint serial
mechanisms.

5.1 Synthesis for a Six-Spring Parallel Mechanism. With
the steps described in Sec. 4.1, a six-spring parallel mechanism is
synthesized.

(1) Select four spring axes (w1, w2, w3, w4).
The spring axis selections are based on the conditions of

Propositions 1 and 2 and illustrated in Fig. 10. Here, w1 and
w3 are selected not to meet circle Γk having angles −45 deg
and 60 degwith the x-axis, respectively;w2 andw4 are selected
to meet circle Γk having angles 75 deg and −45 deg with the

Fig. 10 Stiffness synthesis with a six-spring parallel mecha-
nism. Selection of w5 and w6: w6 intersects curve h1234 while w5
does not.
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x-axis, respectively. The four spring wrenches are as follows:

w1, w2, w3, w4[ ]

=
0.7071 0.2588 0.5000 0.7071
−0.7071 0.9659 0.8660 −0.7071
−1.6500 0.3500 1.2000 −2.5000

⎡
⎣

⎤
⎦

Using Eq. (67), the quadratic curve h1234= 0 associated with
the four spring wrenches is obtained:

19.1154x2 + 13.5743xy + 0.5215y2 − 73.3346x

− 20.0868y + 67.7967 = 0

which corresponds to the hyperbola illustrated in Fig. 11.
(2) Select the remaining two spring axes w5 and w6.

To ensure the corresponding spring constants k5 and k6
have the same sign, only one of the two spring axes must
intersect one branch of h1234. Here, w5 is selected to be

w5 = [0.8660, 0.5, −0.3]T

which does not intersect curve h1234 as shown in Fig. 12. The
axis of the sixth spring is first selected to be vertical and pass
through x= 2.5, i.e.,

w′
6 = [0, 1, 2.5]T

which intersects curve h1234. For the currently selected spring
wrenches (w1, w2, w3, w4, w5, w6

′), using Eq. (67), the spring
constant k6 is calculated to be

k6 = −1.0418

which indicates that both k5 and k6 are negative.
To change the sign of k5 and k6, the quadratic curve f6

tangent to the five spring wrenches (w1, w2, w3, w4, w5) is
the hyperbola obtained using Eq. (61) and is illustrated in
Fig. 12. It can be seen that w′

6 intersects f6. Move w6
′ to a

new location w′′
6 such that it does not meet curve f6, then

the corresponding coefficients k5 and k6 are both positive.

Here, w6
′′ is selected to be

w′′
6 = [0, 1, 2]T

(3) Make adjustment to ensure all positive coefficients kis.
For the six spring wrenches (w1, w2, w3, w4, w5, w6

′′), cal-
culate the coefficients ki using Eq. (45),

k = [2.2606, 2.2732, −0.5905, 2.8649, 0.5773, 1.6149]T

Since only k3 is negative, the location of any one spring rela-
tive tow3 needs to be adjusted. Here, consider the pair of (w3,
w6

′′) and the quadratic curve h1245 associated with (w1, w2,
w4, w5) obtained using Eq. (67). As shown in Fig. 12,
h1245 is an ellipse tangent to the four wrench axes and not
intersected by w3 or w6

′′. To ensure that k3 and k6 are both
positive, either w3 or w6

′′ must be moved to intersect the
ellipse. Here, w6

′′ is translated further to the right to location
w6 to cross the ellipse. The spring wrench w6 selected is

w6 = [0, 1, 1.8]T

With the six selected spring wrenches (w1, w2, w3, w4, w5,
w6), the corresponding spring constants calculated using
Eq. (45) are as follows:

k = [2.1395, 2.2776, 0.1293, 3.2507, 0.1605, 1.0428]T

Thus, a six-spring parallel mechanism that passively realizes
the given K is obtained.

5.2 Conversion to Two 3-Joint Serial Mechanisms. With the
steps described in Sec. 4.2, the obtained six-spring parallel mecha-
nism is transformed into two 3-joint serial mechanisms.

(1) Separate the six springs into two groups.
Since it is desired that each joint in the serial mechanisms

be below the stiffness center (below line lc as illustrated in
Fig. 13), the two groups separated are (w1, w2, w5) and
(w3, w4, w6).

(2) Obtain the dual elastic serial mechanism for each
three-spring group.

Fig. 11 Selection of the first four spring axes. The four spring
axes are selected to satisfy the conditions of Propositions 1
and 2. The quadratic curve h1234 tangent to the 4 springs is a
hyperbola.

Fig. 12 Selection of the fifth and sixth springs. The sixth spring
is first moved from w6

′′ to w6
′ (changing the intersection property

with curve f6) tomake k6 positive. Then, it is moved for w6 to inter-
sect curve h1245 to make k3positive.
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For the three-spring system (w1,w2,w5), the three joints of
the dual serial mechanism are located at the three vertexes of
the triangle formed by the three spring axes as shown in
Fig. 13. The joint twists (t1, t2, t3) at the joints J1, J2 and
J3 are calculated using Eq. (15) to be

[t1, t2, t3] =
0.6573 1.0738 1.5548

−0.5385 −1.2598 −0.7789
1.0000 1.0000 1.0000

⎡
⎣

⎤
⎦

and the corresponding joint compliances calculated using
Eq. (19) are

c1 = 0.3025, c2 = 0.1523, c3 = 2.6890

Similarly, for the three-spring system (w3, w4, w6), the joint
twists (t4, t5, t6) at the joints J4, J5 and J6 are calculated to be

[t4, t5, t6] =
0.7176 1.7356 1.3630

−1.8000 −1.8000 −2.1726
1.0000 1.0000 1.0000

⎡
⎣

⎤
⎦

The corresponding joint compliances are as follows:

c4 = 0.5937, c5 = 29.8472, c6 = 6.9068

With this final step, the configurations (illustrated in Fig. 13)
and the joint compliances of the two 3-joint serial mechanism
are identified.

To validate the result, the Cartesian compliances associ-
ated with the two serial mechanisms are calculated. For
mechanism J1J2J3, the Cartesian compliance is calculated
to be

C1 = c1t1tT1 + c2t2tT2 + c1t1tT1

=

36.6695 −19.4520 24.2798

−19.4520 10.9779 −13.2290
24.2798 −13.2290 16.4249

⎡
⎢⎣

⎤
⎥⎦

For mechanism J4J5J6, the Cartesian compliance is calcu-
lated to be

C2 = c4t4tT4 + c5t5tT5 + c6t6tT6

=

103.0418 −114.4624 61.6415

−114.4624 131.2301 −69.7994
61.6415 −69.7994 37.3477

⎡
⎢⎣

⎤
⎥⎦

Since the two serial mechanisms are independently con-
nected to the body, the overall stiffness of the system is

K = C−1
1 + C−1

2 =
3 −2 −8

−2 6 11
−8 11 30

⎡
⎣

⎤
⎦

which confirms that the given stiffness is realized by the two
serial mechanisms.

6 Discussion and Summary
In this section, the new six-spring mechanism synthesis proce-

dure is compared to that previously obtained [4] and a brief
summary is presented.

6.1 Discussion. The synthesis of a multi-serial parallel mecha-
nism presented in this paper is based on the concept of dual elastic
mechanisms and the new procedure developed for six-spring paral-
lel mechanisms. Compared to the previous work [4] in which suffi-
cient conditions are used, the synthesis procedure developed in this
paper uses only necessary and sufficient conditions. Thus, the space
of spring candidates for the realization of a given elastic behavior is
significantly enlarged.
The realization conditions are represented by the wrench loca-

tions relative to quadratic curves fs defined by Eq. (64) and hijpq
defined by Eq. (67). The shapes of these quadratic curves are deter-
mined by the eigenvalues of the 2 × 2 leading block in M−1

s of
Eq. (64) or in H−1

ijpq of Eq. (67). If the two eigenvalues are
non-zero with the same sign, the curve is an ellipse; if the two eigen-
values are non-zero with opposite signs, the curve is a hyperbola; if
one eigenvalue is zero, the curve is a parabola. It can be seen that in
the generic case, the quadratic curves used in the synthesis are either
ellipses or hyperbolas.
Unlike the previous process, the synthesis procedure presented in

this paper may require iteration that involves adjusting the spring
locations by evaluating the spring coefficients and the corresponding
quadratic curves. If one spring location is changed, all spring coeffi-
cients kiwill be changed. Since the sign change of a spring coefficient
depends on the change of intersection relations of the corresponding
wrench with respect to a quadratic curve, when the location change
of a spring is not large, the intersection relations of other springs with
respect to other curves is likely maintained.
In the synthesis process, the first four spring locations are arbi-

trary. Thus, some mechanism geometric constraints can be consid-
ered and enforced in the process. For example, if one joint location
in each serial mechanism is specified, then, those two points can be
selected as the intersections of two springs in the selection of the
first four springs. For example, the specified points might be on
the base of each serial mechanism, or both on the reference body.

6.2 Summary. In this paper, the realization of any planar com-
pliance with a type of multi-serial parallel mechanism (two 3-joint
serial mechanisms connected in parallel) is addressed. It is shown
that the realization of a compliant behavior with this type of mecha-
nism is equivalent to its realization with a 6-spring fully parallel
mechanism. For any given elastic behavior, conditions on the distri-
bution of springs in a parallel mechanism relative to the center of stiff-
ness are identified. A new synthesis procedure that uses only
necessary and sufficient conditions for the realization is developed.
The obtained six-spring parallel mechanism is transformed into two
3-joint serial mechanisms. The theories presented in this paper
enable one to achieve any specified elastic behavior with amulti-serial
parallel mechanismwith some control over the mechanism geometry.

Fig. 13 Conversion of the six-spring parallel mechanism into
two 3-joint serial mechanisms
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Appendix
Consider the function defined by Eq. (52):

F6(w) = (tT12w)(t
T
34w)(t

T
13w5)(tT24w5)

− (tT12w5)(tT34w5)(tT13w)(t
T
24w) (A1)

Then, Eq. (51) is equivalent to F6(w6)= 0. We prove that, if
F6(w6) = 0, then, the determinant of the 6 × 6 matrix Ŵ defined in
Eq. (43) must be zero, i.e.,

det(Ŵ) = 0 (A2)

If det(Ŵ) ≠ 0, the inverse of Ŵ can be expressed as

Ŵ
−1

=
adj(Ŵ)

det(Ŵ)
(A3)

where adj(Ŵ) is the adjoint matrix of Ŵ. Thus, Eq. (45) can be
expressed as

k =
adj(Ŵ)k̂

det(Ŵ)
(A4)

If we denote the sixth component of adj(Ŵ)k̂ as k6*, then

k6 =
k∗6

det(Ŵ)
(A5)

Comparing Eq. (5) with Eq. (70),

det(Ŵ) ≠ 0⇐⇒F6(w6) ≠ 0 (A6)

Thus, if F6(w6)= 0, det(Ŵ) must be zero and the column vectors of
Ŵmust be linearly dependent, which implies thatwiwT

i must be lin-
early dependent. Therefore, Eq. (51) is also a sufficient condition
for the six rank-1 matrices s to be linearly dependent.
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