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1 Introduction

In robotic manipulation, some form of compliance is needed to
provide accurate relative positioning for constrained motion and
to avoid excessive contact forces when interacting with other
objects. A general model of compliance is a rigid body suspended
by an elastic system. In robotic applications, compliance can be
attained by the robot itself and/or by an elastic device at the robot
end-effector. An elastic behavior is characterized by the relationship
between a wrench w (force and torque) applied to the body and the
resultant twist t (translation and rotation) of the body. If small dis-
placement from an equilibrium is considered, the elastic behavior
can be described by a linear mapping:

w=Kt or t=Cw (1)

where the stiffness K and compliance C (the inverse of K) are sym-
metric positive semi-definite (PSD) matrices.

An elastic suspension can be obtained by a general network of
passive elastic components. The elastic behavior of the network is
determined by (1) the way components are connected (in parallel
or in series), (2) the geometric configuration of components, and
(3) the elastic properties (joint or spring stiffness) of each compo-
nent. Each of these needs to be identified to achieve a desired Car-
tesian compliant behavior at the reference body. The two networks
with the simplest topology are as follows: (1) a fully parallel mech-
anism having springs independently connected to the reference
body (Fig. 1(a)), and (2) a fully serial mechanism having compli-
ances at each joint ultimately connected to the reference body
(Fig. 1(b)).

A significant amount of prior work has addressed compliance
realization with serial mechanisms having kinematic redundancy.
Unlike a redundant fully parallel mechanism, a redundant serial
mechanism can change its configuration without end-point
motion. Therefore, a larger space of compliances can be attained
not only by adjusting the joint compliances, but also by varying
the configuration of this type of mechanism. Also, a redundant
serial mechanism can continuously provide a desired compliance
when the suspended reference body (the end-effector) is moving
in space. However, a fully serial mechanism has the following sig-
nificant limitations relative to fully parallel mechanisms.
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(1) The suspended weight of the mechanism is larger, especially
when the mechanism has more joints and longer links. The
suspending joint forces may result in relatively large defor-
mation and thus influence the accuracy of the manipulator;

(2) The set of realizable elastic behaviors is more restricted. A
relatively large set of compliant behaviors cannot be achieved
even if each joint compliance has infinite range [1-4].

The set of realizable compliant behaviors using fully serial mech-
anisms is restricted in that a desired planar compliant behavior can
be realized by a serial mechanism only if the center of compliance
(the location where the compliance matrix is diagonal) is inside the
convex hull formed by the mechanism joint locations [1-4]. If the
center of a desired compliance is beyond the mechanism workspace,
the compliance cannot be realized regardless of the values of joint
compliances. This restriction prevents serial mechanisms from pro-
viding the appropriate compliance in many tasks, since most manip-
ulations require that the compliance center be projected away from
the mechanism (e.g., Ref. [5]).

The two limitations of fully serial elastic mechanisms do not exist
for multi-serial parallel mechanisms. As such, two or more serial
mechanisms connected in parallel can be used to support and
move an object as well as attain a much larger set of compliant
behaviors. Using two serial mechanisms, the forces and moments
at each joint due to the weight are reduced, enabling the dexterous
manipulation of larger and heavier objects, and the space of realiz-
able compliant behaviors is dramatically increased.

As stated previously, a planar compliance (or stiffness) center is
the location at which the compliance (or stiffness) matrix can be
expressed in diagonal form, i.e., the location at which translational
and rotational aspects are completely decoupled. Figure 2 illustrates

Al

Fig. 1 Compliant mechanisms having simple topology: (a) fully
parallel mechanism and (b) fully serial mechanism
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Fig. 2 Space of compliance centers associated with two types
of elastic suspensions: (a) a simple fully serial mechanism with
elastic joints. The compliance center locus is the triangle JJ2J3
formed by the three joints and (b) two fully serial mechanisms
with elastic joints. The compliance center locus is the union of
triangles formed by all combinations of lines along the sides of
triangles J1J2J3 and JJsde.

the space of realizable compliance centers associated with a 3R
serial mechanism (Fig. 2(a)) and the space of realizable compliance
centers associated with two 3R serial mechanisms connected in par-
allel (Fig. 2(b)). For the fully serial mechanism shown in Fig. 2(a),
the locus of the compliance centers achievable by the mechanism is
the triangle J,J,J3 [1]. The mechanism cannot realize a compliance
with a center located above the end-effector. When two serial mech-
anisms are used, the space of the realizable centers is not just the
union of the center spaces associated with each serial mechanism,
i.e., the two triangles J,J,J5 and J4JsJe. It is the union of the trian-
gles formed by all combinations of the straight lines along the sides
of the two triangles [2,3] as shown in Fig. 2(b). It can be seen that
the locus of compliance center locations achievable by the multi-
serial parallel mechanism extends far beyond the workspaces of
the two serial mechanisms.

1.1 Related Work. In the analysis of general compliant beha-
vior, screw theory [6-9] and Lie groups [10,11] have been used. In
recent work on the realization of compliance, the design of mecha-
nisms to achieve a specified elastic behavior has been addressed.
Most early approaches were based on a rank-1 decomposition of
the compliance/stiffness matrix [12-18]. In some work on the
synthesis of compliance [16-18], geometric constraints on the
mechanisms were considered in the procedures. In Ref. [19], a
fully geometric construction-based approach to the realization of
spatial compliance was developed.

In Refs. [20,21], approaches to attain an isotropic compliance in a
Euclidean space with a fully serial mechanism were presented. In
Refs. [22,23], compliance analysis and synthesis for flexure mech-
anisms were addressed. In Refs. [24,25], stiffness synthesis for par-
allel mechanisms was presented.

In closely related work in the realization of planar compliance
[1-4], geometry-based approaches were used in the design of mech-
anisms (both fully serial and fully parallel) having three to six
elastic components. Necessary and sufficient conditions on the cor-
responding mechanism geometry were identified for the realization
of an arbitrary compliance. It was shown that, as the number of the
elastic components »n increases, the dimension of the space of real-
izable compliances is similarly increased for n <6.

In almost all prior work, mechanisms considered for the realiza-
tion of compliance were either fully parallel or fully serial. Very
little work has addressed the compliance synthesis with multiple
serial mechanisms. When compliance realization of multi-serial
parallel mechanisms has been addressed [26], optimization has
been used to select mechanism geometry and elastic behavior that
is unlikely to attain the desired Cartesian compliance.

1.2 Partial-Geometric Approach. For two serial mechanisms
that are independently connected to a suspended body, if C; is the
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compliance matrix of each serial mechanism, then the Cartesian
stiffness K of the system is

K=K, +K, 2)

where K; = C;! is the stiffness matrix associated with each serial
mechanism. Thus, if a given stiffness K is algebraically decom-
posed arbitrarily into two rank-3 matrices as in Eq. (2), then, each
K; can be realized with a 3R serial mechanism using a systematic
geometric construction process [1]. As such, any stiffness K can
be achieved with limited geometric considerations by two serial
mechanisms by varying the mechanism geometry and its inherent
passive compliant behavior in each component.

Although a decomposition of K into the form of Eq. (2) yields
two serial mechanisms that realize the behavior, the algebraic
decomposition process of Eq. (2) does not take into account the geo-
metric properties of the mechanisms. It is known that for any given
symmetric PSD matrix, there are infinitely many algebraic decom-
positions of the matrix in the form of Eq. (2). The geometry of each
serial mechanism would largely depend on how the stiffness matrix
is decomposed. A purely algebraic decomposition of a stiffness
matrix may result in mechanisms that are geometrically awkward
or violate task-imposed geometric constraints. Therefore, an
approach that takes into account the geometry of components in
each step of the synthesis process is needed.

1.2.1 Full-Geometric Approach. In this paper, a new approach
to realize a given compliance with a multi-serial parallel mechanism
is developed. The mechanism considered consists of two 3-joint
serial mechanisms connected in parallel. The approach allows one
to select the geometry of each component.

The main contributions of the paper are as follows:

(1) Identification of the elastic duality between a manipulator
consisting of two 3-joint compliant arms and a fully parallel
mechanism consisting of 6 springs.

(2) Development of a geometry-based procedure for the realiza-
tion of an arbitrary planar compliance with a two-arm
manipulator.

Additional contributions include the following: (1) identification
of necessary conditions on spring geometry for the realization of an
arbitrary elastic behavior with any number of springs connected in
parallel; (2) identification of a new set of necessary and sufficient
conditions for the realization of any elastic behavior with six
springs connected in parallel.

1.3 Overview. In this paper, a geometry-based synthesis pro-
cedure for the realization of any given planar compliance with
two 3R serial mechanisms connected in parallel is developed. The
synthesis is based on the concept of dual elastic mechanisms [1].

The paper is outlined as follows. In Sec. 2, screw representation
of planar mechanism configurations and the concept of dual elastic
mechanisms are reviewed. In Sec. 3, necessary conditions on spring
geometry of any parallel mechanism for the realization of a speci-
fied elastic behavior and a new set of necessary and sufficient con-
ditions for the realization of any specified compliance with a
six-spring parallel mechanism are identified. In Sec. 4, a geometry-
based synthesis procedure for a two-arm mechanism to realize a
given compliance is developed. In Sec. 5, a numerical example is
provided to demonstrate the synthesis procedure. Finally, a discus-
sion and summary are presented in Sec. 6.

2 Technical Background

In this section, the background needed for planar compliance
realization with a multi-serial parallel mechanism is provided.
First, screw representation of a planar mechanism configuration is
reviewed. Next, the duality relationship between a planar parallel
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elastic mechanism and a planar serial elastic mechanism is
presented.

2.1 Stiffness Realization With Parallel Connections.
Consider a planar parallel mechanism consisting of a set of n line
springs connected to a single reference body. The geometry of
each spring can be represented by a unit wrench w; defined as a
spring wrench. In Plicker ray coordinates, the planar spring
wrench associated with a line spring has the form:

o

where the unit vector n indicates the direction of the wrench (spring
axis) and where

d=(@rxn) -k 4)

where r is the position vector from the origin to any point on the line
and k is the unit vector orthogonal to the plane.

It can be seen that the line-of-action (axis) of wrench w uniquely
defines a line in the plane. Conversely, any line in the plane is repre-
sented by a unique unit wrench w in the form of Eq. (3) such that the
line is the axis of w. Thus, a unit wrench w can be used to represent
the axis of a spring, and geometrically, represent a line in the plane.

If a stiffness matrix K is realized with a fully parallel mechanism
having n springs w; (1, ..., n), then [15]

K= klwlwlT + kzwzwg +- 4 k,,w,,w,f 5)

where k; >0 is the stiffness of spring w;.

Conversely, if a stiffness matrix K can expressed in the form of
Eq. (5) with each k; > 0, then the stiffness is realized with a parallel
mechanism having its geometry described by spring wrenches w;.
Thus, to realize a specified stiffness K with a parallel mechanism,
a set of spring wrenches w;’s and the corresponding spring rates
k; must be identified such that Eq. (5) is satisfied.

2.2 Compliance Realization With Serial Connections.
Consider a planar serial mechanism consisting of n revolute
joints. The location of a joint can be represented by a unit twist t;
defined as a joint twist. In Pliicker axis coordinates, the planar
motion joint twist associated with a joint has the form:

u
=0

where u = r x k, k is the unit vector orthogonal to the plane and r is
the position vector of the revolute joint with respect to the coordi-
nate frame:

r=Qu @)

where Q is the 2 x 2 skew-symmetric matrix defined as follows:

0 -1
Q= |: | 0:| (8)
Thus, for any given unit twist in Eq. (6), the corresponding instan-

taneous center location r is determined by Eq. (7).
Since Q7' =Q” = —Q, Eq. (7) can be expressed as

u=-Qr )

Thus, the location of a point uniquely describes a unit twist.
If a compliance matrix C is realized with a fully serial mechanism
having #n joints described by joint twists t;, (1, ..., n), then [15]
C=citit] +catoth + -+ + cutyt! (10)

where ¢; >0 is the joint compliance at joint t;.
Conversely, if a compliance matrix C can be expressed in the
form of Eq. (10) with each ¢; >0, then the compliance is realized
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at the serial mechanism configuration described by joint twists t;.
Thus, to realize a specified compliance C with a serial mechanism,
the mechanism configuration t;’s and the corresponding joint com-
pliances ¢;’s must be identified such that Eq. (10) is satisfied.

2.3 Reciprocal Screws. A wrench w expressed in Pliicker ray
coordinates and a twist t expressed in Pliicker axis coordinates are
reciprocal if and only if

t'w=0 (11)
Geometrically, the reciprocal condition Eq. (11) for the planar case
indicates that the line defined by wrench w passes through the point
defined by twist t.

If a line passes through two points J; and J; that are represented by
unit twists t; and t; respectively, the wrench w;; associated with the
line must satisfy:

t/w; =0, t/w;=0 (12)
Thus, for planar screws, wrench w;; can be uniquely determined by
the cross product operation:

Wij=tixtj (13)

Similarly, if a point is located at the intersection of two lines that are
represented by wrenches w; and w;, respectively, the twist t; asso-
ciated with the point must satisfy:

Cw; =0, thw;=0 (14)
The planar twist t; can be determined by
tij =W; XW; (15)

For planar screws, a unit twist reciprocal to two non-parallel
wrenches is unique. These properties will be used in the description
of realization conditions in planar parallel, serial, and multi-serial
parallel mechanisms. The reciprocal relation between spring
wrenches in a parallel mechanism and joint twists in a serial mech-
anism is the foundation for the concept of dual elastic mechanisms
[1] as reviewed below.

2.4 Planar Dual Elastic Mechanisms. Suppose a three-spring
planar parallel mechanism has spring wrenches wy, w,, and ws. The
lines of action of w; form a triangle. Consider the three unit twists
(ty, t,, t3) centered at the triangle vertices, i.e., t; is centered at the
intersection of w; and w,,. Then, t; is reciprocal to wrenches (w;, w,,).

Also consider a planar serial mechanism having these same three
joint twists ty, t,, and t3. The triangle formed by the three line spring
axes in the parallel mechanism is coincident with the triangle
formed by the vertices identified by the three revolute joints in the
serial mechanism. A pair of parallel and serial elastic mechanisms
satisfying these conditions are defined as dual elastic mechanisms [1].

Figure 3 illustrates a pair of dual elastic mechanisms for the
generic case. The triangle A;A»A; in the three-spring parallel mech-
anism of Fig. 3(a) is coincident with triangle J;J,J3 in the three-joint
serial mechanism of Fig. 3(b). Each spring wrench w; in the parallel
mechanism is reciprocal to two joint twists (t;, t,) in the serial
mechanism.

Given a pair of dual elastic mechanisms with spring wrenches
(W1, Wo, W3) and joint twists (t;, t,, t3), for a given elastic behavior
described in stiffness matrix K or compliance matrix C=K ™", it is
proved [1] that

and that an elastic behavior can be realized with one mechanism if
and only if it can be realized with its dual elastic mechanism. When
their elastic properties have infinite variability, the space of realiz-
able elastic behaviors for each mechanism is exactly the same.
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Fig.3 Planar dual elastic mechanisms in parallel and serial con-
struction: (a) a 3-spring parallel mechanism and (b) dual elastic
3R serial mechanism. The triangle formed by the three spring
axes in the parallel mechanism is coincident with the triangle
formed by the three joints in the serial mechanism. The two
mechanisms have the exact same space of realizable compliant
behaviors when k; in (a) and c; in (b) have infinite variability.

Also, it can be proved that, if k; is the spring constant associated
with spring wrench w; in the parallel mechanism and c; is the
joint compliance associated with joint twist t;, then k; and c¢; satisfy:

1

=(vvl.T—tl-)2’ l=1,2,3

an

iCi

2.5 Application of Dual Elastic Mechanisms. Since any
three-joint serial elastic mechanism can be replaced with its dual
parallel elastic mechanism (and vice versa) without changing the
realizability of compliant behaviors, a multi-serial manipulator
system can be replaced by a fully parallel mechanism. Therefore,
two 3-joint serial manipulators can be replaced by a six-spring par-
allel manipulator and the existing synthesis procedures for compli-
ance realization with a six-spring parallel mechanism can be
modified to achieve the desired elastic behavior with a two-arm
manipulator. This process does not require a matrix inverse (as in
Eq. (2)) for which the geometric significance of spring wrenches
or joint twists is lost.

The transformation of two 3R serial mechanisms to a six-spring
parallel mechanism is unique; whereas, the reverse transformation
is not.

Figure 4 illustrates the transformation of a six-spring parallel
mechanism into two 3R serial mechanisms. The six springs are
separated into two groups (W, Wo, W3) and (W4, Ws, Wg). The three-
spring system (w;, W», W3) is converted into its dual three-joint
serial mechanism J,J,J/3, and the three-spring system (w4, Ws, W)
is converted into its dual three-joint serial mechanism JyJs5Js.
Since the locations of joints in each serial mechanism are at the
intersection of the corresponding two spring axes, the twist centered
at joint J, can be determined using Eq. (15),

t,=w;xw (18)

‘é‘

Fig. 4 A six-spring parallel mechanism transformed into a two-
serial parallel mechanism using dual elastic mechanisms. Each
set of three springs is replaced by a three-joint serial mechanism
having three elastic joints (and vice versa).

051007-4 / Vol. 14, OCTOBER 2022

By normalizing f,,, the corresponding joint twist (unit twist), t, is
obtained. The joint compliances can be calculated using Eq. (17),

1

= =1,2,...,6
ki(WiTti)2

Ci 19)

Because the separation of the six springs into two 3-spring
systems is not unique, if two different three-spring systems (wj,
w,, Wy) and (W3, Ws, W) are instead considered, two different
serial mechanisms will be obtained.

3 Stiffness Realization With a Parallel Mechanism

In this section, stiffness realization with a parallel mechanism is
addressed. First, new relationships between mechanism geometry
and the location of the compliance center are presented. These rela-
tionships yield a set of necessary conditions on spring positions and
orientations relative to the stiffness center that must be satisfied in
order to achieve a given compliance. Then, a new set of necessary
and sufficient conditions on spring configurations for the realization
of stiffness with a six-spring parallel mechanism is identified.

3.1 Mechanism Geometry and Stiffness Center. In the real-
ization of a stiffness with a parallel mechanism, the springs must
surround the center of stiffness. Below, we show that an additional
requirement on the distribution of springs relative to the center of
stiffness must be satisfied.

Consider a planar parallel mechanism with n springs. The axis of
each spring can be represented by a unit wrench w; having the form

of Eq. (3):
— ni
w; = d

where d;=(r;xn;)-k indicates the distance from the coordinate
frame to the spring axis, and r; is the perpendicular position
vector from the coordinate frame to the spring axis. Since both n;
and k are unit vectors,

(20)

el = Idi] @n

If each spring wrench w; and corresponding spring stiffness k; are
given, the Cartesian stiffness K of the mechanism is as follows:

K= klwlwlT + kzwzwg +---+ k,,w,,w: (22)

If the coordinate frame origin is located at the center of stiffness,

then each vector r; in Eq. (21) is the perpendicular position vector

from the stiffness center to the axis of wrench w;. As proved in
Ref. [27],

kiri + ko +--- 4+ k,r,=0 (23)

Thus, the center of stiffness is the center of the n spring axes
weighted by the corresponding spring rate values k;. Additional
requirements on the distribution of spring locations are identified

below.
At the stiffness center, a coordinate frame can be oriented such
that the stiffness matrix has diagonal form:
K = diag(ky, &y, k;) (24)

where k, and k, are the two translational principal stiffnesses and &,
is the rotational principal stiffness. If we denote

rmin=min{“r1”,~~~a ”rn”} (25)

Fmax =max {(ry ..., e, )|} (20)

then, we have:
ProposITION 1. Suppose a stiffness K is realized by an n-spring
parallel mechanism. If t,,;, and 1, are the minimum and
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maximum distances from the stiffness center to the spring axes, then

k;
ke + ky

rmm —_ < rmax (27)

where k,, k,, and k, are the principal stiffnesses of K.
Proof. Proof. Consider the coordinate frame located at the stiffness
center for which the stiffness matrix is diagonal:

K = diag(k,, ky, k.) (28)
Each spring wrench described in this frame is
n;
w; = [ d,-] (29)
Then,
n n;
K= ka,w _Zk[ ] [n!, 4]
| XL kmnl 3T kiding
T XL kdim! YL kid?
Since n; is a unit vector, trace(n,-nl-T) =1,
ke +ky = trace(z k,vn,vniT) =ki+k+--+k,
The value of the (3, 3) entry of K is
k. =kid} + kods + - - - + kyd> (30)
Since d? = ||r,]|%,
ky+---+ k”)rmm <k <(tkj+---+k )rmax
which is equivalent to
k
2 T2
rmm - kx + k) - rmax
and leads to
ke
Fmin < < Fmax
ky +ky
n

Thus, to realize a given stiffness with a parallel mechanism, the
spring axes in the mechanism must enclose the stiffness center
Cy, and some, but not all, spring axes must intersect circle I'; of
radius

k.
= 31
Tk kot 3D

a

centered at the stiffness center C; (Fig. 5).

For a given elastic behavior, the principal stiffnesses not only
restrict the distances between the springs and the stiffness center
but also the directions of spring axes. Suppose e; and e, are the
unit vectors along the two principal axes. In the principal frame at
the stiffness center, let 6; be the angle between the (perpendicular)
position vector r; and the principal axis e;, as shown in Fig. 6(a).
Then, the direction of r; is

w; =[cos §;, sinf;]" (32)

Since r; is perpendicular to wrench w;, the unit direction two-vector
n; in Eq. (29) can be expressed as follows:

n; = [—sin6;, cos§;]” (33)
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Fig. 5 Spring axes in a parallel mechanism. At least one spring
axis must intersect circle I', and at least one spring axis must not
intersect I'y.

Thus,

5 2w

which leads to

sin 6;

c0s 6; :| —siné;, cos ;]

ke =Y kisin6; (34)
Let
sin @i, = min{|sind;|, i=1,2,..., n} (35)
Sin O, = max {|siné;|, i=1,2,...,n} (36)
then,
ko= kisin? 0 < (D7 ki) sin Oy = (ke + k) sin® O (37)
Therefore,
ky
Omax > 38
Sin O, kot k, (38)
Similarly,
ke
Omin < - 39
sin otk (39)
Let
k
| X
0, =sin ( itk (40)

and denote I, and [} to be the two lines passing through stiffness
center C; and having angles —6, and 6, with respect to the x-axis
respectively, then, the two lines separate the plane into two areas
A, and A, as illustrated in Fig. 6(b). The perpendicular vectors r;
from the stiffness center to the springs cannot be either all in area
A, or all in area A,

Also, the perpendicular position vectors r;s cannot all be within a
half plane defined by a line passing through the compliance center,
i.e, the space positively spanned by r;s must be contain at least a half
plane. This can be proved by Eq. (23). In fact, if all r;s are inside a
half plane, then Eq. (23) cannot hold for coefficients k;> 0.

In summary, we have:

ProposITION 2. Suppose a stiffness K is realized by an n-spring

parallel mechanism and r; is the perpendicular vector from the

stiffness center to the spring axis of w;. Then, the set of r; vectors
must

(i) Belocated in both areas A, and A, bounded by lines /} and I,
as illustrated in Fig. 6(b);

OCTOBER 2022, Vol. 14 / 051007-5



Fig. 6 The restriction on the directions of springs related to the
principal stiffnesses: (a) angle 6; between position vector r; and
the principal axis and (b) areas A, and A, defined by lines I,
and I;,*. At least one r; must be in A, and at least one r; must be
in Ay.

(i1) Span a space of at least a half plane.

Figure 7 illustrates four cases in which the given compliance
cannot be achieved by the illustrated parallel mechanism regardless
of the values of spring rates.

In the case of Fig. 7(a), all spring axes intersect circle I'; deter-
mined by Eq. (31); therefore, Propositions 1 is not satisfied. The
spring locations in the parallel mechanism will not yield sufficient
moment about the stiffness center required by the stiffness matrix.
Thus, the behavior cannot be achieved by the mechanism regardless
the values of the spring constants.

In the cases of Figs. 7(b) and 7(c), Proposition 1 is satisfied in
both cases. In the case of Fig. 7(b), all perpendicular position
vectors of springs are located in the area A,, therefore, condition
(i) of Proposition 2 is not satisfied. The springs in this case will
yield excessive force in the x-direction relative to the y-direction
regardless of the spring rate values. Similarly, in the case of
Fig. 7(c), all spring position vectors are located in the area A,.
The springs in this case will yield excessive force in the y-direction
relative to the x-direction regardless of the spring rate values.

In the case of Fig. 7(d), Proposition 1 and condition (i) of Prop-
osition 2 are both satisfied, however, the spring position vectors (r;,
r;, I,) do not span more than a half plane, therefore, condition (ii) of
Proposition 2 is not satisfied. Thus the compliant behavior cannot
be realized by the mechanism.

Fig. 7 Cases in which a given stiffness cannot be achieved by
the parallel mechanisms: (a) all spring axes intersect circle I'y,
(b) all position vectors r; from the stiffness center to the spring
axes are located in area A, (c) all vectors r; are located in area
Ay, and (d) the set of r;s do not span more than a half plane

051007-6 / Vol. 14, OCTOBER 2022

Note that the conditions in Propositions 1 and 2 are only neces-
sary conditions on the distribution of spring locations of a parallel
mechanism. To realize a given elastic behavior, additional condi-
tions are required [1-4].

3.2 Realization Conditions for Six-Spring Mechanisms. In
previous work [4], sets of realization conditions for six-spring parallel
mechanisms to achieve an arbitrary compliance were presented.
Since the realization of a stiffness matrix with six parallel springs
is essential for the synthesis of two 3-joint serial mechanisms, a
more physically intuitive set of conditions for the realization of a stiff-
ness with a six-spring parallel mechanism is developed below.

If a given stiffness matrix K is realized by a six-spring parallel
mechanism with spring wrenches w; and spring rates k;, then,

K= ](1W1W¥w + szzW; + -+ k6W6W£ 41

where each k; > 0.
For any given mechanism geometry, the coefficients k;s in
Eq. (41) can be uniquely determined using the following procedure.
For an arbitrary 3 x3 symmetric matrix A having entries a;,
denote a as the six-vector of the six independent entries of A:

5 T
a= a1, an, a3, an, a3, az] (42)

With this representation, symmetric matrices K and w;w! can be
described as six-vectors k and w;. Denote

k=[ki, koo, kel's W =[Wi, Wa, ..., Ws] € R™®  (43)
Then, Eq. (41) can be equivalently expressed as follows:
k = Wk (44)

For the generic case in which W is full rank, the spring rate vector k
can be determined by

k=W 'k 45)

Thus, for any given symmetric matrix K and any set of six spring
wrenches w;, K can be expressed in the form of Eq. (41) and the
coefficients ; are uniquely determined by Eq. (45) if W is full rank.

The coefficients k;s from Eq. (45), however, are not guaranteed to
be non-negative, a requirement for passive realization. Thus, K can
be passively realized by the six springs if and only if

Wk>0 (46)
Condition (46) imposes six inequalities on the six spring wrenches
w;s. These inequalities cannot be directly used in the synthesis of a
mechanism for the realization of a given stiffness because the phys-
ical meaning of these inequalities is lost in the matrix inverse
operation.

In the synthesis procedure presented in Sec. 4, a set of six spring
wrenches is first selected based on two geometric considerations
that ensure a physically realizable solution is obtained. One
ensures that W is full rank, and the other ensures that the stiffness
coefficients calculated by Eq. (45) are positive. After the wrench
locations are selected, the corresponding spring rates are determined
using Eq. (45).

3.2.1 Solution Existence and Uniqueness. Equation (45) indi-
cates that when the six spring wrenches w; are determined and
the corresponding set of six-vectors W; are linearly independent,
each coefficient k; can be uniquely determined for any given K.
If, however, the six 6-vectors W;s are not linearly independent, W
is not full rank, and an arbitrary stiffness matrix K cannot be
expressed in the form of Eq. (41).

The linear independence of the set of six-vectors W; (i=
1,2,...,6) is equivalent to the linear independence of the six
rank-1 matrices w;w’ in R*>?3. Below, a geometric necessary and
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sufficient condition for the set of w,-w,-Ts to be linearly dependent is
identified.

If the w;w’s are dependent, then one matrix w;w/ can be
expressed as a linear combination of the other five matrices. Here,
we suppose, without loss of generality, that

T T T T
WeWg = QW W + W W, + -« - + asW5 Wy 47

Consider the intersection of two spring wrenches w; and w; repre-
sented by twist t;. Then,
tiwi=0, thw;=0 (48)
Multiplying Eq. (47) with t!, from the left and t34 from the right
yields

(t1,We)(We t34) = s (t], ws) (W1 t34) (49)

Similarly,

(t] 3 Wo)(We thg) = a5 (t]; Ws) (WL ts) (50)

Equating as in Egs. (49) and (50) yields

(], Ws)(th, W)t We (s, We) = (t1, We)(th, We)(t]; Ws)(th,Ws)
1)

Conversely, it can be proved that if Eq. (51) is satisfied, w;w’'s

must be linearly dependent (proved in the Appendix). Thus, Condi-
tion (51) is the necessary and sufficient condition for the linear
dependence of the six rank-1 matrices w;w[s. The necessary and
sufficient condition for Eq. (44) to be solvable then is that
Eq. (51) is not satisfied.

To obtain the geometric significance of condition (51), consider
the mapping from the wrench space W into the real field R defined
as follows:

Fo(w) = (t],w)(t5,W)(t];Ws)(t),Ws)

— (t],ws)(th,ws)(t,,w)(th, w) (52)

where w € W is an arbitrary wrench. For any given five wrenches
w; (i=1, 2, ..., 5), Eq. (52) defines a function Fs(w): W — R.
Let B¢ be the 3 x 3 matrix defined as

Bg = (t];ws) (6, Ws)tioth, — (£, Ws)(t5,ws)tist), (53)
and the corresponding symmetric matrix is
Mg =Bs +B] (54)

Then, the function defined in Eq. (52) can be expressed in quadratic
form:

Fo(w) = w Mgw (55)
It can be seen that
Fe(w;)=0, fori=1,2,3,4,5 (56)
and that wﬁwg can be expressed as a linear combination of the other
five matrices wlwlT, wzwzr s W5w5T if and only if
Fe(we)=0 )

Consider the mapping from twist space T to wrench space W
defined as follows:

w=M;'t (58)
Then,

w Mew =0 t'M;'t=0 (59)
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If an arbitrary unit twist t defined in the xy-plane is

t=[y,—x 117 (60)

then,

fole, y)=t'M;'t=0 (61)

defines a quadratic curve in the xy-plane. Then, wg satisfies Eq. (57)
if and only if it is tangent to the quadratic curve fg =0 defined by
Eq. (61). Equation (44) is unsolvable if and only if the sixth
spring wrench wg is tangent to the quadratic curve determined by
the other five spring wrenches. Thus, when the first five spring
wrenches are determined, the sixth spring must be selected such
that it either crosses the quadratic curve fs =0 or does not meet
the curve.

Since a quadratic curve tangent to five given non-concurrent lines
is unique and the spring wrenches can be numbered arbitrarily, the
six rank-1 matrices wiwiT (i=1,2, ..., 6) are linearly dependent if
and only if the six spring axes are all tangent to a single quadratic
curve. Therefore, Eq. (44) is solvable for an arbitrary stiffness if
and only if the six spring axes are not all tangent to any quadratic
curve (Fig. 8).

In a six-spring parallel mechanism, for any spring wrench wy, the
quadratic curve f; tangent to the other five spring wrenches can be
determined as follows:

B, = (t,,w)(t], wotyt] — (thw, (], wt,t], (62)
where (i, j, p, g, ) is an arbitrary permutation of the set {1, 2, 3,4, 5,
6} excluding s. The corresponding symmetric matrix is

M, =B, + B! (63)
The quadratic curve is determined by the equation:
fi=t'M;'t=0 (64)

where t is the unit twist defined in Eq. (60).

Note that the tangent condition for six springs only ensures the
existence and uniqueness of the solution to Eq. (44); it does not
ensure that each k; obtained by Eq. (45) is non-negative. For
passive realization, additional conditions to ensure a non-negative
solution k; >0 are needed.

3.2.2  The Coefficient Signs and Spring Geometry. As shown in
Ref. [4], for any PSD matrix K and a set of six springs {w;, i=1, 2,
..., 6}, if Kis expressed in the form of Eq. (41), the number of coef-
ficients k;s that are negative cannot exceed 3. Thus, if all six ;s have
the same sign, they must all be positive. Below, the relation between
the sign of k; and the spring geometry is identified.

For a given stiffness K and a six-spring parallel mechanism, any
four spring wrenches (w;, w;, w,,, w,) define a quadratic curve as
follows.

Consider the 3 x 3 matrix G;;,, defined as follows:

ijpg

Gijpg = (Kt )t t], ) — (8] Kt )(tt], ) (65)
(a) (b) W, W
Wy W, 6
E*quadratic

Fig. 8 The six rank-1 matrices w;w] (i=1,2,..., 6) are linearly
dependent if and only if the six spring axes are all tangent to a
quadratic curve: (a) a quadratic curve with one branch and (b)
a quadratic curve with two branches
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where t;; is the unit twist centered at the intersection of wrenches w;
and w;. The symmetric matrix associated with Gy, is follows:

Hijpy = Gijpg + Ggpq (66)
For an arbitrary unit twist t defined in Eq. (60), the equation
hijpg(x, y) = t'Hj) t=0 (67)

defines a quadratic curve in the plane. This curve depends on the
given stiffness matrix K and, as proved in Ref [4], is tangent to
the four spring wrenches (w;, w;, w,,, w,).

Note the quadratic curve h;;,, may have a single branch (ellipse or
parabola) or two branches (hyperbola). As proved in Ref. [4], two
coefficients k, and k, have the same sign if and only if, of the two
wrenches w, and w, only one intersects a single branch of the qua-
dratic curve h;,, determined by the other four spring wrenches
defined in Eq. (67).

Consider the selection of the sixth spring location when the other
five have already been selected. In order to obtain the coefficient k¢
associated with we, multiplying Eq. (41) by tsz and t34 (from the left
and right, respectively) yields

t1,Kwag = (t,Ws)(Wl tag)ks + (t,We) (Wi tsadks  (68)
Similarly,
t13 Kty = (t;ws)(W5 toa)ks + (t3we)(We ks (69)
Solving Egs. (68)—(69) for k4 yields
kg = (L ws) (A, ws)(th, Ktss) — (t1,ws)(tL, ws) (1, Kto) (70)

Fe(We)

where the denominator Fg(w) is the function defined in Eq. (52).

Since the five spring wrenches (w;, w,, ..., Ws) are already
selected, the numerator of Eq. (70) is constant and the sign of k¢
only depends on the denominator F(We). To ensure the existence
of a solution, wg must either (i) intersect the quadratic curve fg =
0 or (ii) have no intersection with the curve. The coefficient kg
changes sign if and only if we changes its intersection case (i) to
case (ii) or vice versa.

Figure 9 illustrates the relations between the signs of k;s and the
curves hyy34 and fg. Coefficients ks and k¢ have the same sign if and
only if either only ws or only wg intersects a single branch of /534
(Fig. 9(a)). If the first five wrenches are selected, ks changes sign if
and only if wg moves from a location where it intersects curve fg to a
location wg where it does not intersect the curve or vice versa
(Fig. 9(b)).

In summary, for a stiffness matrix K and a six-spring parallel
mechanism with spring wrenches w; (i=1, 2, ..., 6), if K is
expressed in the form of Eq. (41), then,

G-

Fig.9 The sign of k; and the quadratic curves: (a) ks and kg have
the same sign if and only if either only ws or only wg intersects
curve hy,34 determined by the other four springs and (b) if the
first five spring are selected, k¢ changes sign if and only if wg
varies from a location of intersecting curve f; to a location wg
not intersecting the curve or vice versa

051007-8 / Vol. 14, OCTOBER 2022

(1) Any two coefficients k, and k, have the same sign if and only
if either only w, or only w, intersects the curve of Eq. (67)
determined by the other 4 wrenches;

(2) When wy varies in the plane while all the other five springs
are constant, the corresponding k,; does not change its sign
if and only if w,; maintains its intersection property with
the quadratic curve f; of Eq. (64) tangent to the other five
spring wrenches.

3.2.3  Realization Conditions. The linear independence condi-
tion on the distribution of springs described in Sec. 3.2.1 ensures
the solution existence and uniqueness. The separation conditions
on any two spring axes described in Sec. 3.2.2 ensure the solution
is positive valued. In summary, we have:

ProrosiTioN 3. Consider a parallel mechanism described by
six spring wrenches w;. A stiffness matrix K can be realized by
the mechanism if and only if the following two conditions are
satisfied:

(1) All six spring axes are not tangent to any quadratic curve;

(i) For any combination of two springs, only one spring axis

crosses a single branch of the quadratic curve of Eq. (67)
determined by the other four springs.

Note that, in a six-spring parallel mechanism, there are 15 combi-
nations of two springs (w;, w;). In a synthesis procedure, however, it
is not necessary to check all combinations. If the combinations of one
spring with each of the others ensure that these k;s have the same sign,
then the six spring constants must be all positive (since K is positive
definite). For example, if each of the five springs paired with the sixth
spring (e.g., (w;, We), i=1, 2, 3, 4, 5) satisfies Condition (ii) of Prop-
osition 3, then all k; must be positive.

4 Stiffness Synthesis for Two 3-Joint Serial
Mechanisms

In this section, a synthesis procedure for the realization of an arbi-
trary stiffness matrix K with two 3-joint serial mechanisms is devel-
oped. First, a new geometry-based procedure for the synthesis of a
six-spring parallel mechanism is presented. Then, using the concept
of dual elastic mechanisms, the obtained six-spring parallel mecha-
nism is converted into two 3-joint serial mechanisms.

4.1 Synthesis With a Six-Spring Parallel Mechanism. In
Ref. [4], a synthesis procedure for six-spring parallel mechanisms
was presented. In the process of Ref. [4], several sufficient condi-
tions were used to ensure that the spring rates k; are positive.
Here, a new six-spring mechanism synthesis procedure that uses
only the necessary and sufficient conditions of Proposition 3 is
presented.

A planar stiffness matrix K can be partitioned as follows:

A b
k=[y &)

for which the location of the center of stiffness is given by

r.=—-QA"'b (71)

where Q is the 2 x 2 matrix defined in Eq. (8). The unit twist t. asso-
ciated with the stiffness center Cy is calculated using Egs. (6) and
).

The steps for spring selections are outlined below and illustrated
in Fig. 10.

(1) Select four spring axes (w,, Wo, W3, Wy) with the guidance
provided below and obtain the quadratic curve associated
with these four springs.

(1) Since the stiffness center must be surrounded by the
spring axes, wrench locations relative to the stiffness
center should be considered. The four spring locations
should be selected such that: (1) the conditions of
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Fig. 10 Stiffness synthesis with a six-spring parallel mecha-
nism. Selection of ws and wg: wg intersects curve hy,34 while ws
does not.

Propositions 1 and 2 are easily satisfied and (2) knowl-
edge that the intersection of all six wrenches will even-
tually correspond to the joint locations of two serial
mechanisms.

(i1) For the selected four spring wrenches w; (i=1, 2, 3, 4),
the corresponding quadratic curve /1,34 =0 is obtained
using Eq. (67).

(2) Select ws and wg such that ks and k¢ are positive.

(i) Choose ws such that it does not intersect curve /534 =0;
choose wg such that it only intersects a single branch
of the curve. These selections ensure that coefficients
ks and kg have the same sign. Evaluate the value of k¢
using Eq. (70). If k¢ >0, then both ks and k¢ are positive.
Go to Step 3.

(ii) If k¢ <0, obtain the quadratic curve fs associated with the
five spring wrenches (W, W,, W3, Wy, Ws) using Eq. (61).
Then, move wg such that it changes the intersection rela-
tion with curve fs. For example, if wg intersects fg at loca-
tion /g as shown in Fig. 10, then move it to a location that
does not meet the curve such as location g In this
process, the geometric condition for ws and wg with
respect to curve hjp34 described in (i) should be main-
tained. In satisfying these conditions, both ks and kg
are positive.

(3) Adjust the spring locations to ensure that all coefficients k;s
are positive. For the obtained six spring wrenches, calculate
the six coefficients k; using Eq. (45).

(1) If one coefficient is negative, obtain the quadratic curve
determined by four of the other five spring wrenches and
then move a corresponding spring wrench based on the
curve. For example, if k; <0, obtain curve hy345=0
determined by (w,, w3, W4, Ws); then move wg such
that condition (ii) of Proposition 3 is satisfied. As such,
ki >0.

(ii) If two coefficients are negative, then use the process
described in Step 2(ii) for ws and wg to make the two
coefficients positive. For example, if k; and &, are nega-
tive, then move either w; or w, relative to f; or f> defined
in Eq. (64) to change its intersection property with the
curve. In this process, the intersection property of w
and w, with curve hs45¢ should be maintained. As
such, both k; and k, are positive.

Since the number of negative coefficients does not exceed 3, at
most two adjustment iterations are needed.

With the final step, the six spring wrenches w; and the corre-
sponding stiffnesses k; are identified.

4.2 Conversion to Two 3-Joint Serial Mechanisms. Using
the concept of dual elastic mechanisms, the six-spring parallel
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mechanism obtained in Sec.4.1 is converted into two serial
mechanisms.

(1) Separate the six springs into two groups (w;, W, w3) and
(W4, Ws, We).

The separation is not unique. Different groupings will
yield different serial mechanisms. One can separate the
springs based on the desired serial mechanism geometry
and constraints.

(2) Obtain the dual serial mechanism for each group.
(i) For (wy, w,, ws), the three joint locations (Jy, J,, J3) are
determined by the twists:

E1=W2XW3, f2=W1XW3, E3=W]XW2

The corresponding joint compliances are calculated
using Eq. (19).

(ii) Similarly, for (w4, Ws, W), the joint locations and corre-
sponding joint compliances are obtained.

With this final step, two serial mechanisms that realize the given
stiffness K are obtained.

S Example

In this section, a numerical example is provided to illustrate the
synthesis procedures. In a global frame, the compliance matrix to
be realized is

3 -2 -8
K=|-2 6 11
-8 11 30

In the realization of K, it is desired that the obtained two 3-joint
serial mechanisms are below the center of the stiffness.
Using Eq. (71), the stiffness center is calculated to be

r.=[1.2143, 1.8571]"
The unit twist at the center is
t.=[1.8571, —1.2143, 117

The two principal axes and the corresponding two translational
principal stiffnesses are as follows:

ley, €] = 0.8944
bEI= 04472

and the rotational principal stiffness is k, =1.7857. Using Egs. (31)
and (40), the radii of circle I'; and angle 6, are calculated to be

—0.4472

0.8944]’ e, k] =12, 7]

Ty re=0.4725, 6, =28.1255deg

The stiffness center Cy, the circle I';, the principal axes (ey, e;), and
the two lines /; and [ for this stiffness matrix are illustrated in
Fig. 11.

Following the procedure described in Sec. 4, a six-spring parallel
mechanism that realizes the given behavior is first obtained. Then,
the parallel mechanism is converted into two 3-joint serial
mechanisms.

5.1 Synthesis for a Six-Spring Parallel Mechanism. With
the steps described in Sec. 4.1, a six-spring parallel mechanism is
synthesized.

(1) Select four spring axes (W, wa, W3, Wy).

The spring axis selections are based on the conditions of
Propositions 1 and 2 and illustrated in Fig. 10. Here, w; and
w3 are selected not to meet circle I'; having angles —45 deg
and 60 deg with the x-axis, respectively; w, and w, are selected
to meet circle I'; having angles 75 deg and —45 deg with the
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Fig. 11

Selection of the first four spring axes. The four spring

axes are selected to satisfy the conditions of Propositions 1
and 2. The quadratic curve hy»34 tangent to the 4 springs is a
hyperbola.

@

x-axis, respectively. The four spring wrenches are as follows:

[Wi, wo, W3, W4]

0.7071  0.2588 0.5000  0.7071
=] —0.7071 0.9659 0.8660 —0.7071
—1.6500 0.3500 1.2000 —2.5000

Using Eq. (67), the quadratic curve h,34 =0 associated with
the four spring wrenches is obtained:

19.1154x% + 13.5743xy + 0.5215)* — 73.3346x
—20.0868y + 67.7967 =0

which corresponds to the hyperbola illustrated in Fig. 11.
Select the remaining two spring axes ws and wg.

To ensure the corresponding spring constants ks and kg
have the same sign, only one of the two spring axes must
intersect one branch of /;,34. Here, ws is selected to be

ws = [0.8660, 0.5, —0.3]7

which does not intersect curve /534 as shown in Fig. 12. The
axis of the sixth spring is first selected to be vertical and pass
through x=2.5, i.e.,

w, =0, 1,2.5]"

which intersects curve /,34. For the currently selected spring
wrenches (W, W, W3, Wy, W5, Wg), using Eq. (67), the spring
constant kg is calculated to be

ke =—1.0418

which indicates that both ks and k¢ are negative.

To change the sign of ks and ke, the quadratic curve fg
tangent to the five spring wrenches (W, W, W3, Wy, Ws) is
the hyperbola obtained using Eq. (61) and is illustrated in
Fig. 12. It can be seen that wg intersects fs. Move wg to a
new location w¢ such that it does not meet curve fs, then
the corresponding coefficients ks and kg are both positive.

051007-10 / Vol. 14, OCTOBER 2022

©))

Here, w¢ is selected to be
wy =10, 1,2]"

Make adjustment to ensure all positive coefficients k;s.
For the six spring wrenches (W, W,, W3, W4, W5, Wg ), cal-
culate the coefficients k; using Eq. (45),

k = [2.2606, 2.2732, —0.5905, 2.8649, 0.5773, 1.6149]"

Since only kj is negative, the location of any one spring rela-
tive to w3 needs to be adjusted. Here, consider the pair of (w3,
wg) and the quadratic curve hjo45 associated with (wy, wy,
W4, Ws) obtained using Eq. (67). As shown in Fig. 12,
hi24s is an ellipse tangent to the four wrench axes and not
intersected by w3 or wg. To ensure that k3 and kg are both
positive, either w3 or wg must be moved to intersect the
ellipse. Here, wg is translated further to the right to location
W to cross the ellipse. The spring wrench wg selected is

we =10, 1, 1.8]7

With the six selected spring wrenches (W, W,, W3, Wy, Ws,
W), the corresponding spring constants calculated using
Eq. (45) are as follows:

k =[2.1395, 2.2776, 0.1293, 3.2507, 0.1605, 1.0428]"

Thus, a six-spring parallel mechanism that passively realizes
the given K is obtained.

5.2 Conversion to Two 3-Joint Serial Mechanisms. With the
steps described in Sec. 4.2, the obtained six-spring parallel mecha-
nism is transformed into two 3-joint serial mechanisms.

(1) Separate the six springs into two groups.

(2) Obtain

0.5

-0.5

-1

Since it is desired that each joint in the serial mechanisms
be below the stiffness center (below line /. as illustrated in
Fig. 13), the two groups separated are (w;, w,, Ws) and
(W3, W4, W)
the dual elastic serial mechanism for each
three-spring group.

-

W3

W4k ’J.fﬁ o

N hyiyy

L N 1

-1

-0.5 0 2.5 3.5 4

Fig. 12 Selection of the fifth and sixth springs. The sixth spring
is first moved from wg to wg (changing the intersection property
with curve fg) to make kg positive. Then, it is moved for w to inter-
sect curve hq45 to make kzpositive.
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Fig. 13 Conversion of the six-spring parallel mechanism into
two 3-joint serial mechanisms

For the three-spring system (w;, W, Ws), the three joints of
the dual serial mechanism are located at the three vertexes of
the triangle formed by the three spring axes as shown in
Fig. 13. The joint twists (t;, t,, t3) at the joints Jy, J> and
J5 are calculated using Eq. (15) to be

0.6573  1.0738  1.5548
[ti, &, 3] = | —0.5385 —1.2598 —0.7789
1.0000  1.0000  1.0000

and the corresponding joint compliances calculated using
Eq. (19) are

¢; =0.3025, ¢, =0.1523, c¢3=2.6890
Similarly, for the three-spring system (w3, W4, W), the joint
twists (ty, ts, tg) at the joints Jy4, J5 and Jg are calculated to be

0.7176 ~ 1.7356  1.3630
[ts, t5, ts] = | —1.8000 —1.8000 —2.1726
1.0000  1.0000  1.0000

The corresponding joint compliances are as follows:

¢4 =0.5937, ¢5=29.8472, cc=6.9068

With this final step, the configurations (illustrated in Fig. 13)
and the joint compliances of the two 3-joint serial mechanism
are identified.

To validate the result, the Cartesian compliances associ-
ated with the two serial mechanisms are calculated. For
mechanism J1J,J5, the Cartesian compliance is calculated
to be

C = CltltlT + Cztztg + CltltlT

36.6695 —19.4520  24.2798
=| —-19.4520 10.9779 —-13.2290
242798 —13.2290  16.4249

For mechanism J4Js5Jg, the Cartesian compliance is calcu-
lated to be

Journal of Mechanisms and Robotics

C,= C4t4t1- + C5t5t§ + C6t6tg

103.0418 —114.4624  61.6415
=| —114.4624  131.2301 —69.799%4
61.6415  —69.7994 37.3477

Since the two serial mechanisms are independently con-
nected to the body, the overall stiffness of the system is

3 -2 -8
K=C'+C'=|-2 6 11
-8 11 30

which confirms that the given stiffness is realized by the two
serial mechanisms.

6 Discussion and Summary

In this section, the new six-spring mechanism synthesis proce-
dure is compared to that previously obtained [4] and a brief
summary is presented.

6.1 Discussion. The synthesis of a multi-serial parallel mecha-
nism presented in this paper is based on the concept of dual elastic
mechanisms and the new procedure developed for six-spring paral-
lel mechanisms. Compared to the previous work [4] in which suffi-
cient conditions are used, the synthesis procedure developed in this
paper uses only necessary and sufficient conditions. Thus, the space
of spring candidates for the realization of a given elastic behavior is
significantly enlarged.

The realization conditions are represented by the wrench loca-
tions relative to quadratic curves f; defined by Eq. (64) and Ay,
defined by Eq. (67). The shapes of these quadratic curves are deter-
mined by the eigenvalues of the 2x2 leading block in M;! of
Eq. (64) or in H;; , of Eq. (67). If the two eigenvalues are
non-zero with the same sign, the curve is an ellipse; if the two eigen-
values are non-zero with opposite signs, the curve is a hyperbola; if
one eigenvalue is zero, the curve is a parabola. It can be seen that in
the generic case, the quadratic curves used in the synthesis are either
ellipses or hyperbolas.

Unlike the previous process, the synthesis procedure presented in
this paper may require iteration that involves adjusting the spring
locations by evaluating the spring coefficients and the corresponding
quadratic curves. If one spring location is changed, all spring coeffi-
cients k; will be changed. Since the sign change of a spring coefficient
depends on the change of intersection relations of the corresponding
wrench with respect to a quadratic curve, when the location change
of a spring is not large, the intersection relations of other springs with
respect to other curves is likely maintained.

In the synthesis process, the first four spring locations are arbi-
trary. Thus, some mechanism geometric constraints can be consid-
ered and enforced in the process. For example, if one joint location
in each serial mechanism is specified, then, those two points can be
selected as the intersections of two springs in the selection of the
first four springs. For example, the specified points might be on
the base of each serial mechanism, or both on the reference body.

6.2 Summary. In this paper, the realization of any planar com-
pliance with a type of multi-serial parallel mechanism (two 3-joint
serial mechanisms connected in parallel) is addressed. It is shown
that the realization of a compliant behavior with this type of mecha-
nism is equivalent to its realization with a 6-spring fully parallel
mechanism. For any given elastic behavior, conditions on the distri-
bution of springs in a parallel mechanism relative to the center of stiff-
ness are identified. A new synthesis procedure that uses only
necessary and sufficient conditions for the realization is developed.
The obtained six-spring parallel mechanism is transformed into two
3-joint serial mechanisms. The theories presented in this paper
enable one to achieve any specified elastic behavior with a multi-serial
parallel mechanism with some control over the mechanism geometry.
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Appendix
Consider the function defined by Eq. (52):
Fo(W) = (t, W) (£, W)(t[;Ws)(t5,Ws)
= (t,Ws)(65,Ws)(t3W)(£5,W)

Then, Eq. (51) is equivalent to Fg(we) =0. We prove that, if
Fe(Ws) =0, then, the determinant of the 6 x 6 matrix W defined in
Eq. (43) must be zero, i.e.,

(AD

det(W) =0 (A2)
If det(W) # 0, the inverse of W can be expressed as
~ -1 adj(W
Wl =2 (A3)
det(W)

where adj(W) is the adjoint matrix of W. Thus, Eq. (45) can be
expressed as

. adj(W)k

= ~ A4
det(W) Sl
If we denote the sixth component of adj(W)ﬁ as ke*, then
k*
kg =—5— (A5)
det(W)
Comparing Eq. (5) with Eq. (70),
det(W) # 0 = Fg(Ws) # 0 (A6)

Thus, if Fg(ws) =0, det(W) must be zero and the column vectors of
W must be linearly dependent, which implies that w;w” must be lin-
early dependent. Therefore, Eq. (51) is also a sufficient condition
for the six rank-1 matrices s to be linearly dependent.
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