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A B S T R A C T

In this paper, a geometric construction based means of realizing any specified planar compliance
for an object held by a compliant hand is developed. It is shown that the elastic behavior of an
object held by a multi-serial parallel mechanism (a multi-finger compliant hand) is more simply
and equivalently modeled by a fully-parallel dual elastic mechanism. Synthesis procedures are
developed for the realization of an arbitrary compliance with compliant hands using geometric
constraints on the fully-parallel elastic dual. Kinematic topologies addressed are those associated
with hands having 2 or 3 fingers for which each finger has 2 joints.

1. Introduction

In robotic manipulation, compliance is needed to regulate contact forces and to improve accuracy in constrained relative
ositioning. A general model for Cartesian compliance is a rigid-body supported by an elastic suspension. A compliant behavior
s described by the relationship between the force and torque applied to the body and the resulting displacement of the body. For
mall displacements, the relationship is linear and can be characterized by a symmetric positive definite matrix, the compliance
atrix 𝐂, or its inverse, the stiffness matrix 𝐊.

.1. Related work

Prior work has addressed the realization of compliant behavior. Most early work focused on compliance synthesis with either a
ully parallel mechanism or a fully serial mechanism [1–6]. In this work, however, little or no consideration for mechanism geometry
as included in the synthesis processes.
In [7,8], stiffness synthesis methods with planar parallel mechanisms having specific constructions were developed. In [9–14],

the analysis and synthesis of compliance associated with mechanisms composed of distributed elastic components were addressed.
In closely related previous work in planar compliance synthesis [15–18], geometry-based approaches to the design of fully parallel

or fully serial mechanisms with 𝑚 (3 ≤ 𝑚 ≤ 6) elastic components were developed. In each case, necessary and sufficient conditions
on the mechanism geometry were presented for the realization of an arbitrary compliance. In [15], the concept of dual elastic
mechanisms in parallel and serial construction for the realization of planar compliances was defined. It was shown that the space of
compliant behaviors realized by a parallel mechanism is identical to that of its serial elastic dual. Thus, a parallel mechanism can
be replaced by its dual elastic serial mechanism (and vice versa) in synthesis procedures for the realization of a compliance.

In more recent work, multi-serial parallel mechanisms have been considered. In [19], multiple serial elastic mechanisms rigidly
connected to a single body were used to attain a desired planar compliant behavior for the body.
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Fig. 1. Compliant robotic hand with multiple 2-joint fingers. Each finger has two joints with modulated elastic properties. The object is held by the fingers in
point contact.

These previous means to achieve general elastic behavior with elastic mechanisms all assume that the compliance reference
frame is attached to the mechanism distal body. In this paper, the compliance associated with a hand having modulated elastic
properties is considered. Here, the compliance reference frame is attached to an object that is compliantly constrained at locations
on its periphery. An example of this is illustrated in Fig. 1, which shows a robotic hand supporting an object with multiple fingertips
contacting the object surface.

This approach yields a high degree of adjustability. With control of each finger, a hand can grasp and regrasp any object in a
range of shapes. The ability to both change finger joint stiffness and change fingertip locations on the object surface allows a hand
the ability to change the held object’s compliance without influencing the pose of the object.

Many researchers have investigated the compliant behavior associated with a robotic hand [20–27]. Most work has focused on
calculating the Cartesian compliance of a given grasp configuration/joint stiffness combination provided by a compliant hand or on
determining the appropriate joint stiffnesses for a given grasp configuration/Cartesian compliance combination. The mathematical
description of the elastic behavior associated with a hand involves calculating the compliance at each fingertip, inverting the matrix
to obtain the stiffness matrix, then adding the stiffness matrices for each finger to obtain the object stiffness. Due to the complexity
of this process, numerical algorithmic procedures [20,26] or numerical optimization procedures [22,25] have been used. These
numerical approaches, however, neither consider the geometry restriction on the fingers nor guarantee that the desired compliance
is actually attained.

This paper addresses the synthesis of an arbitrary planar compliance with a multi-finger hand. Since the approach developed is
based on necessary and sufficient conditions on the hand geometry, the synthesis procedure ensures that the specified compliant
behavior for the object is achieved.

1.2. Contribution of the paper

This paper addresses the realization of an arbitrary planar compliance with a robotic hand having multiple fingers. The main
contributions of the paper are:

1. The concept of dual elastic mechanisms is extended to more general cases so that a fully parallel mechanism is used to
equivalently model the elastic behavior of a multi-finger hand;

2. Geometric construction-based synthesis procedures are developed for compliance realization with a robotic hand with
multiple fingers, each having 2 elastic joints.

The synthesis procedure developed in this paper is based on analytical and geometrical procedures and the use of necessary and
sufficient (mathematical) conditions. Thus, the mechanism geometry is taken into account in the selection of each elastic component
and the resulting hand is guaranteed to realize the desired compliant behavior (if its realization is possible). These results eliminate
the need for numerical optimization in the realization of a desired grasp compliance.

1.3. Overview

This paper addresses means of providing a held object an arbitrary planar (3 × 3) compliance matrix with a compliant hand. In
the hand topologies considered, each finger has 2 joints for which the passive compliance in each is selected or modulated.

The paper is outlined as follows. In Section 2, some technical background needed for compliance realization with a compliant
hand is provided. In Section 3, the concept of dual elastic mechanisms is first reviewed, and a fully parallel elastic model of a hand
with multiple 2-joint fingers in point contact with an object is developed. In Section 4, compliance realization with a 2-finger hand
is addressed. A new geometry-based synthesis procedure is first developed for 4-spring parallel mechanisms. The new procedure
accounts for the constraints associated with contact only on the body surface. Then, using these results and the concept of dual
elastic mechanisms, a synthesis procedure for a 2-finger hand is presented. Similarly, in Section 5, a new 6-spring parallel mechanism
synthesis procedure and a synthesis procedure for a 3-finger hand are developed. In Section 6, numerical examples are provided to
2

demonstrate the synthesis procedures. Finally, a brief summary is presented in Section 7.
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Fig. 2. A compliant grasp can be modeled as a system of multi-serial mechanisms connected in parallel. (a) At the contact point, only force (no torque) is
transmitted to the body. (b) When a grasp is achieved, finger/object contact is equivalent to a free revolute joint at the contact point.

2. Technical background

In this section, the background needed for the realization of planar compliance with either a parallel or a serial mechanism is
rovided. First, a physical model of a compliant hand interacting with a held object is presented. Next, screw representation of a
echanism configuration is reviewed. Then, previously developed requirements on the distribution of elastic components relative
o the elastic center are reviewed.

.1. Physical model of a robotic compliant hand

In a hand, each finger/object combination can be viewed as a serial mechanism. A compliant grasp then can be modeled as
system of serial mechanisms connected in parallel to the held object. Unlike the fully serial mechanisms studied in previous
ork [18] (in which each joint has elastic behavior), the hard point contact between the fingertip and the held body is inelastic.
s such, at the point of contact, only force (no torque) can be transmitted to the body as illustrated in Fig. 2a.
It can be seen that, with the above assumptions, each finger can provide only point compliance (yielding a 2 × 2 compliance

matrix at the contact point) to the body regardless of the number of the compliant joints in the finger. When a grasp is achieved,
since each fingertip maintains contact with the object and does not slip along the object surface, the finger most distal link can
only rotate about the point of contact. As such, the connection between the fingertip and the contacted object is equivalent to a
free revolute joint at the contact point as shown in Fig. 2b. Thus, when in hard point contact with the held object, each 2-joint
finger illustrated can be viewed as a 3𝑅 serial mechanism with the last joint having no elastic behavior. Because all fingers contact
the same body, they act in parallel yielding a multi-serial parallel mechanism. In this paper, the approach to grasp compliance
realization is based on this model.

2.2. Stiffness realization with a parallel mechanism

A parallel elastic mechanism consists of a set of springs connecting two bodies. The geometry of each spring can be represented
by a unit wrench 𝐰 defined as the spring wrench. In Plücker ray coordinates, the planar spring wrench associated with a translational
spring has the form:

𝐰 =
[

𝐧̂
𝑑

]

, (1)

where the unit 2-vector 𝐧̂ indicates the direction of the wrench (spring axis) and where

𝑑 = (𝐫𝑃 × 𝐧̂) ⋅ 𝐤̂, (2)

where 𝐫𝑃 is the position vector from the origin to any point 𝑃 along the spring axis, and 𝐤̂ is the unit vector orthogonal to the plane.
A unit wrench 𝐰 can be used to represent the axis of a spring, and geometrically, represent a line in the plane.

If a parallel mechanism consists of 𝑛 springs 𝐰𝑖 (1,… , 𝑛), then the Cartesian stiffness of the mechanism is [4]:

𝐊 = 𝑘1𝐰1𝐰𝑇
1 + 𝑘2𝐰2𝐰𝑇

2 +⋯ + 𝑘𝑛𝐰𝑛𝐰𝑇
𝑛 , (3)

where 𝑘𝑖 ≥ 0 is the spring rate associated with 𝐰𝑖.
Thus, to achieve a specified stiffness 𝐊 with an 𝑛-spring parallel mechanism, a set of 𝑛 spring wrenches 𝐰𝑖’s and the corresponding
3

spring rates 𝑘𝑖’s must be identified such that Eq. (3) is satisfied.
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2.3. Compliance realization with a serial mechanism

A serial mechanism consists of links connected by a series of 𝑛 joints. The location of a joint 𝐽 can be represented by a unit twist
𝐭 defined as the joint twist. In Plücker axis coordinates, the planar joint twist associated with a revolute joint has the form:

𝐭 =
[

𝐮
1

]

, (4)

where

𝐮 = −𝜴𝐫𝐽 , (5)

where 𝐫𝐽 is the position vector of joint 𝐽 relative to the coordinate frame, and where 𝜴 ∈ R2×2 is the anti-symmetric matrix:

𝜴 =
[

0 −1
1 0

]

. (6)

Hence, for any given unit twist in Eq. (4), the corresponding instantaneous center (joint location) 𝐫𝐽 is determined by Eq. (5) which
can be equivalently expressed as:

𝐫𝐽 = 𝜴𝐮. (7)

If the location of joint 𝐽 , 𝐫𝐽 , is specified, the joint twist can be calculated using Eqs. (4) and (5). Thus, a unit twist 𝐭 can be used to
represent the location of a joint, and geometrically, represent a point in the plane.

If a serial mechanism consists of 𝑛 joints described by joint twists 𝐭𝑖 (1,… , 𝑛), then the Cartesian compliance of the mechanism
is [4]:

𝐂 = 𝑐1𝐭1𝐭𝑇1 + 𝑐2𝐭2𝐭𝑇2 +⋯ + 𝑐𝑛𝐭𝑛𝐭𝑇𝑛 , (8)

where 𝑐𝑖 ≥ 0 is the joint compliance associated with 𝐭𝑖.
Thus, to achieve a specified compliance 𝐂 with an 𝑛-joint serial mechanism, a set of 𝑛 joint twists 𝐭𝑖’s and the corresponding

joint compliances 𝑐𝑖’s must be identified such that Eq. (8) is satisfied.

2.4. Distribution of elastic component locations

For a given planar stiffness (compliance) matrix, there is a unique point in the plane such that, if the coordinate frame is located
at that point, the stiffness (compliance) matrix can be expressed in diagonal form. This point is called the center of stiffness (center of
compliance). For the planar case, the center of stiffness and the center of compliance are coincident. When a compliance is realized
with a parallel [19] or a serial [18] mechanism, the elastic components must surround the stiffness center, and the distance and
orientation of the set of components relative to the stiffness center must satisfy additional conditions. Those for a parallel elastic
mechanism are reviewed below.

If the frame used in describing the elastic behavior is located at the stiffness center and along the principal axes, the stiffness
matrix has diagonal form:

𝐊 = diag[𝑘𝜒 , 𝑘𝜂 , 𝑘𝜏 ], (9)

where 𝑘𝜒 , 𝑘𝜂 and 𝑘𝜏 are the principal stiffnesses and are uniquely determined by the behavior. A circle of radius 𝜌𝑘

𝜌𝑘 =

√

𝑘𝜏
𝑘𝜒 + 𝑘𝜂

(10)

whose center is the stiffness center indicates the amount of torsional stiffness relative to translational stiffness.
Suppose that an 𝑛-spring parallel mechanism with spring wrenches 𝐰𝑖 (𝑖 = 1, 2,… , 𝑛) realizes the stiffness 𝐊, and that 𝑟max and

𝑟min are the maximum and minimum distances from the spring wrenches to the stiffness center 𝐶𝑘, then as proved in [19],

𝑟min ≤

√

𝑘𝜏
𝑘𝜒 + 𝑘𝜂

≤ 𝑟max. (11)

Thus, to realize the elastic behavior, the spring axes can neither all intersect circle 𝛤𝑘 of radius 𝜌𝑘 centered at 𝐶𝑘, nor all not intersect
circle 𝛤𝑘.

In addition, if we denote

𝜃𝜒 = sin−1
(
√

𝑘𝜒
𝑘𝜒 + 𝑘𝜂

)

, (12)

and denote 𝑙−𝜃 and 𝑙+𝜃 as the 2 lines passing through the stiffness center 𝐶𝑘 with angles −𝜃𝜒 and 𝜃𝜒 with respect to the principal 𝜒-axis
respectively, then 𝑙−𝜃 and 𝑙+𝜃 separate the plane into 2 areas 𝛬𝜒 and 𝛬𝜂 as illustrated in Fig. 3. As shown in [19], the perpendicular
vectors 𝐫𝑖 from the stiffness center to the spring wrenches 𝐰𝑖 must be distributed in both areas and the spring wrenches must
surround the stiffness center.

The geometry associated with each of these conditions is illustrated in Fig. 3. The spring spatial distribution conditions are
summarized as:
4
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Fig. 3. Spring distribution conditions for a parallel mechanism. At least one spring axis intersects circle 𝛤𝑘 and at least one spring axis does not intersect circle
𝛤𝑘. Vectors 𝐫𝑖 ’s are located in both areas 𝛬𝜒 and 𝛬𝜂 and span at least a half plane.

Fig. 4. Dual elastic mechanisms in parallel and serial construction. Triangle 𝐴𝐵𝐶 formed by the three spring axes in the parallel mechanism is coincident with
triangle 𝐽1𝐽2𝐽3 formed by the three joints in the serial mechanism.

(i) At least one spring wrench intersects circle 𝛤𝑘 and at least one spring does not intersect 𝛤𝑘;
(ii) The perpendicular vectors 𝐫𝑖 from 𝐶𝑘 to each spring wrench must be located in both areas 𝛬𝜒 and 𝛬𝜂 bounded by lines 𝑙+𝜃

and 𝑙−𝜃 , and all 𝐫𝑖’s must span at least a half plane.

Note that conditions (i) and (ii) are necessary conditions for the realization of a planar compliant behavior with a parallel
mechanism having any number of elastic components. To ensure a parallel mechanism realizes a stiffness, additional conditions
are required for the mechanism with a specified number of elastic components [15–18].

3. Dual elastic mechanisms

The concept of dual elastic mechanisms was developed in [15] for parallel and serial planar mechanisms having 3 elastic
omponents. It was shown that a pair of dual elastic mechanisms (one fully serial, the other fully parallel) have an identical space
f realizable compliant behaviors. Thus, a serial mechanism of 3 elastic joints can be replaced by a parallel mechanism of 3 springs
or the realization of any full-rank compliant behavior (and vice versa). This concept cannot be directly used for compliant hands
ince the planar compliance matrix associated with each finger is not full rank.
In this section, the concept of dual elastic mechanisms is reviewed in more detail. Then, the concept is extended to mechanisms

aving less than 3 elastic components, i.e., elastic mechanisms yielding rank deficient planar stiffness matrices.

.1. Dual elastic mechanisms with three components

Suppose a parallel mechanism has three line spring wrenches 𝐰1, 𝐰2 and 𝐰3. The three lines of action form a triangle. Consider
the three unit twists (𝐭1, 𝐭2, 𝐭3) centered at the triangle’s three vertexes, i.e., 𝐭𝑖 is centered at the intersection of 𝐰𝑗 and 𝐰𝑝. Then, 𝐭𝑖
s reciprocal to both wrenches 𝐰𝑗 and 𝐰𝑝 (𝐭𝑇𝑖 𝐰𝑗 = 0, 𝐭𝑇𝑖 𝐰𝑝 = 0).
Now consider the serial mechanism having joint twists 𝐭1, 𝐭2 and 𝐭3, respectively, for which the three line spring axes in the

arallel mechanism are coincident with the triangle formed by the three revolute joints in the serial mechanism. Such a pair of
arallel and serial mechanisms are defined as dual elastic mechanisms [15]. A pair of dual elastic mechanisms is illustrated in Fig. 4.
Given a pair of dual elastic mechanisms with spring wrenches (𝐰1,𝐰2,𝐰3) and joint twists (𝐭1, 𝐭2, 𝐭3), for a given elastic behavior

escribed with stiffness matrix 𝐊 or with compliance matrix 𝐂 = 𝐊−1, as shown in [15],

𝐰𝑇
𝑖 𝐂𝐰𝑗 = 0 ⟺ 𝐭𝑇𝑖 𝐊𝐭𝑗 = 0, 𝑖 ≠ 𝑗, (13)

nd an elastic behavior can be realized with one mechanism if and only if it can be realized with its dual elastic mechanism.
f there are no bounds on the elastic properties in each elastic component, the realizable spaces of elastic behaviors for the two
5
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Fig. 5. Dual elastic mechanisms having two elastic components. (a) A 2-spring parallel mechanism. (b) A dual serial mechanism corresponding to the 2-spring
system. The mechanism has three joints but only 2 are elastic. The free joint is located at the intersection of the two springs.

mechanisms are exactly the same. Also, it can be proved that, if 𝑘𝑖 is the spring constant associated with spring wrench 𝐰𝑖 in the
parallel mechanism and 𝑐𝑖 is the joint compliance associated with joint twist 𝐭𝑖, then 𝑘𝑖 and 𝑐𝑖 satisfy:

𝑐𝑖𝑘𝑖 =
1

(𝐭𝑇𝑖 𝐰𝑖)2
, 𝑖 = 1, 2, 3. (14)

Note that

𝑑𝑖 = 𝐭𝑇𝑖 𝐰𝑖 (15)

indicates the distance of twist 𝐭𝑖 from wrench 𝐰𝑖.
The concept of dual elastic mechanisms can be extended to 2-spring and 1-spring systems as described below. This concept will

be used in modeling 2-joint fingers in contact with an object for which both joints or only one joint has elastic properties.

3.2. Dual elastic mechanisms with two components

For a 2-spring parallel mechanism with spring wrenches (𝐰1,𝐰2) and spring rates 𝑘1 > 0 and 𝑘2 > 0, consider the addition
of an arbitrary spring 𝐰3 that intersects both 𝐰1 and 𝐰2 (Fig. 5a). A 3-joint elastic serial mechanism dual to the 3-spring system
(𝐰1,𝐰2,𝐰3) can then be constructed. If the spring rate of 𝐰3 approaches zero, 𝑘3 → 0, the corresponding joint compliance in the dual
elastic serial mechanism 𝑐3 → +∞. Thus, if 𝑘3 = 0, the corresponding joint 𝐽3 in the dual serial mechanism is a free joint located
at the intersection of springs 𝐰1 and 𝐰2. This joint does not provide elastic behavior but only provides constraint in the kinematic
chain. Since 𝐰3 is arbitrary, the locations of the other two joints 𝐽1 and 𝐽2 can be anywhere on the axes of 𝐰2 and 𝐰1, respectively
as shown in Fig. 5b. The joint compliances can be determined by:

𝑐𝑖 =
1

𝑘𝑖(𝐭𝑇𝑖 𝐰𝑖)2
= 1

𝑘𝑖𝑑2𝑖
, 𝑖 = 1, 2. (16)

Note that the serial elastic mechanism dual to a 2-spring parallel mechanism is not unique. Below, we show that any 3-joint
serial mechanism dual to a 2-spring parallel mechanism (as constructed in Fig. 5) provides the same elastic behavior.

Let 𝐭1, 𝐭2, and 𝐭3 be the 3 joint twists in the serial mechanism, and let 𝑐1 and 𝑐2 be the joint compliances at 𝐽1 and 𝐽2 calculated
y Eq. (16). Suppose the joint compliance at 𝐽3 has a large value: 𝑐3 ≫ 𝑐1, 𝑐3 ≫ 𝑐2. Then, the compliance associated with the serial
echanism is:

𝐂 = 𝑐1𝐭1𝐭𝑇1 + 𝑐2𝐭2𝐭𝑇2 + 𝑐3𝐭3𝐭𝑇3 (17)

hich can be expressed as

𝐂 = 𝐓 diag[𝑐1, 𝑐2, 𝑐3]𝐓𝑇 , (18)

here 𝐓 = [𝐭1, 𝐭2, 𝐭3] ∈ R3×3 is the twist matrix. Taking the inverse of Eq. (18):

𝐊 = 𝐓−𝑇 diag
[

1
𝑐1

, 1
𝑐2

, 1
𝑐3

]

𝐓−1. (19)

Letting 𝑐3 → +∞ and using Eq. (16),

𝐊 = 𝐓−𝑇 diag
[

𝑘1(𝐭𝑇1 𝐰1)2, 𝑘2(𝐭𝑇2 𝐰2)2, 0
]

𝐓−1

= 𝐓−𝑇 diag
[

𝑘1𝑑
2
1 , 𝑘2𝑑

2
2 , 0

]

𝐓−1. (20)

If𝐖 = [𝐰1,𝐰2,𝐰3] ∈ R3×3 is the wrench matrix of the parallel mechanism, then 𝐃 = diag
[

𝑑1, 𝑑2, 𝑑3
]

captures the reciprocal relations
between the dual elastic mechanisms [15] given by

𝑇 𝑇 [ 𝑇 𝑇 𝑇 ]
6

𝐖 𝐓 = 𝐓 𝐖 = diag (𝐭1 𝐰1), (𝐭2 𝐰2), (𝐭3 𝐰3)
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Fig. 6. Dual elastic mechanisms having one elastic component. (a) A line spring with spring wrench 𝐰1. (b) The dual serial elastic mechanism having 3 joints
in which only one is elastic. Free joints 𝐽2 and 𝐽3 must be anywhere along the line of action of 𝐰1.

= diag
[

𝑑1, 𝑑2, 𝑑3
]

= 𝐃. (21)

Thus,

𝐓−1 = 𝐃−1𝐖𝑇 , 𝐓−𝑇 = 𝐖𝐃−1. (22)

Substituting the relations of Eq. (22) into Eq. (20) yields:

𝐊 = 𝐖 diag
[

𝑘1, 𝑘2, 0
]

𝐖𝑇 = 𝑘1𝐰1𝐰𝑇
1 + 𝑘2𝐰2𝐰𝑇

2 , (23)

which is in the form of Eq. (3).
Therefore, the 2-elastic joint, 3𝑅 serial mechanism provides the same elastic behavior as the 2-spring parallel mechanism. Note

that a dual elastic serial mechanism is not unique for rank deficient stiffness 𝐊. The compliant behavior provided by the dual serial
mechanism is independent of the choice of the locations of the two joints 𝐽1 and 𝐽2 on the spring axes 𝐰2 and 𝐰1, respectively.
From Eq. (16), it can be seen that the selections of 𝐽1 and 𝐽2 locations on the axes only impact the values of 𝑐1 and 𝑐2.

Note again that the serial mechanism in Fig. 5b has three revolute joints but only two are elastic. If the joint without elastic
roperties, 𝐽3, is located on an object surface, the serial mechanism can be viewed as a finger for which the 2 finger joints are each
long one spring axis. Therefore, a 2-spring parallel system can be converted to a 2-joint elastic finger in contact with an object
and vice versa).

.3. Dual elastic mechanisms with one component

The concept of dual elastic mechanisms can also be extended to mechanisms having one elastic component. Because position
ontrol of a free joint in a finger is not possible, the observations (included below for completeness of the rank-deficient planar
lastic mechanisms) are not subsequently used.
Consider a single spring with stiffness 𝑘1 and spring wrench 𝐰1 as illustrated in Fig. 6a. The spring provides force only along the

ine of action of 𝐰1. Now consider a 3-joint serial mechanism 𝐽1𝐽2𝐽3 as illustrated in Fig. 6b. In this mechanism, free joints 𝐽2 and
3 are located on the line of action of 𝐰1, and only joint 𝐽1 is elastic. It can be seen that the serial mechanism provides an elastic
orce only along the 𝐰1 axis. If the value of joint compliance 𝑐1 at 𝐽1 is properly chosen, the serial mechanism acts exactly the same
s the single spring 𝐰1.
In the mechanism of Fig. 6b, joints 𝐽2 and 𝐽3 can be anywhere along line 𝐰1 while the elastic joint can be located anywhere

ther than on line 𝐰1. It can be proved that when the location of the elastic joint 𝐽1 is determined, the value of joint compliance is
niquely determined by

𝑐1 =
1

𝑘1(𝐭𝑇1 𝐰1)2
= 1

𝑘1𝑑21
, (24)

where 𝑑1 is the distance of the twist 𝐭1 from the wrench 𝐰1 as defined in Eq. (15).

3.4. Application of dual elastic mechanisms

Since any 2-joint finger in contact with an object can be replaced by a 2-spring parallel mechanism using its elastic dual, the
synthesis procedure used in realizing a compliance with a 2𝑛-spring (𝑛 ≥ 2) parallel mechanism can be used to realize the same
behavior with an 𝑛-finger compliant hand. If each finger has two elastic joints, the number of springs 𝑛 in the corresponding parallel
mechanism must be even and no less than 4.

Fig. 7 illustrates the relationship between a 4-spring parallel system and a 2-finger compliant hand elastic dual. In the 4-spring
system (𝐰1,𝐰2,𝐰3,𝐰4) shown in Fig. 7a, if the mechanism is separated into 2 groups: (𝐰1,𝐰2) and (𝐰3,𝐰4), then the mechanism can
be replaced with a hand having 2 fingers as illustrated in Fig. 7b. The compliance in each joint can be calculated using Eq. (16).
Note that, to perform the parallel system to finger conversion, 2 springs must intersect at the location where the fingertip contacts
the object and one of these 2 springs must pass through the finger base (palm).
7
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Fig. 7. A 4-spring parallel mechanism transformed into a compliant hand having two 2-joint fingers. (a) A 4-spring parallel mechanism with spring wrenches
(𝐰1 ,𝐰2 ,𝐰3 ,𝐰4). (b) A 2-finger compliant hand. Each finger has two elastic joints. The held object constitutes the third link in each finger serial mechanism.

Fig. 8. Limitation of a compliant hand in realizing an arbitrary compliant behavior. If the held body is inside circle 𝛤𝑘 determined by the principal stiffnesses
of a desired compliant behavior, the compliance cannot be achieved by any compliant hand.

Also note that the transformation of a 4-spring parallel system into a 2-finger compliant hand is not unique. Different ways to
separate the 4 springs yield a compliant hand having different finger configurations. For example, if the 4-spring mechanism is
separated into 2 different groups: (𝐰1,𝐰3) and (𝐰2,𝐰4), then the compliant hand obtained using its dual elastic serial mechanism
will have two fingers with different geometry.

The realization of an elastic behavior with a compliant hand can be achieved by first designing a parallel mechanism that realizes
the compliance, then converting that mechanism into a set of multiple fingers. This geometric construction based approach does not
require a matrix inversion. In Sections 4 and 5, the results of [16,18] will be modified to address elastic behavior synthesis using
2- and 3-finger planar hands.

3.5. Limits on grasp compliance

As stated earlier, each finger in a compliant hand provides point compliance to the held object at the fingertip in contact with
the body. Since the contact point must be on the surface of the object, the space of realizable compliant behavior depends in part
on the size and shape of the object. A significant amount of compliant behaviors cannot be achieved with a compliant hand for a
given held object. For example, if a held body is completely inside circle 𝛤𝑘 having radius 𝜌𝑘 determined by the principal stiffnesses
(Eq. (10)) of stiffness 𝐊, this elastic behavior cannot be attained by any compliant hand regardless of the number of fingers in the
hand and the number of joints in each finger. For this case, because all springs must pass through finger contact points, each spring
wrench 𝐰𝑖 in the parallel mechanism must intersect circle 𝛤𝑘 as shown in Fig. 8, which violates the necessary condition (i) on the
pring location distribution described in Section 2.4. Therefore, this evaluation should be the first step in the design of a compliant
rasp.

. Stiffness realization with a 2-finger hand

In this section, the realization of a held object’s elastic behavior using a 2-finger hand in which each finger has 2 elastic joints
s addressed. First, stiffness synthesis with a 4-spring parallel mechanism is presented. Next, the 4-spring parallel mechanism is
onverted to a hand with 2 fingers. Then, the limitations of 2-finger hands in the realization of an arbitrary stiffness are presented.
8
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Fig. 9. Geometric implications of some of the necessary and sufficient conditions for a 4-spring parallel mechanism to realize an arbitrary stiffness. (a) Wrench
𝐰12 must pass through point 𝑇34 and lie in the shaded area bounded by the two axes of wrenches 𝐰3 and 𝐰4. (b) Wrench 𝐰34 must pass through point 𝑇12 and
lie in the shaded area bounded by the two axes of wrenches 𝐰1 and 𝐰2.

4.1. Stiffness synthesis for a 4-spring mechanism

A geometric approach to achieve an arbitrary compliance with a 4-spring parallel mechanism was addressed in [16]. The
procedure in [16] (summarized in Section 4.1.1 below), however, cannot be directly converted to a 2-finger hand used to grasp an
object because each fingertip contacts only the held body’s surface. As such, to convert the elastic behavior of a parallel mechanism to
that of a compliant hand, pairs of wrenches must intersect at locations on the body surface. Thus, the synthesis procedure presented
in [16] for general stiffness realization must be modified to satisfy this additional constraint. Below, the realization conditions on a
4-spring parallel mechanism are first reviewed, then a new synthesis procedure that considers each fingertip location requirement
is developed.

4.1.1. Review of 4-spring realization conditions
The set of necessary and sufficient conditions on the geometry of any 4-spring parallel mechanism to realize a given compli-

ance [16] are summarized below.
Consider a given stiffness 𝐊 and a 4-spring parallel mechanism described by spring wrenches (𝐰1,𝐰2,𝐰3,𝐰4). For any two

renches 𝐰𝑖 and 𝐰𝑗 , let 𝑇𝑖𝑗 be the intersection of the two wrench axes and 𝐭𝑖𝑗 be a twist having its instantaneous center at 𝑇𝑖𝑗 .
wist 𝐭𝑖𝑗 can be calculated by

𝐭𝑖𝑗 = 𝐰𝑖 × 𝐰𝑗 . (25)

et 𝐰𝑖𝑗 be the wrench associated with 𝐭𝑖𝑗 obtained through the stiffness mapping:

𝐰𝑖𝑗 = 𝐊𝐭𝑖𝑗 . (26)

hen, equivalent to that presented in [16], we have:

roposition 1. A stiffness 𝐊 can be realized with a 4-spring parallel mechanism having spring wrenches 𝐰1, 𝐰2, 𝐰3 and 𝐰4 if and only if
the following two conditions are both satisfied:

(a) Wrench 𝐰12 passes through point 𝑇34 and wrench 𝐰13 passes through point 𝑇24;
(b) Wrench 𝐰12 lies in the area bounded by the axes of 𝐰3 and 𝐰4 that does not contain 𝑇12; and wrench 𝐰34 lies in the area bounded

by the axes of 𝐰1 and 𝐰2 that does not contain 𝑇34.

Note that Proposition 1(a) implies the satisfaction of 2 equality conditions:

𝐭𝑇34𝐊𝐭12 = 0, (27)

𝐭𝑇24𝐊𝐭13 = 0, (28)

which are also equivalent to two additional geometric conditions: 1) wrench 𝐰34 passes through point 𝑇12, and 2) wrench 𝐰24 passes
through point 𝑇13. These 2 conditions ensure that the given K can be expressed in the form of Eq. (3) for 𝑛 = 4. Proposition 1(b)
implies 4 inequality conditions that can be alternatively expressed in terms of wrench 𝐰13 relative to wrenches 𝐰2 and 𝐰4, and in
terms of wrench 𝐰24 relative to wrenches 𝐰1 and 𝐰3. These 4 conditions ensure that all 𝑘𝑖s are positive. The results of Proposition 1
for equality condition Eq. (27) and the 4 inequality conditions are illustrated in Fig. 9.

Once the geometries of the 4 springs satisfying the conditions in Proposition 1 are determined, a passive realization of the given
tiffness can be achieved by choosing each spring constant using:

𝑘1 =
𝐭𝑇24𝐊𝐭34

𝑇 𝑇 , (29)
9
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Fig. 10. Synthesis of a compliance with a 4-spring parallel mechanism based on geometry. The realization is achieved by selecting the spring axes of the four
springs in the mechanism.

𝑘2 =
𝐭𝑇14𝐊𝐭34

(𝐭𝑇14𝐰2)(𝐭𝑇34𝐰2)
, (30)

𝑘3 =
𝐭𝑇12𝐊𝐭14

(𝐭𝑇12𝐰3)(𝐭𝑇14𝐰3)
, (31)

𝑘4 =
𝐭𝑇13𝐊𝐭12

(𝐭𝑇13𝐰4)(𝐭𝑇12𝐰4)
. (32)

4.1.2. New 4-spring synthesis procedure
In this subsection, a new synthesis procedure is developed for the realization of an arbitrary compliance with a 4-spring parallel

mechanism that can be converted to a 2-finger hand for grasping an object. Since the free joint (the fingertip in contact with the held
body) of a serial mechanism is located at the intersection of the 2 springs in its parallel elastic dual, in the synthesis of a 4-spring
parallel mechanism, 2 pairs of springs must intersect at two different points on the object surface. This requirement is enforced in
the process described below. The geometry associated with the sequence of operations in the synthesis procedure is illustrated in
Fig. 10.

1. Choose a point on the body surface. This point 𝑇12 will be the intersection of two spring axes 𝐰1 and 𝐰2 (and ultimately the
contact point of a fingertip on the object). Then the unit twist 𝐭12 at 𝑇12 is obtained using Eqs. (4) and (5), and the wrench
resulting from 𝐭12 is:

𝐰12 = 𝐊𝐭12. (33)

The line of action of 𝐰12 is obtained.
2. Determine the point at which the other two spring wrenches 𝐰3 and 𝐰4 intersect. This point 𝑇34 is located at the intersection
of line 𝐰12 and the body surface.
The unit twist 𝐭34 centered at 𝑇34 is calculated using Eq. (4). Then wrench 𝐰34 corresponding to 𝐭34 is obtained:

𝐰34 = 𝐊𝐭34. (34)

By Proposition 1(a), line 𝐰34 will pass through 𝑇12, i.e., satisfy Eq. (27).
The line passing through points 𝑇12 and 𝑇34 is denoted as 𝑙 and is illustrated in Fig. 10.

3. Choose 𝐰13 along the hand base such that its intersections with 𝐰12 and 𝐰34 are both on the same side of 𝑙 and for which
twist 𝐭13 = 𝐂𝐰13 is centered at the opposite side of line 𝑙. Line 𝐰13 intersects lines 𝐰12 and 𝐰34 at points 𝑃 and 𝑄 respectively
as shown in Fig. 10.
The appropriate placement of 𝑇13 can always be accomplished by following the steps described in [16]. The center of twist
𝐭13, 𝑇13 will be the intersection of spring axes 𝐰1 and 𝐰3.

4. Choose a point 𝑇24 along the wrench 𝐰13 axis between points 𝑃 and 𝑄 such that the line passing through points (𝑇12, 𝑇24) and
the line passing through points (𝑇24, 𝑇34) both intersect the hand base.
The unit twist at 𝑇24, 𝐭24, can be calculated using Eq. (4) and the equality condition in Eq. (28) is satisfied. Point 𝑇24 will be
the intersection of spring axes 𝐰2 and 𝐰4.

5. Determine the 4 spring axes. The four lines passing through points (𝑇12, 𝑇13), (𝑇12, 𝑇24), (𝑇34, 𝑇13) and (𝑇24, 𝑇34) as shown in
Fig. 10 are identified as the four spring axes (𝐰1,𝐰2,𝐰3,𝐰4) respectively for the parallel mechanism.

6. Calculate the value of stiffness 𝑘𝑖 for each spring using Eqs. (29)–(32).

Using this synthesis process, the four spring axes selected will satisfy the realization conditions in Proposition 1 and the wrench
intersection points 𝑇 and 𝑇 will be located on the surface of the object.
10

12 34



Mechanism and Machine Theory 173 (2022) 104847S. Huang and J.M. Schimmels

s

4

m

w

4

o

o

S
f
p
e

Fig. 11. A 2-finger hand obtained from the conversion of a 4-spring parallel mechanism. The intersections of two spring pairs 𝑇12 and 𝑇34 are located on the
urface of the held body.

.2. Conversion of 4-spring mechanism to 2-finger hand

Using the concept of dual elastic mechanisms, two 2-spring systems (𝐰1,𝐰2) and (𝐰3,𝐰4) can be converted to two serial
echanisms each having 2 elastic joints.

1. Choose the joint locations for each finger.
(a) For spring pair (𝐰1,𝐰2), choose a point 𝐽1 on the hand base anywhere along the axis of 𝐰2, and choose a point 𝐽2 anywhere
along the axis of 𝐰1. The configuration of the first finger 𝐽1𝐽2𝑇12 (as shown in Fig. 11) is determined.
(b) For spring pair (𝐰3,𝐰4), choose a point 𝐽3 on the hand base anywhere along the axis of 𝐰4, and choose a point 𝐽4 anywhere
along the axis of 𝐰3. The configuration of the second finger 𝐽4𝐽3𝑇34 (as shown in Fig. 11) is determined.

2. Determine the joint compliance for each elastic joint.
(a) Calculate the joint twists 𝐭𝑖 at joints 𝐽𝑖 (𝑖 = 1, 2, 3, 4) using Eq. (4).
(b) Calculate the value of joint compliance at each finger joint using Eq. (16),

𝑐𝑖 =
1

𝑘𝑖(𝐭𝑇𝑖 𝐰𝑖)2
, 𝑖 = 1, 2, 3, 4. (35)

With this final step, the configurations and the joint elastic properties of the 2 fingers are identified. The given stiffness is realized
ith the 2-finger hand.

.3. Limitations of 2-finger hands

A 2-finger hand has the simplest construction needed to obtain force closure, but may not be able to achieve both a stable grasp
f an object and a given compliance.
Although the locations of finger base joints 𝐽1 and 𝐽3 can be selected anywhere at the hand base along the axes of 𝐰2 and 𝐰4,

the locations of these joints cannot, in general, be predetermined. This is because if these two joint locations are specified, the axes
of 𝐰2 and 𝐰4 and their intersection 𝑇24 are determined, and a line (𝐰13 in Fig. 10) passing through 𝑇24 may yield a twist 𝐭13 located
n the same side of line 𝑙 as 𝑇24, which may violate one of the inequality conditions associated with Proposition 1.
In the synthesis procedure presented in Section 4.1.2, the first finger contact point with the body can be selected arbitrarily on

the held body surface, while the second finger contact point is determined by the intersection of a line associated with the first
contact point. Since the held body is finite, the line may not meet the body. If for all possible points on the body surface 𝑇12, the
corresponding line 𝐰12 does not intersect the body, then the given compliance cannot be attained for the body by any hand with 2
fingers.

The other main limitation of a 2-finger hand is that a stable grasp may not be obtained or maintained with the 2 fingers even
if the configurations and joint elastic properties of each finger are identified. Although a fingertip in contact with an object can be
modeled as a free revolute joint as described in Section 2.1, this model is valid only if the grasp (no-slip contact) is maintained.
ince the contact kinematic constraint is unidirectional and unilateral, a fingertip may actually slide on the body surface, and the
orces from the 2 fingers may result in body rotation and grasp failure. To prevent rotation, the value of friction and the relative
osition of the 2 contact points must satisfy a relatively complicated force closure condition. For Coulomb friction, a simple to
valuate necessary condition is illustrated in Fig. 12 for contact points 𝐴 and 𝐵. Suppose that the friction cones at 𝐴 and 𝐵 are
𝑐𝐴𝜇 and 𝑐𝐵𝜇 . A necessary condition for a stable grasp is that the line passing through 𝐴 and 𝐵 must be inside both cones as shown
in Fig. 12a. The actual reaction force imposed on the body (within the friction cone) must also consider the compliance of each
finger (which is beyond the scope of this paper). If line 𝐴𝐵 is outside one of the two cones (Fig. 12b), slipping occurs between the
fingertip and the body surface, and a grasp cannot be achieved.

It can be seen that, in the realization of compliance with a 2-finger hand, the specified stiffness, the size and shape of the object,
and the value of friction all play significant roles. For a given object, there is no guarantee that any 2-finger hand can achieve the
desired compliance and a stable grasp. To realize more general planar compliant behavior with a compliant hand, more fingers (≥ 3)
11

are needed.
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Fig. 12. Necessary condition to maintain a grasp. (a) Non-slip condition: line 𝐴𝐵 must be inside both friction cones 𝑐𝐴𝜇 and 𝑐𝐵𝜇 at the contact points 𝐴 and
. (b) Sliding condition: line 𝐴𝐵 is outside one of the two friction cones.

. Compliance realization with a 3-finger hand

In this section, the realization of an arbitrary compliance with a 3-finger hand is addressed. First, compliance synthesis with
6-spring parallel mechanism in which 3 pairs of springs intersect at specified locations is presented. Then, the 6-spring parallel
echanism is converted to a 3-finger hand. A discussion on the 3-finger hand synthesis is then provided.

.1. Stiffness synthesis for a 6-spring mechanism

In general, for any 6-spring parallel mechanism, if the 6 spring wrenches 𝐰𝑖 (𝑖 = 1, 2,… , 6) are not all tangent to any quadratic
curve, an arbitrary stiffness matrix can always be expressed as [19]:

𝐊 = 𝑘1𝐰1𝐰𝑇
1 + 𝑘2𝐰2𝐰𝑇

2 +⋯ + 𝑘6𝐰6𝐰𝑇
6 , (36)

here each coefficient 𝑘𝑖 is uniquely determined by the following process.
A 3 × 3 symmetric matrix has 6 independent entries and can be represented by a 6-vector. Suppose a 3 × 3 symmetric matrix
has entries 𝑞𝑖𝑗 , the associated 6-vector can be defined as:

𝐪̃ = [𝑞11, 𝑞12, 𝑞13, 𝑞22, 𝑞23, 𝑞33]𝑇 . (37)

ith this representation, the stiffness matrix 𝐊 and the rank-1 symmetric matrices 𝐰𝑖𝐰𝑇
𝑖 can be represented by 6-vectors 𝐤̃ and 𝐰̃𝑖.

f we denote

𝐖̃ = [𝐰̃1, 𝐰̃2,… , 𝐰̃6 ] ∈ R6×6, 𝐤 = [𝑘1, 𝑘2,… , 𝑘6 ]𝑇 ∈ R6, (38)

hen, Eq. (36) can be written as:

𝐤̃ = 𝐖̃𝐤. (39)

The spring stiffness vector 𝐤 can be calculated by

𝐤 = 𝐖̃−1𝐤̃. (40)

Although for the generic case, an arbitrary stiffness matrix 𝐊 can be uniquely expressed in the form of Eq. (36), the coefficients 𝑘𝑖
may not all be positive. Thus, conditions to ensure that all 𝑘𝑖 are positive are needed. Below, previously developed conditions [18,19]
on 6-spring mechanisms that ensure each 𝑘𝑖 > 0 are summarized, and then a modified procedure for the synthesis of a 6-spring
parallel mechanism in which spring intersection locations are considered is developed (to facilitate the transformation to a 3-finger
hand).

5.1.1. Review of 6-spring realization conditions
Consider a parallel mechanism described by 6 spring wrenches 𝐰𝑖 (𝑖 = 1, 2,… , 6). Suppose that 𝐭𝑖𝑗 (𝑖 ≠ 𝑗) is the unit twist centered

at the intersection point 𝑇𝑖𝑗 of two wrench axes 𝐰𝑖 and 𝐰𝑗 , then

𝐭𝑇𝑖𝑗𝐰𝑖 = 0, 𝐭𝑇𝑖𝑗𝐰𝑗 = 0. (41)

For any 5 non-concurrent spring wrenches, there is a unique quadratic curve that is tangent to the lines of action of the 5 spring
wrenches. This quadratic curve is useful in selecting the location of the 6th spring wrench in the realization of a stiffness and can
be determined by the procedure that follows.

Consider a spring wrench 𝐰𝑟 in a 6-spring parallel mechanism, a 3 × 3 matrix 𝐀𝑟 associated with the other 5 spring wenches
can be calculated by:

𝑇 𝑇 𝑇 𝑇 𝑇 𝑇
12

𝐀𝑟 = (𝐭𝑖𝑚𝐰𝑝)(𝐭𝑗𝑛𝐰𝑝)𝐭𝑖𝑗 𝐭𝑚𝑛 − (𝐭𝑖𝑗𝐰𝑝)(𝐭𝑚𝑛𝐰𝑝)𝐭𝑖𝑚𝐭𝑗𝑛, (42)
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where (𝑖, 𝑗, 𝑚, 𝑛, 𝑝) is an arbitrary permutation of the set {1, 2, 3, 4, 5, 6} excluding 𝑟. The symmetric matrix associated with 𝐀𝑟 is:

𝐆𝑟 = 𝐀𝑟 + 𝐀𝑇
𝑟 . (43)

The quadratic curve 𝑔𝑟 tangent to the 5 spring axes in the 𝑥𝑦-plane is determined by the equation:

𝑔𝑟(𝑥, 𝑦) = 𝐭𝑇𝐆−1
𝑟 𝐭 = 0, (44)

where 𝐭 is a unit twist with instantaneous center at (𝑥, 𝑦) that is defined by

𝐭 = [𝑦,−𝑥, 1]𝑇 . (45)

As proved in [19], in order for Eq. (36) to have a solution, spring wrench 𝐰𝑟 cannot be tangent to curve 𝑔𝑟 = 0. For example,
if the first 5 spring wrenches 𝐰𝑖 (𝑖 = 1, 2,… , 5) are already selected, the 6th spring wrench 𝐰6 must either: (i) intersect quadratic
curve 𝑔6 = 0, or (ii) have no intersection with the curve. Also, it is proved [19] that the coefficient 𝑘6 does not change its sign if
and only if 𝐰6 maintains its intersection relationship with curve 𝑔6. Note that the quadratic curve determined by 5 spring wrenches
(Eq. (44)) is independent of the stiffness matrix 𝐊.

Another quadratic curve that is important in selecting the spring locations is defined by the given stiffness matrix and any given
4 spring wrenches [18]. For a stiffness matrix 𝐊 and any permutation (𝑖, 𝑗, 𝑚, 𝑛) of {1, 2, 3, 4, 5, 6}, a 3 × 3 matrix 𝐁𝑖𝑗𝑚𝑛 is defined as:

𝐁𝑖𝑗𝑚𝑛 = (𝐭𝑇𝑖𝑗𝐊𝐭𝑚𝑛)(𝐭𝑖𝑚𝐭𝑇𝑗𝑛) − (𝐭𝑇𝑖𝑚𝐊𝐭𝑗𝑛)(𝐭𝑖𝑗 𝐭𝑇𝑚𝑛). (46)

The symmetric matrix associated with 𝐁𝑖𝑗𝑛𝑚 is:

𝐇𝑖𝑗𝑚𝑛 = 𝐁𝑖𝑗𝑚𝑛 + 𝐁𝑇
𝑖𝑗𝑚𝑛. (47)

Then, the quadratic curve associated with stiffness 𝐊 and 4 spring wrenches (𝐰𝑖,𝐰𝑗 ,𝐰𝑚,𝐰𝑛) is:

ℎ𝑖𝑗𝑚𝑛(𝑥, 𝑦) = 𝐭𝑇𝐇−1
𝑖𝑗𝑚𝑛𝐭 = 0, (48)

where 𝐭 is the unit twist defined in Eq. (45).
With the 2 quadratic curves defined in Eqs. (44) and (48), the elastic behavior realization conditions on a 6-spring parallel

mechanism can be expressed as:

Proposition 2. For a given stiffness matrix 𝐊, consider a 6-spring parallel mechanism described by spring wrenches 𝐰𝑖 (𝑖 = 1, 2,… , 6).

(a) When spring 𝐰𝑟 varies in the plane while all the other five springs are constant, the corresponding 𝑘𝑟 in Eq. (36) does not change
sign if and only if 𝐰𝑟 maintains its intersection property with the quadratic curve 𝑔𝑟 that is tangent to the other 5 spring wrenches
(determined by Eq. (44)).

(b) For any 2 wrenches 𝐰𝑖 and 𝐰𝑗 , the corresponding coefficients 𝑘𝑖 and 𝑘𝑗 in Eq. (36) have the same sign if and only if only one of the
two intersects a single branch of the quadratic curve determined by 𝐊 and the other four spring wrenches using Eq. (48).

(c) K can be realized with a given mechanism if and only if for every combination of two springs, only one spring axis intersects a single
branch of the quadratic curve determined by 𝐊 and the other four springs using Eq. (48).

The quadratic curves defined in Eqs. (44) and (48) will be used in the new synthesis procedure for a 6-spring parallel mechanism
eveloped below for the realization of a given stiffness when springs must intersect at specific locations.

.1.2. New 6-spring mechanism synthesis procedure
Since fingertip contact with the held body must be on the body surface, the intersections of 3 pairs of springs must be located

n the surface of the held body. This requirement is enforced in the process described below. The geometry associated with each
peration in the synthesis procedure is illustrated in Fig. 13.

1. For the given stiffness 𝐊, calculate the location of the stiffness center 𝐶𝑘 and the principal stiffnesses (𝑘𝜒 , 𝑘𝜂 , 𝑘𝜏 ). Then obtain
circle 𝛤𝑘 and two lines 𝑙+𝜃 and 𝑙−𝜃 .
Since the realization conditions (Proposition 2) for 6-spring parallel mechanisms do not have equality constraints, the spring
distribution conditions of Section 2.4 are useful in the selection of the locations of the springs.

2. Choose 2 points on the body surface. These points 𝑇12 and 𝑇34 will be where spring pairs (𝐰1,𝐰2) and (𝐰3,𝐰4) intersect. The
corresponding unit twists 𝐭12 and 𝐭34 are obtained using Eq. (4).

3. Choose two lines passing through 𝑇12 that will be the axes of 2 springs 𝐰1 and 𝐰2. In selecting the 2 lines, one (𝐰2) must
pass through the finger base. Similarly, choose two lines passing through 𝑇34, which will be the axes of 2 springs 𝐰3 and 𝐰4
(with 𝐰4 passing through the finger base).
When choosing these 4 lines, the spring distribution conditions described in Section 2.4 should be satisfied if possible.
The unit twists 𝐭13, 𝐭14, 𝐭23 and 𝐭24 are calculated using Eq. (25) and the quadratic curve ℎ1234 associated with stiffness 𝐊 and
the 4 wrenches (𝐰1,𝐰2,𝐰3,𝐰4) is obtained using Eq. (48).

4. Judiciously choose a point 𝑇56 on the body surface. Choose 2 lines passing through 𝑇56 such that only one of the 2 lines
intersects quadratic curve ℎ1234 and at least one line intersects the hand base. These 2 lines are the axes of springs 𝐰5 and 𝐰6
(with 𝐰6 intersecting the hand base as shown in Fig. 13). By Proposition 2b, the corresponding coefficients 𝑘5 and 𝑘6 must
13

have the same sign. Calculate 𝑘5 using Eq. (40).
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Fig. 13. Compliance synthesis with a 6-spring parallel mechanism. The intersections of three pairs of springs, 𝑇12, 𝑇34 and 𝑇56, must be on the surface of the
eld body.

(a) If 𝑘5 > 0, then 𝑘6 must be positive.
(b) If 𝑘5 < 0, obtain the quadratic curve 𝑔5 associated with the five spring wrenches (𝐰1,𝐰2,𝐰3,𝐰4,𝐰6) using Eq. (44).

Then, rotate 𝐰5 about point 𝑇56 such that it changes the intersection relation with curve 𝑔5, i.e., if 𝐰5 intersects 𝑔5
(e.g., line 𝑙5 shown in Fig. 14), then rotate it about 𝑇56 to a location that does not intersect the curve (e.g., line 𝑙′5
in Fig. 14). In this process, the intersection conditions for 𝐰5 and 𝐰6 relative to curve ℎ1234 should be maintained. In
satisfying these conditions, both 𝑘5 and 𝑘6 are positive.

5. Adjust the spring positions to ensure that each coefficient 𝑘𝑖 is positive. For the obtained six spring wrenches, calculate the
corresponding coefficients 𝑘𝑖 using Eq. (40).

(a) If one coefficient is negative (e.g., 𝑘1 < 0), then obtain the quadratic curve ℎ2345 = 0 determined by Eq. (48) using the
4 spring wrenches (𝐰2,𝐰3,𝐰4,𝐰5), then rotate 𝐰6 (or 𝐰1) about 𝑇56 (or 𝑇12) such that Proposition 2b is satisfied for 𝐰1
and 𝐰6 (only one of (𝐰1,𝐰6) intersects ℎ2345 = 0). Thus, 𝑘1 is positive.
Alternatively, for 𝑘1 < 0, obtain the quadratic curve 𝑔1 = 0 determine by the other 5 spring wrenches using Eq. (42),
then rotate 𝐰1 about 𝑇12 such that it changes the contact property with 𝑔1. Thus, 𝑘1 is positive.

(b) If two coefficients are negative (e.g., 𝑘1 and 𝑘2), 𝐰1 or 𝐰2 must be located so that only one of them intersects curve
ℎ3456. Use the process described in Step 4(b) for 𝐰5 and 𝐰6 to make both 𝑘1 and 𝑘2 positive (using instead 𝑔1 or 𝑔2
defined in Eq. (44)).

Since 𝐊 is positive definite, the number of negative coefficients in Eq. (36) is always 3 or less. As such, at most two adjustment
iterations are needed.

6. Calculate the value of stiffness 𝑘𝑖 for each joint using Eq. (40).

With the final step, the locations of 6 springs and their spring rates are determined.

.2. Conversion of 6-spring mechanism to 3-finger hand

Using the concept of dual elastic mechanisms, 2-spring subsystems (𝐰1,𝐰2), (𝐰3,𝐰4) and (𝐰5,𝐰6) are converted to serial
echanisms each having 2 elastic joints.

1. Choose the first joint location for each finger.
For spring pair (𝐰1,𝐰2), choose 𝐽1 at the hand base along the axis of 𝐰2.
Similarly, joints 𝐽3 and 𝐽5 at the hand base are chosen for the other 2 fingers along the axes of 𝐰4 and 𝐰6, respectively, as
shown in Fig. 15.

2. Choose the second joint location for each finger.
For spring pair (𝐰1,𝐰2), choose a point 𝐽2 anywhere along the axis of 𝐰1. The configuration of the first finger 𝐽1𝐽2𝑇12 (as
shown in Fig. 15) is determined.
Similarly, joints 𝐽4 and 𝐽6 are chosen for the other 2 fingers along axes 𝐰3 and 𝐰5, respectively as shown in Fig. 15.

3. Determine the joint compliance for each elastic joint.
(a) Calculate the joint twists 𝐭 at joints 𝐽 (𝑖 = 1, 2,… , 6) using Eq. (4).
14
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Fig. 14. Adjustment of a spring location to ensure positive spring coefficients. Spring 𝐰5 is rotated about point 𝑇56 based on its geometric relations to the two
quadratic curves ℎ1234 and 𝑔5.

Fig. 15. Synthesis of a 3-finger compliant hand. The 3-finger hand is obtained from a 6-spring parallel mechanism that realizes the given compliance.

(b) Calculate the value of joint compliance at each finger joint using Eq. (16),

𝑐𝑖 =
1

𝑘𝑖(𝐭𝑇𝑖 𝐰𝑖)2
, 𝑖 = 1, 2,… , 6. (49)

With this final step, the configurations and the joint elastic properties of the 3 fingers are identified. The given stiffness is realized
with the 3-finger hand.

5.3. Discussion on the 3-finger hand synthesis

Synthesis of a 3-finger compliant hand is based on the synthesis of a 6-spring parallel mechanism for the realization of a given
stiffness. Since compliance realization with a 6-spring mechanism does not have equality constraints, a larger design space is
available for selecting the spring locations. Although the intersection of 2 spring wrench pairs can be chosen arbitrarily on the
surface of the held body, the selection should be judicious so that the necessary condition on the distribution of springs described in
Section 2.4 is satisfied. For example, if in the selection of the first 4 springs, the condition cannot be satisfied, then in the selection
of 5th and 6th spring locations (Step 4), the condition must be satisfied.

Since a finger contact only provides unidirectional kinematic constraint, the selections of fingertip contact point (the intersections
of spring pairs) at the held body’s surface should be judicious to achieve a stable grasp. For example, for the polygonal object
illustrated in Fig. 16, if 𝑇12 and 𝑇34 are already selected, the intersection of springs 𝐰5 and 𝐰6 should be located on the opposite
side between points 𝐴 and 𝐵 (Fig. 16a). If 𝑇34 is selected outside segment 𝐴𝐵 (Fig. 16b), a stable grasp may not be achieved.

Unlike compliance realization with a fully parallel or fully serial mechanism in which the locations of connection to the reference
ody are arbitrary, synthesis of a multi-finger hand depends on the shape of the held body because connections to the held object
ust be on its surface. As such, there is no guarantee that a given stiffness can be realized by a 3-finger hand on a given body.
or example, in the synthesis process, the third fingertip (point 𝑇56, the intersection of 𝐰5 and 𝐰6) cannot be selected inside the
quadratic curve ℎ1234. Otherwise, both 𝐰5 and 𝐰6 will intersect the quadratic curve (Fig. 17), which violates Proposition 2b. If on
the body surface, no point satisfies this condition, the given elastic behavior cannot be realized by the 3-finger hand.

In the 3-finger hand elastic behavior synthesis, the geometry of the hand cannot be completely specified. However, some
15

geometric properties for each finger can be specified. In the synthesis process, the finger base joint locations can be predetermined
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Fig. 16. Selection of fingertip contact in the synthesis procedure. (a) Fingertip 𝑇56 selected on the body between segment 𝐴𝐵 for stable grasp. (b) Fingertip 𝑇56
utside segment 𝐴𝐵 may yield rotation.

Fig. 17. Location restriction on the third fingertip. If point 𝑇56 is located inside the quadratic curve ℎ1234, the given compliance cannot be realized.

at the hand base only for the first 2 fingers (𝐽1 and 𝐽3 in Fig. 15). Since the finger base joint for the third finger (𝐽5 in Fig. 15)
must be located along 𝐰6 (which is selected based on the quadratic curve determined by the first 4 springs), its location cannot be
independently specified. For each finger, since the second elastic joint can be located anywhere on the corresponding spring wrench
axis, only one of the finger link lengths can be specified. To realize a compliance with a 3-finger hand having given geometry, more
elastic joints in each finger are needed.

6. Examples

In this section, numerical examples are provided to illustrate the synthesis procedures. The compliance be to realized is obtained
from an optimization of the compliance for a peg-in-hole assembly problem [28]. The dimensions of the rectangular peg and the
hand base are illustrated in Fig. 18. In the coordinate frame shown, the desired compliance is:

𝐂 =
⎡

⎢

⎢

⎣

0.02 0 0
0 10 −1.8
0 −1.8 0.37

⎤

⎥

⎥

⎦

. (50)

he stiffness matrix is:

𝐊 = 𝐂−1 =
⎡

⎢

⎢

⎣

50 0 0
0 0.8043 3.9130
0 3.9130 21.7391

⎤

⎥

⎥

⎦

.

sing the process described in [18], the stiffness center 𝐶𝑘 is calculated to be at

𝐫𝑘 = [4.8649, 0]𝑇 .

he 3 principal stiffnesses are calculated to be:

[𝑘𝜒 , 𝑘𝜂 , 𝑘𝜏 ] = [ 50, 0.8043, 2.7027 ].

he radius of circle 𝛤𝑘 is calculated using Eq. (10) to be:

𝜌𝑘 = 0.2306.

sing Eq. (12), the 2 lines 𝑙+𝜃 and 𝑙−𝜃 are determined. The compliance center, circle 𝛤𝑘 and lines 𝑙+𝜃 and 𝑙−𝜃 are illustrated in Fig. 18.
Below, the compliance is first synthesized for a 2-finger hand, then, for a 3-finger hand. In both synthesis processes, it is required

hat the contact point of each fingertip with the peg be located on the peg surface not to exceed half of the peg length so that the
ingers do not interfere with the mating part during assembly.
16
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Fig. 18. Compliance realization for a given rectangular object and hand base.

.1. Compliance synthesis for a 2-finger hand

Using the synthesis procedure presented in Section 4.1, a 4-spring parallel mechanism is obtained. Then, the 4-spring parallel
echanism is converted to a 2-finger compliant hand using the process described in Section 4.2.

6.1.1. Synthesis for a 4-spring parallel mechanism
A 4-spring parallel mechanism that realizes the given compliance can be obtained by the following steps. The geometry associated

with each step is illustrated in Fig. 19a.

1. Choose a point 𝑇12 on the body with 𝑥 < 2. This point will be the intersection of springs 𝐰1 and 𝐰2. Calculate the wrench
associated with twist 𝐭12 centered at 𝑇12:

𝐰12 = 𝐊𝐭12.

Bound the locations of 𝑇12 such that 𝐰12 intersects the opposite edge with 𝑥 < 2. For the given compliance and all 𝑥 in the
range 0.3 ≤ 𝑥 < 2, 𝑇12 = (𝑥, 0.5) yields a wrench satisfying this condition. Thus, any point on the line segment (0.3 ≤ 𝑥 < 2,
𝑦 = 0.5) can be selected for 𝑇12.

2. Choose point 𝑇34, the intersection of spring 𝐰3 and 𝐰4. This point is determined by the intersection of wrench 𝐰12 with the
opposite edge. Note that when 𝑇12 moves along the peg edge with 0.3 ≤ 𝑥 < 2, 𝑇34 changes along the opposite edge. Here, 𝑇12
is selected such that 𝑇34 is located at the opposite edge having the same horizontal coordinate 𝑥. This point is determined to
be 𝑇12 = (1.3748, 0.5) and the corresponding point on the opposite edge to be 𝑇34 = (1.3748,−0.5).

3. Choose 𝐰13. Here, the selected line orientation is along the 𝑦-axis and passes through point (−2.5, 0). Then,

𝐰13 = [0, −1, 2.5]𝑇 .

Calculate the twist:

𝐭13 = 𝐂𝐰13 = [0, −14.5000, 2.7250]𝑇 .

The center of 𝐭13, 𝑇13, is determined to be (5.3211, 0).
4. Choose 𝑇24 on wrench 𝐰13 between points 𝑃 and 𝑄. This point is selected to be (−2.5, 0).
5. Determine the 4 spring axes. Since 𝐰1 passes through points 𝑇12 and 𝑇13, 𝐰1 can be determined by normalizing the wrench

𝐰̂1 = 𝐭12 × 𝐭13.

The other 3 spring wrenches can be determined similarly. The 4 unit spring wrenches obtained are:

[𝐰1,𝐰2,𝐰3,𝐰4] =
⎡

⎢

⎢

⎣

−0.9921 −0.9918 0.9921 −0.9918
0.1257 −0.1280 0.1257 0.1280
0.6688 0.3199 0.6688 −0.3199

⎤

⎥

⎥

⎦

and are illustrated in Fig. 19a.
6. Calculate the spring stiffness for each spring. Using Eqs. (29)–(32), the 4 spring rates are:

[𝑘1, 𝑘2, 𝑘3, 𝑘4 ] = [23.9700, 1.4323, 23.9699, 1.4323].
17

With this step, a 4-spring parallel mechanism is obtained.
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Fig. 19. Compliance realization for a 2-finger compliant hand. (a) A 4-spring parallel mechanism that realizes the given compliance. (b) A 2-finger hand
onverted from the 4-spring parallel mechanism using the concept of dual elastic mechanisms.

.1.2. Conversion to a 2-finger hand
Using the concept of dual elastic mechanisms, the 4-spring parallel mechanism is converted to a 2-finger hand.

(1) For spring wrench pair (𝐰1,𝐰2), choose a point 𝐽2 along the axis of 𝐰1 and choose a point 𝐽1 at the hand base along the axis
of 𝐰2. These 2 points are the locations of the 2 elastic joints of the first finger.
Here, 𝐽1 with 𝑥1 = −1.5 and 𝐽2 with 𝑥2 = 0 are selected. Then, using the reciprocal condition (𝐭𝑇𝑖 𝐰𝑗 = 0), the 𝑦-components
of the 2 points can be determined yielding

𝐭1 = [0.1290, 1.5, 1]𝑇 ,

𝐭2 = [0.6741, 0, 1]𝑇 .

Therefore, the locations of 𝐽1 and 𝐽2 are (−1.5, 0.1290) and (0, 0.6741).
(2) For spring wrench pair (𝐰3,𝐰4), joints 𝐽3 and 𝐽4 can be selected the same way as in Step 1. Here, these 2 joints are selected

symmetrical about the 𝑥-axis as shown in Fig. 19b. The 2 joint locations are (−1.5,−0.1290) and (0,−0.6741). The corresponding
joint twists are:

𝐭3 = [−0.1290, 1.5, 1]𝑇 ,

𝐭4 = [−0.6741, 0, 1]𝑇 .

(3) Determine the elastic property for each compliant joint. Using Eq. (16), the joint compliance for joints 𝐽𝑖 are obtained:

[𝑐1, 𝑐2, 𝑐3, 𝑐4 ] = [0.0784, 5.7449, 0.0784, 5.7449].

With this step, a symmetric 2-finger hand that realizes the given compliance is obtained. The geometry of the 2-finger hand is
illustrated in Fig. 19b.
18
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Fig. 20. Selection of spring wrenches in a 6-spring parallel mechanism. The spring distribution conditions should be considered for the first 4 springs. The
selection of the last 2 springs is based on the quadratic curve determined by the first 4 springs.

6.1.3. Result verification
Since each finger can be viewed as a 3-joint serial mechanism with the fingertip being a free joint (having joint compliance

𝑐 = +∞), to numerically validate the obtained result, a large value is assigned to the 2 free joints at the fingertip 𝑇12 and 𝑇34:
𝑐12 = 𝑐34 = 106.

The compliance matrix associated with the first finger is calculated using

𝐂1 = 𝑐1𝐭1𝐭𝑇1 + 𝑐2𝐭2𝐭𝑇2 + 𝑐12𝐭12𝐭𝑇12,

and the corresponding stiffness matrix is calculated to be:

𝐊1 = 𝐂−1
1 =

⎡

⎢

⎢

⎣

25.0118 −2.8072 −16.3653
−2.8072 0.4020 1.9563

−16.3653 1.9562 10.8721

⎤

⎥

⎥

⎦

.

The compliance matrix associated with the second finger is calculated using

𝐂2 = 𝑐3𝐭3𝐭𝑇3 + 𝑐4𝐭4𝐭𝑇4 + 𝑐34𝐭34𝐭𝑇34,

nd the corresponding stiffness matrix is calculated to be:

𝐊2 = 𝐂−1
2 =

⎡

⎢

⎢

⎣

25.0118 2.8072 16.3653
2.8072 0.4020 1.9563

16.3653 1.9562 10.8721

⎤

⎥

⎥

⎦

.

he stiffness of the 2-finger hand is:

𝐊 = 𝐊1 +𝐊2 =
⎡

⎢

⎢

⎣

50.0236 0 0
0 0.8040 3.9126
0 3.9126 21.7442

⎤

⎥

⎥

⎦

,

nd the compliance of the hand is:

𝐂 = 𝐊−1 =
⎡

⎢

⎢

⎣

0.02 0 0
0 10.0014 −1.7996
0 −1.7996 0.3698

⎤

⎥

⎥

⎦

hich is very close to the desired compliance in Eq. (50). Thus, the realization of the elastic behavior is achieved.

.2. Compliance synthesis for a 3-finger hand

The use of an additional finger allows constraints on joint base locations to be satisfied. The locations are selected to be (−2, 0.8),
−2, 0) and (−2,−1). Using the synthesis procedure presented in Section 5.1, a 6-spring parallel mechanism is obtained. Then, the
-spring parallel mechanism is converted to a 3-finger compliant hand as described in Section 5.2.

.2.1. Synthesis for a 6-spring parallel mechanism
A 6-spring parallel mechanism that realizes the given compliance 𝐂 can be obtained by the following steps.

(1) Choose the first fingertip-peg contact point 𝑇12 and the first spring pair (𝐰1,𝐰2) intersecting at 𝑇12. Here, 𝑇12 is chosen to be
19

at (1, 0.5). When selecting 𝐰1 and 𝐰2, the spring distribution conditions described in Section 2.4 should be considered. Here,
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𝐰1 is selected to be along the peg edge and 𝐰2 is selected to pass through the finger base joint 𝐽1 at point (−2, 0.8). With this
selection, 𝐰2 intersects circle 𝛤𝑘 as illustrated in Fig. 20. The 2 spring wrenches are:

𝐰1 = [1, 0, −0.5]𝑇 ,

𝐰2 = [−0.9950, 0.0995, 0.5970]𝑇 .

(2) Choose the second fingertip contact point 𝑇34 and the second spring pair (𝐰3,𝐰4) which intersect at 𝑇34. Here, 𝑇34 is chosen
to be at (1.9,−0.5), 𝐰3 and 𝐰4 are selected to pass through points (3, 0) and the finger base joint 𝐽3 at (−2,−1). The 2 spring
wrenches are:

𝐰3 = [0.9104, 0.4138, 1.2414]𝑇 ,

𝐰4 = [0.9919, 0.1272, 0.7376]𝑇 .

(3) Select the third fingertip contact point 𝑇56 and the third spring pair (𝐰5,𝐰6) intersecting at 𝑇56.
(i) First generate the quadratic curve ℎ1234 determined by the first 4 spring wrenches (𝐰𝑖, 𝑖 = 1, 2, 3, 4). Matrix 𝐁1234 associated
with the 4 spring wrenches is calculated using Eq. (46) as:

𝐁1234 = (𝐭12𝐊𝐭34)𝐭13𝐭𝑇24 − (𝐭13𝐊𝐭24)𝐭12𝐭𝑇34,

where 𝐭𝑖𝑗 is the twist at the intersection of 𝐰𝑖 and 𝐰𝑗 and can be calculated by Eq. (25). For the 4 wrenches selected in Steps
1 and 2, the symmetric matrix associated with 𝐁1234 calculated using Eq. (47) is:

𝐇1234 =
⎡

⎢

⎢

⎣

0.0032 0.0076 −0.0008
0.0076 −0.1010 0.0345

−0.0008 0.0345 −0.0160

⎤

⎥

⎥

⎦

.

The inverse of 𝐇1234 is:

𝐇−1
1234 =

⎡

⎢

⎢

⎣

220.4964 48.4515 93.0662
48.4515 −26.6373 −59.7431
93.0662 −59.7431 −195.5482

⎤

⎥

⎥

⎦

.

The quadratic curve ℎ1234 calculated using Eq. (48) is:

ℎ1234(𝑥, 𝑦) = 𝐭𝑇𝐇−1
1234𝐭 = 0

where 𝐭 = [𝑦,−𝑥, 1]𝑇 is the unit twist centered at (𝑥, 𝑦). As shown in Fig. 20, curve ℎ1234 is a hyperbola having two branches.
(ii) For spring pair (𝐰5,𝐰6), only one is allowed to intersect curve ℎ1234. Here, 𝑇56 is selected to be at (0.3,−0.5), wrench 𝐰5
is selected to pass through point (2,−0.25) without intersecting curve ℎ1234, and 𝐰6 is selected to pass through the finger base
joint 𝐽5 at (−2, 0). As shown in Fig. 20, 𝐰6 intersects the curve. With this selection, 𝑘5 and 𝑘6 have the same sign. The selected
2 spring wrenches are:

𝐰5 = [0.9894, 0.1455, 0.5383]𝑇 ,

𝐰6 = [−0.9772, 0.2124, −0.4249]𝑇 .

(4) Adjust the spring locations to achieve passive realization.
For the selected 6 spring wrenches, calculate the coefficients 𝑘𝑖 using Eq. (40). The 6 spring rates are:

𝐤 = [−1.8745, 29.0059, 0.5321, 17.5103, 4.6414, 0.9891]𝑇 .

Since 𝑘1 < 0, at least one spring location needs to be adjusted. Here consider the quadratic curve 𝑔1 determined by the 5
spring wrenches (𝐰2,𝐰3,𝐰4,𝐰5,𝐰6). The matrix 𝐀1 associated with the 5 spring wrenches is calculated using Eq. (42):

𝐀1 = (𝐭𝑇23𝐰4)(𝐭𝑇56𝐰4)𝐭25𝐭𝑇36 − (𝐭𝑇25𝐰4)(𝐭𝑇36𝐰4)𝐭23𝐭𝑇56.

The symmetric matrix associated with 𝐀1 is calculated as:

𝐆1 = 𝐀1 + 𝐀𝑇
1 =

⎡

⎢

⎢

⎣

0.0009 0.0110 −0.0020
0.0110 0.0382 −0.0214

−0.0020 −0.0214 0.0080

⎤

⎥

⎥

⎦

.

The inverse of 𝐆1 is:

𝐆−1
1 = 103

⎡

⎢

⎢

⎣

2.6586 0.7987 2.7914
0.7987 0.1876 0.6987
2.7914 0.6987 2.6813

⎤

⎥

⎥

⎦

.

The quadratic curve 𝑔1 is obtained by:

𝑔1(𝑥, 𝑦) = 𝐭𝑇𝐆−1
1 𝐭 = 0
20

and is illustrated in Fig. 21. It can be seen that 𝐰1 intersects hyperbola 𝑔1.
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Fig. 21. Adjustment of selected spring locations. To make 𝑘1 positive, rotate 𝐰1 about 𝑇12 to location 𝐰′
1 so that it does not intersect quadratic curve 𝑔1.

Fig. 22. Compliance synthesis for a 3-finger hand. The geometry of each finger is obtained from the corresponding spring pair in the 6-spring parallel mechanism
that realizes the given behavior.

Wrench 𝐰1 is rotated about 𝑇12 to a location 𝐰′
1 such that it has no intersection with curve 𝑔1. The selected wrench 𝐰′

1 passes
through point (2, 0) and is calculated to be:

𝐰′
1 = [0.8944, −0.4472, −0.8944]𝑇 .

With the adjusted 𝐰1, the 6 spring coefficients are calculated using Eq. (40) to be:

𝐤 = [0.6191, 26.6801, 0.0336, 19.3915, 3.6346, 0.4455]𝑇 .

The selected 6-spring parallel mechanism passively realizes the given compliance 𝐂.

6.2.2. Conversion to a 3-finger hand
Using the concept of dual elastic mechanisms, the obtained 6-spring parallel mechanism is converted to a 3-finger hand.
For each spring pair, since the finger base joint is already determined, only one joint location needs to be selected along the

corresponding spring wrench.
For spring pair (𝐰1,𝐰2), the second elastic joint 𝐽2 can be anywhere along the axis of 𝐰1. Here, the location of 𝐽2 is selected to

be (0, 1).
For spring pair (𝐰3,𝐰4), the location of elastic joint 𝐽4 is selected to have 𝑥 = 0.5. Then the joint location of 𝐽4 is determined to

be (0.5,−1.1363).
For spring pair (𝐰5,𝐰6), the location of elastic joint 𝐽6 is selected to have 𝑥 = −0.5. The joint location of 𝐽6 is determined to be

(−0.5,−0.6176).
The selections of the elastic joint locations are illustrated in Fig. 22. The joint twists for the 6 elastic joints are:

𝐓 =
⎡

⎢

⎢

⎣

0.8 1 −1 −1.1363 0 −0.6176
2 0 2 −0.5 2 0.5
1 1 1 1 1 1

⎤

⎥

⎥

⎦

.

The joint compliance for each elastic joint is calculated using Eq. (16):

𝐜 = [1.4021, 0.2366, 22.1935, 0.2512, 0.4000, 27.6614].
21
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Thus, the hand configuration and elastic properties that realizes the given compliance 𝐂 are identified.
Using the process presented in Section 6.1.3 for 2-finger hand case, the obtained result are numerically validated. Similar to the

-finger hand, a large value of compliance is assigned to the 3 free joints 𝑇12, 𝑇34 and 𝑇56: 𝑐12 = 𝑐34 = 𝑐56 = 106. The stiffness of the
3-finger hand calculated is:

𝐊 =
⎡

⎢

⎢

⎣

50.0012 0 0.0006
0 0.8043 3.9130

0.0006 3.9130 21.7394

⎤

⎥

⎥

⎦

,

and the compliance calculated is:

𝐂 =
⎡

⎢

⎢

⎣

0.0200 0 0
0 10.0015 −1.8002
0 −1.8002 0.3700

⎤

⎥

⎥

⎦

which confirms that the desired elastic behavior is achieved by the 3-finger hand.

7. Summary

In this paper, the realization of any specified planar compliance for an object held by a compliant hand having multiple fingers
is addressed. The concept of dual elastic mechanisms is extended to non-full rank stiffnesses and is then used for the realization of
compliance with 2- and 3-finger compliant hands in which each finger has 2 elastic joints. Synthesis procedures for both 2-finger
and 3-finger hands are developed. The limitations on achievable compliant behaviors for hands having 2, 3 and an arbitrary number
of fingers are discussed. Since the synthesis procedures are based on the necessary and sufficient conditions, the resulting hand is
guaranteed to realize any specified compliance if its realization is possible. The theory presented in this paper can be used in the
design of general multi-serial mechanism compliance and of compliant hands for robotics applications.
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