
  

On the Mathematical Modeling of Slender Biomedical Continuum 
Robots 

Hunter B. Gilbert1* 1 

1Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 2 
70803, USA 3 

* Correspondence:  4 
Hunter B. Gilbert 5 
hbgilbert@lsu.edu 6 

Keywords: continuum robots, soft robots, dynamics, statics, mechanics 7 

Abstract 8 

The passive, mechanical adaptation of slender, deformable robots to their environment, whether the 9 
robot be made of hard materials or soft ones, makes them desirable as tools for medical procedures. 10 
Their reduced physical compliance can provide a form of embodied intelligence that allows the 11 
natural dynamics of interaction between the robot and its environment to guide the evolution of the 12 
combined robot-environment system. To design these systems, the problems of analysis, design 13 
optimization, control, and motion planning remain of great importance because,in general, the 14 
advantages afforded by increased mechanical compliance must be balanced against penalties such as 15 
slower dynamics, increased difficulty in the design of control systems, and greater kinematic 16 
uncertainty. The models that form the basis of these problems should be reasonably accurate yet not 17 
prohibitively expensive to formulate and solve. In this article, the state-of-the-art modeling 18 
techniques for continuum robots are reviewed and cast in a common language. Classical theories of 19 
mechanics are used to outline formal guidelines for the selection of appropriate degrees of freedom in 20 
models of continuum robots, both in terms of number and of quality, for geometrically nonlinear 21 
models built from the general family of one-dimensional rod models of continuum mechanics. 22 
Consideration is also given to the variety of actuators found in existing designs, the types of 23 
interaction that occur between continuum robots and their biomedical environments, the imposition 24 
of constraints on degrees of freedom, and to the numerical solution of the family of models under 25 
study. Finally, some open problems of modeling are discussed and future challenges are identified. 26 

1 Introduction 27 

Continuum robots use material deformation to move instead of joints. They may offer a technological 28 
solution to some of the difficult challenges of locomotion, perception, and manipulation found in a 29 
variety of unstructured and uncertain environments (Robinson and Davies 1999). Biomedical 30 
applications have been a great motivator in the development of a wide variety of continuum and soft 31 
robots, ranging from surgery to therapy and other applications involving physical human-robot 32 
interaction. The great recent interest in these design paradigms stems from the observation that 33 
success in whatever form it is needed may be achieved without having complete control over the 34 
motion of a robot or its forces of interaction with the environment. In some cases, this is 35 
advantageous simply for reducing the complexity of engineered systems, and in other cases, 36 
performance may be increased beyond what is possible with rigid machines. Several excellent 37 
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examples of this general principle come from tools of modern medicine. A flexible endoscope can 38 
navigate the intestines without a great degree of control over its own shape. The same is true for an 39 
intravascular catheter. In these examples, it is the particular combination of geometry and just the 40 
right amount of mechanical “softness” that facilitates the completion of the task. Beyond this snake-41 
in-a-pipe approach to navigation, recent research has argued that physical compliance is 42 
advantageous in grasping, underwater swimming, robustness to collision, and locomotion on soft 43 
terrains where low ground pressure is required. The interested reader is referred to several review 44 
articles for a survey of the benefits, applications, challenges, and history of soft and continuum robots 45 
(Burgner-Kahrs, Rucker, and Choset 2015; Cianchetti et al. 2018; Kim, Laschi, and Trimmer 2013; 46 
Walker, Choset, and Chirikjian 2016). Figure 1 shows four examples of continuum robot 47 
architectures which range from fully hard materials to fully soft and with composite structures in 48 
between these extremes. 49 

Though there is not universal agreement on definitions, the term continuum robot is generally used to 50 
imply that motion is generated without identifiable kinematic pairs, while the term soft robot implies 51 
at least a greater degree of mechanical compliance, defined as the ratio of displacement to force, 52 
exhibited in response to environmental forces than traditional approaches to robotic interaction. 53 
Many soft robots are made of soft materials, which may be characterized in terms of a material 54 
parameter such as the modulus of elasticity (Majidi 2014). Continuum robots made of harder 55 
materials can be designed to exhibit high or low mechanical stiffness to external forces depending on 56 
the design details.  57 

Continuum robots are classified as under-actuated mechanisms (Spong 1998). This statement is taken 58 
to mean that in a practical sense, and within the context of a pre-defined scope of possible robot-59 
environment interactions, more information than can be collected by a finite set of actuator-60 
collocated sensors is needed to describe the shape and motion of the robot to the degree of accuracy 61 
demanded by engineering specifications or by the roboticist’s preference. The practical sense of the 62 
definition is emphasized since even rigid robots with revolute or prismatic pairs must deform to a 63 
small degree when interacting with their environment via forces. All mechanical systems are 64 
underactuated when there exist flexible modes that are not actuated but which should be controlled 65 
(Spong and Praly 1997).It is well known that the analysis of dynamics of underactuated robots is 66 
significantly more complex than for regular, fully actuated robots (A. Jain and G. Rodriguez 1993).  67 

Beyond being under-actuated, the modeler of a continuum manipulator also frequently faces other 68 
challenges. Designs are often difficult to separate into “components” since the structure and the 69 
actuator may be the same physical body. Actuators based on pneumatics, hydraulics, and composite 70 
structures may not be as easily characterized as electric motors. Friction and hysteresis models may 71 
be needed to explain observed mechanics, and environments rich with expected contacts may require 72 
the solution of contact models based on theories of nonlinear complementarity. Additionally, the 73 
standard kinematic descriptions based on the rigid transformations in the special Euclidean group 74 
𝑆𝐸(3) are neither the most common approach to solid mechanics nor (necessarily) the most 75 
expedient approach to the description of solid continua undergoing deformation. With these 76 
considerations, one appreciates why the mathematical modeling of continuum and soft robots can be 77 
challenging.    78 

This paper first reviews the state-of-the-art in the mathematical modeling of continuum manipulators 79 
having at least one “long” aspect in terms of its shape, which are termed slender in agreement with 80 
the mechanics literature. The goal of these models is to describe the dynamics (or statics) to relate 81 
actuator variables, other boundary conditions, and sensor measurements to the motion of the robot. 82 
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The models are generally not concerned with other important aspects of robot design and analysis, 83 
such as repeatability, wear, safety, and other factors. For designs made of slender components, the 84 
motion of the robot is dominated by bending or beam-like deformations. This classification can be 85 
thought of as “arms,” “snakes,” or the individual “fingers” of a multi-fingered hand. Designs 86 
composed of individual components having this property are a natural extension, such as concentric 87 
tube robots (Mahoney, Gilbert, and Webster 2018) or multi-backbone continuum robots (Ding et al. 88 
2013). For robots made of softer materials, such as the STIFF-FLOP designs, localized deformations 89 
may be complex, yet the dominant behavior is still beam-like (Cianchetti et al. 2014; Fraś et al. 90 
2014). One of the goals of the work is to express the variety of methods encountered in the literature 91 
with a common notation. The review motivates a theoretical discussion rooted in the classical 92 
theories of solid mechanics. An analysis of the mechanics is used to support recommendations for 93 
future modeling efforts, with the conclusion that some choices for the model structure may result in 94 
better absolute model accuracy and efficiency (as quantified by the relationship between accuracy 95 
and dimensionality).  96 

2 Review of the state of the art 97 

Table 1 presents the unified nomenclature that will be used throughout this paper. In the discussion 98 
of other works, the original nomenclature has been changed to match what is shown. There are three 99 
primary considerations in any physics-based approach to modeling of solid continua: the adoption of 100 
kinematic hypotheses and coordinates describing the configuration of the body, the application of the 101 
laws of mechanics, and the selection of mathematical models that describe the behavior of materials 102 
(Sadati et al. 2019). Kinematic hypotheses alone allow the modeler to describe the geometry of the 103 
robot, but this alone is insufficient for most purposes because it does not reveal which configurations 104 
are possible or likely. The mechanics, which are formulated naturally as partial differential equations, 105 
provide the relationships between the kinematic degrees of freedom that indicate which path of 106 
configurations will be taken if particular conditions (actuation, environments, etc.) are imposed. 107 
Finally, the material models are needed to close the relationship between the kinematic degrees of 108 
freedom and the kinetic quantities related by the mechanics.  109 

Symbol Meaning 
𝒑 Position vector of a point with respect to an inertial frame of reference ℱ0 

𝒂𝓕  
Vector 𝒂 resolved in Cartesian coordinates of frame ℱ. The basis is held fixed if a 
derivative is taken, i.e. if 𝒂 = 𝑥𝑖𝒅𝑖 and 𝒅𝑖 are the unit vectors of ℱ, then 𝜕𝑠 𝒂ℱ =
(𝜕𝑠𝑥𝑖)𝒅𝑖. 

ℱ𝑖 Frame of reference 𝑖. ℱ0 is an inertial frame. 
𝑠 Arc length coordinate 

𝑡 Time coordinate (may be real time or an arbitrary parameter describing changes in 
configuration depending on context) 

𝒅1, 𝒅2, 𝒅3 Director vectors of a framed curve 

𝒈𝑏 , 𝑹𝑏 , 𝒑𝑏 Transformation in 𝑆𝐸(3) consisting of rotation operator 𝑹𝑏 ∈ 𝑆𝑂(3) and displacement 
𝒑𝑏 describing the transformation between ℱ0 and ℱ(𝑠) along a framed curve. 

𝑞𝑖 A generalized coordinate for the 𝑖𝑡ℎ degree of freedom 
𝜕𝛼(⋅) Partial derivative operator with respect to variable 𝛼 
𝒖, 𝒗 Strain variables in the special Cosserat rod description 
𝐷 Subset of the real line, domain of the arc-length parameter for a rod 
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Symbol Meaning 
(⋅)× Canonical mapping ℝ3 → 𝑠𝑜(3) ⊂ ℝ3×3, 𝒂×𝒃 = 𝒂 × 𝒃 

𝑢𝑘𝒅𝑘 Summation over repeated indices implied 
𝜏𝑗 Actuator value 𝑗 
𝑥𝑗 Task-space coordinate 
𝑞̇ Time derivative of 𝑞 

Table 1. Nomenclature used in this article 110 

2.1 Kinematic descriptions 111 

The forebears of continuum manipulators are the hyper-redundant robots, defined as those having a 112 
large (or infinite in the case of continuum robots) relative degree of redundancy (Chirikjian and 113 
Burdick 1994). In any robot with material deformation which is substantial with regard to the 114 
kinematics or dynamics, both the relative degree of redundancy and the degree of under-actuation are 115 
theoretically infinite since the configuration space is infinite-dimensional. Here the usual definition 116 
of a robot configuration is used: “a complete specification of the location of every point on the robot” 117 
(Spong, Hutchinson, and Vidyasagar 2006). There have been two primary methods to date of 118 
describing the configuration of continuum and soft robots: the curve-based description and the 119 
general continuum description. 120 

2.1.1 The curve-based description 121 
The state of the art curve-based description is that of the special Cosserat rod (Antman 2005). Figure 122 
2 depicts the curve, its relationship to a solid body, and the quantities that are associated with the 123 
curve and the boundary conditions of a mechanical model. The elongated form of many continuum 124 
manipulators leads naturally to the concept of the “backbone curve,” which is typically defined to be 125 
a time-varying, piecewise differentiable curve in the standard three-dimensional affine Euclidean 126 
space 𝐸 with associated vector space 𝐄. A parametric representation gives the position of a point 127 
identified by a spatial parameter 𝑠 ∈ 𝐷 ⊂ ℝ at time 𝑡 ∈ ℝ as a position vector 𝒑𝑏(𝑠, 𝑡) ∈ 𝐄 with 128 
respect to a specific frame of reference ℱ0 in 𝐸. The differentiability requirement on 𝒑𝑏 is always at 129 
least that the first derivative of 𝒑𝑏 with respect to 𝑠 exists, is piecewise continuous, and is nowhere 130 
equal to zero. This condition guarantees that the curve is rectifiable, or in other words has a 131 
measurable arc length (Kreyszig 1991). The curve changes over time, modeling the motion of the 132 
robot, and it is presumed to describe the dominant features of the motion of the robot. Since there is 133 
no finite set of coordinates that describes every possible curve meeting these requirements, the 134 
description of the shape is infinite-dimensional.  135 

The usual type of modeling hypothesis for slender bodies is that other points, which are not located 136 
on the backbone, are described by some auxiliary relationship that describes their positions relative to 137 
the positions on the backbone. The standard theories from beam mechanics may be adopted for this 138 
purpose, in which case the backbone curve may be affixed to the body at the neutral axis of bending1. 139 
One example is the Euler-Bernoulli hypothesis, which states that sections normal to the backbone 140 
remain normal for all deformations. Another is the hypothesis due to Timoshenko stating that normal 141 
sections rotate relative to the backbone but remain planar. Standard “warping” theories can be used to 142 
couple motion of the points normal to the sections with twisting about the backbone if the sections 143 

 
1 There are additional considerations for this placement in the case of dynamical models, discussed below. 
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are not circular. Regardless of these additional hypotheses, the curve is of fundamental importance to 144 
the kinematic description. 145 

Explicitly, the body of the robot is identified by the curve through the consideration of a reference 146 
configuration 𝒞0 of the robot. The backbone curve 𝒑𝑏 is placed on this reference configuration. The 147 
curve is then “framed” by a set of unit vectors 𝒅1(𝑠, 𝑡), 𝒅2(𝑠, 𝑡), and 𝒅3(𝑠, 𝑡) termed the director 148 
vectors. The first two are chosen to be orthogonal and to span the section of the body at 𝑠 which is 149 
normal to the curve. The third is taken to complete a right-handed, orthonormal coordinate frame as 150 
𝒅3(𝑠, 𝑡) = 𝒅1(𝑠, 𝑡) × 𝒅2(𝑠, 𝑡). In terms of classical differential geometry, 𝒅3 is the tangent vector, 151 
and 𝒅1 and 𝒅2 could be selected as the normal and bi-normal vectors from Frenet’s formulas 152 
(Kreyszig 1991). This procedure is problematic for general curves since torsion may be undefined, 153 
but many other alternative framings of the curve are possible which do not suffer this problem 154 
(Bishop 1975). The backbone position and unit vectors together describe a local reference frame 155 
ℱ(𝑠, 𝑡) for each point along the curve. The unit vectors equivalently define a spatiotemporal field of 156 
rotation operators 𝑹𝑏(𝑠, 𝑡) ∈ 𝑆𝑂(3). The rotation field can be represented by matrices (Rucker and 157 
Webster III 2011), quaternions (Boyer et al. 2020), or any other suitable representation. Together 158 
with the position vector, a spatiotemporal field of transformations 𝒈𝑏(𝑠, 𝑡) ∈ 𝑆𝐸(3) is defined by 159 
𝒈𝑏(𝑠, 𝑡) = {𝑹𝑏(𝑠, 𝑡), 𝒑𝑏(𝑠, 𝑡)}.  160 

The vectors 𝒖(𝑠, 𝑡) = 𝑢𝑘𝒅𝑘 and 𝒗(𝑠, 𝑡) = 𝑣𝑘𝒅𝑘 are termed the “strain variables.” They describe 161 
deformation of the body and are invariant under rigid transformations. The vector 𝒖 has been widely 162 
called the “curvature” vector in the robotics literature, but this may be misleading since it is not 163 
generally the curvature of the deformed backbone curve. The term “flexural strain” is preferred for 164 
𝑢1 and 𝑢2, and “torsional strain” for 𝑢3. The variables 𝑣1 and 𝑣2 are called the shear strains, and 𝑣3 is 165 
the dilation. The change in length or “extension” of the backbone curve is characterized by ‖𝜕𝑠𝒑‖2 =166 
𝒗 ⋅ 𝒗. The strain variables are related to the framed curve by the following relationships. 167 

𝜕𝑠𝒑𝑏(𝑠, 𝑡) = 𝒗(𝑠, 𝑡), 𝜕𝑠𝒅𝑘(𝑠, 𝑡) = 𝒖(𝑠, 𝑡) × 𝒅𝑘(𝑠, 𝑡) (1) 168 

Finally, the vectors 𝜕𝑡𝒑𝑏(𝑠, 𝑡) and 𝝎(𝑠, 𝑡) represent the linear and angular velocity of the backbone 169 
curve and director vectors. The angular velocity satisfies the equation 𝜕𝑡𝒅𝑘(𝑠, 𝑡) =170 
𝝎(𝑠, 𝑡) × 𝒅𝑘(𝑠, 𝑡). The four functions 𝒖, 𝒗, 𝜕𝑡𝒑𝑏 , and 𝝎 are not independent; they must satisfy 171 
𝜕𝑠𝝎 = 𝜕𝑡𝒖 + 𝒖 × 𝝎. In the reference configuration, the flexure strains have non-zero values 𝒖0(𝑠) if 172 
the backbone is not a straight. Generally, 𝒗0(𝑠) = 𝒅3(𝑠), but other choices are possible. 173 

2.1.2 The general continuum description 174 
The second approach to describing the configuration of continuum robots is to make as few prior 175 
kinematic hypotheses on the configuration as possible. The traditional description of a three-176 
dimensional continuum in solid mechanics is used in this case. In this approach a reference 177 
configuration 𝒞0 is identified by their position vector relative to a frame of reference ℱ0. Three 178 
coordinates 𝑿 ∈ ℝ3 identify the position of each point in the body via a one-to-one, differentiable 179 
vector-valued function 𝑷(𝑿). If 𝑿 is chosen as the Cartesian coordinates with respect to ℱ0, then this 180 
function and its inverse are trivial. The final locations of the points are described by 𝒑(𝑿, 𝑡). In some 181 
cases, it is useful to define a displacement field 𝑼 as follows. 182 

𝒑(𝑿, 𝑡) = 𝑷(𝑿) + 𝑼(𝑿, 𝑡) 183 

The amount of stretching can be quantified by the deformation gradient, defined by 184 
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𝑭(𝑿, 𝑡) =
𝜕𝒑

𝜕𝑷
|

𝑿,𝑡
 185 

The deformation gradient straightforwardly describes the local changes in length (amount of 186 
stretching) and therefore plays a major role in the definition of strain measures. Note also that the 187 
curve-based description of the configuration, together with the classical Euler-Bernoulli hypothesis, 188 
can be placed into this more general framework using 𝑿 = (𝑠, 𝑋2, 𝑋3) and 𝒑(𝑿, 𝑡) = 𝒑𝑏(𝑠, 𝑡) +189 
𝑋2𝒅2(𝑠, 𝑡) + 𝑋3𝒅3(𝑠, 𝑡) (Antman 2005).  190 

2.2 Perspective on discretization & configuration spaces 191 

There are two perspectives that one might take when describing the kinematics or mechanics of 192 
continua. In the first perspective, the model consists of a (possibly nonlinear) PDE, a domain on 193 
which the PDE applies, and boundary conditions in the form of constraints or measurements. The 194 
robot’s state space consists of the dependent variables related by the PDE. The state space is 195 
therefore a particular Cartesian product space that might involve, in general, both finite-dimensional 196 
spaces and infinite-dimensional function spaces. In the process of computing a numerical solution to 197 
a model, any part of the state that belongs to an infinite-dimensional space must be approximated by 198 
a finite set of coordinates in ℝ𝑛, but the choice of coordinates does not need to be of great concern to 199 
the modeler. This perspective has been taken by numerous authors for general continuum 200 
manipulators (Trivedi, Lotfi, and Rahn 2008; Till, Aloi, and Rucker 2019), concentric tube robots 201 
(Gilbert, Hendrick, and Webster III 2016; Dupont et al. 2010; Rucker et al. 2010), parallel continuum 202 
robots (Black, Till, and Rucker 2018), and bioinspired locomotion by snakes and worms (Boyer, Ali, 203 
and Porez 2012). The modeler hopes that any approximation error is small enough to be ignored, and 204 
error-controlled numerical methods may provide some assurances. This first perspective is the natural 205 
one if, for example, the modeler selects an error-controlled, automatic step-size numerical integrator 206 
like the Dormand-Prince Runge Kutta pair to approximate the solution to a differential equation with 207 
a spatially distributed independent variable. The benefit to this perspective is that questions of 208 
convergence may generally be avoided. However, there are two main disadvantages: first, there is a 209 
relative paucity of tools available if the problem is not expressed with respect to a single independent 210 
spatial variable; second, the degrees of freedom chosen by automatic numerical methods may be 211 
unknowable in advance and may vary between model solutions, making it difficult to apply 212 
algorithms built on spaces like ℝ𝑛 or on manifolds where coordinate charts are available.  213 

In a second perspective, the equations of an infinite-dimensional model are explicitly discretized 214 
through a suitable method such as the finite element method or a finite difference method (Back et al. 215 
2015; Gilbert and Godage 2019; Renda et al. 2014) or via a spectral method involving a “modal” 216 
decomposition (Chirikjian and Burdick 1994; Y. Chen et al. 2020; Godage et al. 2015). In this 217 
perspective, the modeler takes control over the discretization and fixes the dimensionality of the 218 
resulting model. One is free to take the perspective that a new model has been created that is not 219 
necessarily subordinate in any way to the infinite-dimensional model. In other words, the infinite 220 
dimensional dependent variables, ODEs, and/or PDEs, were only a steppingstone to the finite-221 
dimensional model. The dimension may be varied according to a model hyper-parameter 𝑁, and 222 
often one wishes that as 𝑁 → ∞, the solutions to the sequence of fixed-dimensional models approach 223 
the solution to a corresponding infinite-dimensional model.  224 

The second perspective is the standard one in generally accepted theories of robot kinematics and 225 
dynamics, in which the goal is to find a suitable coordinate set that describes the displacement field 226 
𝒖(𝑿, 𝑡) that takes a material point located at initial position 𝑷 to its final position 𝒑 = 𝑷 + 𝒖. With 227 
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rigid link manipulators, the space is partitioned into non-intersecting bodies indexed by number 𝑖 ∈228 
ℤ+ and equipped with local coordinate frames, and then the machinery of 𝑆𝐸(3) is used to associate 229 
each body with its own displacement field expressed in terms of one of the coordinate 230 
transformations 𝑻0

𝑖 ∈ 𝑆𝐸(3) representing the transformation between the base frame 0 and the 231 
frame of the 𝑖𝑡ℎ body. For serial, rigid-link robots, the choice of finite dimensional coordinates 232 
parameterizing the displacement field is usually one of two conventions, the Denavit-Hartenberg 233 
convention (Denavit and Hartenberg 1955) or the twist coordinate system and product-of-234 
exponentials formula (Brockett 1984).  235 

For continuum and soft robots, neither the perspective (finite vs. infinite-dimensional) nor the 236 
approach to discretization (choice of coordinates) appears to be standardized. In some cases, 237 
restrictive assumptions do allow a set of finite coordinates that uniquely specify the configuration of 238 
a continuum robot. For example, Bretl and McCarthy showed that for the Kirchhoff rod with no 239 
external loading, a configuration space isomorphic to ℝ6 can be selected, corresponding physically to 240 
a known internal force and moment at the same location in space as the known orientation of the rod 241 
(Bretl and McCarthy 2014). A similar result is known for coordinates of the configuration space of 242 
concentric tube robots without any external loads (Gilbert, Hendrick, and Webster III 2016). The 243 
general principle is a basic result on initial value problems. If the mechanics of the system can be 244 
modeled by a system of 𝑛 first-order initial value problems,  245 

𝜕𝑠𝒚 = 𝑭(𝑠, 𝒚), 𝒚(𝑠0, 𝑡) = 𝒚0(𝑡) 246 

with 𝐹 uniformly Lipschitz in 𝒚 and continuous in 𝑠, then the solutions are uniquely determined by 247 
𝒚0 (Schaeffer and Cain 2016).  Therefore, if all state information of the robot is contained in the 248 
functions 𝑦𝑖(𝑠, 𝑡), then it is clear that 𝒚0 is a suitable set of coordinates for the configuration space of 249 
the robot. For curve-based models 𝒚0 usually belongs to a space of the form 𝑆𝐸(3)𝑟 × ℝ𝑛.  250 

However, with less restrictive assumptions, low-dimensional configuration spaces are not generally 251 
found. Such is the case for parallel continuum robots (Black, Till, and Rucker 2018), for growing 252 
robots (Greer et al. 2019), or soft robotic hands (Schlagenhauf et al. 2018). It is in general impossible 253 
to find a “minimal” set of coordinates for the C-space of any continuum manipulator when the 254 
locations and nature of external loads or contacts are a-priori unknown and when these loads cause 255 
substantial changes in the robot shape. The subsections that follow describe a variety of methods that 256 
have been used to mathematically represent the configurations of continuum robots. 257 

2.2.1 Spectral methods 258 
Spectral methods were some of the earliest described methods for the kinematic modeling of 259 
backbone curves. In this method, the configuration is represented by a finite number of coordinates 260 
𝒒(𝑡) ∈ ℝ𝑁 by assuming that some kinematic quantity is described by a truncated sum of “modal” 261 
shape functions 𝜙𝑖(𝑠) in a manner analogous to a Fourier series. The general form is to have a scalar 262 
quantity 𝑆𝑗 represented as 263 

𝑆𝑗(𝑠, 𝑡) = ∑ 𝑎𝑖𝑗(𝒒(𝑡))𝜙𝑖(𝑠)

𝑁

𝑖=1

 264 

The function 𝑎𝑖𝑗 may be simply an index into the vector 𝒒 pulling out one of the components, or it 265 
may be a more complicated relationship. The mode shapes are generally selected among one of the 266 
standard families such as trigonometric functions sin(𝑘𝑖𝜋𝑠) and cos(𝑘𝑖𝜋𝑠) for a series of values 𝑘𝑖 ∈267 
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ℝ (directly analogous to a truncated Fourier series), the standard monomials {1, 𝑠, 𝑠2, … }, the 268 
Legendre polynomials, Chebyshev polynomials , etc. (Chirikjian and Burdick 1994; J. Zhang and 269 
Simaan 2013; Y. Chen et al. 2020). In general, to be classified as a spectral method, the mode 270 
functions should have global support rather than local support, which leads to the element-based 271 
methods described below.  272 

There is a great deal of freedom within this approach. For example, the tangent vector 𝒅3 can be 273 
expressed in spherical angles 𝜃(𝑠, 𝑡) and 𝜙(𝑠, 𝑡), and then 𝑆1 = 𝜃 and 𝑆2 = 𝜙, and 𝒗 = (0,0,1) 274 
completes the kinematic description (Chirikjian and Burdick 1994). 𝑆𝑗 could also be chosen directly 275 
as a component of the displacement field of the backbone curve (Godage et al. 2015). These methods 276 
are extrinsic because they seek to approximate kinematic quantities as measured by the observer in 277 
the inertial frame ℱ0. Parameterizations also possible which represent the strain variables 𝒖(𝑠, 𝑡) and 278 
𝒗(𝑠, 𝑡) measured by an observer in the local frame ℱ(𝑠, 𝑡) (Boyer et al. 2020) .When coupled with a 279 
collocation method used to determine 𝒖, it was shown that the Magnus expansion can be used to 280 
efficiently recover the position and orientation field (Orekhov and Simaan 2020). 281 

In the context of continuum robots, to the best of the author’s knowledge, the spectral methods have 282 
only been applied in conjunction with the curve-based descriptions discussed in section 2.1.1 and not 283 
for more general continuum descriptions. 284 

2.2.2 Element-based methods: PCC 285 
The element-based methods, in contrast to the spectral methods, break up the problem spatially into 286 
adjacent sub-domains and attempt to model the kinematics on each sub-domain using a simpler 287 
hypothesis. This procedure can be carried out for both the curve-based description and the general 288 
continuum description. Many authors have adopted the kinematic hypothesis that the backbone curve 289 
is a sequence of circular arcs which are concatenated by imposing tangency conditions. There is a 290 
natural extension of this idea to piecewise helical curves. This approximation is termed the 291 
“piecewise constant curvature” (PCC) method, and many continuum robots have even been designed 292 
to exhibit deformation of this kind, at least in the absence of external loads (Webster and Jones 293 
2010). For example, multi-backbone robots and tendon-driven robots will adopt, with actuation, 294 
shapes very close to circular arcs with appropriate design decisions (K. Xu and N. Simaan 2008; 295 
Camarillo et al. 2008). On the other hand, even gravitational loading may cause more flexible robots 296 
to adopt shapes more complex than a single circular arc (Trivedi, Lotfi, and Rahn 2008).  297 

c 298 

2.2.3 Element-based methods: General continuum 299 
More general finite-element descriptions have also been used to model soft and continuum robots. In 300 
this case, the degrees of freedom 𝒒(𝑡) directly interpolate the position field 𝒑(𝑿, 𝑡) over the three-301 
dimensional domain of the body. Using typical first-order (linear) interpolants, the degrees of 302 
freedom are the Cartesian coordinates of the nodes of the mesh that that breaks the body into discrete 303 
volumes. Direct nodal position discretization using finite elements can be used for closed-loop 304 
control using a dimensionality reduction scheme based on projection (Bieze et al. 2018). It has also 305 
been shown that high-order FEM models with an order reduction method involving fitting  to PCC 306 
kinematics is effective (Runge et al. 2017). Finally, it has been demonstrated that general 3D FEM 307 
with model order reduction based on the Proper Orthogonal Decomposition can produce models 308 
amenable to dynamic closed-loop control (Katzschmann, Thieffry, et al. 2019).  309 
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2.2.4 Direct nodal discretization 310 
Closely related to the element-based methods are those based on direct discretization of the variables. 311 
Differential operators in the mechanics can be replaced by their equivalent finite-difference operators 312 
to form algebraic equations directly, operating on the values of field variables specified at discrete 313 
spatial locations 𝑠𝑖 for the curve-based approach. A finite difference scheme applied directly to the 314 
geometrically exact Cosserat equations has been demonstrated for both the planar case and the spatial 315 
case (Hasanzadeh and Janabi-Sharifi 2014; Gilbert and Godage 2019; Wang et al. 2021) and 316 
described for concentric tube robots (Webster and Rucker 2009). Finite-difference methods were also 317 
used with direct spatial discretization to model a soft underwater arm driven by cables (Renda et al. 318 
2014). 319 

2.2.5 Pseudo-rigid body methods 320 
The pseudo-rigid body methods replace the continuum with an approximating rigid linkage. If the 321 
curve is broken into a sequence of chords with rotational joints at the nodes joining the chords, then 322 
this is equivalent to a spatial “lumping” of the flexural strains into a discrete point via the use of the  323 
Dirac delta distribution (Chirikjian and Burdick 1991; Greigarn et al. 2019). 324 

𝒖(𝑠, 𝑡)ℱ(𝑠,𝑡)
= ∑ 𝑞𝑖(𝑡)𝛿(𝑠 − 𝑠𝑖)𝒏𝑖

𝑚

𝑖=1

 325 

A universal joint is the result if two orthogonal axes 𝒏𝑖 and 𝒏𝑖+1 are placed with 𝑠𝑖 = 𝑠𝑖+1 with both 326 
axes normal to the backbone curve. Three orthogonal axes create a spherical joint.  327 

It has been shown that the kinematics of tip-loaded cantilever beams can be modeled adequately by a 328 
serial 3R mechanism (Su 2009). Other PRB models have been created for modeling of catheters 329 
(Ganji and Janabi-Sharifi 2009), tendon-driven continuum manipulators for minimally invasive 330 
surgery (Penning and Zinn 2014), and MRI-actuated catheters (T. Greigarn et al. 2017). A 6-DOF 331 
PRB segment model has also been proposed (Venkiteswaran, Sikorski, and Misra 2019). An 332 
equivalence has also been shown between the coordinates of a PCC model and a suitably defined 333 
pseudo-rigid body model, indicating that PRB model segments with RPPR kinematics can be used to 334 
describe the same configuration space as PCC models (Katzschmann, Santina, et al. 2019).  335 

2.2.6 Initial value problem concepts 336 
There are additionally a variety of other methods of analysis and computation which do not explicitly 337 
select the degrees of freedom in the kinematic description. In these methods, the unknowns are 338 
conceptually left as unknown functions, and numerical methods are used which automatically select 339 
the degrees of freedom used to represent the unknown functions, usually via an error estimation and 340 
control algorithm.  341 

These methods have been used when the problem is re-cast as a one-dimensional boundary value 342 
problem with split boundary conditions. 343 

𝜕𝑠𝒚 = 𝑓(𝑠, 𝒚), 𝐺𝑎(𝒚(0, 𝑡), 𝑡𝑗) = 0, 𝐺𝑏(𝒚(𝐿, 𝑡), 𝑡𝑗) = 0 344 

Solutions can then be provided by numerical codes which automatically determine the degrees of 345 
freedom used to approximate the function 𝒚(𝑠, 𝑡𝑗) for each discrete value of 𝑡𝑗. For continuum robots 346 
these methods have been demonstrated via collocation (Webster and Rucker 2009) and shooting 347 
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methods (Till et al. 2015; B. Mauzé et al. 2020) using numerical tools that approximate 𝒚(𝑠, 𝑡𝑗) via 348 
piecewise polynomials. It has also been shown recently that the dynamics problem for a wide variety 349 
of architectures based on single or multiple Cosserat rod sub-models can be cast as a shooting 350 
problem on an ODE once the time derivatives have been discretized using finite differences (Till, 351 
Aloi, and Rucker 2019).  352 

2.2.7 Differential kinematics for strain-variable hypotheses 353 
It is often necessary to calculate a manipulator “Jacobian field” based on the curve parametrization, 354 
and if the generalized coordinates are defined to interpolate the strain variables, this field is not trivial 355 
to calculate. 356 

[
𝜕𝑡𝒑
𝝎

] (𝑠, 𝑡) = 𝑱𝒒(𝑠, 𝑡)𝜕𝑡𝒒(𝒕) = [
𝑱𝒑

𝑱𝝎
] 𝜕𝑡𝒒(𝑡) (2) 357 

Letting 𝑱𝑖 be the column multiplied by 𝜕𝑡𝑞𝑖(𝑡), then the column can be calculated from the following 358 
differential relationships: 359 

𝜕𝑠𝑱𝑝𝑖 = 𝜕𝑞𝑖
𝒗 360 

𝜕𝑠𝑱𝜔𝑖 = 𝜕𝑞𝑖
𝒖 + 𝒖 × 𝑱𝝎𝒊 361 

One must take care when the interpolation is carried out on the strain variables in coordinates of the 362 
local frame ℱ(𝑠, 𝑡). If desired, the coordinates in the body frame representations 𝑱ℱ(𝑠,𝑡)

𝑝𝑖 and 363 
𝑱𝜔𝑖

ℱ(𝑠,𝑡)  may be calculated from the appropriate representation of these equations in the moving 364 
frame (Rucker and Webster 2011). 365 

𝜕𝑠 ( 𝑱
ℱ(𝑠,𝑡)

𝑝𝑖) = − 𝒖
ℱ(𝑠,𝑡)

× 𝑱
ℱ(𝑠,𝑡)

𝑝𝑖 + 𝜕𝑞𝑖
( 𝒗

ℱ(𝑠,𝑡)
) + 𝑱𝜔𝑖

ℱ(𝑠,𝑡)
× 𝒗

ℱ(𝑠,𝑡)
 366 

𝜕𝑠 ( 𝑱𝜔𝑖
ℱ(𝑠,𝑡)

) = − 𝒖ℱ(𝑠,𝑡)
× 𝑱𝜔𝑖

ℱ(𝑠,𝑡)
+ 𝜕𝑞𝑖

( 𝒖ℱ(𝑠,𝑡)
) 367 

From a known boundary condition where 𝑱𝑝𝑖(0, 𝑡) = 0 and 𝑱𝜔𝑖(0, 𝑡) = 0, the solution to these 368 
equations can be expressed in closed form as the solution to a linear time varying system. 369 

[
𝑱𝑝𝑖

𝑱𝜔𝑖
] (𝑠) = ∫ exp (− ∫ ad𝜉(𝜏) ⅆ𝜏

𝑟

0

) 𝜕𝒒 [
𝒗ℱ(𝑠,𝑡)

𝒖ℱ(𝑠,𝑡)
] ⅆ𝑟

𝑠

0

, ad𝜉(𝜏) = [
𝒖× 𝒗×

0 𝒖×
 ]

ℱ(𝑠,𝑡)

 370 

2.3 Mechanics 371 

Regardless of how the shape of a robot is described, the principles of classical mechanics are 372 
frequently used to describe the relationships between the model’s degrees of freedom, the internal 373 
stresses, and any imposed boundary conditions which may include external forces, imposed positions 374 
or orientations of parts of the robot, contact conditions. The robot’s actuators may generally be 375 
modeled in one of two ways: either they are described as constraints (a form of boundary condition) 376 
or as sources of internal stress.  377 

2.3.1 The equations of motion for the special theory of Cosserat rods 378 
In the curve-based description, the equations of motion of the special theory of Cosserat rods serve as 379 
the strong form differential equations governing the mechanics (Antman 2005). 380 
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𝜕𝑠𝒏 + 𝒇 = 𝜌𝐴𝜕𝑡𝑡𝒑 + 𝜌𝐼𝑘𝜕𝑡𝑡𝒅𝑘 (3) 381 
𝜕𝑠𝒎 + 𝜕𝑠𝒑 × 𝒏 + 𝓵 = 𝜌𝐼𝑘𝒅𝑘 × 𝜕𝑡𝑡𝒑 + 𝜕𝑡(𝜌𝑱 ⋅ 𝝎) (4) 382 

The sum from 𝑘 = 1 to 3 is implied over the terms involving 𝐼𝑘 and 𝒅𝑘. The variables 𝒏(𝑠, 𝑡) and 383 
𝒎(𝑠, 𝑡) are the internal force and the internal moment, which are interpreted as the resultant force 384 
and resultant moment of the stress acting on section 𝑠. In the case of a slowly accelerating body, 385 
which is typical in many biomedical applications, a quasistatic approximation may be used, in which 386 
all terms on the right-hand side are neglected (Burgner-Kahrs, Rucker, and Choset 2015). 𝒇 and 𝓵 are 387 
externally applied forces and moments. Applied concentrated forces and moments require the Dirac 𝛿 388 
distribution to express in this formulation. 389 

In the case of a model which allows freedom in all the strain variables, 𝒎 and 𝒏 are algebraically 390 
related to the kinematic variables through a suitable material constitutive law. On the other hand, in 391 
the shear-less and extension-less model, 𝒏 is a basic unknown and is equivalent to a Lagrange 392 
multiplier which enforces the constraint 𝒗(𝑠, 𝑡) = 𝒗0(𝑠).  393 

The parameter 𝜌𝐴 is the mass density (expressed per unit length) of the cross-section. 𝜌𝑱 is the mass 394 
moment of inertia (per unit length) of the section, which makes 𝜌𝑱 ⋅ 𝝎 the angular momentum (per 395 
unit length) calculated about the mass center of the section. The three parameters 𝜌𝐼𝑘 account for 396 
linear momentum density of the cross section caused by angular velocity of the curve. The author is 397 
not aware of any works in the robotics literature for which this term has been nonzero; if the 398 
backbone curve is chosen to pass through the mass centers of the cross sections, then 𝜌𝐼𝑘 = 0 and the 399 
equations simplify considerably. However, it is noteworthy that this may in general result in the 400 
curve failing to pass through the cross-section centroids (if multiple materials are used) or it may be 401 
impossible to satisfy this requirement exactly if a single curve is used to model a body with complex 402 
geometric features. 403 

2.3.2 The equations of motion for pseudo-rigid body models 404 
With the PRB-type models, the equations of motion are exactly those of a classical multibody 405 
dynamical system with scleronomous, holonomic constraints. These equations are commonly given 406 
as follows (Murray, Li, and Sastry 2017). 407 

𝑴(𝒒)𝒒̈ + 𝑪(𝒒, 𝒒̇)𝒒̇ + 𝑵(𝒒, 𝒒̇) = 𝐵(𝝉) 408 

The right-hand side contains the non-conservative generalized forces associated with actuation and 409 
any other forces; since the robots are underactuated there are generally many more rows in this 410 
equation than actuator variables 𝜏𝑖. Also, it is noteworthy that the inertial forces are not trivial to 411 
calculate since the motion of the continuum body is not the same as the motion of the rigid-link 412 
approximation. Some assumptions about how the continuum “tracks” the rigid-link approximation as 413 
it moves is needed. One approach is to match the centers of mass of chords along the curves of a 414 
PCC model with centers of mass of the links in the rigid link model (Della Santina et al. 2018). 415 

2.3.3 The equations of motion for general deformable bodies 416 
The dynamic equilibrium conditions of classical continuum mechanics serve as the defining 417 
relationship for general three-dimensional finite element models of soft and continuum robots. Rarely 418 
are these equations encountered explicitly in the literature on continuum robots, with most authors 419 
preferring to state the result after the strong form equations have been converted to the weak form 420 
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and integrated. The resulting equations, incorporating constraint forces, are of the following form (O. 421 
Goury, B. Carrez, and C. Duriez 2021). 422 

𝑴(𝒒)𝒒̈ + 𝑭(𝒒, 𝒒̇) + 𝑮(𝒒) = 𝑯𝑇𝝀 423 

The form of this equation is directly analogous to the classical form of the dynamical equations for 424 
rigid multibody systems. 𝑴(𝒒)𝒒̈ accounts for the inertial forces, 𝑭(𝒒, 𝒒̇) accounts for the internal 425 
forces produced by deformation of the material, and 𝑮(𝒒) accounts for gravitational forces. The 426 
matrix 𝑯 is associated with the constraints and boundary conditions and encodes the effect of the 427 
boundary and actuation forces contained in the vector 𝝀. The details of the construction procedure for 428 
this equation are out of the scope of this paper.  429 

2.3.4 Projection via D’Alembert’s principle 430 
In the case of the curve-based models using either the PCS or higher-order models, the equations can 431 
be projected onto the degrees of freedom of the model using Galerkin’s principle, probably better 432 
known among mechanical engineers as the principle of virtual work (Greenwood 1988). The method 433 
is also equivalent in results to Kane’s method of virtual power (Kane and Levinson 1983; Rone and 434 
Ben-Tzvi 2014). Because the backbone curve descriptions for the PCC, PCS, and higher order strain 435 
variable interpolants are described by independent degrees of freedom 𝒒 ∈ ℝ𝑁, a direct projection of 436 
the equilibrium equations is possible via D’Alembert’s principle, which amounts to an integration 437 
over the equations of motion. 438 

∫ [(𝑭(𝑠, 𝑡) + 𝑭∗(𝑠, 𝑡)) ⋅ 𝜸𝑗(𝑠, 𝑡) + (𝑴(𝑠, 𝑡) + 𝑴∗(𝑠, 𝑡)) ⋅ 𝜷𝑗(𝑠, 𝑡)] ⅆ𝑠
𝐿

0

= 𝑄𝑗,𝑛𝑐 (5) 439 

                                                                        𝑗 = 1, … , 𝑁 440 

𝑭(𝑠, 𝑡) = −𝜕𝑠𝒏(𝑠, 𝑡),               𝑭∗(𝑠, 𝑡) = 𝜌𝐴𝜕𝑡𝑡𝒑(𝑠, 𝑡) + 𝜌𝐼𝑘𝜕𝑡𝑡𝒅𝑘(𝑠, 𝑡) 441 
𝑴(𝑠, 𝑡) = −𝜕𝑠𝒎 + 𝜕𝑠𝒑 × 𝒏, 𝑴∗(𝑠, 𝑡) = 𝜌𝐼𝑘𝒅𝑘 × 𝜕𝑡𝑡𝒑 + 𝜕𝑡(𝜌𝑱 ⋅ 𝝎) 442 

𝑄𝑗,𝑛𝑐 = ∫ 𝒇(𝑠, 𝑡) ⋅ 𝜸𝑗(𝑠, 𝑡) + 𝓵(𝑠, 𝑡) ⋅ 𝜷𝑗(𝑠, 𝑡)
𝐿

0

 ⅆ𝜏 443 

The velocity coefficient function and angular velocity coefficient function are defined as 444 

𝜸𝑗(𝑠, 𝑡) = 𝜕𝑞𝑗
𝒑(𝑠, 𝑡) = 𝜕𝑞̇𝑗

𝜕𝑡𝒑, 𝜷𝑗(𝑠, 𝑡) = 𝜕𝑞̇𝒋
𝝎 445 

The velocity coefficients are the “Jacobian field” satisfying the relation (2). 446 

Since the time derivatives of the momentum density and angular momentum density, 𝜕𝑡𝑡𝒑 and 447 
𝜕𝑡(𝜌𝑱 ⋅ 𝝎), can be written as linear functions of the 𝜕𝑡𝑡𝒒, the equations of motion are linear in the 448 
accelerations of the generalized coordinates, as expected. In the case of the PCC/PCS kinematic 449 
description, the derivatives 𝜕𝑠𝒏 and 𝜕𝑠𝒎, if resolved in ℱ(𝑠, 𝑡), are zero except at the element 450 
boundaries. The equations may be integrated by parts into a form which shows the conjugacy of 𝒏 451 
and 𝒗 and the conjugacy of 𝒎 and 𝒖.  452 

∫ 𝜕𝑠𝒏 ⋅ 𝜸𝑗  ⅆ𝑠
𝐿

0

= [𝒏 ⋅ 𝜸𝑗]
0

𝐿
− ∫ 𝒏 ⋅ 𝜕𝑞𝑗

𝒗 ⅆ𝑠
𝐿

0

 453 
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∫ 𝜕𝑠𝒎 ⋅ 𝜷𝑗 ⅆ𝑠
𝐿

0

= [𝒎 ⋅ 𝜷𝑗]
0

𝐿
− ∫ 𝒎 ⋅ (𝜕𝑞𝑗

𝒖 + 𝒖 × 𝜷𝑗) ⅆ𝑠
𝐿

0

 454 

In the local frame, the equations take the following forms.  455 

∫ 𝜕𝑠𝒏 ⋅ 𝜸𝑗  ⅆ𝑠
𝐿

0

= [ 𝒏𝓕(𝑠,𝑡)
⋅ 𝜸𝑗

ℱ(𝑠,𝑡)
]

0

𝐿

− ∫ 𝒏ℱ(𝑠,𝑡)
⋅ (𝜕𝑞𝑗

( 𝒗ℱ(𝑠,𝑡)
) + 𝜷𝑗

ℱ(𝑠,𝑡)
× 𝒗ℱ(𝑠,𝑡)

)  ⅆ𝑠
𝐿

0

 456 

∫ 𝜕𝑠𝒎 ⋅ 𝜷𝑗 ⅆ𝑠
𝐿

0

= [ 𝒎ℱ(𝑠,𝑡)
⋅ 𝜷𝑗

ℱ(𝑠,𝑡)
]

0

𝐿

− ∫ 𝒎ℱ(𝑠,𝑡)
⋅ 𝜕𝑞𝑗

( 𝒖ℱ(𝑠,𝑡)
) ⅆ𝑠

𝐿

0

 457 

Note also that if 𝒏(𝑠, 𝑡) is constant over 𝑠, the first integral is trivially zero. 458 

Finally, note that if more than one rod-like body is present, then a sum over the bodies takes place in 459 
(5). Explicit constraints between the bodies may be handled via the method of Lagrange multipliers.  460 

2.3.5 Learning-based approaches 461 
Learning-based approaches, which are also sometimes referred to as “model-free” approaches, may 462 
be able to describe the relationships between the actuator inputs and observable outputs such as the 463 
end-effector motion without recourse to physical parameters and the laws of mechanics. These 464 
models usually serve a complementary purpose to those based on physical first principles. Since they 465 
require training data from a real robot or from another simulation model, they may be used for on-466 
line control, inverse and forward kinematics, or for off-line analysis and testing of other algorithms 467 
such as for navigation and control. The a-priori prediction of behaviors from only design data is 468 
generally not possible to date using only learning-based methods. 469 

A variety of purely kinematic approaches have been proposed. One learning approach uses an on-line 470 
estimation of the Jacobian matrix relating the time derivatives of the actuation variables 𝜕𝑡𝝉 to the 471 
time derivatives 𝜕𝑡𝒑(𝐿, 𝑡) and 𝜕𝑡𝒅𝑘(𝐿, 𝑡), and it has been shown that this approach works for both 472 
position control and hybrid position/force control when appropriate sensing is available in hardware 473 
(Yip and Camarillo 2016; 2014). Since the method requires no information about the robot or the 474 
environment a-priori, it enables control in complex scenarios, where highly complex physics-based 475 
models may have poorly observable parameters or states. It has also been shown that inverse 476 
kinematics for continuum robots may be approximated by a multilayer perceptron network (George 477 
Thuruthel et al. 2017; Lai, Huang, and Chu 2019; Grassmann, Modes, and Burgner-Kahrs 2018), 478 
with multi-agent reinforcement learning (Ansari et al. 2016), with K-nearest neighbors and Gaussian 479 
mixture regression (J. Chen and Lau 2016), and with deep reinforcement learning (Satheeshbabu et 480 
al. 2019). For reconfigurable robots subject to varying loads, it has been shown that classification of 481 
the load state using long short-term memory networks can substantially improve open-loop kinematic 482 
control (Nicolai et al. 2020). For flexible catheters, a combination of a support vector machine 483 
classifier and a fully connect neural network regressor were demonstrated achieving sub-millimeter 484 
trajectory tracking errors (Jolaei et al. 2020). Learning may also play an important role in 485 
proprioception for continuum robots with distributed sensing, where additional sensors beyond 486 
actuator-collocated ones are available for measuring the robot shape (Truby, Santina, and Rus 2020).   487 

It has also been shown that dynamic models may be learned. Under a state observation of the form 488 
𝒙 = 𝐹(𝒒) provided by sensors, where it is presumed that the dimension of 𝒙 and 𝒒 are the same and 489 
that 𝐹 is invertible, the dynamics of the system can be posed as a one-to-one mapping (𝝉, 𝒙, 𝜕𝑡𝒙) →490 
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𝜕𝑡𝑡𝒙. On a real or simulated robot, this map representing the dynamics of the observables of the 491 
system can be approximated in discrete time via recurrent neural network (Thuruthel et al. 2017). 492 
Note that the kinematic relationships under static conditions are obviously also contained in this 493 
trained map for all points satisfying (𝝉, 𝒙, 0) → 0. A similar approach using deep neural networks has 494 
also been demonstrated (Gillespie, Best, and Killpack 2016). Data-driven system identification based 495 
on the Koopman operator theory has led to control-oriented dynamic models amenable to model-496 
predictive control (Bruder et al. 2020). Autoregressive with exogenous input (ARX) and nonlinear 497 
autoregressive with exogenous input (NARX) models have been studied for a single-section tendon-498 
driven continuum robot, with the conclusion that NARX provides advantages in modeled end-499 
effector position accuracy (Parvaresh and Moosavian 2019). For closed-loop dynamic control, the 500 
direct reinforcement learning of a control policy which learns the mapping from current robot states, 501 
previous robot states, and desired end-effector position to the appropriate control action is possible 502 
(Thuruthel et al. 2019).  503 

There are also learning-based approaches to control which do not explicitly construct kinematic or 504 
dynamic models. One such approach is based on direct learning from demonstration in the actuator 505 
space, which was successfully demonstrated on a tendon-driven continuum manipulator (Xu et al. 506 
2016).  507 

2.3.6 Actuator models 508 
Actuators in continuum and soft robots have been classified as either extrinsic, in which case the 509 
actuators are not a part of the deformable body, or intrinsic, in which case the actuators are an 510 
integral part of the deformable body. Examples of the former include tendons, the boundary 511 
conditions placed on concentric tube robots. Examples of the latter include soft pneumatic muscles 512 
(Walker, Choset, and Chirikjian 2016).  513 

The actuators may be modeled (very generally) as relationships between the actuation variables, 514 
generalized forces, and the dynamic state of the robot consisting of 𝒒 and 𝜕𝑡𝒒.  515 

𝑮𝑖(𝜏𝑖, 𝒒, 𝜕𝑡𝒒, 𝑸𝑛𝑐) = 𝟎 516 

However, the nature of the model may change depending on the exact form of 𝐺𝑖. If 𝐺𝑖 involves only 517 
𝜏𝑖 and 𝒒, then it is exactly in the form of a holonomic constraint. In general, it may not be simple to 518 
find a reduced set of independent coordinates satisfying the constraint, and a Lagrange multiplier 519 
technique may be required to enforce it. On the other hand, if 𝐺𝑖 can be inverted to find 𝑸𝑛𝑐 =520 
𝐺̂𝑖(𝜏𝑖, 𝒒, 𝜕𝑡𝒒), then the actuation can be directly coupled to the equations of motion. Which of these 521 
two views of actuation is the more natural one depends on the characteristics of the particular 522 
actuator(s) and sensor(s) chosen. 523 

A first example is the model of a fiber-reinforced elastic actuator, in which 𝑉 is the enclosed fluid 524 
volume of the actuator, 𝜏 = 𝑃 is the fluid pressure, and 𝑱𝑉 is the Jacobian matrix relating the changes 525 
in the generalized coordinates to the change in volume of the fluid (Sedal et al. 2021). Then, the 526 
principle of virtual work indicates that 527 

𝛿𝑊 = 𝜏 𝛿𝑉 = 𝜏 𝑱𝑣(𝑞)𝛿𝒒 = 𝑄𝑖,𝑛𝑐𝛿𝑞𝑖 528 

𝑸𝑛𝑐 = 𝑱𝑉
𝑇(𝑞)𝜏, 𝑱𝑽(𝑞) = 𝜕𝒒𝑉 529 
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Another explicit example is found in the case of a tendon-driven robot. If enough support for the 530 
tendon is provided, a reasonable model for the points occupied by the tendon is a continuous curve 531 
described by 𝒑𝑡(𝑠, 𝑡) = 𝒑(𝑠, 𝑡) + 𝒂(𝑠) with 𝒂(𝑠) = 𝑎1(𝑠)𝒅1(𝑠, 𝑡) + 𝑎2(𝑠)𝒅2(𝑠, 𝑡) (Rucker and 532 
Webster III 2011). For the sake of simplicity, restrict the tendon to a planar path with 𝑎2(𝑠) = 0. The 533 
tendon length can then be calculated as an integral functional involving the deformation gradient 534 
evaluated along the tendon path using the curve-based kinematic hypotheses: 535 

ℓ𝑡(𝒒) = ∫ ⅆℓ
𝐿

0

,    ⅆℓ2 = ⅆ𝑠2(𝒅3 + 𝜕𝑠𝒂)𝑭𝑡
𝑇𝑭𝑡(𝒅3 + 𝜕𝑠𝒂), 𝑭𝑡 =

𝜕𝒑𝑡

𝜕𝑷𝑡
, (6) 536 

If the tendons are not fully constrained, other models for ℓ𝑡(𝒒) may be more appropriate (Rao et al. 537 
2021). What is noteworthy about either length formulation is that the nonconservative generalized 538 
forces do not naturally appear. If the tendon lengths are a known quantity, the actuator model is a 539 
holonomic constraint on the generalized coordinates. The problem can be treated via the method of 540 
Lagrange multipliers. The Lagrange multiplier will be exactly the tendon tension, and the principle of 541 
virtual work can be used to reveal the exact form of the terms in 𝑸𝑛𝑐 corresponding to the Lagrange 542 
multiplier. 543 

𝛿𝑊 = 𝜏𝛿ℓ𝑡 = 𝜏 𝑱ℓ(𝑞) 𝛿𝒒 = 𝑄𝑗,𝑛𝑐𝛿𝑞𝑗 , 𝑱ℓ(𝑞) = 𝜕𝒒ℓ𝑡(𝒒) 544 

Therefore, the effect of the tendon alone (not considering any frictional forces) must be 545 

𝑸𝑛𝑐 = 𝑱ℓ
𝑇(𝑞)𝜏 546 

Note that the causal form in which the tendon tensions are known is “easier” to handle since no 547 
additional equations must be added. The causal form involving known tendon lengths requires the 548 
addition of the nonlinear length constraints (6) to the equation set and the tension becomes an 549 
algebraic unknown along with the accelerations, forming a nonlinear differential-algebraic system in 550 
the dynamic case or a nonlinear algebraic system in the quasistatic case. The need to solve a DAE 551 
system disappears if the tendon is considered a spring element, since then the force is determined as a 552 
function of the difference between ℓ𝑡(𝒒) and the tendon displacement input ⅆ.  553 

The resulting model form as a set of ordinary differential equations or differential algebraic equations 554 
is shown for a variety of common continuum robot actuators in Table 2. 555 

Actuator Input Model Form 

Inextensible tendon length DAE 

Extensible tendon length ODE 

Tendon Force ODE 

Pneumatic Pressure ODE 
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Hydraulic Pressure 
(incompressible fluid) 

ODE 

Hydraulic Volume 
(incompressible fluid) 

DAE 

Table 2: Model form as an ODE or DAE system based on actuator type, assuming a single rod 556 
model architecture for the model. 557 

2.4 Materials 558 

The kinematic hypotheses and mechanics models must be augmented by constitutive laws (material 559 
models) to complete the model of a continuum robot. For quasistatic models, the choice is usually 560 
between linear elasticity and other hyperelastic material models. For dynamic models, an additional 561 
choice of damping or friction laws is generally required to produce realistic responses. 562 

2.4.1 Linear elasticity 563 
In the case of quasistatic models, a common assumption in the literature has been to assume a 564 
Hookean (linear) material response. In this case, if one assumes that the backbone curve passes 565 
through the neutral axis of bending, the following constitutive laws apply: 566 

𝒎𝓕(𝑠,𝑡)
= 𝑲𝑏𝑡

ℱ(𝑠,𝑡)
( 𝒖𝓕(𝑠,𝑡)

− 𝒖0
ℱ(𝑠,𝑡)

) 567 

𝒏𝓕(𝑠,𝑡)
= 𝑲𝒔𝒆

ℱ(𝑠,𝑡)
( 𝒗𝓕(𝑠,𝑡)

− 𝒗0
ℱ(𝑠,𝑡)

) 568 

The matrices 𝑲𝑏𝑡 and 𝑲𝑠𝑒 may be calculated from the classical Euler-Bernoulli or Timoshenko beam 569 
theories and the entries are the flexural and torsional rigidities and shear and extension rigidities, 570 
respectively. The explicit relationships follow below (Antman 2005).  571 

𝑚𝛼(𝑠, 𝑡) = (𝐸𝐽𝛼𝛽)(𝑠)[𝑢𝛽(𝑠, 𝑡) − 𝑢𝛽0(𝑠)], 𝑚3 = 𝐷(𝑠)𝑢3(𝑡) 572 

Note that bending about 𝒅1 and 𝒅2 are characterized by the second moments of area and the Young’s 573 
modulus 𝐸, while the torsional moment is related to the torsional strain variable by a coefficient 𝐷 574 
solving the St. Venant torsion problem. Only in the case of isotropic rods with circular cross section 575 
is this equal to the usual shear modulus 𝐺 times the polar moment of area 𝐽33. Formulas for a wide 576 
variety of cross sections that are uniform over 𝑠 have been tabulated (Roark, Young, and Budynas 577 
2002). The Timoshenko model for shear and elongation adds the following relationsihps. 578 

𝑛𝛼 = (𝐺𝐴)(𝑠) 𝑣𝛼, 𝑛3 = (𝐸𝐴)(𝑠) [𝑣3 − 1] 579 

2.4.2 Hyperelastic material models 580 
Many other hyperelastic models are possible choices, such as Yeoh, neo-Hookian, Gent, Ogden, and 581 
Mooney-Rivlin (Zhao, Zhang, and Wang 2021; Shiva et al. 2019; Bacciocchi and Tarantino 2021; He 582 
et al. 2018; C. Zhang et al. 2019; Antonelli et al. 2020). Although in general one may expect that 583 
these more complex material models should offer improved model accuracy, it has been shown 584 
recently that, at least for some robot designs, a linear stress-strain response may be more than 585 
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adequate (Shiva et al. 2019). Any hyperelastic law can be represented within the Cosserat rod 586 
framework as a strain energy density function 𝑊. 587 

𝑊 = 𝑊( 𝒖𝓕(𝑠,𝑡)
, 𝒗𝓕(𝑠,𝑡)

) 588 

𝒎𝓕(𝑠,𝑡)
= 𝜕𝒖𝑊, 𝒏𝓕(𝑠,𝑡)

= 𝜕𝒗𝑊 589 

The details of these calculations for each of the respective hyperelastic models is omitted for the sake 590 
of brevity and can be found in the cited references.  591 

2.4.3 Damping and friction 592 
The introduction of dissipative mechanisms is generally necessary to encourage numerical stability in 593 
dynamic models and to produce realistic dynamic responses. Additionally, in some cases static 594 
friction plays a significant role in determining the quasistatic solutions, such as in tendon-driven 595 
catheters (Jung, Penning, and Zinn 2014). Viscous damping may be introduced via the Kelvin-Voigt 596 
material model, which extends the linear elastic models to include rate-dependence in the stress-597 
strain relationship (Mustaza et al. 2019; Gilbert and Godage 2019). 598 

In the curve-based framework, the Kelvin-Voigt law takes the following form (Linn, Lang, and 599 
Tuganov 2013): 600 

𝒎𝓕(𝑠,𝑡)
= 𝑲𝑏𝑡

ℱ(𝑠,𝑡)
( 𝒖𝓕(𝑠,𝑡)

− 𝒖0
ℱ(𝑠,𝑡)

) + 𝑩𝑏𝑡
ℱ(𝑠,𝑡)

 𝜕𝑡( 𝒖𝓕(𝑠,𝑡)
) 601 

𝒏𝓕(𝑠,𝑡)
= 𝑲𝒔𝒆

ℱ(𝑠,𝑡)
( 𝒗𝓕(𝑠,𝑡)

− 𝒗0
ℱ(𝑠,𝑡)

) + 𝑩𝒔𝒆
ℱ(𝑠,𝑡)

 𝜕𝑡( 𝒗𝓕(𝑠,𝑡)
) 602 

The matrices 𝐾𝑏𝑡 and 𝐵𝑏𝑡 are related by time constants referred to as the extensional retardation time 603 
constant, 𝜏𝑒 = 𝜂𝐸/𝐸, and the shear retardation time constant, 𝜏𝑠 = 𝜂/𝐺, with 𝜂𝐸  the “extensional 604 
viscosity” and 𝜂 the shear viscosity. 605 

𝑩𝑏𝑡
ℱ(𝑠,𝑡)

= 𝑲𝑏𝑡
ℱ(𝑠,𝑡)

⋅ diag(𝜏𝑒, 𝜏𝑒 , 𝜏𝑠) 606 
𝑩𝒔𝒆

ℱ(𝑠,𝑡)
= 𝑲𝒔𝒆

ℱ(𝑠,𝑡)
⋅ diag(𝜏𝑠, 𝜏𝑠, 𝜏𝑒) 607 

Static friction models have also been considered for concentric tube robots (Lock and Dupont 2011), 608 
tendon-driven continuum robots (Li et al. 2020), and continuum robots having sheathed tendons or 609 
multiple actuated backbones (Roy, Wang, and Simaan 2017).  610 

3 Discussion 611 

The wide variety of modeling choices that have been described offer the modeler an almost 612 
paralyzing array of choices. In the subsections that follow, several questions are posed. The available 613 
evidence from the literature as well as analyses guided by classical theories of mechanics are used to 614 
discuss these questions and to provide guidance during the initial stages of selecting modeling 615 
approaches. 616 

3.1 Considerations for kinematic hypotheses 617 

The literature on modeling of continuum and soft robots suggests that errors in kinematic models, 618 
quantified by the absolute tip positioning error as a percentage of the overall root length, are typically 619 
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on the order of a few percent. Therefore, there may be little benefit to increasing the order of a 620 
spectral method or to further subdividing the domain in an element-based method once the absolute 621 
accuracy with respect to the true solution reaches this point. In the sections that follow, analysis and 622 
recommendations for kinematic hypotheses which are derived from consideration of the mechanics 623 
of bending are offered. Table 3 provides a summary of the recommendations in terms of increasing 624 
either the number of elements or the order of the interpolation (assuming that 𝒖 is the interpolated 625 
variable). Figure 5 depicts the decisions leading to the various types of models that have been 626 
discussed. 627 

Condition/Recommendation Number of elements Element order 
(curvature interpolant) 

Concentrated forces − ≥ 1 

Non-uniform Flexural Rigidity ↑ − 

Uniformly distributed loads − ≥ 2 

Elastic contact ↑ ↑ 

Table 3: Summary of recommendations to increase either the number of elements or the order 628 
of interpolants based on model assumptions and robot-environment conditions. 629 

3.1.1 Considerations for cantilevered concentrated loadings 630 
For continuum robots which are soft enough to exhibit substantial compliance to environmental loads 631 
(for example those that may be presented by contact with human anatomy), one of the first 632 
considerations for modeling should be consistency with the requirements for accurately modeling 633 
cantilevered, concentrated loads.  634 

Let the Cosserat rod equations be recast in terms of the angle of the tangent vector and the load and 635 
deformation fixed to the plane defined by 𝒅3(0, 𝑡) and 𝒅1(0, 𝑡), let the boundary condition 𝒈(0, 𝑡) be 636 
fixed, and let the load be concentrated at 𝑠 = 𝐿 and modeled by 𝑭 = 𝑃𝛿(𝑠 − 𝐿)𝒅1(0, 𝑡) for the scalar 637 
force magnitude 𝑃. Furthermore, assume the material response is linear and that the robot is 638 
inextensible. These restrictions simplify the problem and result in the following dimensionless 639 
boundary value problem governing the angle 𝜃, which represents the tangent vector: 640 

𝒅3(𝑠, 𝑡) = cos(𝜃) 𝒅3(0, 𝑡) + sin(𝜃) 𝒅1(0, 𝑡) 641 

𝜕𝜉𝜉𝜃 + 𝜆 cos(𝜃) = 0, 𝜉 =
𝑥

𝐿
, 𝜆 =

𝑃𝐿2

𝐸𝐼
 642 

𝜃(0, 𝑡) = 0, 𝜕𝜉𝜃(1, 𝑡) = 0 643 

The boundary value problem has a known solution: 644 

𝜃(𝜉, 𝑡) = 2 sin−1(𝑘 sn(𝐾(𝑘) − (1 − 𝜉)√𝜆; 𝑘2)) −
𝜋

2
 645 
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The quantity 𝑘 is a scalar that may be found by Newton-Raphson iteration on the following equation, 646 
which is implied by the boundary condition 𝜃(0) = 0 647 

𝑘 sn(𝐾(𝑘) − √𝜆; 𝑘2) = √2/2 648 

The PRB models have the attractive property that they map the problem back into the domain of 649 
traditional robotic manipulators, with the obvious advantage that all the tools and knowledge that 650 
have been developed in that context (in general, restricted to underactuated mechanisms) now apply 651 
to the continuum robot. In the traditional PRB models, the inertia properties are lumped into the links 652 
formed by the model, and the stiffness and damping properties are lumped into the joints between 653 
links. This lumping introduces error, but it has been shown that optimization of the parameters of the 654 
rigid body model can lead to accurate mechanical responses for both cantilevered transverse loads 655 
and for applied or internal moments (G. Chen, Xiong, and Huang 2011). Given that the optimal 3R 656 
planar PRB model has three degrees of freedom, it is a fair comparison to place the model in 657 
competition with other three-DOF models. Here we consider the following three sets of potential 658 
kinematic hypotheses and matching constitutive laws and compare them with each other and with the 659 
exact solution. Without loss of generality, let 𝐿 = 1 and 𝐸𝐼 = 1. 660 

Piecewise constant curvature: 661 

𝒖PCC = ∑ 𝑢𝑒 χΓ𝑒
(𝑠) 𝒅2

3

𝑒=1

, 𝜒Γ𝑒
(𝑠) = {

1 𝑠 ∈ Γ𝑒

0 𝑠 ∉ Γ𝑒
, 𝐷 = [0,

1

3
] ∪ [

1

3
,
2

3
] ∪ [

2

3
, 1] 662 

𝑚(𝑠) = 𝐸𝐼 𝑢(𝑠) 663 

PRB: 664 

𝒖PRB = ∑ 𝑞𝑖𝛿(𝑠 − 𝑠𝑖) 𝒅2

3

𝑖=1

, 𝑠1 = 0.125, 𝑠2 = 0.475, 𝑠3 = 0.863, 𝐷 = [0,1] 665 

𝑚(𝑠1)

𝑞1
= 3.25,

𝑚(𝑠2)

𝑞2
= 2.84,

𝑚(𝑠3)

𝑞3
= 2.95 666 

Spectral: 667 

𝒖S = ∑ 𝑞𝑖𝑠
𝑖−1 𝒅2

3

𝑖=1

, 𝐷 = [0,1] 668 

𝑚(𝑠) = 𝐸𝐼 𝑢(𝑠) 669 

How well does each of the strategies perform when given 3-DOF to capture the deformation? The 670 
answer is depicted in Figure 6, showing tip position error in percent of robot length versus the 671 
dimensionless cantilevered load index 𝜆. For cantilevered loads, a single spectral element which is 672 
quadratic in 𝒖 is a far better choice than either a 3-element PCC model or a 3R PRB model. If 673 
nonzero shear forces are expected, the PCC model seems to have little in its favor; the Jacobian for 674 
the PRB model is simpler to calculate, meaning that the statics equations in (5) are easier to 675 
formulate, and the tip position is predicted more accurately, which also implies that the overall 676 
structural stiffness is more accurate for the PRB model than for the PCC model. The Jacobian for the 677 
spectral model, unlike the other two, cannot be obtained in an exact closed form. 678 
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The results imply that the typical piecewise constant-curvature assumption used in the development 679 
of geometrically nonlinear models for robots is a poor choice from the perspective of mechanics 680 
whenever a concentrated external load is present and is expected to produce internal shear forces 681 
which are transverse to 𝒗. In summary, if point loads are present on the robot, a linear interpolant of 682 
internal moment (equivalently curvature) is necessary to accurately capture the static equilibrium 683 
configurations for unrefined elements even in the small deflection case, and degrees of freedom are 684 
better spent on increasing the order of the interpolants than on increasing the number of elements. 685 

3.1.2 Considerations for non-uniform flexural rigidity 686 
In the case of non-uniform flexural rigidity, element refinement is more effective at reducing 687 
approximation error than increases in order. This conclusion is easily justified by the observation that 688 
if 𝐾(𝑠) is a linear function, say for example 1 + 𝑎𝑠, then in the simplest planar case with a constant 689 
internal moment one would be tasked to find another polynomial function 𝜅(𝑠) such that 𝜅(𝑠)𝐾(𝑠) =690 
𝐶 for some constant 𝐶. But this is obviously impossible, because 𝜅 = 𝐶/𝐾 is a rational function, not 691 
a polynomial, and the Maclaurin series at 𝑠 = 0 has a finite region of convergence. In the example 692 
case, the expansion is 𝐶 ⋅ ∑(−1)𝑖𝑎𝑖𝑠𝑖. The series does not converge unless |𝑠| < |1 𝑎⁄ | and as 𝑠 693 
approaches this upper bound, the number of terms in the series required to obtain convergence to a 694 
fixed tolerance increases without bound. Element refinement, on the other hand, has exactly the 695 
effect of reducing |𝑠|, ensuring convergence. For this reason, single-element, spectral-type methods 696 
are not recommended as a first choice if non-uniform flexural rigidity is present. 697 

3.1.3 Considerations for uniformly distributed loads 698 
Distributed loads may act on biomedical continuum robots. The most obvious of these loads is a 699 
gravitational force distributed along the length of the robot. Other common forces may include 700 
buoyancy forces, electric forces, magnetic forces, and aerodynamic and hydrodynamic forces. The 701 
simplest possible model of a distributed load is a uniform one that is applied normal to the body of a 702 
robot which is initially in a straight configuration. In this case, the solution to the linearized Euler-703 
Bernoulli equation is in general a fourth-order polynomial in position. The shear force is a linear 704 
function of arc length and the internal moment (and hence curvature in the linear elastic case) is 705 
quadratic. If the shape is discretized at the level of angle, the discretization should be cubic to 706 
accommodate a uniform load. 707 

3.1.4 Considerations for elastic environmental contact 708 
For continuum robots in contact with soft bodies such as the soft tissues of the human anatomy, the 709 
contact might be well-described, at least in the region of contact, by a model like the linear elastic 710 
foundation model. For small deflections, the linearized Euler-Bernoulli model with a linear elastic 711 
foundation is modeled by the following differential equation (see Figure 6A). 712 

(𝐸𝐼𝑦,𝑠𝑠 ),𝑠𝑠 = −𝑘𝑦 713 

The homogeneous solution to this equation has the following form. 714 

𝑦ℎ(𝑠) = exp(−𝛽𝑠) [𝐶1 sin(𝛽𝑠) + 𝐶2 cos(𝛽𝑠)] + exp(𝛽𝑠) [𝐶3 sin(𝛽𝑠) + 𝐶4 cos(𝛽𝑠)] 715 

The constant 𝛽 depends only on the properties of the beam and the foundation. 716 
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𝛽2 = √
𝑘

4𝐸𝐼
 717 

To what degree of accuracy does a polynomial shape function (assuming the small-deflection case) 718 
approximate 𝑦ℎ?  719 

To answer this question, one should find the best approximation of 𝑦ℎ under a particular norm on 720 
𝐿2[0, ℓ]. Here we select the 2-norm and study the approximation error for 3rd, 4th, and 5th order 721 
polynomials. Since 𝛽 is related to the ratio of stiffnesses 𝑘 and 𝐸𝐼, and has dimension Length-1, we 722 
restrict the range of the dimensionless group ℓ𝛽 to (0.1, 10). This range is consistent with the idea of 723 
compliance matching as a form of embodied intelligence in biomedical continuum robots. Note that 724 
as ℓ𝛽 → 0, the solution 𝑥ℎ approaches a constant, which is easy to interpolate. As ℓ𝛽 → ∞, the 725 
elastic foundation is becoming infinitely stiff relative to the body of the robot, modeling a hard 726 
contact. In this case, the internal forces and moments and the resulting deformations become strongly 727 
localized, and a point load may be a more appropriate model for the contact than an elastic 728 
foundation.  729 

The physical solutions to the equation decay away from the application of a point load. Therefore, we 730 
restrict the approximation problem to the consideration of the two functional forms that follow on a 731 
domain [0,1] for 𝛽 ∈ (0.1,10).  732 

𝑥1 = exp(−𝛽𝑠) sin(𝛽𝑠) 733 
𝑥2 = exp(−𝛽𝑠) cos(𝛽𝑠) 734 

See Figure 6B for examples with 𝛽 = 3. Errors for polynomials 𝑝1 and 𝑝2 approximating 𝑥1 and 𝑥2, 735 
respectively, are shown in Figure 4 as the maximum absolute errors. 736 

𝑒𝑖 =
max

𝑠
|𝑝𝑖(𝑠) − 𝑥𝑖(𝑠)|

max
𝑠

|𝑥𝑖(𝑠)|
 737 

For a single 5th order polynomial in shape, the maximum absolute error in approximating either 𝑥1 or 738 
𝑥2 remains below 1% if ℓ𝛽 < 4.3 (Figure 8). As ℓ𝛽 increases beyond this value, the polynomial 739 
approximations to 𝑥1 and 𝑥2 begin to oscillate with increasing maximum error.  740 

To put this in a practical perspective, a typical colonoscope has a linearized flexural rigidity of 𝐸𝐼 ≈741 
0.02 N m2 (Wehrmeyer et al. 1998). Soft tissues may have an elastic foundation stiffness of 742 
approximately 4 kN / m2 (A. Asadian, M. R. Kermani, and R. V. Patel 2011). This results in 𝛽 = 15 743 
and therefore a hypothesis which is 5th order in position (3rd order in strain variables) should not have 744 
elements longer than approximately 0.28 m. Note that for a hypothesis that is linear in 𝑠 for the strain 745 
variables, the length requirement would drop to approximately 96 mm, and for PCC elements, the 746 
length would drop to only 38 mm. For a spatial robot model that is inextensible and un-shearable and 747 
is 1 m long, this would result in a PCC model with approximately 81 degrees of freedom (27 748 
elements at 3 DOF/element), a linear strain variable model with approximately 66 degrees of freedom 749 
(11 elements at 6 DOF/element), or a cubic strain model with approximately 48 degrees of freedom 750 
(4 elements at 12 DOF/element). Therefore, if environmental contacts are soft and distributed over a 751 
long length, there is a strong incentive to develop models with higher-order strain variable 752 
hypotheses. 753 
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3.2 Considerations for numerical methods 754 

3.2.1 Solution multiplicity 755 

In general, the problem defined by (5) together with any constraints is a nonlinear algebraic problem, 756 
even if linear material models are used. This is either a consequence of the nonlinear geometry, 757 
which shows up in any finite-strain relationship between the strain variables and the position and 758 
orientation of the body, or a consequence of nonlinear material behavior, or both. In special cases, the 759 
problem may become linear; for example, if the actuators and generalized forces are related linearly, 760 
linear constitutive laws are used, and no external loads are present. For nonlinear static problems, the 761 
Newton-Raphson method and trust-region methods like the Levenberg-Marquardt method generally 762 
work well, but the modeler must be cautious of the possibility of solution multiplicity. 763 

In other words, a function 𝒒 = 𝑓(𝝉) does not always exist because there may be two or more values 764 
of 𝒒 which satisfy the equilibrium conditions given 𝝉. This solution multiplicity is accompanied by a 765 
singular tangent stiffness matrix for some value of 𝒒 and possibly a tangent stiffness matrix with 766 
negative eigenvalues, as is the case for so-called “negative-stiffness mechanisms” (Platus 1999). The 767 
coupling between kinematics and mechanics means that it is not always safe to assume the existence 768 
of a “forward kinematic mapping” which computes the C-space coordinates from the actuator 769 
variables and then the task-space variables from the C-space coordinates. Consider the case in which 770 
(5) is of the form 𝑭(𝒒, 𝝉, 𝑸𝑛𝑐

∗ ) = 0 where 𝑸𝑛𝑐
∗  includes only those generalized forces which are not 771 

algebraically related with 𝒒 and 𝝉. Then a perturbation analysis yields the C-space Jacobians with 772 
respect to 𝝉 and 𝑸𝑛𝑐

∗  773 

𝛿𝐹 = 𝜕𝒒𝑭 𝛿𝒒 + 𝜕𝝉𝑭 𝛿𝝉 + 𝜕𝑸𝑛𝑐
𝑭 𝛿𝑸𝑛𝑐

∗ = 0 774 

𝛿𝒒 = −(𝜕𝒒𝑭)
−𝟏

(𝜕𝝉𝑭 𝛿𝝉 + 𝜕𝑸𝑛𝑐
𝑭 𝛿𝑸𝑛𝑐

∗ ) 775 

It is evidently at configurations with singular 𝜕𝒒𝑭 where multiple solutions may arise. This is one 776 
reason that quasistatic “resolved-rate” or continuation-type methods may fail to converge; dynamic 777 
models do not suffer this problem since the accelerations are resolved. 778 

3.2.2 Time stepping 779 
For time stepping, explicit ode integrators can become prohibitively computationally expensive. This 780 
is a consequence of the fact that unresolved vibrational modes (as defined for linear test problems) 781 
become unstable using explicit methods. Implicit integrators and those designed for solving stiff 782 
ODEs and DAEs, such as the trapezoidal method or the backwards difference formulae, are 783 
preferable. Energy-preserving integrators have the benefit that the damping behavior is caused 784 
entirely by the material model, ensuring repeatable dynamic behavior with different time steps. 785 

3.3 Current and future challenges in modeling 786 

3.3.1 Generalizability and re-usability 787 
Despite the growing body of evidence that models built on the foundation of the Cosserat rod 788 
equations are an adequate description of many continuum robots, one challenge that still faces 789 
practitioners is a lack of standardized tools to build new model simulation codes. For rigid robots, a 790 
wide variety of domain-specific modeling languages are available and permit concise descriptions 791 
within an easy-to-use interface to build new models. One example of this is the Universal Robot 792 
Description Format and Gazebo simulator within the Robot Operating System, but there are many 793 
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others presently available including Simulink/Simscape, Dymola, and other Modelica-language 794 
based toolsets such as OpenModelica (Sucan and Kay 2019; Brück et al. 2002; P. Fritzson et al. 795 
2006; Miller and Wendlandt 2010). To enable the widespread re-use of validated modeling 796 
components, a library of reusable “model building blocks” for continuum robots should be designed. 797 
Some important capabilities of such a library would be the following: 798 

• Coupling of curve-based models to rigid multibody models. 799 
• Coupling of curve-based models and general finite element models. 800 
• Incorporation of common actuator models. 801 
• Incorporation of common constraints (length, concentricity, no-penetration, selective 802 

inextensibility/strong anisotropy, revolute and prismatic joints, etc.) 803 
• User-selected switching between dynamic and quasi-static model generation 804 

For biomedical continuum robots in particular, models which couple to mechanical models of human 805 
anatomy are needed. Coupling of state-of-the-art models for continuum robots or their direct 806 
incorporation with real-time finite element codes using GPU acceleration is a promising approach 807 
(Allard et al. 2007; Duriez and Bieze 2017). 808 

3.3.2 Novel kinematic hypotheses 809 
There is a great deal of freedom in element-based kinematic hypotheses which has yet to be explored. 810 
One interesting avenue is the use of a shared or constrained DOF between elements. The motivation 811 
for this idea is that for dynamic models, time stepping is sometimes restricted or difficult for “stiff” 812 
problems having many eigenvalues. The equations of motion for solid continua are wave equations, 813 
which means that if many elements are stacked end-to-end, acoustic waves (axial compression and 814 
tension) and twist waves (torsional waves) through the structure may be resolved by the model. For 815 
most robotics applications, these modes are likely to be irrelevant, and constraining the problem so 816 
that they do not exist in the model may improve computational performance. The elimination of twist 817 
waves in elastic rod models was previously considered by an energy minimization argument (Bergou 818 
et al. 2008). 819 

Furthermore, adaptive kinematic hypotheses based on pre-defined, switchable degrees of freedom 820 
that permit local, automatic refinement of the model may allow greatly improved computational 821 
efficiency in problems involving a-priori unknown environmental interactions or constraints. This 822 
will permit, for example, a single high-order element to describe the deformation in free-space, while 823 
local refinement can take place where a catheter contacts a vessel wall, a robotic endoscopic system 824 
contacts the colon, or where multi-fingered hands contact an object to manipulate it. 825 

3.3.3 Learning 826 
Within the context of continuum and soft robotics, data-driven methods have begun to demonstrate 827 
strong utility. For example, Long Short Term Memory networks can capture hysteresis in 828 
pneumatically actuated catheters (D. Wu et al. 2021), and offline simulation of first-principles 829 
models can be used to learn reduced-order models using the snapshot-based proper orthogonal 830 
decomposition, resulting in new models suitable for real-time control and other applications requiring 831 
fast computation (Goury and Duriez 2018; Katzschmann, Thieffry, et al. 2019). The continued 832 
development of learning methods enabling low-DoF representations will be an important future area 833 
of research. 834 
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There are also interesting opportunities for learning that amalgamate first-principles models with 835 
data-driven model “correctors,” or which use constrained learning techniques to identify models 836 
which are topologically like a curve-based model. One possibility is to use a low-DOF curve-based 837 
model capturing some of the behavior and to introduce a nonconservative generalized force 𝑸𝑛𝑐 838 
which is learned from observed data to close the gap between simulation and reality. Learning-based 839 
methods which are constrained to obey fundamental principles are another emerging area of research, 840 
such as learning the Lagrangian or Hamiltonian function of systems directly from data (M. Ahmadi, 841 
U. Topcu, and C. Rowley 2018; Lutter, Ritter, and Peters 2018). 842 

3.3.4 Dynamic model validation 843 
Although many dynamic models have been proposed, the validation of these models is currently 844 
lacking. There are many opportunities for rigorous evaluation and comparison of models with 845 
experimentally obtained data. The best and strongest form of model validation would be to 846 
instrument real robots with enough sensors to measure all the quantities appearing in (5) or the 847 
equivalent formulations for PRB and general continuum models, and to calculate the model residuals 848 
over conditions ranging over static, low-acceleration, and high-acceleration (e.g. sudden contact) 849 
regimes. This is clearly a challenging experimental task that may require state reconstruction and 850 
many sensors just to measure the configuration trajectory 𝒒(𝑡). Other options for validation may 851 
include comparison of standard test signal response characteristics (e.g. rise time, percent overshoot, 852 
settling time, steady-state error, and oscillation period) in response to both actuator inputs and 853 
environmental perturbations. 854 

There are also many other interesting questions that can be asked and answered which are 855 
quantitative in a different sense, but which may be even more aligned with the spirit of soft and 856 
continuum robotics theory. For example, a model and simulated controller could be used to predict 857 
the success or failure of the navigation of a robotic catheter through tortuous vasculature 858 
parameterized by some measure of “tortuosity,” and then the classification error could be assessed 859 
via experiment matching the simulations.  860 

4 Conclusions 861 

Continuum robots offer solutions to problems in biomedical applications which may not be solvable 862 
by traditional robotics technologies. With these new robots came the need for new models. A wide 863 
variety of physics-based and learning-based approaches to the modeling of continuum 864 
manipulators—both those made of hard materials and soft materials—are now available to the 865 
roboticist who needs them. This can lead to a dizzying array of choices for the uninitiated. This 866 
manuscript has reviewed the state-of-the-art approaches using a common language, discussed 867 
considerations which can guide the modeler when selecting which methods to use and some 868 
numerical difficulties to be aware of, and offered a view of the current and future challenges in the 869 
modeling of continuum robots. As modeling techniques continue to improve in terms of predictive 870 
power, as techniques begin to standardize, and as system identification techniques for soft and 871 
continuum robots mature, there is every reason to expect that the field will continue to expand, find 872 
new applications, and ultimately lead to transformative robotic solutions for human problems.  873 
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 1271 

9 Figures 1272 

 1273 

Figure 1. (A) Concentric tube robots are comprised of hard (metallic) tubes which are precurved and 1274 
nested inside one another. Rotating and translating the tubes results in motion. (B) Tendon-driven 1275 
robots use one or more tendons or cables to provide internal actuation forces that bend a flexible, 1276 
slender rod. (C) Pneumatic soft continuum robots use soft air muscles, which extend or contract with 1277 
internal air pressure, to create bending in a composite structure. The supports could be hard or soft 1278 
materials. (D) A fully soft pneumatic gripper uses asymmetry introduced by an inextensible fabric 1279 
layer and an asymmetric air volume to create four slender fingers which bend to wrap around objects. 1280 
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 1281 

Figure 2. Mathematical setup of the curve-based kinematic description of slender continuum robots.  1282 

 1283 

Figure 3. Simulation of a cantilevered rod under a combined bending and twisting concentrated 1284 
moment, forming a helix. 1285 

 1286 

Figure 4. Convergence of the PCC discretization to the exact flexural strains of the helical rod shape 1287 
depicted in Figure 3. Note that the exact flexural strain components are not constant functions of arc 1288 
length. 1289 
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 1290 

Figure 5. Flowchart depicting the modeling decisions to be made when selecting a model type for a 1291 
biomedical continuum robot. 1292 

 1293 
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 1294 

Figure 6. Error in reproducing the correct behavior under cantilevered loading conditions for three-1295 
DOF kinematic hypotheses of the PCC, PRB, and spectral types.  1296 

 1297 

Figure 7. (A) Schematic diagram for the beam on an elastic foundation as a model for a continuum 1298 
robot interacting with soft tissue. (B) Example with 𝛽 = 3, showing the shape of the displacement 1299 
that must be approximated. 1300 
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 1301 

Figure 8. Approximation errors for best polynomial fits in the L2 norm to the solution for the linear 1302 
beam on an elastic foundation problem. Higher-order polynomials permit greater elastic foundation 1303 
stiffnesses.  1304 


