10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28
29
30
31
32
33
34
35
36
37

1' frontiers

On the Mathematical Modeling of Slender Biomedical Continuum
Robots

Hunter B. Gilbert!”

'Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA
70803, USA

* Correspondence:
Hunter B. Gilbert
hbgilbert@lsu.edu

Keywords: continuum robots, soft robots, dynamics, statics, mechanics
Abstract

The passive, mechanical adaptation of slender, deformable robots to their environment, whether the
robot be made of hard materials or soft ones, makes them desirable as tools for medical procedures.
Their reduced physical compliance can provide a form of embodied intelligence that allows the
natural dynamics of interaction between the robot and its environment to guide the evolution of the
combined robot-environment system. To design these systems, the problems of analysis, design
optimization, control, and motion planning remain of great importance because,in general, the
advantages afforded by increased mechanical compliance must be balanced against penalties such as
slower dynamics, increased difficulty in the design of control systems, and greater kinematic
uncertainty. The models that form the basis of these problems should be reasonably accurate yet not
prohibitively expensive to formulate and solve. In this article, the state-of-the-art modeling
techniques for continuum robots are reviewed and cast in a common language. Classical theories of
mechanics are used to outline formal guidelines for the selection of appropriate degrees of freedom in
models of continuum robots, both in terms of number and of quality, for geometrically nonlinear
models built from the general family of one-dimensional rod models of continuum mechanics.
Consideration is also given to the variety of actuators found in existing designs, the types of
interaction that occur between continuum robots and their biomedical environments, the imposition
of constraints on degrees of freedom, and to the numerical solution of the family of models under
study. Finally, some open problems of modeling are discussed and future challenges are identified.

1 Introduction

Continuum robots use material deformation to move instead of joints. They may offer a technological
solution to some of the difficult challenges of locomotion, perception, and manipulation found in a
variety of unstructured and uncertain environments (Robinson and Davies 1999). Biomedical
applications have been a great motivator in the development of a wide variety of continuum and soft
robots, ranging from surgery to therapy and other applications involving physical human-robot
interaction. The great recent interest in these design paradigms stems from the observation that
success in whatever form it is needed may be achieved without having complete control over the
motion of a robot or its forces of interaction with the environment. In some cases, this is
advantageous simply for reducing the complexity of engineered systems, and in other cases,
performance may be increased beyond what is possible with rigid machines. Several excellent
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Modeling of Continuum Manipulators

examples of this general principle come from tools of modern medicine. A flexible endoscope can
navigate the intestines without a great degree of control over its own shape. The same is true for an
intravascular catheter. In these examples, it is the particular combination of geometry and just the
right amount of mechanical “softness” that facilitates the completion of the task. Beyond this snake-
in-a-pipe approach to navigation, recent research has argued that physical compliance is
advantageous in grasping, underwater swimming, robustness to collision, and locomotion on soft
terrains where low ground pressure is required. The interested reader is referred to several review
articles for a survey of the benefits, applications, challenges, and history of soft and continuum robots
(Burgner-Kahrs, Rucker, and Choset 2015; Cianchetti et al. 2018; Kim, Laschi, and Trimmer 2013;
Walker, Choset, and Chirikjian 2016). Figure 1 shows four examples of continuum robot
architectures which range from fully hard materials to fully soft and with composite structures in
between these extremes.

Though there is not universal agreement on definitions, the term continuum robot is generally used to
imply that motion is generated without identifiable kinematic pairs, while the term soft robot implies
at least a greater degree of mechanical compliance, defined as the ratio of displacement to force,
exhibited in response to environmental forces than traditional approaches to robotic interaction.
Many soft robots are made of soft materials, which may be characterized in terms of a material
parameter such as the modulus of elasticity (Majidi 2014). Continuum robots made of harder
materials can be designed to exhibit high or low mechanical stiffness to external forces depending on
the design details.

Continuum robots are classified as under-actuated mechanisms (Spong 1998). This statement is taken
to mean that in a practical sense, and within the context of a pre-defined scope of possible robot-
environment interactions, more information than can be collected by a finite set of actuator-
collocated sensors is needed to describe the shape and motion of the robot to the degree of accuracy
demanded by engineering specifications or by the roboticist’s preference. The practical sense of the
definition is emphasized since even rigid robots with revolute or prismatic pairs must deform to a
small degree when interacting with their environment via forces. All mechanical systems are
underactuated when there exist flexible modes that are not actuated but which should be controlled
(Spong and Praly 1997).1t is well known that the analysis of dynamics of underactuated robots is
significantly more complex than for regular, fully actuated robots (A. Jain and G. Rodriguez 1993).

Beyond being under-actuated, the modeler of a continuum manipulator also frequently faces other
challenges. Designs are often difficult to separate into “components” since the structure and the
actuator may be the same physical body. Actuators based on pneumatics, hydraulics, and composite
structures may not be as easily characterized as electric motors. Friction and hysteresis models may
be needed to explain observed mechanics, and environments rich with expected contacts may require
the solution of contact models based on theories of nonlinear complementarity. Additionally, the
standard kinematic descriptions based on the rigid transformations in the special Euclidean group
SE(3) are neither the most common approach to solid mechanics nor (necessarily) the most
expedient approach to the description of solid continua undergoing deformation. With these
considerations, one appreciates why the mathematical modeling of continuum and soft robots can be
challenging.

This paper first reviews the state-of-the-art in the mathematical modeling of continuum manipulators
having at least one “long” aspect in terms of its shape, which are termed s/ender in agreement with
the mechanics literature. The goal of these models is to describe the dynamics (or statics) to relate
actuator variables, other boundary conditions, and sensor measurements to the motion of the robot.

This is a provisional file, not the final typeset article
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Modeling of Continuum Manipulators

The models are generally not concerned with other important aspects of robot design and analysis,
such as repeatability, wear, safety, and other factors. For designs made of slender components, the
motion of the robot is dominated by bending or beam-like deformations. This classification can be
thought of as “arms,” “snakes,” or the individual “fingers” of a multi-fingered hand. Designs
composed of individual components having this property are a natural extension, such as concentric
tube robots (Mahoney, Gilbert, and Webster 2018) or multi-backbone continuum robots (Ding et al.
2013). For robots made of softer materials, such as the STIFF-FLOP designs, localized deformations
may be complex, yet the dominant behavior is still beam-like (Cianchetti et al. 2014; Fra$ et al.
2014). One of the goals of the work is to express the variety of methods encountered in the literature
with a common notation. The review motivates a theoretical discussion rooted in the classical
theories of solid mechanics. An analysis of the mechanics is used to support recommendations for
future modeling efforts, with the conclusion that some choices for the model structure may result in
better absolute model accuracy and efficiency (as quantified by the relationship between accuracy
and dimensionality).

2 Review of the state of the art

Table 1 presents the unified nomenclature that will be used throughout this paper. In the discussion
of other works, the original nomenclature has been changed to match what is shown. There are three
primary considerations in any physics-based approach to modeling of solid continua: the adoption of
kinematic hypotheses and coordinates describing the configuration of the body, the application of the
laws of mechanics, and the selection of mathematical models that describe the behavior of materials
(Sadati et al. 2019). Kinematic hypotheses alone allow the modeler to describe the geometry of the
robot, but this alone is insufficient for most purposes because it does not reveal which configurations
are possible or likely. The mechanics, which are formulated naturally as partial differential equations,
provide the relationships between the kinematic degrees of freedom that indicate which path of
configurations will be taken if particular conditions (actuation, environments, etc.) are imposed.
Finally, the material models are needed to close the relationship between the kinematic degrees of
freedom and the kinetic quantities related by the mechanics.

Symbol Meaning

P Position vector of a point with respect to an inertial frame of reference F,
Vector a resolved in Cartesian coordinates of frame F. The basis is held fixed if a
*a derivative is taken, i.e. if @ = x;d; and d; are the unit vectors of F, then ;" a =
(asxi)di-
Fi Frame of reference i. F is an inertial frame.
s Arc length coordinate
; Time coordinate (may be real time or an arbitrary parameter describing changes in

configuration depending on context)

d,,d,,d; |Director vectors of a framed curve

Transformation in SE(3) consisting of rotation operator R, € SO(3) and displacement

9 Ro, Py P describing the transformation between F, and F(s) along a framed curve.

q; A generalized coordinate for the i*" degree of freedom

0q(+) Partial derivative operator with respect to variable a

u,v Strain variables in the special Cosserat rod description

D Subset of the real line, domain of the arc-length parameter for a rod
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Symbol Meaning
oM Canonical mapping R3 - so(3) c R3*3, ay,b=a x b
u,dy Summation over repeated indices implied
Tj Actuator value j
Xj Task-space coordinate
q Time derivative of q

Table 1. Nomenclature used in this article

2.1 Kinematic descriptions

The forebears of continuum manipulators are the hyper-redundant robots, defined as those having a
large (or infinite in the case of continuum robots) relative degree of redundancy (Chirikjian and
Burdick 1994). In any robot with material deformation which is substantial with regard to the
kinematics or dynamics, both the relative degree of redundancy and the degree of under-actuation are
theoretically infinite since the configuration space is infinite-dimensional. Here the usual definition
of a robot configuration is used: “a complete specification of the location of every point on the robot”
(Spong, Hutchinson, and Vidyasagar 2006). There have been two primary methods to date of
describing the configuration of continuum and soft robots: the curve-based description and the
general continuum description.

2.1.1 The curve-based description

The state of the art curve-based description is that of the special Cosserat rod (Antman 2005). Figure
2 depicts the curve, its relationship to a solid body, and the quantities that are associated with the
curve and the boundary conditions of a mechanical model. The elongated form of many continuum
manipulators leads naturally to the concept of the “backbone curve,” which is typically defined to be
a time-varying, piecewise differentiable curve in the standard three-dimensional affine Euclidean
space E with associated vector space E. A parametric representation gives the position of a point
identified by a spatial parameter s € D C R at time t € R as a position vector p, (s, t) € E with
respect to a specific frame of reference F;, in E. The differentiability requirement on p,, is always at
least that the first derivative of p;, with respect to s exists, is piecewise continuous, and is nowhere
equal to zero. This condition guarantees that the curve is rectifiable, or in other words has a
measurable arc length (Kreyszig 1991). The curve changes over time, modeling the motion of the
robot, and it is presumed to describe the dominant features of the motion of the robot. Since there is
no finite set of coordinates that describes every possible curve meeting these requirements, the
description of the shape is infinite-dimensional.

The usual type of modeling hypothesis for slender bodies is that other points, which are not located
on the backbone, are described by some auxiliary relationship that describes their positions relative to
the positions on the backbone. The standard theories from beam mechanics may be adopted for this
purpose, in which case the backbone curve may be affixed to the body at the neutral axis of bending'.
One example is the Euler-Bernoulli hypothesis, which states that sections normal to the backbone
remain normal for all deformations. Another is the hypothesis due to Timoshenko stating that normal
sections rotate relative to the backbone but remain planar. Standard “warping” theories can be used to
couple motion of the points normal to the sections with twisting about the backbone if the sections

! There are additional considerations for this placement in the case of dynamical models, discussed below.
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Modeling of Continuum Manipulators

are not circular. Regardless of these additional hypotheses, the curve is of fundamental importance to
the kinematic description.

Explicitly, the body of the robot is identified by the curve through the consideration of a reference
configuration C, of the robot. The backbone curve p,, is placed on this reference configuration. The
curve is then “framed” by a set of unit vectors d; (s, t),d, (s, t), and d5(s, t) termed the director
vectors. The first two are chosen to be orthogonal and to span the section of the body at s which is
normal to the curve. The third is taken to complete a right-handed, orthonormal coordinate frame as
d;(s,t) =d(s,t) X d,(s,t). In terms of classical differential geometry, d is the tangent vector,
and d; and d, could be selected as the normal and bi-normal vectors from Frenet’s formulas
(Kreyszig 1991). This procedure is problematic for general curves since torsion may be undefined,
but many other alternative framings of the curve are possible which do not suffer this problem
(Bishop 1975). The backbone position and unit vectors together describe a local reference frame

F (s, t) for each point along the curve. The unit vectors equivalently define a spatiotemporal field of
rotation operators R, (s,t) € SO(3). The rotation field can be represented by matrices (Rucker and
Webster 111 2011), quaternions (Boyer et al. 2020), or any other suitable representation. Together
with the position vector, a spatiotemporal field of transformations g, (s, t) € SE(3) is defined by

9v (S! t) = {Rb(SJ t)! pb(s, t)}

The vectors u(s,t) = u,d; and v(s, t) = v, dj, are termed the “strain variables.” They describe
deformation of the body and are invariant under rigid transformations. The vector u has been widely
called the “curvature” vector in the robotics literature, but this may be misleading since it is not
generally the curvature of the deformed backbone curve. The term “flexural strain” is preferred for
u; and u,, and “torsional strain” for u;. The variables v; and v, are called the shear strains, and v is
the dilation. The change in length or “extension” of the backbone curve is characterized by ||d;p]|? =
v - v. The strain variables are related to the framed curve by the following relationships.

aSpb (S' t) = v(S, t), asdk(sl t) = u(S, t) X dk(S, t) (1)

Finally, the vectors d,p,, (s, t) and w(s, t) represent the linear and angular velocity of the backbone
curve and director vectors. The angular velocity satisfies the equation d,d; (s, t) =

w(s,t) X di(s,t). The four functions u, v, d;pjp, and w are not independent; they must satisfy

d;w = 0;u + u X w. In the reference configuration, the flexure strains have non-zero values u,(s) if
the backbone is not a straight. Generally, v, (s) = d3(s), but other choices are possible.

2.1.2 The general continuum description

The second approach to describing the configuration of continuum robots is to make as few prior
kinematic hypotheses on the configuration as possible. The traditional description of a three-
dimensional continuum in solid mechanics is used in this case. In this approach a reference
configuration Cj is identified by their position vector relative to a frame of reference F,. Three
coordinates X € R identify the position of each point in the body via a one-to-one, differentiable
vector-valued function P(X). If X is chosen as the Cartesian coordinates with respect to F,, then this
function and its inverse are trivial. The final locations of the points are described by p(X, t). In some
cases, it is useful to define a displacement field U as follows.

p(X,t) =P(X)+ U(X,t)

The amount of stretching can be quantified by the deformation gradient, defined by
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op
F&X.0=3p|
,t

The deformation gradient straightforwardly describes the local changes in length (amount of
stretching) and therefore plays a major role in the definition of strain measures. Note also that the
curve-based description of the configuration, together with the classical Euler-Bernoulli hypothesis,
can be placed into this more general framework using X = (s, X, X3) and p(X,t) = pp(s,t) +
X,d, (s, t) + X3d3(s,t) (Antman 2005).

2.2 Perspective on discretization & configuration spaces

There are two perspectives that one might take when describing the kinematics or mechanics of
continua. In the first perspective, the model consists of a (possibly nonlinear) PDE, a domain on
which the PDE applies, and boundary conditions in the form of constraints or measurements. The
robot’s state space consists of the dependent variables related by the PDE. The state space is
therefore a particular Cartesian product space that might involve, in general, both finite-dimensional
spaces and infinite-dimensional function spaces. In the process of computing a numerical solution to
a model, any part of the state that belongs to an infinite-dimensional space must be approximated by
a finite set of coordinates in R™, but the choice of coordinates does not need to be of great concern to
the modeler. This perspective has been taken by numerous authors for general continuum
manipulators (Trivedi, Lotfi, and Rahn 2008; Till, Aloi, and Rucker 2019), concentric tube robots
(Gilbert, Hendrick, and Webster II1 2016; Dupont et al. 2010; Rucker et al. 2010), parallel continuum
robots (Black, Till, and Rucker 2018), and bioinspired locomotion by snakes and worms (Boyer, Ali,
and Porez 2012). The modeler hopes that any approximation error is small enough to be ignored, and
error-controlled numerical methods may provide some assurances. This first perspective is the natural
one if, for example, the modeler selects an error-controlled, automatic step-size numerical integrator
like the Dormand-Prince Runge Kutta pair to approximate the solution to a differential equation with
a spatially distributed independent variable. The benefit to this perspective is that questions of
convergence may generally be avoided. However, there are two main disadvantages: first, there is a
relative paucity of tools available if the problem is not expressed with respect to a single independent
spatial variable; second, the degrees of freedom chosen by automatic numerical methods may be
unknowable in advance and may vary between model solutions, making it difficult to apply
algorithms built on spaces like R™ or on manifolds where coordinate charts are available.

In a second perspective, the equations of an infinite-dimensional model are explicitly discretized
through a suitable method such as the finite element method or a finite difference method (Back et al.
2015; Gilbert and Godage 2019; Renda et al. 2014) or via a spectral method involving a “modal”
decomposition (Chirikjian and Burdick 1994; Y. Chen et al. 2020; Godage et al. 2015). In this
perspective, the modeler takes control over the discretization and fixes the dimensionality of the
resulting model. One is free to take the perspective that a new model has been created that is not
necessarily subordinate in any way to the infinite-dimensional model. In other words, the infinite
dimensional dependent variables, ODEs, and/or PDEs, were only a steppingstone to the finite-
dimensional model. The dimension may be varied according to a model hyper-parameter N, and
often one wishes that as N — oo, the solutions to the sequence of fixed-dimensional models approach
the solution to a corresponding infinite-dimensional model.

The second perspective is the standard one in generally accepted theories of robot kinematics and
dynamics, in which the goal is to find a suitable coordinate set that describes the displacement field
u(X, t) that takes a material point located at initial position P to its final position p = P + u. With
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rigid link manipulators, the space is partitioned into non-intersecting bodies indexed by number i €
Z* and equipped with local coordinate frames, and then the machinery of SE(3) is used to associate
each body with its own displacement field expressed in terms of one of the coordinate
transformations °T; € SE(3) representing the transformation between the base frame 0 and the
frame of the i®" body. For serial, rigid-link robots, the choice of finite dimensional coordinates
parameterizing the displacement field is usually one of two conventions, the Denavit-Hartenberg
convention (Denavit and Hartenberg 1955) or the twist coordinate system and product-of-
exponentials formula (Brockett 1984).

For continuum and soft robots, neither the perspective (finite vs. infinite-dimensional) nor the
approach to discretization (choice of coordinates) appears to be standardized. In some cases,
restrictive assumptions do allow a set of finite coordinates that uniquely specify the configuration of
a continuum robot. For example, Bretl and McCarthy showed that for the Kirchhoff rod with no
external loading, a configuration space isomorphic to R® can be selected, corresponding physically to
a known internal force and moment at the same location in space as the known orientation of the rod
(Bretl and McCarthy 2014). A similar result is known for coordinates of the configuration space of
concentric tube robots without any external loads (Gilbert, Hendrick, and Webster I11 2016). The
general principle is a basic result on initial value problems. If the mechanics of the system can be
modeled by a system of n first-order initial value problems,

asy = F(S,y), }’(So:t) = yO(t)

with F uniformly Lipschitz in y and continuous in s, then the solutions are uniquely determined by
Yo (Schaeffer and Cain 2016). Therefore, if all state information of the robot is contained in the
functions y; (s, t), then it is clear that y, is a suitable set of coordinates for the configuration space of
the robot. For curve-based models y, usually belongs to a space of the form SE(3)" x R™.

However, with less restrictive assumptions, low-dimensional configuration spaces are not generally
found. Such is the case for parallel continuum robots (Black, Till, and Rucker 2018), for growing
robots (Greer et al. 2019), or soft robotic hands (Schlagenhauf et al. 2018). It is in general impossible
to find a “minimal” set of coordinates for the C-space of any continuum manipulator when the
locations and nature of external loads or contacts are a-priori unknown and when these loads cause
substantial changes in the robot shape. The subsections that follow describe a variety of methods that
have been used to mathematically represent the configurations of continuum robots.

2.2.1 Spectral methods

Spectral methods were some of the earliest described methods for the kinematic modeling of
backbone curves. In this method, the configuration is represented by a finite number of coordinates
q(t) € RN by assuming that some kinematic quantity is described by a truncated sum of “modal”
shape functions ¢;(s) in a manner analogous to a Fourier series. The general form is to have a scalar
quantity S; represented as

N

55,0 = ) ay(a®)bi(s)

=1

The function a;; may be simply an index into the vector q pulling out one of the components, or it
may be a more complicated relationship. The mode shapes are generally selected among one of the
standard families such as trigonometric functions sin(k;ms) and cos(k;ms) for a series of values k; €

7
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R (directly analogous to a truncated Fourier series), the standard monomials {1, s, s2, ... }, the
Legendre polynomials, Chebyshev polynomials , etc. (Chirikjian and Burdick 1994; J. Zhang and
Simaan 2013; Y. Chen et al. 2020). In general, to be classified as a spectral method, the mode
functions should have global support rather than local support, which leads to the element-based
methods described below.

There is a great deal of freedom within this approach. For example, the tangent vector d; can be
expressed in spherical angles 6 (s, t) and ¢ (s, t), and then S; = 6 and S, = ¢, and v = (0,0,1)
completes the kinematic description (Chirikjian and Burdick 1994). §; could also be chosen directly
as a component of the displacement field of the backbone curve (Godage et al. 2015). These methods
are extrinsic because they seek to approximate kinematic quantities as measured by the observer in
the inertial frame F,. Parameterizations also possible which represent the strain variables u(s,t) and
v(s, t) measured by an observer in the local frame F (s, t) (Boyer et al. 2020) .When coupled with a
collocation method used to determine u, it was shown that the Magnus expansion can be used to
efficiently recover the position and orientation field (Orekhov and Simaan 2020).

In the context of continuum robots, to the best of the author’s knowledge, the spectral methods have
only been applied in conjunction with the curve-based descriptions discussed in section 2.1.1 and not
for more general continuum descriptions.

2.2.2 Element-based methods: PCC

The element-based methods, in contrast to the spectral methods, break up the problem spatially into
adjacent sub-domains and attempt to model the kinematics on each sub-domain using a simpler
hypothesis. This procedure can be carried out for both the curve-based description and the general
continuum description. Many authors have adopted the kinematic hypothesis that the backbone curve
is a sequence of circular arcs which are concatenated by imposing tangency conditions. There is a
natural extension of this idea to piecewise helical curves. This approximation is termed the
“piecewise constant curvature” (PCC) method, and many continuum robots have even been designed
to exhibit deformation of this kind, at least in the absence of external loads (Webster and Jones
2010). For example, multi-backbone robots and tendon-driven robots will adopt, with actuation,
shapes very close to circular arcs with appropriate design decisions (K. Xu and N. Simaan 2008;
Camarillo et al. 2008). On the other hand, even gravitational loading may cause more flexible robots
to adopt shapes more complex than a single circular arc (Trivedi, Lotfi, and Rahn 2008).

C

2.2.3 Element-based methods: General continuum

More general finite-element descriptions have also been used to model soft and continuum robots. In
this case, the degrees of freedom q(t) directly interpolate the position field p(X, t) over the three-
dimensional domain of the body. Using typical first-order (linear) interpolants, the degrees of
freedom are the Cartesian coordinates of the nodes of the mesh that that breaks the body into discrete
volumes. Direct nodal position discretization using finite elements can be used for closed-loop
control using a dimensionality reduction scheme based on projection (Bieze et al. 2018). It has also
been shown that high-order FEM models with an order reduction method involving fitting to PCC
kinematics is effective (Runge et al. 2017). Finally, it has been demonstrated that general 3D FEM
with model order reduction based on the Proper Orthogonal Decomposition can produce models
amenable to dynamic closed-loop control (Katzschmann, Thieffry, et al. 2019).
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2.2.4 Direct nodal discretization

Closely related to the element-based methods are those based on direct discretization of the variables.
Differential operators in the mechanics can be replaced by their equivalent finite-difference operators
to form algebraic equations directly, operating on the values of field variables specified at discrete
spatial locations s; for the curve-based approach. A finite difference scheme applied directly to the
geometrically exact Cosserat equations has been demonstrated for both the planar case and the spatial
case (Hasanzadeh and Janabi-Sharifi 2014; Gilbert and Godage 2019; Wang et al. 2021) and
described for concentric tube robots (Webster and Rucker 2009). Finite-difference methods were also
used with direct spatial discretization to model a soft underwater arm driven by cables (Renda et al.
2014).

2.2.5 Pseudo-rigid body methods

The pseudo-rigid body methods replace the continuum with an approximating rigid linkage. If the
curve is broken into a sequence of chords with rotational joints at the nodes joining the chords, then
this is equivalent to a spatial “lumping” of the flexural strains into a discrete point via the use of the
Dirac delta distribution (Chirikjian and Burdick 1991; Greigarn et al. 2019).

m
T(S;t)u(sl t) = Z ql(t)(s(s - Si)ni
i=1

A universal joint is the result if two orthogonal axes n; and n;,; are placed with s; = s;, 1 with both
axes normal to the backbone curve. Three orthogonal axes create a spherical joint.

It has been shown that the kinematics of tip-loaded cantilever beams can be modeled adequately by a
serial 3R mechanism (Su 2009). Other PRB models have been created for modeling of catheters
(Ganji and Janabi-Sharifi 2009), tendon-driven continuum manipulators for minimally invasive
surgery (Penning and Zinn 2014), and MRI-actuated catheters (T. Greigarn et al. 2017). A 6-DOF
PRB segment model has also been proposed (Venkiteswaran, Sikorski, and Misra 2019). An
equivalence has also been shown between the coordinates of a PCC model and a suitably defined
pseudo-rigid body model, indicating that PRB model segments with RPPR kinematics can be used to
describe the same configuration space as PCC models (Katzschmann, Santina, et al. 2019).

2.2.6 Initial value problem concepts

There are additionally a variety of other methods of analysis and computation which do not explicitly
select the degrees of freedom in the kinematic description. In these methods, the unknowns are
conceptually left as unknown functions, and numerical methods are used which automatically select
the degrees of freedom used to represent the unknown functions, usually via an error estimation and
control algorithm.

These methods have been used when the problem is re-cast as a one-dimensional boundary value
problem with split boundary conditions.

0sy = f(S, }’), Ga(J’(O, t), tj) =0, Gb(y(L' t), tj) =0

Solutions can then be provided by numerical codes which automatically determine the degrees of
freedom used to approximate the function y(s, tj) for each discrete value of ¢;. For continuum robots
these methods have been demonstrated via collocation (Webster and Rucker 2009) and shooting



348
349
350
351
352

353

354
355
356

357

358
359

360
361

362
363

364
365

366
367

368
369

370

371

372
373
374
375
376
377

378

379
380

Modeling of Continuum Manipulators

methods (Till et al. 2015; B. Mauz¢ et al. 2020) using numerical tools that approximate y(s, tj) via
piecewise polynomials. It has also been shown recently that the dynamics problem for a wide variety
of architectures based on single or multiple Cosserat rod sub-models can be cast as a shooting
problem on an ODE once the time derivatives have been discretized using finite differences (Till,
Aloi, and Rucker 2019).

2.2.7 Differential kinematics for strain-variable hypotheses

It is often necessary to calculate a manipulator “Jacobian field” based on the curve parametrization,
and if the generalized coordinates are defined to interpolate the strain variables, this field is not trivial
to calculate.

[a;p] (s,t) = Jq(s,0)0:q(t) = [;:] d:q(t) 2)

Letting J; be the column multiplied by d,q;(t), then the column can be calculated from the following
differential relationships:

Os)pi = aqiv
0s) i = aqiu + U X [y

One must take care when the interpolation is carried out on the strain variables in coordinates of the
local frame F (s, t). If desired, the coordinates in the body frame representations ?(S’t)] pi and

jC(S't)] i may be calculated from the appropriate representation of these equations in the moving
frame (Rucker and Webster 2011).

From a known boundary condition where J,,;(0,t) = 0 and J,,;(0,t) = 0, the solution to these
equations can be expressed in closed form as the solution to a linear time varying system.

s o )

]pi B N T B
]wi] (S) —]0 exp —JO adf(r) dt 6,, T(s,t)u dT, adf(f) = 0 u,

2.3 Mechanics

Regardless of how the shape of a robot is described, the principles of classical mechanics are
frequently used to describe the relationships between the model’s degrees of freedom, the internal
stresses, and any imposed boundary conditions which may include external forces, imposed positions
or orientations of parts of the robot, contact conditions. The robot’s actuators may generally be
modeled in one of two ways: either they are described as constraints (a form of boundary condition)
or as sources of internal stress.

2.3.1 The equations of motion for the special theory of Cosserat rods

In the curve-based description, the equations of motion of the special theory of Cosserat rods serve as
the strong form differential equations governing the mechanics (Antman 2005).

.. .. . 10
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osn + f = pAdyp + pli0¢edy 3)
dsm + dsp X n+ € = plidy X 0yp + 0:(p] - @) (4)

The sum from k = 1 to 3 is implied over the terms involving I, and dj,. The variables n(s, t) and
m(s, t) are the internal force and the internal moment, which are interpreted as the resultant force
and resultant moment of the stress acting on section s. In the case of a slowly accelerating body,
which is typical in many biomedical applications, a quasistatic approximation may be used, in which
all terms on the right-hand side are neglected (Burgner-Kahrs, Rucker, and Choset 2015). f and £ are
externally applied forces and moments. Applied concentrated forces and moments require the Dirac &
distribution to express in this formulation.

In the case of a model which allows freedom in all the strain variables, m and n are algebraically
related to the kinematic variables through a suitable material constitutive law. On the other hand, in
the shear-less and extension-less model, n is a basic unknown and is equivalent to a Lagrange
multiplier which enforces the constraint v(s,t) = v, (s).

The parameter pA is the mass density (expressed per unit length) of the cross-section. pJ is the mass
moment of inertia (per unit length) of the section, which makes pJ - @ the angular momentum (per
unit length) calculated about the mass center of the section. The three parameters pl; account for
linear momentum density of the cross section caused by angular velocity of the curve. The author is
not aware of any works in the robotics literature for which this term has been nonzero; if the
backbone curve is chosen to pass through the mass centers of the cross sections, then pl,, = 0 and the
equations simplify considerably. However, it is noteworthy that this may in general result in the
curve failing to pass through the cross-section centroids (if multiple materials are used) or it may be
impossible to satisfy this requirement exactly if a single curve is used to model a body with complex
geometric features.

2.3.2 The equations of motion for pseudo-rigid body models

With the PRB-type models, the equations of motion are exactly those of a classical multibody
dynamical system with scleronomous, holonomic constraints. These equations are commonly given
as follows (Murray, Li, and Sastry 2017).

M(q)q +C(q,q)q+ N(q,q) = B(7)

The right-hand side contains the non-conservative generalized forces associated with actuation and
any other forces; since the robots are underactuated there are generally many more rows in this
equation than actuator variables ;. Also, it is noteworthy that the inertial forces are not trivial to
calculate since the motion of the continuum body is not the same as the motion of the rigid-link
approximation. Some assumptions about how the continuum “tracks” the rigid-link approximation as
it moves is needed. One approach is to match the centers of mass of chords along the curves of a
PCC model with centers of mass of the links in the rigid link model (Della Santina et al. 2018).

2.3.3 The equations of motion for general deformable bodies

The dynamic equilibrium conditions of classical continuum mechanics serve as the defining
relationship for general three-dimensional finite element models of soft and continuum robots. Rarely
are these equations encountered explicitly in the literature on continuum robots, with most authors
preferring to state the result after the strong form equations have been converted to the weak form

11
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and integrated. The resulting equations, incorporating constraint forces, are of the following form (O.
Goury, B. Carrez, and C. Duriez 2021).

M(q@)G+F(q,q) +G(q) =H"A

The form of this equation is directly analogous to the classical form of the dynamical equations for
rigid multibody systems. M(q)q accounts for the inertial forces, F(q, q) accounts for the internal
forces produced by deformation of the material, and G(q) accounts for gravitational forces. The
matrix H is associated with the constraints and boundary conditions and encodes the effect of the
boundary and actuation forces contained in the vector A. The details of the construction procedure for
this equation are out of the scope of this paper.

2.3.4 Projection via D’Alembert’s principle

In the case of the curve-based models using either the PCS or higher-order models, the equations can
be projected onto the degrees of freedom of the model using Galerkin’s principle, probably better
known among mechanical engineers as the principle of virtual work (Greenwood 1988). The method
is also equivalent in results to Kane’s method of virtual power (Kane and Levinson 1983; Rone and
Ben-Tzvi 2014). Because the backbone curve descriptions for the PCC, PCS, and higher order strain
variable interpolants are described by independent degrees of freedom q € RY, a direct projection of
the equilibrium equations is possible via D’ Alembert’s principle, which amounts to an integration
over the equations of motion.

L
f [(F(s, ) + F*(5,0)) - ¥ (s, 0) + (M(s5,6) + M*(5,1)) - B;(5, )] ds = Qjnc (5)
0
j=1,.,N
F(s,t) = —dsn(s,t), F*(s,t) = pAdyp(s,t) + pl, 0 dy (s, t)
M(S, t) = _asm + asp Xn, M*(S, t) = plkdk X attp + at(p] . w)

L
Qe = fo F(.0) 7,05, 0) +£(s,6) - B;(s,0) dr

The velocity coefficient function and angular velocity coefficient function are defined as
y]'(S, t) = aqu(s, t) = aqjatp, Bj(S, t) = aq]w
The velocity coefficients are the “Jacobian field” satisfying the relation (2).

Since the time derivatives of the momentum density and angular momentum density, d;,p and
d:(p] - w), can be written as linear functions of the d;,q, the equations of motion are linear in the
accelerations of the generalized coordinates, as expected. In the case of the PCC/PCS kinematic
description, the derivatives dyn and dgm, if resolved in F (s, t), are zero except at the element
boundaries. The equations may be integrated by parts into a form which shows the conjugacy of n
and v and the conjugacy of m and u.

L L
j asn-yjds=[n-yj]L—J n-9,vds
0 ° Jo !
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L

J;Lasm-ﬁjdsz[m-[}j]ﬁ—fo m-(aqju+u><[}j)ds

In the local frame, the equations take the following forms.
L

L
0

.[(-)L T(S’t)n- ( aq]- (T(s,t)v) n F(s,t) ﬁj v T(s,t)v) ds

L L L
f o.m - B, ds = [T(s,t)m . T(s,t)ﬂj]o _f P, . aqj(?(s,t)u) ds
0 0

Note also that if n(s, t) is constant over s, the first integral is trivially zero.

Finally, note that if more than one rod-like body is present, then a sum over the bodies takes place in
(5). Explicit constraints between the bodies may be handled via the method of Lagrange multipliers.

2.3.5 Learning-based approaches

Learning-based approaches, which are also sometimes referred to as “model-free” approaches, may
be able to describe the relationships between the actuator inputs and observable outputs such as the
end-effector motion without recourse to physical parameters and the laws of mechanics. These
models usually serve a complementary purpose to those based on physical first principles. Since they
require training data from a real robot or from another simulation model, they may be used for on-
line control, inverse and forward kinematics, or for off-line analysis and testing of other algorithms
such as for navigation and control. The a-priori prediction of behaviors from only design data is
generally not possible to date using only learning-based methods.

A variety of purely kinematic approaches have been proposed. One learning approach uses an on-line
estimation of the Jacobian matrix relating the time derivatives of the actuation variables 0,7 to the
time derivatives d,p(L, t) and d,d; (L, t), and it has been shown that this approach works for both
position control and hybrid position/force control when appropriate sensing is available in hardware
(Yip and Camarillo 2016; 2014). Since the method requires no information about the robot or the
environment a-priori, it enables control in complex scenarios, where highly complex physics-based
models may have poorly observable parameters or states. It has also been shown that inverse
kinematics for continuum robots may be approximated by a multilayer perceptron network (George
Thuruthel et al. 2017; Lai, Huang, and Chu 2019; Grassmann, Modes, and Burgner-Kahrs 2018),
with multi-agent reinforcement learning (Ansari et al. 2016), with K-nearest neighbors and Gaussian
mixture regression (J. Chen and Lau 2016), and with deep reinforcement learning (Satheeshbabu et
al. 2019). For reconfigurable robots subject to varying loads, it has been shown that classification of
the load state using long short-term memory networks can substantially improve open-loop kinematic
control (Nicolai et al. 2020). For flexible catheters, a combination of a support vector machine
classifier and a fully connect neural network regressor were demonstrated achieving sub-millimeter
trajectory tracking errors (Jolaei et al. 2020). Learning may also play an important role in
proprioception for continuum robots with distributed sensing, where additional sensors beyond
actuator-collocated ones are available for measuring the robot shape (Truby, Santina, and Rus 2020).

It has also been shown that dynamic models may be learned. Under a state observation of the form
x = F(q) provided by sensors, where it is presumed that the dimension of x and q are the same and
that F is invertible, the dynamics of the system can be posed as a one-to-one mapping (7, x, 9;x) —

13
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d¢¢x. On a real or simulated robot, this map representing the dynamics of the observables of the
system can be approximated in discrete time via recurrent neural network (Thuruthel et al. 2017).
Note that the kinematic relationships under static conditions are obviously also contained in this
trained map for all points satisfying (t,x,0) — 0. A similar approach using deep neural networks has
also been demonstrated (Gillespie, Best, and Killpack 2016). Data-driven system identification based
on the Koopman operator theory has led to control-oriented dynamic models amenable to model-
predictive control (Bruder et al. 2020). Autoregressive with exogenous input (ARX) and nonlinear
autoregressive with exogenous input (NARX) models have been studied for a single-section tendon-
driven continuum robot, with the conclusion that NARX provides advantages in modeled end-
effector position accuracy (Parvaresh and Moosavian 2019). For closed-loop dynamic control, the
direct reinforcement learning of a control policy which learns the mapping from current robot states,
previous robot states, and desired end-effector position to the appropriate control action is possible
(Thuruthel et al. 2019).

There are also learning-based approaches to control which do not explicitly construct kinematic or
dynamic models. One such approach is based on direct learning from demonstration in the actuator
space, which was successfully demonstrated on a tendon-driven continuum manipulator (Xu et al.
2016).

2.3.6 Actuator models

Actuators in continuum and soft robots have been classified as either extrinsic, in which case the
actuators are not a part of the deformable body, or intrinsic, in which case the actuators are an
integral part of the deformable body. Examples of the former include tendons, the boundary
conditions placed on concentric tube robots. Examples of the latter include soft pneumatic muscles
(Walker, Choset, and Chirikjian 2016).

The actuators may be modeled (very generally) as relationships between the actuation variables,
generalized forces, and the dynamic state of the robot consisting of q and d,q.

Gi(Ti' q atq' an) =0

However, the nature of the model may change depending on the exact form of G;. If G; involves only
7; and q, then it is exactly in the form of a holonomic constraint. In general, it may not be simple to
find a reduced set of independent coordinates satisfying the constraint, and a Lagrange multiplier
technique may be required to enforce it. On the other hand, if G; can be inverted to find Q,,. =

G;(t;, q,0,q), then the actuation can be directly coupled to the equations of motion. Which of these
two views of actuation is the more natural one depends on the characteristics of the particular
actuator(s) and sensor(s) chosen.

A first example is the model of a fiber-reinforced elastic actuator, in which V is the enclosed fluid
volume of the actuator, T = P is the fluid pressure, and J, is the Jacobian matrix relating the changes
in the generalized coordinates to the change in volume of the fluid (Sedal et al. 2021). Then, the
principle of virtual work indicates that

SW =16V =1],(9)6q = Qi nc69;

Qnc =]€(q)‘[, ]V(Q) = aqV
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Another explicit example is found in the case of a tendon-driven robot. If enough support for the
tendon is provided, a reasonable model for the points occupied by the tendon is a continuous curve
described by p;(s,t) = p(s,t) + a(s) with a(s) = a;(s)d,(s,t) + a,(s)d,(s, t) (Rucker and
Webster 111 2011). For the sake of simplicity, restrict the tendon to a planar path with a,(s) = 0. The
tendon length can then be calculated as an integral functional involving the deformation gradient
evaluated along the tendon path using the curve-based kinematic hypotheses:

op;

L
£.(q) = f d¢, d¢*=ds?*(d;+ 0;a)FF.(d; + 0;a), F,
0

If the tendons are not fully constrained, other models for £, (q) may be more appropriate (Rao et al.
2021). What is noteworthy about either length formulation is that the nonconservative generalized
forces do not naturally appear. If the tendon lengths are a known quantity, the actuator model is a
holonomic constraint on the generalized coordinates. The problem can be treated via the method of
Lagrange multipliers. The Lagrange multiplier will be exactly the tendon tension, and the principle of
virtual work can be used to reveal the exact form of the terms in Q,,. corresponding to the Lagrange
multiplier.

SW =16¢, =7]Jp(q) 69 = Qjncbq;,  Jo(@) = 942:(q)

Therefore, the effect of the tendon alone (not considering any frictional forces) must be

Qunc = ]?(q)T

Note that the causal form in which the tendon tensions are known is “easier” to handle since no
additional equations must be added. The causal form involving known tendon lengths requires the
addition of the nonlinear length constraints (6) to the equation set and the tension becomes an
algebraic unknown along with the accelerations, forming a nonlinear differential-algebraic system in
the dynamic case or a nonlinear algebraic system in the quasistatic case. The need to solve a DAE
system disappears if the tendon is considered a spring element, since then the force is determined as a
function of the difference between £;(q) and the tendon displacement input d.

The resulting model form as a set of ordinary differential equations or differential algebraic equations
is shown for a variety of common continuum robot actuators in Table 2.

Actuator Input Model Form

Inextensible tendon length | DAE

Extensible tendon length | ODE

Tendon Force ODE

Pneumatic Pressure ODE

15
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Hydraulic Pressure ODE
(incompressible fluid)

Hydraulic Volume DAE
(incompressible fluid)

Table 2: Model form as an ODE or DAE system based on actuator type, assuming a single rod
model architecture for the model.

2.4 Materials

The kinematic hypotheses and mechanics models must be augmented by constitutive laws (material
models) to complete the model of a continuum robot. For quasistatic models, the choice is usually
between linear elasticity and other hyperelastic material models. For dynamic models, an additional
choice of damping or friction laws is generally required to produce realistic responses.

2.4.1 Linear elasticity

In the case of quasistatic models, a common assumption in the literature has been to assume a
Hookean (linear) material response. In this case, if one assumes that the backbone curve passes
through the neutral axis of bending, the following constitutive laws apply:

:F(s,t)m _ T(s,t)Kbt(.‘F(s,t)u _ T(s,t)uo

:F(s,t)n _ T(s,t)Kse(T(s,t)v _ T(s,t)vo)

The matrices K;; and K, may be calculated from the classical Euler-Bernoulli or Timoshenko beam
theories and the entries are the flexural and torsional rigidities and shear and extension rigidities,
respectively. The explicit relationships follow below (Antman 2005).

Mg (s,t) = (EJap)($)[ug(s, ) —upo(s)],  ms = D(s)us(t)

Note that bending about d; and d, are characterized by the second moments of area and the Young’s
modulus E, while the torsional moment is related to the torsional strain variable by a coefficient D
solving the St. Venant torsion problem. Only in the case of isotropic rods with circular cross section
is this equal to the usual shear modulus G times the polar moment of area /33. Formulas for a wide
variety of cross sections that are uniform over s have been tabulated (Roark, Young, and Budynas
2002). The Timoshenko model for shear and elongation adds the following relationsihps.

ng = (GA)(S) Vo, n3 = (EA)(s) [v3 — 1]

2.4.2 Hyperelastic material models

Many other hyperelastic models are possible choices, such as Yeoh, neo-Hookian, Gent, Ogden, and
Mooney-Rivlin (Zhao, Zhang, and Wang 2021; Shiva et al. 2019; Bacciocchi and Tarantino 2021; He
et al. 2018; C. Zhang et al. 2019; Antonelli et al. 2020). Although in general one may expect that
these more complex material models should offer improved model accuracy, it has been shown
recently that, at least for some robot designs, a linear stress-strain response may be more than
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adequate (Shiva et al. 2019). Any hyperelastic law can be represented within the Cosserat rod
framework as a strain energy density function W.

W = W(T(S't)u, .‘F(s,t)v)

FsOm=0,w, TYn=0,w

The details of these calculations for each of the respective hyperelastic models is omitted for the sake
of brevity and can be found in the cited references.

2.4.3 Damping and friction

The introduction of dissipative mechanisms is generally necessary to encourage numerical stability in
dynamic models and to produce realistic dynamic responses. Additionally, in some cases static
friction plays a significant role in determining the quasistatic solutions, such as in tendon-driven
catheters (Jung, Penning, and Zinn 2014). Viscous damping may be introduced via the Kelvin-Voigt
material model, which extends the linear elastic models to include rate-dependence in the stress-
strain relationship (Mustaza et al. 2019; Gilbert and Godage 2019).

In the curve-based framework, the Kelvin-Voigt law takes the following form (Linn, Lang, and
Tuganov 2013):

T(s,t)m _ T(s,t)Kbt(:F(s,t)u _ T(s,t)uo) + T(s,t)Bbt 9, (?(s,t)u)
T(s,t)n _ T(s,t)Kse (T(s,t)v . T(s,t)vo) + T(s,t)Bse 9, (?(s,t)v)

The matrices Kj; and By, are related by time constants referred to as the extensional retardation time
constant, T, = 1y /E, and the shear retardation time constant, 7, = /G, with ng the “extensional
viscosity” and 7 the shear viscosity.

T(s,t)Bbt _ T(s,t)Kbt - diag(t,, T, Ts)

F(s,t) B,, = F(s,t) K, - diag(ts, 75, 7,)

Static friction models have also been considered for concentric tube robots (Lock and Dupont 2011),
tendon-driven continuum robots (Li et al. 2020), and continuum robots having sheathed tendons or
multiple actuated backbones (Roy, Wang, and Simaan 2017).

3 Discussion

The wide variety of modeling choices that have been described offer the modeler an almost
paralyzing array of choices. In the subsections that follow, several questions are posed. The available
evidence from the literature as well as analyses guided by classical theories of mechanics are used to
discuss these questions and to provide guidance during the initial stages of selecting modeling
approaches.

3.1 Considerations for kinematic hypotheses

The literature on modeling of continuum and soft robots suggests that errors in kinematic models,
quantified by the absolute tip positioning error as a percentage of the overall root length, are typically
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on the order of a few percent. Therefore, there may be little benefit to increasing the order of a
spectral method or to further subdividing the domain in an element-based method once the absolute
accuracy with respect to the true solution reaches this point. In the sections that follow, analysis and
recommendations for kinematic hypotheses which are derived from consideration of the mechanics
of bending are offered. Table 3 provides a summary of the recommendations in terms of increasing
either the number of elements or the order of the interpolation (assuming that u is the interpolated
variable). Figure 5 depicts the decisions leading to the various types of models that have been
discussed.

Condition/Recommendation Number of elements Element order
(curvature interpolant)

Concentrated forces - >1

Non-uniform Flexural Rigidity T -

Uniformly distributed loads - =2

Elastic contact T T

Table 3: Summary of recommendations to increase either the number of elements or the order
of interpolants based on model assumptions and robot-environment conditions.

3.1.1 Considerations for cantilevered concentrated loadings

For continuum robots which are soft enough to exhibit substantial compliance to environmental loads
(for example those that may be presented by contact with human anatomy), one of the first
considerations for modeling should be consistency with the requirements for accurately modeling
cantilevered, concentrated loads.

Let the Cosserat rod equations be recast in terms of the angle of the tangent vector and the load and
deformation fixed to the plane defined by d5(0, t) and d;(0, t), let the boundary condition g(0, t) be
fixed, and let the load be concentrated at s = L and modeled by F = P&(s — L)d(0, t) for the scalar
force magnitude P. Furthermore, assume the material response is linear and that the robot is
inextensible. These restrictions simplify the problem and result in the following dimensionless
boundary value problem governing the angle 8, which represents the tangent vector:

d;(s,t) = cos(8)d;(0,t) + sin(8) d,(0,t)
9¢0 + Acos(6) = 0 i
g0+ Acos(0) =0, £=7, A=
0(0,£) =0,  8;6(1,t) =0

The boundary value problem has a known solution:

8(&,t) = 2sin Y (ksn(K(k) — (1 - VA k%)) —%
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The quantity k is a scalar that may be found by Newton-Raphson iteration on the following equation,
which is implied by the boundary condition 8(0) = 0

ksn(K(k) — \/Z;kz) =+/2/2

The PRB models have the attractive property that they map the problem back into the domain of
traditional robotic manipulators, with the obvious advantage that all the tools and knowledge that
have been developed in that context (in general, restricted to underactuated mechanisms) now apply
to the continuum robot. In the traditional PRB models, the inertia properties are lumped into the links
formed by the model, and the stiffness and damping properties are lumped into the joints between
links. This lumping introduces error, but it has been shown that optimization of the parameters of the
rigid body model can lead to accurate mechanical responses for both cantilevered transverse loads
and for applied or internal moments (G. Chen, Xiong, and Huang 2011). Given that the optimal 3R
planar PRB model has three degrees of freedom, it is a fair comparison to place the model in
competition with other three-DOF models. Here we consider the following three sets of potential
kinematic hypotheses and matching constitutive laws and compare them with each other and with the
exact solution. Without loss of generality, let L = 1 and EIl = 1.

Piecewise constant curvature:

3
1 seT 1 12 2
Upcc = zue xr,(s)dy,  xr,(s) = {0 se F:’ D= [0,§] U [g.g] U [5,1]

m(s) = eEIIu(s)

PRB:
3
Upgrg = Z q;6(s—s;)d,, s; = 0.125,s, = 0.475,s; = 0.863, D =[0,1]
i=1
m(s m(s m(s
(1) _ 3.25, (s2) _ 2.84, (53) _ 595
41 q: qs
Spectral:

m(s) = EI u(s)

How well does each of the strategies perform when given 3-DOF to capture the deformation? The
answer is depicted in Figure 6, showing tip position error in percent of robot length versus the
dimensionless cantilevered load index A. For cantilevered loads, a single spectral element which is
quadratic in u is a far better choice than either a 3-element PCC model or a 3R PRB model. If
nonzero shear forces are expected, the PCC model seems to have little in its favor; the Jacobian for
the PRB model is simpler to calculate, meaning that the statics equations in (5) are easier to
formulate, and the tip position is predicted more accurately, which also implies that the overall
structural stiffness is more accurate for the PRB model than for the PCC model. The Jacobian for the
spectral model, unlike the other two, cannot be obtained in an exact closed form.

19



679
680
681
682
683
684
685

686

687
688
689
690
691
692
693
694
695
696
697

698

699
700
701
702
703
704
705
706
707

708

709
710
711
712

713

714

715

716

Modeling of Continuum Manipulators

The results imply that the typical piecewise constant-curvature assumption used in the development
of geometrically nonlinear models for robots is a poor choice from the perspective of mechanics
whenever a concentrated external load is present and is expected to produce internal shear forces
which are transverse to v. In summary, if point loads are present on the robot, a linear interpolant of
internal moment (equivalently curvature) is necessary to accurately capture the static equilibrium
configurations for unrefined elements even in the small deflection case, and degrees of freedom are
better spent on increasing the order of the interpolants than on increasing the number of elements.

3.1.2 Considerations for non-uniform flexural rigidity

In the case of non-uniform flexural rigidity, element refinement is more effective at reducing
approximation error than increases in order. This conclusion is easily justified by the observation that
if K(s) is a linear function, say for example 1 + as, then in the simplest planar case with a constant
internal moment one would be tasked to find another polynomial function x(s) such that k(s)K(s) =
C for some constant C. But this is obviously impossible, because k = C /K is a rational function, not
a polynomial, and the Maclaurin series at s = 0 has a finite region of convergence. In the example
case, the expansion is C - Y (—1)‘a’s. The series does not converge unless |s| < |1/a| and as s
approaches this upper bound, the number of terms in the series required to obtain convergence to a
fixed tolerance increases without bound. Element refinement, on the other hand, has exactly the
effect of reducing |s|, ensuring convergence. For this reason, single-element, spectral-type methods
are not recommended as a first choice if non-uniform flexural rigidity is present.

3.1.3 Considerations for uniformly distributed loads

Distributed loads may act on biomedical continuum robots. The most obvious of these loads is a
gravitational force distributed along the length of the robot. Other common forces may include
buoyancy forces, electric forces, magnetic forces, and aerodynamic and hydrodynamic forces. The
simplest possible model of a distributed load is a uniform one that is applied normal to the body of a
robot which is initially in a straight configuration. In this case, the solution to the linearized Euler-
Bernoulli equation is in general a fourth-order polynomial in position. The shear force is a linear
function of arc length and the internal moment (and hence curvature in the linear elastic case) is
quadratic. If the shape is discretized at the level of angle, the discretization should be cubic to
accommodate a uniform load.

3.1.4 Considerations for elastic environmental contact

For continuum robots in contact with soft bodies such as the soft tissues of the human anatomy, the
contact might be well-described, at least in the region of contact, by a model like the linear elastic
foundation model. For small deflections, the linearized Euler-Bernoulli model with a linear elastic
foundation is modeled by the following differential equation (see Figure 6A).

(Ely»ss )'ss = —ky

The homogeneous solution to this equation has the following form.

Y(s) = exp(=Ps) [C; sin(Bs) + C; cos(Bs)] + exp(Bs) [ sin(Bs) + C4 cos(Bs)]

The constant § depends only on the properties of the beam and the foundation.
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k
p? = ’m

To what degree of accuracy does a polynomial shape function (assuming the small-deflection case)
approximate yp?

To answer this question, one should find the best approximation of y, under a particular norm on
L2[0, £]. Here we select the 2-norm and study the approximation error for 3, 4% and 5™ order
polynomials. Since f is related to the ratio of stiffnesses k and EI, and has dimension Length™!, we
restrict the range of the dimensionless group £f to (0.1, 10). This range is consistent with the idea of
compliance matching as a form of embodied intelligence in biomedical continuum robots. Note that
as 3 — 0, the solution x; approaches a constant, which is easy to interpolate. As £§ — oo, the
elastic foundation is becoming infinitely stiff relative to the body of the robot, modeling a hard
contact. In this case, the internal forces and moments and the resulting deformations become strongly
localized, and a point load may be a more appropriate model for the contact than an elastic
foundation.

The physical solutions to the equation decay away from the application of a point load. Therefore, we
restrict the approximation problem to the consideration of the two functional forms that follow on a
domain [0,1] for g € (0.1,10).

x; = exp(—ps) sin(Bs)
x; = exp(—ps) cos(Bs)

See Figure 6B for examples with f = 3. Errors for polynomials p; and p, approximating x; and x,
respectively, are shown in Figure 4 as the maximum absolute errors.

max|p;(s) — x;(s)|
e = al

max|x;(s)|
S

For a single 5" order polynomial in shape, the maximum absolute error in approximating either x; or
X, remains below 1% if £ < 4.3 (Figure 8). As ¢ increases beyond this value, the polynomial
approximations to x; and x, begin to oscillate with increasing maximum error.

To put this in a practical perspective, a typical colonoscope has a linearized flexural rigidity of EI =
0.02 N m? (Wehrmeyer et al. 1998). Soft tissues may have an elastic foundation stiffness of
approximately 4 kN / m? (A. Asadian, M. R. Kermani, and R. V. Patel 2011). This results in § = 15
and therefore a hypothesis which is 5™ order in position (3" order in strain variables) should not have
elements longer than approximately 0.28 m. Note that for a hypothesis that is linear in s for the strain
variables, the length requirement would drop to approximately 96 mm, and for PCC elements, the
length would drop to only 38 mm. For a spatial robot model that is inextensible and un-shearable and
is 1 m long, this would result in a PCC model with approximately 81 degrees of freedom (27
elements at 3 DOF/element), a linear strain variable model with approximately 66 degrees of freedom
(11 elements at 6 DOF/element), or a cubic strain model with approximately 48 degrees of freedom
(4 elements at 12 DOF/element). Therefore, if environmental contacts are soft and distributed over a
long length, there is a strong incentive to develop models with higher-order strain variable
hypotheses.
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3.2 Considerations for numerical methods

3.2.1 Solution multiplicity

In general, the problem defined by (5) together with any constraints is a nonlinear algebraic problem,
even if linear material models are used. This is either a consequence of the nonlinear geometry,
which shows up in any finite-strain relationship between the strain variables and the position and
orientation of the body, or a consequence of nonlinear material behavior, or both. In special cases, the
problem may become linear; for example, if the actuators and generalized forces are related linearly,
linear constitutive laws are used, and no external loads are present. For nonlinear static problems, the
Newton-Raphson method and trust-region methods like the Levenberg-Marquardt method generally
work well, but the modeler must be cautious of the possibility of solution multiplicity.

In other words, a function g = f(T) does not always exist because there may be two or more values
of q which satisfy the equilibrium conditions given 7. This solution multiplicity is accompanied by a
singular tangent stiffness matrix for some value of q and possibly a tangent stiffness matrix with
negative eigenvalues, as is the case for so-called “negative-stiffness mechanisms” (Platus 1999). The
coupling between kinematics and mechanics means that it is not always safe to assume the existence
of a “forward kinematic mapping” which computes the C-space coordinates from the actuator
variables and then the task-space variables from the C-space coordinates. Consider the case in which
(5) is of the form F(q, T, Q;,.) = 0 where Q;,. includes only those generalized forces which are not
algebraically related with q and . Then a perturbation analysis yields the C-space Jacobians with
respect to T and Q.

SF = 0,F 8q + 0,F 5T+ 0y, F 6Q;c = 0

5q = —(8,F) " (0.F 5T+ 8y F 5Qisc)

It is evidently at configurations with singular d,F where multiple solutions may arise. This is one

reason that quasistatic “resolved-rate” or continuation-type methods may fail to converge; dynamic
models do not suffer this problem since the accelerations are resolved.

3.2.2 Time stepping

For time stepping, explicit ode integrators can become prohibitively computationally expensive. This
is a consequence of the fact that unresolved vibrational modes (as defined for linear test problems)
become unstable using explicit methods. Implicit integrators and those designed for solving stiff
ODEs and DAEs, such as the trapezoidal method or the backwards difference formulae, are
preferable. Energy-preserving integrators have the benefit that the damping behavior is caused
entirely by the material model, ensuring repeatable dynamic behavior with different time steps.

3.3 Current and future challenges in modeling

3.3.1 Generalizability and re-usability

Despite the growing body of evidence that models built on the foundation of the Cosserat rod
equations are an adequate description of many continuum robots, one challenge that still faces
practitioners is a lack of standardized tools to build new model simulation codes. For rigid robots, a
wide variety of domain-specific modeling languages are available and permit concise descriptions
within an easy-to-use interface to build new models. One example of this is the Universal Robot
Description Format and Gazebo simulator within the Robot Operating System, but there are many
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others presently available including Simulink/Simscape, Dymola, and other Modelica-language
based toolsets such as OpenModelica (Sucan and Kay 2019; Briick et al. 2002; P. Fritzson et al.
2006; Miller and Wendlandt 2010). To enable the widespread re-use of validated modeling
components, a library of reusable “model building blocks” for continuum robots should be designed.
Some important capabilities of such a library would be the following:

e Coupling of curve-based models to rigid multibody models.

e Coupling of curve-based models and general finite element models.

e Incorporation of common actuator models.

e Incorporation of common constraints (length, concentricity, no-penetration, selective
inextensibility/strong anisotropy, revolute and prismatic joints, etc.)

e User-selected switching between dynamic and quasi-static model generation

For biomedical continuum robots in particular, models which couple to mechanical models of human
anatomy are needed. Coupling of state-of-the-art models for continuum robots or their direct
incorporation with real-time finite element codes using GPU acceleration is a promising approach
(Allard et al. 2007; Duriez and Bieze 2017).

3.3.2 Novel kinematic hypotheses

There is a great deal of freedom in element-based kinematic hypotheses which has yet to be explored.
One interesting avenue is the use of a shared or constrained DOF between elements. The motivation
for this idea is that for dynamic models, time stepping is sometimes restricted or difficult for “stiff”
problems having many eigenvalues. The equations of motion for solid continua are wave equations,
which means that if many elements are stacked end-to-end, acoustic waves (axial compression and
tension) and twist waves (torsional waves) through the structure may be resolved by the model. For
most robotics applications, these modes are likely to be irrelevant, and constraining the problem so
that they do not exist in the model may improve computational performance. The elimination of twist
waves in elastic rod models was previously considered by an energy minimization argument (Bergou
et al. 2008).

Furthermore, adaptive kinematic hypotheses based on pre-defined, switchable degrees of freedom
that permit local, automatic refinement of the model may allow greatly improved computational
efficiency in problems involving a-priori unknown environmental interactions or constraints. This
will permit, for example, a single high-order element to describe the deformation in free-space, while
local refinement can take place where a catheter contacts a vessel wall, a robotic endoscopic system
contacts the colon, or where multi-fingered hands contact an object to manipulate it.

3.3.3 Learning

Within the context of continuum and soft robotics, data-driven methods have begun to demonstrate
strong utility. For example, Long Short Term Memory networks can capture hysteresis in
pneumatically actuated catheters (D. Wu et al. 2021), and offline simulation of first-principles
models can be used to learn reduced-order models using the snapshot-based proper orthogonal
decomposition, resulting in new models suitable for real-time control and other applications requiring
fast computation (Goury and Duriez 2018; Katzschmann, Thieffry, et al. 2019). The continued
development of learning methods enabling low-DoF representations will be an important future area
of research.
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There are also interesting opportunities for learning that amalgamate first-principles models with
data-driven model “correctors,” or which use constrained learning techniques to identify models
which are topologically like a curve-based model. One possibility is to use a low-DOF curve-based
model capturing some of the behavior and to introduce a nonconservative generalized force Q,,.
which is learned from observed data to close the gap between simulation and reality. Learning-based
methods which are constrained to obey fundamental principles are another emerging area of research,
such as learning the Lagrangian or Hamiltonian function of systems directly from data (M. Ahmadi,
U. Topcu, and C. Rowley 2018; Lutter, Ritter, and Peters 2018).

3.3.4 Dynamic model validation

Although many dynamic models have been proposed, the validation of these models is currently
lacking. There are many opportunities for rigorous evaluation and comparison of models with
experimentally obtained data. The best and strongest form of model validation would be to
instrument real robots with enough sensors to measure all the quantities appearing in (5) or the
equivalent formulations for PRB and general continuum models, and to calculate the model residuals
over conditions ranging over static, low-acceleration, and high-acceleration (e.g. sudden contact)
regimes. This is clearly a challenging experimental task that may require state reconstruction and
many sensors just to measure the configuration trajectory q(t). Other options for validation may
include comparison of standard test signal response characteristics (e.g. rise time, percent overshoot,
settling time, steady-state error, and oscillation period) in response to both actuator inputs and
environmental perturbations.

There are also many other interesting questions that can be asked and answered which are
quantitative in a different sense, but which may be even more aligned with the spirit of soft and
continuum robotics theory. For example, a model and simulated controller could be used to predict
the success or failure of the navigation of a robotic catheter through tortuous vasculature
parameterized by some measure of “tortuosity,” and then the classification error could be assessed
via experiment matching the simulations.

4 Conclusions

Continuum robots offer solutions to problems in biomedical applications which may not be solvable
by traditional robotics technologies. With these new robots came the need for new models. A wide
variety of physics-based and learning-based approaches to the modeling of continuum
manipulators—both those made of hard materials and soft materials—are now available to the
roboticist who needs them. This can lead to a dizzying array of choices for the uninitiated. This
manuscript has reviewed the state-of-the-art approaches using a common language, discussed
considerations which can guide the modeler when selecting which methods to use and some
numerical difficulties to be aware of, and offered a view of the current and future challenges in the
modeling of continuum robots. As modeling techniques continue to improve in terms of predictive
power, as techniques begin to standardize, and as system identification techniques for soft and
continuum robots mature, there is every reason to expect that the field will continue to expand, find
new applications, and ultimately lead to transformative robotic solutions for human problems.
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Figure 1. (A) Concentric tube robots are comprised of hard (metallic) tubes which are precurved and
nested inside one another. Rotating and translating the tubes results in motion. (B) Tendon-driven
robots use one or more tendons or cables to provide internal actuation forces that bend a flexible,
slender rod. (C) Pneumatic soft continuum robots use soft air muscles, which extend or contract with
internal air pressure, to create bending in a composite structure. The supports could be hard or soft
materials. (D) A fully soft pneumatic gripper uses asymmetry introduced by an inextensible fabric
layer and an asymmetric air volume to create four slender fingers which bend to wrap around objects.
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1282  Figure 2. Mathematical setup of the curve-based kinematic description of slender continuum robots.

Total bending: 4.2 rad

Undeformed Shape Deformed Shape

Parameter I Value (a.u.)

Length | 1 0.5
Stiffness | diag(l, 1, 1.33)
External Force | 0 0

End Moment | 3d (1)+4d (1)
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1284  Figure 3. Simulation of a cantilevered rod under a combined bending and twisting concentrated
1285  moment, forming a helix.
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1287  Figure 4. Convergence of the PCC discretization to the exact flexural strains of the helical rod shape

1288  depicted in Figure 3. Note that the exact flexural strain components are not constant functions of arc
1289  length.
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1291  Figure 5. Flowchart depicting the modeling decisions to be made when selecting a model type for a
1292 biomedical continuum robot.
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1295  Figure 6. Error in reproducing the correct behavior under cantilevered loading conditions for three-
1296  DOF kinematic hypotheses of the PCC, PRB, and spectral types.
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1298  Figure 7. (A) Schematic diagram for the beam on an elastic foundation as a model for a continuum
1299  robot interacting with soft tissue. (B) Example with § = 3, showing the shape of the displacement
1300  that must be approximated.
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1302  Figure 8. Approximation errors for best polynomial fits in the L? norm to the solution for the linear
1303  beam on an elastic foundation problem. Higher-order polynomials permit greater elastic foundation
1304  stiffnesses.
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