Optimal Load-Splitting and Distributed-Caching
for Dynamic Content

Bahman Abolhassani!, John Tadrous2, Atilla Eryilmaz1
1,2,3 Department of Electrical and Computer Engineering
1 The Ohio State University, Columbus, 43210
! Email: abolhassani.2@osu.edu, eryilmaz.2@osu.edu
2 Gonzaga University, Spokane, WA 99202
2 Email: tadrous @gonzaga.edu

Abstract—In this work, we consider the problem of ‘fresh’
caching at distributed (front-end) local caches of content that
is subject to ‘dynamic’ updates at the (back-end) database.
We first provide new models and analyses of the average
operational cost of a network of distributed edge-caches that
utilizes wireless multicast to refresh aging content. We attack
the problems of what to cache in each edge-cache and how to
split the incoming demand amongst them (also called ‘“load-
splitting” in the rest of the paper) in order to minimize
the operational cost. While the general form of the problem
comes with an NP-hard Knapsack structure, we were able
to completely solve the problem by judiciously choosing the
number of edge-caches to be deployed over the network.
Interestingly, our findings reveal that the optimal caching policy
necessitates unequal load-splitting over the edge-caches even
when all conditions are symmetric. Moreover, we find that edge-
caches with higher load will generally cache fewer but relatively
more popular content. We further investigate the tradeoffs
between cost reduction and cache savings when employing
equal and optimal load-splitting solutions for demand with
Zipf(z) popularity distribution. Our analysis reveals that equal
load-splitting to edge-caches achieves close-to-optimal for less
predictable demand (z < 2) while also saving in the cache
size. On the other hand, for more predictable demand (z > 2),
optimal load-splitting results in substantial cost gains while
decreasing the cache occupancy.

Index Terms—Content Distribution Networks, Caching, Age
of Information, Dynamic Content

I. INTRODUCTION

With the emergence of new services and application
scenarios, such as Youtube, augmented reality, social net-
working, and online gaming, which produce dynamically
changing data over time, serving the most recent version
of data to end-users is becoming the main challenge due
to the massive device connectivity. To alleviate the latency
of data transmission between the servers and end-users,
many applications utilize edge-caches close to the end-users
to deliver dynamic contents, reducing the network latency
and system congestion during the peak traffic time [1], [2].
Usually, several edge-caches are deployed over the edge
networks and the data required by end-users can be cached at
one or multiple edge-caches. By caching a large number of
dynamic contents in the edge-caches, the average response

This work funded, in part, by the NSF grants: CNS-NeTS-2007231,
CNS-SpecEES-1824337, CNS-NeTS-1717045, CNS-NeTS-2106679; and
the ONR Grant NO0014-19-1-2621.

time can be reduced, benefiting from higher cache hit rates.
However higher hit rates come at the expense of less fresh
content, resulting in higher overall system cost.

One possible solution for tackling this problem is to
cache popular contents at the edge-caches to reduce the
total response time to data requests. Content Distribution
Networks (CDNs) utilize a large mesh of edge-caches to
deliver content from locations closer to the end users [3],
[4]. Existing caching strategies rely on the assumption of
static (or quasi-static) nature of the stored content and aim
to simply maximize the cache hit rate [5]. In many real-
world scenarios, such as news updates in social networks
and system state updates in cyber-physical networks, the data
content is subject to updates at various rates, which render
the older versions of the content less useful [6], [7]. Hence,
there is a growing need to develop new caching strategies
that account for the refresh characteristics and ageing costs
of content for efficient dynamic content distribution.

Numerous works study the dynamic content delivery in
caching systems and effective strategies have been proposed
[8] and [9]. In [10], authors propose two metrics to mea-
sure the cached content freshness: age of synchronization
(AoS) and age of information (Aol). Most existing research
regarding the freshness of the local cache focus on the Aol
metric and often the objective is to minimize the average
Aol. Kam et al. [9] propose a dynamic model in which the
rate of requests depends on the popularity and the freshness
of information to minimize the number of missed requests.

While Aol is a meaningful metric for measuring the
freshness of content in some systems, there are many real-
world scenarios where a content does not lose its value
simply because time has passed since it was put into the
cache. These types of dynamic contents include news and
social network updates where the users prefer to have the
most fresh version but so long as there is no new update,
that content is considered to be the most fresh version. In
this work, we use a new freshness metric called Age-of-
Version (AoV) which counts the integer difference between
the versions at the database and the local cache. We also
introduce a new cost function for dynamic content caching
which captures both the cost due to the miss event and the
cost due to content freshness [11] which grows with the
AoV metric. Moreover, our model utilizes the multicasting

property of the wireless medium to opportunistically update
the cached contents over the edge-caches. Finally, our model
extends the traditional caching paradigm to allow for varying
generation dynamics of content, and calls for new designs
that incorporate these dynamics into its decisions.

In particular, we focus on wireless networks that utilize
edge-caches to serve dynamic contents to a group of end-
users and edge-caches can update their caches content with
no additional cost by overhearing that content being served
to other edge-caches. we propose a freshness-driven caching
model for dynamic content, which accounts for the update
rate of data content and provide an analysis of the average
operational cost.

This work is related to our earlier work [6], which also
considered optimal distributed caching over the wireless
edge. However, the setting in [6] is complementary to this
one, with each local cache having its separate demand to
serve without a possibility of splitting the load. Here, by
allowing such a split, the setting as well as the nature of the
problem and its solution are completely different. Not only
do they lead to new challenges, such as a Knapsack problem
appearing within it, but it also results in new insights on how
to serve a common edge user population with distributed
edge-caches.

By intelligently choosing the number of edge-caches, we
propose a policy that jointly optimizes the distributed edge
caching and load-splitting between those edge-caches. The
proposed optimal policy reveals counter-intuitive insights
on the nature of the distributed edge caching for dynamic
content. In particular, for the practical case of Zipf popu-
larity, load and cache capacity are generally split unequally
between the edge-caches, and edge-caches with higher load
will store less items in their cache, however, they are the
more popular ones. We aim to reveal the trade-off between
our proposed optimal policy and the more practically imple-
mented policy where the load is split equally between the
edge-caches. Our contributions, along with the organization
of the paper, are as follows.

o In Section II, we present a tractable caching model
that utilizes distributed edge-caches for serving dynamic
content over wireless broadcast channels in which edge-
caches take advantage of the wireless multicasting to keep
their cached content fresh.

o In Section III, we provide a full characterization of the
optimal caching policy which jointly optimizes the num-
ber of edge-caches, load-splitting, and cache placements
over the network. The solution is achieved by intelligently
manipulating a group of intractable 0-1 Knapsack prob-
lems to remove all the inequality constraints that renders
such problems NP-hard. The outcome is a policy that
achieves the global minimum average cost. Our findings
reveals the nature of the unequal load-splitting between
the edge-caches and dependence of the content caching
on the load allocated to each edge-cache.

o In Section IV, we provide the optimal content placement
for the special case of the equal load-splitting. We also

Fetching cost

Back-End Database \»r‘;iss (age)xc, | Aging cost
hit
—

P1P2P3Pa
Popularity Distribution

/ \
Front-End Local Cache K Edge Caches

Fig. 1: Setting of Fresh Caching for Dynamic Content

characterize the cost-cache trade-off between the optimal
policy and the equal load-splitting policy. Our findings re-
veal that as the number of edge-caches increases, the equal
load-splitting cost decreases at the expense of increasing
the cache occupancy.

o In Section V, comparing the average cost and the cache
occupancy of the proposed optimal policy to the equal
load-splitting policy, we investigate trade-off using numer-
ical simulations for the practical case of Zipf popularity
and highlight scenarios in which each of these approaches
are more cost or cache effective. Our findings reveal
that for less predictable demand, i.e., more uncertainty
about the demand, equal load-splitting can potentially
have significant cache savings while achieving a close-to-
optimal cost. On the other hand, as the certainty about
the demand increases, the optimal policy can achieve
significant gains on the cost without increasing the cache
occupancy. Finally, we conclude the work in Section VI.

II. SYSTEM MODEL

We consider the generic hierarchical setting depicted in

Fig. 1, whereby: the (limited) local cache serves a user
population that generates requests to content according to a
popularity distribution; while the back-end database receives
updates to refresh the content with different rates. In the
following, we will provide the details of this generic model,
followed by the goal of our work.
Demand Dynamics: We assume that a set N' of N unit-
sized data items (with dynamically changing content) is
being served to the user population through a hierarchical
caching system as depicted in Fig. 1. In particular, there are
K edge-caches that supply local content to the neighboring
users. Requests arrive to the local edge-cache & according
to a Poisson process' with rate 5, > 0, which captures
the request intensity of the user population served by the
edge-cache k. An incoming request targets data item n € N
with probability p,,. Accordingly, the probability distribution
p = (pn))_, captures the popularity profile of the data
items. Furthermore, denoting the total request arrival rate
by 5, we define s, = %,Vk € 1,..., K to be the fraction of
the total request served by the edge-cache k. Accordingly,
the vector s = (s;)E_, captures the load-splitting between
the edge-caches.

! Accordingly, we assume that the system evolves in continuous time.

Generation Dynamics: At the database, each data item may
receive updates at random times to replace its previous con-
tent. We assume that data item n receives updates according
to a Poisson process with rate A\, > 0. Note that A\, = 0
encapsulates the traditional case of static content that never
receives an update. We denote the vector A = (\,)); as
the collection of update rates for the database.

Age Dynamics: Since the data items are subject to updates
at the database, the same items in the local caches may be
older versions of the content. To measure the freshness of
local content, we define the age AE(t) € {0,1,...} at time
t for item n stored at the edge-cache k as the number of
updates that the locally available item n has received in the
database since it has been most recently cached. We name
this freshness metric as the Age-of-Version (AoV), since it
counts the integer difference between the versions at the
database and the local cache. The incoming request to an
item that is stored in the edge-cache k is served from the
local cache, but potentially with a positive AoV value A¥ (¢).
Fetching and Ageing Costs: Now that we have the dy-
namics defined, we can introduce the key operational and
performance costs associated with our caching system. On
the operational side, we denote the cost of fetching an item
from the database to the local cache by c¢; > 0. On the
performance side, we assume that serving an item n from
the edge-cache k with age A (t) incurs a freshness/age cost
of ¢, x Ak(t) for some ¢, > 0, which grows linearly?
with the AoV metric. This ageing cost measures the growing
discontent of the user for receiving an older version of the
content she/he demands.

Content Multicasting: We stress that broadcast nature of
the wireless medium enables transmission of content made
to one edge-cache to be received and used to update content
in other edge-caches at no additional cost. This multicasting
property non-trivially couples the decisions across the dis-
tributed cache space for optimal caching solution. Moreover,
all replicas of the same content at local caches will have
the same age of version thanks to the broadcast nature of
wireless communication, i.e., A¥(t) = A, (t) among the
edge-caches that hold item n.

Our broad objective in this work is to develop efficient
distributed edge caching strategies for the above setting that
optimally balance the tradeoff between the cost of serving
the fresh item from database and the cost of providing
potentially older content to the users from the local cache.

A. Problem Formulation

Let Z,, C K,Vn € N be the set of edge-caches that have
stored item n and || = K is the total number of edge-
caches deployed over the network. Note that due to high
refresh rates, edge-caches may not necessarily fill their cache
to avoid excessive freshness costs. As such, 25:1 |Z,,| will
be always finite for the dynamic content even if there is
unlimited cache storage capacity. The total arrival request

2While this linearity assumption is meaningful as a first-order approxi-
mation to ageing cost and facilitates simpler expressions in the analysis, it
can also be generalized to convex forms to extend this basic framework.

rate J for items is split between the edge-caches, such
that each edge-cache k receives a fraction s of the total
incoming request. Therefore, s = (s;)f_, is the vector of
load-splitting between the edge-caches where Z w1 Sk = L.

Lemma 1: Let CP({Z,,},,,s) be the average caching cost
of a system composed of K edge-caches where each item
n € N is stored in the set Z, C K of edge-caches and
each edge-cache k € IC receives the fraction s; of the total

= Bey+
Ca

request. Then:
N
n ey
5 T~ . B
(%) (o)

CD({In}m s)

Proof. Here we only give the outline of the proof. For the
full proof refer to [12]. Let {II} (t),t > 0}, Vn € N be
the Markov process describing the freshness age of cached
item n at time ¢ under the cached set Z,,. The evolution of
this process is shown in Fig. 2.
o= 50

=

Fig. 2: Markov chain diagram for freshness {117 (¢),t > 0}
under the cached set Z,,.

. d A . .
Since 117 (%) P I} |, the average age of item n is
n oo n

given by: A\

Bpn (1 — ZkeIn Sk)
The average system cost in the distributed edge caching
where each item n € N is stored in the set Z,, C K of
edge-caches and the load is split between the K edge-caches
according to the vector s = (sq, ..., Si), comprises two main
terms and is given by:

E[ll%,] = 2

CP({Z}s) Bcfzpn -3 s
ke, (3)
+Bca an Z [HI]
keZ,

The first term shows the average fetching cost due to the
miss events. The second term shows the average freshness
cost due to the hit events incurred by serving potentially
aged content from the local cache. Substituting Equation (2)
in Equation (3) gives the average cost of the system. m

The cost minimization problem for such system would

min

thus be: .
C"({Z,}n,s),
(Sk)k’{In}n:K ({ })
st. 0<s, <1, sk =1,
Zk: “4)
7, C K,
K >0,

Minimizing the average caching cost requires finding the
optimal value for the number of edge-caches, how to split
the load between those edge-caches and which items should
be stored at each edge-cache.

In the following sections, we use the caching cost defined
in Equation (1) and propose an optimal caching strategy that
jointly optimizes distributed edge caching and load-splitting.

IIT. JOINTLY OPTIMAL DISTRIBUTED CACHING AND
LOAD-SPLITTING OF DYNAMIC CONTENT

In this section we tackle the general problem formulated
in (4). The characterization of the optimal caching strategy
under this setting will not only yield interesting insights
about the impact of generation dynamics, but we will also
provide an upper bound on the cache occupancy of the
proposed optimal caching strategy.

First, in order to gain an insight into the optimal caching
policy, we tackle the problem in a simplified version by
assuming that the number of edge-caches K and the vector
of load-splitting s = (s1,...,8x) are given and s is not
necessarily uniform, i.e., unequal load-splitting between the
edge-caches. Our objective is thus for the given load-splitting
vector s to choose the cached sets Z,,(s) C K,Vn € N to
be stored at the K edge-caches in order to minimize the
average cost of the system.

CP{T}n,s). (5)

min
{Zn}neN

Proposition 1: The policy {Z*(s)},, € K that solves (5)
is given by:

12(5)7 Sk 2 (1 — ZkEI;l(S) Sk;)
« _ Caln 1
In(s) = Bpncf 1_Zk€‘.’;l(s) Sk’
Z,(s) U{K"}, oth,

where 7, (s) has the form of 0 — 1 knapsack problem given

by: 7, (s) = arg max Z Sk
Inek gez,
o (6)
s.t Zskgma}((O,l arn)
ke, ﬂcfpn

and £ = argmin sg.

kEK\T! (s)
Proof. To prove this, we define §7(Z,,{k'}) to be the
marginal cost of adding item n already stored in the set
7T, C K of edge-caches to the new edge-cache k' ¢ Z,, that
does not have item n in its cache. In other words:

O (Zn, {K'}) == CP({Z3}n)
Using the average caching cost in Equation (1), we have:

0 (Zn, {K'}) =

5 Caln Bpyc
% — bpncy | .
(1 - ZkeIn Sk) (1 - ZkeIn Sk — Sk’) !

In the case of §7(Z,,{k'}) < 0 for a given cached set
7, C K, adding item n to the edge-cache k' will reduce
the average caching cost. On the other hand, items with

7 =z,000} —CT ({Z0}n) |z =2,

positive 62(Z,,,{k’}) can only increase the cost if added
to the edge-cache k’. Therefore, the sufficient condition for
the optimality of set Z,,(s) of the edge-caches to store item
n is given by:

0 (Zn, {K'}) > 0,

Using the definition of §7(Z,, {k’}), for this to not hold we
should have: A\
C(L n

(1- > okeT, s) (1— Dker, Sk~ sw)

for some k' C K\ Z,. Since s, > 0,Vk € K, we can rewrite

this as:
< (1 - Z Sk)(l — Z Sk —Sk/) < (1 — Z Sk)Q,

=
Bpncy keT, keT, keT,

Vi C K\ T, 7

- ﬂpﬂcf S 07

Caln

which gives the condition as:

[CaA
Zskgmax<0,l— Can)
keZ, Bespn

We define the set Z/(s) as in Equation (6) such that
it maximizes), ., s; while also satisfying the above
condition. For Z/ (s) to be optimal, the sufficient condition
for optimality given in Equation (7) should hold. In other
words:

Caln 1
s> (1=) se)— VK C K\T,
ke (s) Boncs 1 =3 et (s) Sk
(8)
Defining &’/ = argmin s, if Equation (8) holds for &”,
kER\T, (s)

then it will hold for V&' C K\ Z], and the set Z}(s) = Z/,(s)
satisfies the sufficient condition for optimality and therefore
is the optimal set of edge-caches to store item n.

On the other hand, if Equation (8) does not hold for
k", it means that adding item n to the edge-cache k" will
reduce the average cost. In this case we prove that the set
! (s)U{k"} satisfies the sufficient condition for optimality.
According to the definition of Z/ (s) given in Equation (6),
and assuming that s;» > 0, we will have that:

a)\n
sk>max<0,1—1/c>. ©)
keT! U{k"} Beipn

>

The sufficient condition for optimality would thus be:

Z Cq >\n 1

kET,U{k"} Bpner 1= ke upury Sk

for VE' < K\{Z,U{k"}}. Because of Equation (9), the right
hand side is always negative and the sufficient condition for
optimality holds. Therefore, the set Z} (s) = Z,,(s) U {k"}
is the optimal set of edge-caches to store item n. ®

The 0-1 knapsack problem in (6) is known to be NP-hard
and is generally intractable [13] due to the nature of the
inequality constraint. In the rest of this section we focus
on solving the generally intractable optimization problem
(6) by intelligently choosing the number of edge-caches K
and vector s = (s;)%_, such that the inequality constraints
for all n € N becomes equality constraints. Doing so will

Sk’ Z (17

remove the complexity that arises by knapsack problems in
their general form. Our analysis shows that by intelligently
choosing the number of edge-caches and the fraction of the
load directed to each edge-cache, we can achieve the global
minimum average system cost by our proposed caching
strategy.

The following theorem provides the optimal caching strat-
egy for the general problem formulated in (4).

Theorem 1: In a system composed of a data set NV of N
items with popularity distribution p = (p,,)Y_; and update
rates A = (\,)"_,, assume without loss of generality that

n=1°
items are ordered such that yi > y5 > ... > yj where
< 1. Let

Caln
@ = max(n:y; >0) < N, then the following caching

y, 18 defined as y;, = max (0,1 — Beipn
strategy where K* = () + 1 optimally solves (4).

* y;:;_y;;_t,-p]{76{1,2, -aK*_1}7
* ..., -1}, ne{l,2,..., — 1},
I K*—1 1,2, K*—1
no {}, ne{K*...,N},
(11)

where s and Z; are the fraction of allocated load to the
edge-cache k and the set of edge-caches that have stored
item n respectively. Under such policy, the optimal caching
cost C'* and the upper bound on the cache occupancy B*
are given by:

) = feg - (Vears —VBemn) 02)
n=1
B (\p) < 5Q(Q+ 1), (13)

Proof. We start the proof by defining the variable y,, =
> kez, 5k € [0,1],¥n € N and rewriting the average cost

defined in (1) as:
= fPes + Z <yn (Bpncf))

CD((yn n
n=1
Next, by relaxing the equality constraint y, = > ez, Sk
and letting y,, taken on any arbitrary value in [0, 1], we can
write the cost minimization problem as:
min CD((yn)n)
(Yn)n
st. 0<y, <1

(14)

This is a convex optimization problem whose solution is
given as:

(ZATL
Yy = max <0,1 Y

Bcfpn

) <1, VYneN. (5)

Using this solution, we intelligently assign (sg)i, {Zn }n
and K such that:
Vn e N.

Sk :y:a (16)

ke,
Doing so will render all the inequalities in the 0-1 knapsack
problems given in Equation (6) to equality constraints.
Therefore, Proposition 1 in this case reduces to:
sk=1vyr, ZIi(s)=1I,(s), Vn e N.
keZ;(s)

To guarantee that Equation (16) holds Vn € A, we define
Q = max(n:y: >0) < N and choose the number of
edge-caches as K* = () + 1 which is the upper bound on
the number of different values that y can take. Then, by
hypothesis, since yi > y5 > ... > yx,, we choose s}, V1 <
k < K* such that:

* ok
Yr+—1 = SK*—1»

* % *
Yie—2 = Sg+_1 T Sgx_9,

% * * *
Y, = Sg+_1 T+ Sg+_o+ ... +57.

Comparing this with Equation (16), where Ek:ez; S5 = Uns
will give Z),1 < n < K* as in (11). Since), .- 55 = 1,
then sj.. = 1 —y7 and no item will be stored in this edge-
cache. Replacing the results in the average cost given in
Equation (1) yields the optimal cost C*(\, p) as in Equation
(12). Finally, the upper bound on cache occupancy of the

optimal policX] is given by:
(1
=Y IZ(E)] < QHQ-D+. 41 = 5Q(Q+1),

n=1
A7)

and the inequality in the equation is due to the fact that s}
can be zero for some k£ € K. In that case, the edge-cache
with no load will store no item in its cache. This completes
the proof. m

Remark 1: The extra edge-cache k = K™ that does not
cache any items, contributes to enhancing content freshness
since all the load directed to this edge-cache is served fresh
from the database. Due to the multicasting, this acts as a
freshness mechanism to keep the content in other edge-
caches from getting obsolete.

In the following we investigate some special cases.

Proposition 2: In the special case of = >‘ ,Vn e N,
the optimal caching strategy is to have two edge caches,
ie., K* = 2 where the load is split according to s7 =
55;\p> and s5 = 1 — s
57 > 0, the first edge-cache will store All the /V items in its
cache, i.e., Z = {1},Vn € N, otherwise if 57 = 0, the first
edge-cache will store no items, i.e., Z = {@},Vn € N. The
second edge-cache will never store any items. The purpose
of the second edge-cache is to utilize multicasting as a
freshness mechanism to keep the cached content of the first
edge-cache from getting obsolete.
Proof. Since 2= = %,Vn € N, according to Equation (15)
all y*,Vn € N will be identical.

* * * 0 1 CQA
y = y = ... = y = Imax s — .
1 2 N 5Cfp

Now we show how Equation (16) holds Vn € N.
In case of yi = 0, no caching will be employed, i.e.,
Z: = {@},Vn € N. But if yi > 0, then since all y} have
same value, we can guarantee that Equation (16) holds for
Vn € N by choosing an edge-cache that receives the fraction
s] = y7 and then placing all the items in this edge-cache,
ie., Z; = {1},Vn € N. The other edge-cache will receive
the remaining load and will have no items stored in its cache.
[

max (0,1 — 7. In the case of

The case of uniform popularity with constant refresh rates
is a special case of this. According to Proposition 2, the
optimal policy in this case will deploy two edge-caches over
the network and split the load and cache space unequally
between those edge-caches, even though the popularity and
refresh rates are uniform. This reveals the counter-intuitive
nature of the optimal policy that benefits by splitting the
load and cache capacity unequally between the edge-caches
to fully leverage the wireless broadcast as a free cache update
mechanism.

Proposition 3: In the case of item popularity distributed
according to Zipf with parameter z and constant update rates,
ie,p, =22 and A\, = \,Vn € N with py = <1,
the proposed optimal caching strategy of Theorem 1 reduces

to:
q/ﬁcfpo (VE+1)? —VE)ke{l,...,K* =2},
st = T k=K*—1,
a\ . *
ﬂzfpo k=K ’
(18)

where K* = min (Lf/ BCprJ N) +1,

Proof. For the case of Zipf popularity distribution with
constant update rate, p; > py > ... > py, then y; given in
(15) can be written as:

Ca\
Begpo

Yy = max (0,1— \/77) <1, VneWN, (19)

which results in @) as:

Q =max (n:y: > 0) =min (L\Z/@L]\O

which gives K* = (@) + 1. Replacing y;; in Equation (10)
will give the s; as in (18). m

This reveals very interesting insights on the nature of the
proposed optimal policy. The optimal policy will split the
load unequally between the edge-caches and will completely
discard the less popular items, i.e., less popular items will
not be stored in any of the edge-caches. More interestingly,
edge-caches with higher load will generally store less items
in their cache, however, they are the more popular ones.
This is counter-intuitive, because one may guess that putting
more items on the edge-caches with higher load will result in
cost reduction over the network. However, the optimal policy
which aims to minimize the cost by balancing the freshness
and fetching cost, not only avoids to fill up the edge-caches
with higher load, but it puts less items into edge-caches as
their load increases. Yet, by intelligently deciding to put the
most popular items into edge-caches with higher load while
keeping the cache small, the optimal policy achieves the
optimal cost over the network.

Remark 2: In the special case of Zipf popularity distribu-
tion with parameter z = 2, the optimal caching strategy is

to have K* = | /2 “I%0 | +-1 and then split the load equally
between the edge- caches such that each edge-cache receives

B(a/\ —- of the total load.
ij

the fraction s, =

The results of Remark 2 motivates us to investigate the
performance of equal load-splitting more deeply. It may not
always be possible to split the load unequally between the
edge-caches due to complexity of the implementation. In the
next section, we propose an optimal policy for the special
case of the equal load-splitting and investigate under what
conditions such a policy can be beneficial.

IV. OPTIMAL DISTRIBUTED CACHING FOR EQUAL
LOAD-SPLITTING OF DYNAMIC CONTENT

In this section, we attack the problem in (4) for the special
case when the total number of edge-caches || = K is
given and the load is split equally between the edge-caches.
In this case, s = %,Vk € K. This equal load-splitting is
simple to implement and yields interesting insights on the
cost and cache occupancy trade-offs. We first characterize
the optimal caching strategy and then provide insights on
the cache occupancy of the proposed strategy.

For K edge-caches, each receiving a fraction s, = %, ke
{1,2,..., K} of the total load, we define r,, = |Z,| to be
the number of edge-caches that have stored item n and let
r = (r1,...,7n) be the vector of replication.

Define the feasible set of solutions as:

Fr={r=(ry,..., LK1},

where each item can be stored at most once in each edge-
cache.

Lemma 2: Let CS(K,r) be the average expected system
cost in the equal load-splitting scenario with K edge-caches
and vector of repl1cat10n r € Fg. Then:

)\n n
5Cf+Zrn(o 5ch]’>. (20)

n=1

’I“N)‘ ’I“nE{O,l,...

C°(K,r)

Proof. Since the number of replica r,, is defined to be r,, =

|Z,.|, and in the load is split equally between the K edge-
hes, have: T

caches, we have Z 5 = ?n

k€L,

Replacing this in the general cost defined in Lemma 1
gives the average cost of the caching system with K edge-
caches and under vector of replication r as C°(K,r). m

Our objective is thus to choose the content to be stored
at the K edge-caches in order to minimize the average cost
of the system, that is:

min C°(K,r).

21
rcFi ()

Proposition 4: The policy r* = (r}), € Fx that solves
(21) is given by:
Caln

IBCfpn

1 1
TZ:LK+57 Z+K2 |7, VneN, (22)
where |x|T = max(0, |x]), and |z] is the greatest integer
less than or equal to .

Proof. We define 65 (1) to be the marginal cost of adding
item n to the caches given that [of the edge-caches have

already cached item n. In other words:

05 (1) == CF (K, 1)y, =141 — O (K, 1)|r, =

Therefore, we have:
K (IA’VL n
(. - nty
(K-1)(K—-1-1) K

In the case of 65 (1) < 0 for a given integer [, adding item n
to one more edge-cache will decrease the average cost. On
the other hand, items with positive 55 (1) can only increase
the average cost if cached. Therefore, we can add item n
to the edge-caches, as long as 65 (1) is negative. Such 65 (1)
reveals the effect of refresh rate alongside the popularity on
gains that can be achieved by caching an item. The optimal
caching strategy will keep filling the cache for each item n
until 65 (1) turns positive. Therefore, the optimal number of
replica for item n would be:

rt =1+max{l € {0,1,..}: 65(1) < 0},Vn € N.

Using 65 (1) defined in (23) yields 7 as (22). m

Next we study the trade-off between the average system
cost and cache occupancy of the optimal policy for the equal
load-splitting compared to the optimal caching policy for the
general case when the load is allowed to be split unequally
between the edge-caches.

Proposition 5: In a system composed of a data set N
of N items with popularity distribution p = (p,)_; and
update rates A = (\,)N_,, assume ® yi > yi > ... >y
where y . Vn € N is defined in Equation (15). Let Q =
max (n : y: > 0) < N which is independent of the number
of edge-caches K, then we have:

CS(K,r*) — C* < | 28¢ NES XQ: Pr| Lo
b - — f - N 72’
Ca = A | K

where C(K,r*) is the optimal cost in the equal load-
splitting and C* is the minimum achievable cost in Theorem
(1). Also we have:

B¥(K,r*) — B*(\,p) >

VneN. (23)

(25)

< 11 e 4 1
;LIH 5\ 1T G 1T 3@,
where BS (K, r*) is the cache occupancy under the optimal
policy in the equal load-splitting and B*(\, p) is the cache
occupancy of the proposed optimal policy in Theorem (1).
Proof. To prove Equation (24), we use the following
Taylor approximation.

Co(K,r*) < C"+

Ber S pul T~ i1 -
K re % Berpn
n=1 L4+ —unly 25"
N
5Cf s T 2
<O 2oy S RE T il
n=1
where ¥ = max (0,1 — %) In the case when y;; = 0,
we have ﬁcgf’\; > 0 and according to Equation (22), v}, = 0,

3This already holds without assumption in Zipf with constant refresh
rates.

Z2 —y*| = 0. In the case when g7, > 0, we
can show that |Ky; —r}| < 1 which gives |22 — y| < +.
Since, by hypothesis, y7 > y5 > ... > yj, we can write:

S * * Bcf < p?z 1
C°(K,r*) —C* < | 2Bcy —C Z vl
a n

where the terms inside the parentheses are independent of
K and this shows a cost reduction with the rate %

Also, since the cache occulgancy of equal load-splitting
is equal to BS(K,r*) = Y., r, where 1} is given in
Equation (22), and as we showed that in the case of y;; = 0,
we have r} = 0, therefore, using the definition of () and
the lower bound on the cache occupancy of our proposed
optimal policy in (13), we can write the lower bound on the
cache saving of our proposed policy compared to the equal
load-splitting as in Equation (25). m

This shows that as the number of edge-caches K in-
creases, the cost of the equal load-splitting converges to the
optimal cost with rate # but its cache occupancy increases
with the rate of up to K2.

which gives

V. NUMERICAL RESULTS: PERFORMANCE COMPARISON

In this section we compare the performance of the equal
load-splitting to the optimal case of general load-splitting
between the edge-caches using numerical simulations. We
consider the simulation parameters to be § = 5 for the
average total request rate and the normalized fetching and
aging costs to be ¢y = 1 and ¢, = 0.01 respectively. We
assume that the database consists of N = 10 items.

We compare the average cost achieved by the optimal
caching policy and the average cost of the equal load-
splitting policy under the number of edge-caches K = K*
and the same system variables declared above. We adopt the
percentage cost gain of the optimal caching to the equal load-
splitting strategy’s cost as our performance metric. Such a
metric is defined as:

Cost Gain(%) = 100 x

CS(K*,r*) — C*
c* ’

The percentage cost gain is depicted in Fig. 3. The figure
shows that gains are negligible for small Zipf parameters.
In other words, if the item demand is less predictable, i.e.,
more uncertainty about the demand, the equal load-splitting
policy performs almost as good as the optimal caching
and the difference vanishes as the refresh rate decreases
and items become less dynamic. But as the Zipf parameter
increases and the certainty about the demand increases,
the cost reduction gain increases. It also reveals that the
gain becomes more substantial as the refresh rate of items
decreases. The figure reveals a dip in the cost reduction gain
at the Zipf parameter z = 2, which agrees with the results
of the Remark 2.

Next we compare the cache occupancy of the optimal
caching policy and the equal load-splitting policy under the
number of edge-caches K = K* and the same system
variables declared above. We adopt the percentage cache loss
of the optimal caching to the equal load-splitting strategy’s

N=10% ¢ =1, ¢ =0.01, =5, p~zipf(z), K=K’

Percentage Cost Reduction Gain
=

1 L L L
0 0.5 1 1.5 2 2.5 3 3.5
Zipf parameter: z

Fig. 3: Percentage cost gain of the optimal caching policy

N=10%, ¢,=1, ¢_=0.01, =5, p~zipf(z), K=K
80 T T T

60 - b

——)=0.1
40 —=0.5
A=1

20

Percentage Cache Loss

40 ! I I !
0 0.5 1 1.5 2 25 3 3.5

Zipf parameter: z

Fig. 4: Percentage cache loss of the optimal caching policy

cache occupancy as our performance metric. Such a metric
is defined as: B — BS(K* r)
Cache Loss (%) = 100 x T iy

The percentage cache loss is depicted in Fig. 4. The
figure shows that for small Zipf parameters, more uncertainty
about the demand, equal load-splitting policy occupies sig-
nificantly less cache space compared to the optimal caching
policy and the differences increases as the refresh rate
decreases and items become less dynamic. If parameter z
approaches zero, content popularity becomes almost uniform
and both policies may decide not to cache any items at
all. On the other hand, as the Zipf parameter increases and
certainty about demand increases, the percentage cache loss
of the optimal policy decreases and the optimal policy which
achieves the global minimum cost, will occupy less cache
space compared to the equal load-splitting policy. The figure
reveals that both optimal and equal load-splitting policies
achieve almost same cost and same cache sizes at the Zipf
parameter z = 2, which agrees with Remark 1.

According to Fig. 3 and 4, when item demand is less
predictable, i.e., z < 2, equal load-splitting policy achieves
almost the same average cost of the optimal caching policy
while potentially saving in the cache occupancy. On the
other hand, as item demand becomes more predictable, i.e.,
z > 2, optimal caching policy results in substantial gains
in the caching cost while simultaneously reducing the cache
occupancy.

Notice that in Figs. 3 and 4, we have assumed K = K*
both for the optimal and equal load-splitting policies. Ac-

cording to Proposition 5, increasing K for the equal load-
splitting policy, such that K > K™, the resulting average
cost approaches the optimal cost but this is achieved at the
expense of increasing the cache occupancy.

VI. CONCLUSION

In this work, we have proposed and investigated an
increasingly important caching scenario for serving dynam-
ically changing content. We introduced the age-of-version
metric to capture the served content’s freshness and track the
number of stale versions per content. We have addressed the
problem of developing optimal caching strategies for mini-
mizing the system’s cost which is shaped by a combination
of the service cost of fetching fresh content directly from a
back-end database and the aging cost of cached, potentially
older, content from a front-end cache. By utilizing the
broadcast nature of the wireless medium, our model reveals
the benefits of the multicasting property as a mechanism
to update the cached content. We have characterized the
optimal caching policy both in the general case and also
in the special case of the equal load-splitting. Moreover, we
have explored the trade-off between the cost minimization
and cache savings gain of these two policies. Our results
demonstrate that for more predictable demand, splitting the
cache and load unequally between the edge-caches results
in significant cost gains without increasing the total cache
occupancy. On the other hand, for less predictable demand,
equal load-splitting achieves a close-to-optimal cost while
saving in cache occupancy.

REFERENCES

[1] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Delay gain analysis
of wireless multicasting for content distribution,” IEEE/ACM Trans-
actions on Networking, vol. 29, no. 2, pp. 529-542, 2020.

, “Wireless multicasting for content distribution: Stability and
delay gain analysis,” in JEEE INFOCOM 2019-IEEE Conference on
Computer Communications. 1EEE, 2019, pp. 1-9.

[3] J. Zhang, “A literature survey of cooperative caching in content
distribution networks,” arXiv preprint arXiv:1210.0071, 2012.

[4] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in 2010 Proceedings IEEE INFOCOM.
IEEE, 2010, pp. 1-9.

[5] W. Jiang, G. Feng, and S. Qin, “Optimal cooperative content caching
and delivery policy for heterogeneous cellular networks,” IEEE Trans-
actions on Mobile Computing, vol. 16, no. 5, pp. 1382-1393, 2016.

[6] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Achieving freshness in
single/multi-user caching of dynamic content over the wireless edge,”
in IEEE International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt), 2020.

[7]1 B. Abolhassani, J. Tadrous, A. Eryilmaz, and E. Yeh, “Fresh caching
for dynamic content,” in JEEE INFOCOM 2021 - IEEE Conference
on Computer Communications, 2021, pp. 1-10.

[8] E.Najm and R. Nasser, “Age of information: The gamma awakening,”
in 2016 IEEE International Symposium on Information Theory (ISIT).
Teee, 2016, pp. 2574-2578.

[91 C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and

A. Ephremides, “Information freshness and popularity in mobile

caching,” in 2017 IEEE International Symposium on Information

Theory (I1SIT). 1EEE, 2017, pp. 136-140.

J. Zhong, R. D. Yates, and E. Soljanin, “Two freshness metrics

for local cache refresh,” in 2018 IEEE International Symposium on

Information Theory (ISIT). 1EEE, 2018, pp. 1924-1928.

D. Wessels, Web caching. ~ O’Reilly Media, Inc.”, 2001.

[Online]. Available: http://www2.ece.ohio-state.edu/~eryilmaz/

papers/FreshCachingReport2021

S. Sahni, “Approximate algorithms for the 0/1 knapsack problem,”

Journal of the ACM (JACM), vol. 22, no. 1, pp. 115-124, 1975.

[2]

[10]

[11]
[12]

[13]

