
Optimal Load-Splitting and Distributed-Caching
for Dynamic Content

Bahman Abolhassani1, John Tadrous2, Atilla Eryilmaz1

1,2,3 Department of Electrical and Computer Engineering
1 The Ohio State University, Columbus, 43210

1 Email: abolhassani.2@osu.edu, eryilmaz.2@osu.edu
2 Gonzaga University, Spokane, WA 99202

2 Email: tadrous@gonzaga.edu

Abstract—In this work, we consider the problem of ‘fresh’
caching at distributed (front-end) local caches of content that
is subject to ‘dynamic’ updates at the (back-end) database.
We first provide new models and analyses of the average
operational cost of a network of distributed edge-caches that
utilizes wireless multicast to refresh aging content. We attack
the problems of what to cache in each edge-cache and how to
split the incoming demand amongst them (also called “load-
splitting” in the rest of the paper) in order to minimize
the operational cost. While the general form of the problem
comes with an NP-hard Knapsack structure, we were able
to completely solve the problem by judiciously choosing the
number of edge-caches to be deployed over the network.
Interestingly, our findings reveal that the optimal caching policy
necessitates unequal load-splitting over the edge-caches even
when all conditions are symmetric. Moreover, we find that edge-
caches with higher load will generally cache fewer but relatively
more popular content. We further investigate the tradeoffs
between cost reduction and cache savings when employing
equal and optimal load-splitting solutions for demand with
Zipf(z) popularity distribution. Our analysis reveals that equal
load-splitting to edge-caches achieves close-to-optimal for less
predictable demand (z < 2) while also saving in the cache
size. On the other hand, for more predictable demand (z > 2),
optimal load-splitting results in substantial cost gains while
decreasing the cache occupancy.

Index Terms—Content Distribution Networks, Caching, Age
of Information, Dynamic Content

I. INTRODUCTION

With the emergence of new services and application

scenarios, such as Youtube, augmented reality, social net-

working, and online gaming, which produce dynamically

changing data over time, serving the most recent version

of data to end-users is becoming the main challenge due

to the massive device connectivity. To alleviate the latency

of data transmission between the servers and end-users,

many applications utilize edge-caches close to the end-users

to deliver dynamic contents, reducing the network latency

and system congestion during the peak traffic time [1], [2].

Usually, several edge-caches are deployed over the edge

networks and the data required by end-users can be cached at

one or multiple edge-caches. By caching a large number of

dynamic contents in the edge-caches, the average response

This work funded, in part, by the NSF grants: CNS-NeTS-2007231,
CNS-SpecEES-1824337, CNS-NeTS-1717045, CNS-NeTS-2106679; and
the ONR Grant N00014-19-1-2621.

time can be reduced, benefiting from higher cache hit rates.

However higher hit rates come at the expense of less fresh

content, resulting in higher overall system cost.

One possible solution for tackling this problem is to

cache popular contents at the edge-caches to reduce the

total response time to data requests. Content Distribution

Networks (CDNs) utilize a large mesh of edge-caches to

deliver content from locations closer to the end users [3],

[4]. Existing caching strategies rely on the assumption of

static (or quasi-static) nature of the stored content and aim

to simply maximize the cache hit rate [5]. In many real-

world scenarios, such as news updates in social networks

and system state updates in cyber-physical networks, the data

content is subject to updates at various rates, which render

the older versions of the content less useful [6], [7]. Hence,

there is a growing need to develop new caching strategies

that account for the refresh characteristics and ageing costs

of content for efficient dynamic content distribution.

Numerous works study the dynamic content delivery in

caching systems and effective strategies have been proposed

[8] and [9]. In [10], authors propose two metrics to mea-

sure the cached content freshness: age of synchronization

(AoS) and age of information (AoI). Most existing research

regarding the freshness of the local cache focus on the AoI

metric and often the objective is to minimize the average

AoI. Kam et al. [9] propose a dynamic model in which the

rate of requests depends on the popularity and the freshness

of information to minimize the number of missed requests.

While AoI is a meaningful metric for measuring the

freshness of content in some systems, there are many real-

world scenarios where a content does not lose its value

simply because time has passed since it was put into the

cache. These types of dynamic contents include news and

social network updates where the users prefer to have the

most fresh version but so long as there is no new update,

that content is considered to be the most fresh version. In

this work, we use a new freshness metric called Age-of-
Version (AoV) which counts the integer difference between

the versions at the database and the local cache. We also

introduce a new cost function for dynamic content caching

which captures both the cost due to the miss event and the

cost due to content freshness [11] which grows with the

AoV metric. Moreover, our model utilizes the multicasting

property of the wireless medium to opportunistically update

the cached contents over the edge-caches. Finally, our model

extends the traditional caching paradigm to allow for varying

generation dynamics of content, and calls for new designs

that incorporate these dynamics into its decisions.

In particular, we focus on wireless networks that utilize

edge-caches to serve dynamic contents to a group of end-

users and edge-caches can update their caches content with

no additional cost by overhearing that content being served

to other edge-caches. we propose a freshness-driven caching

model for dynamic content, which accounts for the update

rate of data content and provide an analysis of the average

operational cost.

This work is related to our earlier work [6], which also

considered optimal distributed caching over the wireless

edge. However, the setting in [6] is complementary to this

one, with each local cache having its separate demand to

serve without a possibility of splitting the load. Here, by

allowing such a split, the setting as well as the nature of the

problem and its solution are completely different. Not only

do they lead to new challenges, such as a Knapsack problem

appearing within it, but it also results in new insights on how

to serve a common edge user population with distributed

edge-caches.

By intelligently choosing the number of edge-caches, we

propose a policy that jointly optimizes the distributed edge

caching and load-splitting between those edge-caches. The

proposed optimal policy reveals counter-intuitive insights

on the nature of the distributed edge caching for dynamic

content. In particular, for the practical case of Zipf popu-

larity, load and cache capacity are generally split unequally

between the edge-caches, and edge-caches with higher load

will store less items in their cache, however, they are the

more popular ones. We aim to reveal the trade-off between

our proposed optimal policy and the more practically imple-

mented policy where the load is split equally between the

edge-caches. Our contributions, along with the organization

of the paper, are as follows.

• In Section II, we present a tractable caching model

that utilizes distributed edge-caches for serving dynamic

content over wireless broadcast channels in which edge-

caches take advantage of the wireless multicasting to keep

their cached content fresh.

• In Section III, we provide a full characterization of the

optimal caching policy which jointly optimizes the num-

ber of edge-caches, load-splitting, and cache placements

over the network. The solution is achieved by intelligently

manipulating a group of intractable 0-1 Knapsack prob-

lems to remove all the inequality constraints that renders

such problems NP-hard. The outcome is a policy that

achieves the global minimum average cost. Our findings

reveals the nature of the unequal load-splitting between

the edge-caches and dependence of the content caching

on the load allocated to each edge-cache.

• In Section IV, we provide the optimal content placement

for the special case of the equal load-splitting. We also

…

…

P

Popularity Distribution

Front-End Local Cache

Refresh rates

x

End Users

Aging cost

...

Source
N items

miss

hit

Fetching cost
Back-End Database

.

.

.

K Edge Caches

Fig. 1: Setting of Fresh Caching for Dynamic Content

characterize the cost-cache trade-off between the optimal

policy and the equal load-splitting policy. Our findings re-

veal that as the number of edge-caches increases, the equal

load-splitting cost decreases at the expense of increasing

the cache occupancy.

• In Section V, comparing the average cost and the cache

occupancy of the proposed optimal policy to the equal

load-splitting policy, we investigate trade-off using numer-

ical simulations for the practical case of Zipf popularity

and highlight scenarios in which each of these approaches

are more cost or cache effective. Our findings reveal

that for less predictable demand, i.e., more uncertainty

about the demand, equal load-splitting can potentially

have significant cache savings while achieving a close-to-

optimal cost. On the other hand, as the certainty about

the demand increases, the optimal policy can achieve

significant gains on the cost without increasing the cache

occupancy. Finally, we conclude the work in Section VI.

II. SYSTEM MODEL

We consider the generic hierarchical setting depicted in

Fig. 1, whereby: the (limited) local cache serves a user

population that generates requests to content according to a

popularity distribution; while the back-end database receives

updates to refresh the content with different rates. In the

following, we will provide the details of this generic model,

followed by the goal of our work.

Demand Dynamics: We assume that a set N of N unit-

sized data items (with dynamically changing content) is

being served to the user population through a hierarchical

caching system as depicted in Fig. 1. In particular, there are

K edge-caches that supply local content to the neighboring

users. Requests arrive to the local edge-cache k according

to a Poisson process1 with rate βk ≥ 0, which captures

the request intensity of the user population served by the

edge-cache k. An incoming request targets data item n ∈ N
with probability pn. Accordingly, the probability distribution

p = (pn)
N
n=1 captures the popularity profile of the data

items. Furthermore, denoting the total request arrival rate

by β, we define sk = βk

β , ∀k ∈ 1, ...,K to be the fraction of

the total request served by the edge-cache k. Accordingly,

the vector s = (sk)
K
k=1 captures the load-splitting between

the edge-caches.

1Accordingly, we assume that the system evolves in continuous time.

Generation Dynamics: At the database, each data item may

receive updates at random times to replace its previous con-

tent. We assume that data item n receives updates according

to a Poisson process with rate λn ≥ 0. Note that λn = 0
encapsulates the traditional case of static content that never

receives an update. We denote the vector λ = (λn)
N
n=1 as

the collection of update rates for the database.

Age Dynamics: Since the data items are subject to updates

at the database, the same items in the local caches may be

older versions of the content. To measure the freshness of

local content, we define the age Δk
n(t) ∈ {0, 1, . . .} at time

t for item n stored at the edge-cache k as the number of

updates that the locally available item n has received in the

database since it has been most recently cached. We name

this freshness metric as the Age-of-Version (AoV), since it

counts the integer difference between the versions at the

database and the local cache. The incoming request to an

item that is stored in the edge-cache k is served from the

local cache, but potentially with a positive AoV value Δk
n(t).

Fetching and Ageing Costs: Now that we have the dy-

namics defined, we can introduce the key operational and

performance costs associated with our caching system. On

the operational side, we denote the cost of fetching an item

from the database to the local cache by cf > 0. On the

performance side, we assume that serving an item n from

the edge-cache k with age Δk
n(t) incurs a freshness/age cost

of ca × Δk
n(t) for some ca ≥ 0, which grows linearly2

with the AoV metric. This ageing cost measures the growing

discontent of the user for receiving an older version of the

content she/he demands.

Content Multicasting: We stress that broadcast nature of

the wireless medium enables transmission of content made

to one edge-cache to be received and used to update content

in other edge-caches at no additional cost. This multicasting
property non-trivially couples the decisions across the dis-

tributed cache space for optimal caching solution. Moreover,

all replicas of the same content at local caches will have

the same age of version thanks to the broadcast nature of

wireless communication, i.e., Δk
n(t) = Δn(t) among the

edge-caches that hold item n.

Our broad objective in this work is to develop efficient

distributed edge caching strategies for the above setting that

optimally balance the tradeoff between the cost of serving

the fresh item from database and the cost of providing

potentially older content to the users from the local cache.

A. Problem Formulation

Let In ⊆ K, ∀n ∈ N be the set of edge-caches that have

stored item n and |K| = K is the total number of edge-

caches deployed over the network. Note that due to high

refresh rates, edge-caches may not necessarily fill their cache

to avoid excessive freshness costs. As such,
∑N

n=1 |In| will

be always finite for the dynamic content even if there is

unlimited cache storage capacity. The total arrival request

2While this linearity assumption is meaningful as a first-order approxi-
mation to ageing cost and facilitates simpler expressions in the analysis, it
can also be generalized to convex forms to extend this basic framework.

rate β for items is split between the edge-caches, such

that each edge-cache k receives a fraction sk of the total

incoming request. Therefore, s = (sk)
K
k=1 is the vector of

load-splitting between the edge-caches where
∑K

k=1 sk = 1.

Lemma 1: Let CD({In}n, s) be the average caching cost

of a system composed of K edge-caches where each item

n ∈ N is stored in the set In ⊆ K of edge-caches and

each edge-cache k ∈ K receives the fraction sk of the total

request. Then:

CD({In}n, s) = βcf+
N∑

n=1

((∑
k∈In

sk

)(
caλn

1−∑
k∈In

sk
− βpncf

))
(1)

Proof. Here we only give the outline of the proof. For the

full proof refer to [12]. Let {Πn
In
(t), t ≥ 0}, ∀n ∈ N be

the Markov process describing the freshness age of cached

item n at time t under the cached set In. The evolution of

this process is shown in Fig. 2.

૙ ૚ ૛

૚)࢔࢖ࢼ − ෍ ࢙࢑࢑∈ओ࢔ ૚)࢔࢖ࢼ (− ෍ ࢙࢑࢑∈ओ࢔ ૚)࢔࢖ࢼ (− ෍ ࢙࢑࢑∈ओ࢔)

 ࢔ࣅ ࢔ࣅ ࢔ࣅ

Fig. 2: Markov chain diagram for freshness {Πn
In
(t), t ≥ 0}

under the cached set In.

Since Πn
In
(t)

d−−−→
t→∞ Π̄n

In
, the average age of item n is

given by:

E[Π̄n
In
] =

λn

βpn(1−
∑

k∈In
sk)

. (2)

The average system cost in the distributed edge caching

where each item n ∈ N is stored in the set In ⊆ K of

edge-caches and the load is split between the K edge-caches

according to the vector s = (s1, ..., sK), comprises two main

terms and is given by:

CD({In}n, s) = βcf

N∑
n=1

pn(1−
∑
k∈In

sk)

+ βca

N∑
n=1

pn(
∑
k∈In

sk)E[Π̄
n
In
].

(3)

The first term shows the average fetching cost due to the

miss events. The second term shows the average freshness
cost due to the hit events incurred by serving potentially

aged content from the local cache. Substituting Equation (2)

in Equation (3) gives the average cost of the system.

The cost minimization problem for such system would

thus be:
min

(sk)k,{In}n,K
CD({In}n, s),

s.t. 0 ≤ sk ≤ 1,
∑
k

sk = 1,

In ⊆ K,

K ≥ 0,

(4)

Minimizing the average caching cost requires finding the

optimal value for the number of edge-caches, how to split

the load between those edge-caches and which items should

be stored at each edge-cache.

In the following sections, we use the caching cost defined

in Equation (1) and propose an optimal caching strategy that

jointly optimizes distributed edge caching and load-splitting.

III. JOINTLY OPTIMAL DISTRIBUTED CACHING AND

LOAD-SPLITTING OF DYNAMIC CONTENT

In this section we tackle the general problem formulated

in (4). The characterization of the optimal caching strategy

under this setting will not only yield interesting insights

about the impact of generation dynamics, but we will also

provide an upper bound on the cache occupancy of the

proposed optimal caching strategy.

First, in order to gain an insight into the optimal caching

policy, we tackle the problem in a simplified version by

assuming that the number of edge-caches K and the vector

of load-splitting s = (s1, ..., sK) are given and s is not

necessarily uniform, i.e., unequal load-splitting between the

edge-caches. Our objective is thus for the given load-splitting

vector s to choose the cached sets In(s) ⊆ K, ∀n ∈ N to

be stored at the K edge-caches in order to minimize the

average cost of the system.

min
{In}n∈KN

CD({In}n, s). (5)

Proposition 1: The policy {I∗
n(s)}n ∈ KN that solves (5)

is given by:

I∗
n(s) =

⎧⎪⎨
⎪⎩

I ′
n(s), sk′′ ≥ (1−∑

k∈I′
n(s)

sk)

− caλn

βpncf
1

1−∑
k∈I′

n(s) sk
,

I ′
n(s) ∪ {k′′}, oth,

where I ′
n(s) has the form of 0− 1 knapsack problem given

by: I ′
n(s) = argmax

In∈K

∑
k∈In

sk

s.t.
∑
k∈In

sk ≤ max

(
0, 1−

√
caλn

βcfpn

) (6)

and k′′ = argmin
k∈K\I′

n(s)

sk.

Proof. To prove this, we define δDn (In, {k′}) to be the

marginal cost of adding item n already stored in the set

In ⊂ K of edge-caches to the new edge-cache k′
⊂ In that

does not have item n in its cache. In other words:

δDn (In, {k′}) := CD({I ′
n}n)|I′

n=In∪{k′}−CD({I ′
n}n)|I′

n=In

Using the average caching cost in Equation (1), we have:

δDn (In, {k′}) =

sk′

(
caλn(

1−∑
k∈In

sk
) (

1−∑
k∈In

sk − sk′
) − βpncf

)
.

In the case of δDn (In, {k′}) < 0 for a given cached set

In ⊂ K, adding item n to the edge-cache k′ will reduce

the average caching cost. On the other hand, items with

positive δDn (In, {k′}) can only increase the cost if added

to the edge-cache k′. Therefore, the sufficient condition for

the optimality of set In(s) of the edge-caches to store item

n is given by:

δDn (In, {k′}) > 0, ∀k′ ⊂ K \ In (7)

Using the definition of δDn (In, {k′}), for this to not hold we

should have:
caλn(

1−∑
k∈In

sk
) (

1−∑
k∈In

sk − sk′
) − βpncf ≤ 0,

for some k′ ⊂ K\In. Since sk ≥ 0, ∀k ∈ K, we can rewrite

this as:

caλn

βpncf
≤ (1−

∑
k∈In

sk)(1−
∑
k∈In

sk − sk′) ≤ (1−
∑
k∈In

sk)
2,

which gives the condition as:∑
k∈In

sk ≤ max

(
0, 1−

√
caλn

βcfpn

)
.

We define the set I ′
n(s) as in Equation (6) such that

it maximizes
∑

k∈In
sk while also satisfying the above

condition. For I ′
n(s) to be optimal, the sufficient condition

for optimality given in Equation (7) should hold. In other

words:

sk′ ≥ (1−
∑

k∈I′
n(s)

sk)− caλn

βpncf

1

1−∑
k∈I′

n(s)
sk

, ∀k′ ⊂ K\I ′
n

(8)

Defining k′′ = argmin
k∈K\I′

n(s)

sk, if Equation (8) holds for k′′,

then it will hold for ∀k′ ⊂ K\I ′
n and the set I∗

n(s) = I ′
n(s)

satisfies the sufficient condition for optimality and therefore

is the optimal set of edge-caches to store item n.

On the other hand, if Equation (8) does not hold for

k′′, it means that adding item n to the edge-cache k′′ will

reduce the average cost. In this case we prove that the set

I ′
n(s)∪{k′′} satisfies the sufficient condition for optimality.

According to the definition of I ′
n(s) given in Equation (6),

and assuming that sk′′ > 0, we will have that:

∑
k∈I′

n∪{k′′}
sk > max

(
0, 1−

√
caλn

βcfpn

)
. (9)

The sufficient condition for optimality would thus be:

sk′ ≥ (1−
∑

k∈I′
n∪{k′′}

sk)− caλn

βpncf

1

1−∑
k∈I′

n∪{k′′} sk
,

for ∀k′ ⊂ K\{I ′
n∪{k′′}}. Because of Equation (9), the right

hand side is always negative and the sufficient condition for

optimality holds. Therefore, the set I∗
n(s) = I ′

n(s) ∪ {k′′}
is the optimal set of edge-caches to store item n.

The 0-1 knapsack problem in (6) is known to be NP-hard

and is generally intractable [13] due to the nature of the

inequality constraint. In the rest of this section we focus

on solving the generally intractable optimization problem

(6) by intelligently choosing the number of edge-caches K
and vector s = (sk)

K
k=1 such that the inequality constraints

for all n ∈ N becomes equality constraints. Doing so will

remove the complexity that arises by knapsack problems in

their general form. Our analysis shows that by intelligently

choosing the number of edge-caches and the fraction of the

load directed to each edge-cache, we can achieve the global

minimum average system cost by our proposed caching

strategy.

The following theorem provides the optimal caching strat-

egy for the general problem formulated in (4).

Theorem 1: In a system composed of a data set N of N
items with popularity distribution p = (pn)

N
n=1 and update

rates λ = (λn)
N
n=1, assume without loss of generality that

items are ordered such that y∗1 ≥ y∗2 ≥ ... ≥ y∗N where

y∗n is defined as y∗n = max
(
0, 1−

√
caλn

βcfpn

)
≤ 1. Let

Q = max (n : y∗n > 0) ≤ N , then the following caching

strategy where K∗ = Q+ 1 optimally solves (4).

s∗k =

{
y∗k − y∗k+1, k ∈ {1, 2, . . . ,K∗ − 1} ,
1− y∗1 , k = K∗, (10)

I∗
n =

{ {n, . . . ,K∗ − 1} , n ∈ {1, 2, . . . ,K∗ − 1} ,
{}, n ∈ {K∗, . . . , N} ,

(11)

where s∗k and I∗
n are the fraction of allocated load to the

edge-cache k and the set of edge-caches that have stored

item n respectively. Under such policy, the optimal caching

cost C∗ and the upper bound on the cache occupancy B∗

are given by:

C∗(λ, p) = βcf −
Q∑

n=1

(√
caλn −√

βcfpn

)2

, (12)

B∗(λ, p) ≤ 1

2
Q(Q+ 1). (13)

Proof. We start the proof by defining the variable yn =∑
k∈In

sk ∈ [0, 1], ∀n ∈ N and rewriting the average cost

defined in (1) as:

CD((yn)n) = βcf +

N∑
n=1

(
yn

(
caλn

1− yn
− βpncf

))
.

Next, by relaxing the equality constraint yn =
∑

k∈In
sk

and letting yn taken on any arbitrary value in [0, 1], we can

write the cost minimization problem as:

min
(yn)n

CD((yn)n),

s.t. 0 ≤ yn ≤ 1.
(14)

This is a convex optimization problem whose solution is

given as:

y∗n = max

(
0, 1−

√
caλn

βcfpn

)
≤ 1, ∀n ∈ N . (15)

Using this solution, we intelligently assign (sk)k, {In}n
and K such that: ∑

k∈In

sk = y∗n, ∀n ∈ N . (16)

Doing so will render all the inequalities in the 0-1 knapsack

problems given in Equation (6) to equality constraints.

Therefore, Proposition 1 in this case reduces to:∑
k∈I∗

n(s)

sk = y∗n, I∗
n(s) = I ′

n(s), ∀n ∈ N .

To guarantee that Equation (16) holds ∀n ∈ N , we define

Q = max (n : y∗n > 0) ≤ N and choose the number of

edge-caches as K∗ = Q + 1 which is the upper bound on

the number of different values that y∗n can take. Then, by

hypothesis, since y∗1 ≥ y∗2 ≥ ... ≥ y∗N , we choose s∗k, ∀1 ≤
k < K∗ such that:

y∗K∗−1 = s∗K∗−1,

y∗K∗−2 = s∗K∗−1 + s∗K∗−2,

....

y∗1 = s∗K∗−1 + s∗K∗−2 + ...+ s∗1.

Comparing this with Equation (16), where
∑

k∈I∗
n
s∗k = y∗n,

will give I∗
n, 1 ≤ n < K∗ as in (11). Since

∑
k∈K s∗k = 1,

then s∗K∗ = 1− y∗1 and no item will be stored in this edge-

cache. Replacing the results in the average cost given in

Equation (1) yields the optimal cost C∗(λ, p) as in Equation

(12). Finally, the upper bound on cache occupancy of the

optimal policy is given by:

B∗(λ, p) =
N∑

n=1

|I∗
n(s

∗)| ≤ Q+(Q−1)+...+1 =
1

2
Q(Q+1),

(17)

and the inequality in the equation is due to the fact that s∗k
can be zero for some k ∈ K. In that case, the edge-cache

with no load will store no item in its cache. This completes

the proof.

Remark 1: The extra edge-cache k = K∗ that does not

cache any items, contributes to enhancing content freshness

since all the load directed to this edge-cache is served fresh

from the database. Due to the multicasting, this acts as a

freshness mechanism to keep the content in other edge-

caches from getting obsolete.

In the following we investigate some special cases.

Proposition 2: In the special case of λn

pn
= λ

p , ∀n ∈ N ,

the optimal caching strategy is to have two edge-caches,

i.e., K∗ = 2 where the load is split according to s∗1 =

max
(
0, 1−

√
caλ
βcfp

)
and s∗2 = 1 − s∗1. In the case of

s∗1 > 0, the first edge-cache will store All the N items in its

cache, i.e., I∗
n = {1}, ∀n ∈ N , otherwise if s∗1 = 0, the first

edge-cache will store no items, i.e., I∗
n = {∅}, ∀n ∈ N . The

second edge-cache will never store any items. The purpose

of the second edge-cache is to utilize multicasting as a

freshness mechanism to keep the cached content of the first

edge-cache from getting obsolete.

Proof. Since λn

pn
= λ

p , ∀n ∈ N , according to Equation (15)

all y∗n, ∀n ∈ N will be identical.

y∗1 = y∗2 = ... = y∗N = max

(
0, 1−

√
caλ

βcfp

)
.

Now we show how Equation (16) holds ∀n ∈ N .

In case of y∗1 = 0, no caching will be employed, i.e.,

I∗
n = {∅}, ∀n ∈ N . But if y∗1 > 0, then since all y∗n have

same value, we can guarantee that Equation (16) holds for

∀n ∈ N by choosing an edge-cache that receives the fraction

s∗1 = y∗1 and then placing all the items in this edge-cache,

i.e., I∗
n = {1}, ∀n ∈ N . The other edge-cache will receive

the remaining load and will have no items stored in its cache.

The case of uniform popularity with constant refresh rates

is a special case of this. According to Proposition 2, the

optimal policy in this case will deploy two edge-caches over

the network and split the load and cache space unequally

between those edge-caches, even though the popularity and

refresh rates are uniform. This reveals the counter-intuitive

nature of the optimal policy that benefits by splitting the

load and cache capacity unequally between the edge-caches

to fully leverage the wireless broadcast as a free cache update

mechanism.

Proposition 3: In the case of item popularity distributed

according to Zipf with parameter z and constant update rates,

i.e., pn = p0

nz and λn = λ, ∀n ∈ N with p0 = 1∑N
n=1

1
nz

< 1,

the proposed optimal caching strategy of Theorem 1 reduces

to:

s∗k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
caλ

βcfp0
(
√
(k + 1)z −√

kz),k ∈ {1, . . . ,K∗ − 2} ,
1−

√
caλ

βcfp0

√
kz, k = K∗ − 1,√

caλ
βcfp0

k = K∗,
(18)

where K∗ = min

(
� z
√

βcfp0

caλ

, N

)
+ 1,

Proof. For the case of Zipf popularity distribution with

constant update rate, p1 ≥ p2 ≥ ... ≥ pN , then y∗n given in

(15) can be written as:

y∗n = max

(
0, 1−

√
caλ

βcfp0

√
nz

)
≤ 1, ∀n ∈ N , (19)

which results in Q as:

Q = max (n : y∗n > 0) = min

(
� z

√
βcfp0
caλ

, N
)

which gives K∗ = Q + 1. Replacing y∗n in Equation (10)

will give the s∗k as in (18).

This reveals very interesting insights on the nature of the

proposed optimal policy. The optimal policy will split the

load unequally between the edge-caches and will completely

discard the less popular items, i.e., less popular items will

not be stored in any of the edge-caches. More interestingly,

edge-caches with higher load will generally store less items

in their cache, however, they are the more popular ones.

This is counter-intuitive, because one may guess that putting

more items on the edge-caches with higher load will result in

cost reduction over the network. However, the optimal policy

which aims to minimize the cost by balancing the freshness

and fetching cost, not only avoids to fill up the edge-caches

with higher load, but it puts less items into edge-caches as

their load increases. Yet, by intelligently deciding to put the

most popular items into edge-caches with higher load while

keeping the cache small, the optimal policy achieves the

optimal cost over the network.

Remark 2: In the special case of Zipf popularity distribu-

tion with parameter z = 2, the optimal caching strategy is

to have K∗ = �
√

βcfp0

caλ

+1 and then split the load equally

between the edge-caches such that each edge-cache receives

the fraction sk =
√

caλ
βcfp0

≈ 1
K∗ of the total load.

The results of Remark 2 motivates us to investigate the

performance of equal load-splitting more deeply. It may not

always be possible to split the load unequally between the

edge-caches due to complexity of the implementation. In the

next section, we propose an optimal policy for the special

case of the equal load-splitting and investigate under what

conditions such a policy can be beneficial.

IV. OPTIMAL DISTRIBUTED CACHING FOR EQUAL

LOAD-SPLITTING OF DYNAMIC CONTENT

In this section, we attack the problem in (4) for the special

case when the total number of edge-caches |K| = K is

given and the load is split equally between the edge-caches.

In this case, sk = 1
K , ∀k ∈ K. This equal load-splitting is

simple to implement and yields interesting insights on the

cost and cache occupancy trade-offs. We first characterize

the optimal caching strategy and then provide insights on

the cache occupancy of the proposed strategy.

For K edge-caches, each receiving a fraction sk = 1
K , k ∈

{1, 2, ...,K} of the total load, we define rn = |In| to be

the number of edge-caches that have stored item n and let

r = (r1, ..., rN) be the vector of replication.

Define the feasible set of solutions as:

FK = {r = (r1, . . . , rN) | rn ∈ {0, 1, . . . ,K}} ,
where each item can be stored at most once in each edge-

cache.

Lemma 2: Let CS(K, r) be the average expected system

cost in the equal load-splitting scenario with K edge-caches

and vector of replication r ∈ FK . Then:

CS(K, r) = βcf +

N∑
n=1

rn

(
caλn

K − rn
− βpncf

K

)
. (20)

Proof. Since the number of replica rn is defined to be rn =
|In|, and in the load is split equally between the K edge-

caches, we have: ∑
k∈In

sk =
rn
K

.

Replacing this in the general cost defined in Lemma 1

gives the average cost of the caching system with K edge-

caches and under vector of replication r as CS(K, r).
Our objective is thus to choose the content to be stored

at the K edge-caches in order to minimize the average cost

of the system, that is:
min
r∈FK

CS(K, r). (21)

Proposition 4: The policy r∗ = (r∗n)n ∈ FK that solves

(21) is given by:

r∗n = �K +
1

2
−

√
1

4
+K2

caλn

βcfpn

+, ∀n ∈ N , (22)

where �x
+ = max(0, �x
), and �x
 is the greatest integer

less than or equal to x.

Proof. We define δSn (l) to be the marginal cost of adding

item n to the caches given that l of the edge-caches have

already cached item n. In other words:

δSn (l) := CS(K, r)|rn=l+1 − CS(K, r)|rn=l

Therefore, we have:

δSn (l) =
Kcaλn

(K − l)(K − l − 1)
− βpncf

K
∀n ∈ N . (23)

In the case of δSn (l) < 0 for a given integer l, adding item n
to one more edge-cache will decrease the average cost. On

the other hand, items with positive δSn (l) can only increase

the average cost if cached. Therefore, we can add item n
to the edge-caches, as long as δSn (l) is negative. Such δSn (l)
reveals the effect of refresh rate alongside the popularity on

gains that can be achieved by caching an item. The optimal

caching strategy will keep filling the cache for each item n
until δSn (l) turns positive. Therefore, the optimal number of

replica for item n would be:

r∗n = 1 +max{l ∈ {0, 1, ...} : δSn (l) < 0}, ∀n ∈ N .

Using δSn (l) defined in (23) yields r∗n as (22).

Next we study the trade-off between the average system

cost and cache occupancy of the optimal policy for the equal

load-splitting compared to the optimal caching policy for the

general case when the load is allowed to be split unequally

between the edge-caches.

Proposition 5: In a system composed of a data set N
of N items with popularity distribution p = (pn)

N
n=1 and

update rates λ = (λn)
N
n=1, assume 3 y∗1 ≥ y∗2 ≥ ... ≥ y∗N

where y∗n, ∀n ∈ N is defined in Equation (15). Let Q =
max (n : y∗n > 0) ≤ N which is independent of the number

of edge-caches K, then we have:

CS(K, r∗)− C∗ ≤
⎛
⎝2βcf

√
βcf
ca

Q∑
n=1

√
p3n
λn

⎞
⎠ 1

K2
, (24)

where CS(K, r∗) is the optimal cost in the equal load-

splitting and C∗ is the minimum achievable cost in Theorem

(1). Also we have:

BS(K, r∗)−B∗(λ, p) ≥
Q∑

n=1

�K +
1

2
−

√
1

4
+K2

caλn

βcfpn

+ − 1

2
Q(Q+ 1),

(25)

where BS(K, r∗) is the cache occupancy under the optimal

policy in the equal load-splitting and B∗(λ, p) is the cache

occupancy of the proposed optimal policy in Theorem (1).

Proof. To prove Equation (24), we use the following

Taylor approximation.

CS(K, r∗) ≤ C∗+

βcf

N∑
n=1

pn|r
∗
n

K
− y∗n|(1−

1

1 + | r∗nK − y∗n|
√

βcfpn

caλn

)

≤ C∗ + 2βcf

√
βcf
ca

N∑
n=1

(

√
p3n
λn

|r
∗
n

K
− y∗n|2)

where y∗n = max(0, 1−
√

caλn

βcfpn
). In the case when y∗n = 0,

we have caλn

βcfpn
≥ 0 and according to Equation (22), r∗n = 0,

3This already holds without assumption in Zipf with constant refresh
rates.

which gives | r∗nK − y∗n| = 0. In the case when y∗n > 0, we

can show that |Ky∗n − r∗n| < 1 which gives | r∗nK − y∗n| < 1
K .

Since, by hypothesis, y∗1 ≥ y∗2 ≥ ... ≥ y∗N , we can write:

CS(K, r∗)− C∗ ≤
⎛
⎝2βcf

√
βcf
ca

Q∑
n=1

√
p3n
λn

⎞
⎠ 1

K2
,

where the terms inside the parentheses are independent of

K and this shows a cost reduction with the rate 1
K2 .

Also, since the cache occupancy of equal load-splitting

is equal to BS(K, r∗) =
∑N

n=1 r
∗
n, where r∗n is given in

Equation (22), and as we showed that in the case of y∗n = 0,

we have r∗n = 0, therefore, using the definition of Q and

the lower bound on the cache occupancy of our proposed

optimal policy in (13), we can write the lower bound on the

cache saving of our proposed policy compared to the equal

load-splitting as in Equation (25).

This shows that as the number of edge-caches K in-

creases, the cost of the equal load-splitting converges to the

optimal cost with rate 1
K2 but its cache occupancy increases

with the rate of up to K2.

V. NUMERICAL RESULTS: PERFORMANCE COMPARISON

In this section we compare the performance of the equal

load-splitting to the optimal case of general load-splitting

between the edge-caches using numerical simulations. We

consider the simulation parameters to be β = 5 for the

average total request rate and the normalized fetching and

aging costs to be cf = 1 and ca = 0.01 respectively. We

assume that the database consists of N = 106 items.

We compare the average cost achieved by the optimal

caching policy and the average cost of the equal load-

splitting policy under the number of edge-caches K = K∗

and the same system variables declared above. We adopt the

percentage cost gain of the optimal caching to the equal load-

splitting strategy’s cost as our performance metric. Such a

metric is defined as:

Cost Gain(%) = 100× CS(K∗, r∗)− C∗

C∗ .

The percentage cost gain is depicted in Fig. 3. The figure

shows that gains are negligible for small Zipf parameters.

In other words, if the item demand is less predictable, i.e.,

more uncertainty about the demand, the equal load-splitting

policy performs almost as good as the optimal caching

and the difference vanishes as the refresh rate decreases

and items become less dynamic. But as the Zipf parameter

increases and the certainty about the demand increases,

the cost reduction gain increases. It also reveals that the

gain becomes more substantial as the refresh rate of items

decreases. The figure reveals a dip in the cost reduction gain

at the Zipf parameter z = 2, which agrees with the results

of the Remark 2.

Next we compare the cache occupancy of the optimal

caching policy and the equal load-splitting policy under the

number of edge-caches K = K∗ and the same system

variables declared above. We adopt the percentage cache loss

of the optimal caching to the equal load-splitting strategy’s

Fig. 3: Percentage cost gain of the optimal caching policy

Fig. 4: Percentage cache loss of the optimal caching policy

cache occupancy as our performance metric. Such a metric

is defined as:

Cache Loss (%) = 100× B∗ −BS(K∗, r∗)
B∗ .

The percentage cache loss is depicted in Fig. 4. The

figure shows that for small Zipf parameters, more uncertainty

about the demand, equal load-splitting policy occupies sig-

nificantly less cache space compared to the optimal caching

policy and the differences increases as the refresh rate

decreases and items become less dynamic. If parameter z
approaches zero, content popularity becomes almost uniform

and both policies may decide not to cache any items at

all. On the other hand, as the Zipf parameter increases and

certainty about demand increases, the percentage cache loss

of the optimal policy decreases and the optimal policy which

achieves the global minimum cost, will occupy less cache

space compared to the equal load-splitting policy. The figure

reveals that both optimal and equal load-splitting policies

achieve almost same cost and same cache sizes at the Zipf

parameter z = 2, which agrees with Remark 1.

According to Fig. 3 and 4, when item demand is less

predictable, i.e., z < 2, equal load-splitting policy achieves

almost the same average cost of the optimal caching policy

while potentially saving in the cache occupancy. On the

other hand, as item demand becomes more predictable, i.e.,

z > 2, optimal caching policy results in substantial gains

in the caching cost while simultaneously reducing the cache

occupancy.

Notice that in Figs. 3 and 4, we have assumed K = K∗

both for the optimal and equal load-splitting policies. Ac-

cording to Proposition 5, increasing K for the equal load-

splitting policy, such that K > K∗, the resulting average

cost approaches the optimal cost but this is achieved at the

expense of increasing the cache occupancy.

VI. CONCLUSION

In this work, we have proposed and investigated an

increasingly important caching scenario for serving dynam-

ically changing content. We introduced the age-of-version
metric to capture the served content’s freshness and track the

number of stale versions per content. We have addressed the

problem of developing optimal caching strategies for mini-

mizing the system’s cost which is shaped by a combination

of the service cost of fetching fresh content directly from a

back-end database and the aging cost of cached, potentially

older, content from a front-end cache. By utilizing the

broadcast nature of the wireless medium, our model reveals

the benefits of the multicasting property as a mechanism

to update the cached content. We have characterized the

optimal caching policy both in the general case and also

in the special case of the equal load-splitting. Moreover, we

have explored the trade-off between the cost minimization

and cache savings gain of these two policies. Our results

demonstrate that for more predictable demand, splitting the

cache and load unequally between the edge-caches results

in significant cost gains without increasing the total cache

occupancy. On the other hand, for less predictable demand,

equal load-splitting achieves a close-to-optimal cost while

saving in cache occupancy.

REFERENCES

[1] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Delay gain analysis
of wireless multicasting for content distribution,” IEEE/ACM Trans-
actions on Networking, vol. 29, no. 2, pp. 529–542, 2020.

[2] ——, “Wireless multicasting for content distribution: Stability and
delay gain analysis,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 1–9.

[3] J. Zhang, “A literature survey of cooperative caching in content
distribution networks,” arXiv preprint arXiv:1210.0071, 2012.

[4] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in 2010 Proceedings IEEE INFOCOM.
IEEE, 2010, pp. 1–9.

[5] W. Jiang, G. Feng, and S. Qin, “Optimal cooperative content caching
and delivery policy for heterogeneous cellular networks,” IEEE Trans-
actions on Mobile Computing, vol. 16, no. 5, pp. 1382–1393, 2016.

[6] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Achieving freshness in
single/multi-user caching of dynamic content over the wireless edge,”
in IEEE International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt), 2020.

[7] B. Abolhassani, J. Tadrous, A. Eryilmaz, and E. Yeh, “Fresh caching
for dynamic content,” in IEEE INFOCOM 2021 - IEEE Conference
on Computer Communications, 2021, pp. 1–10.

[8] E. Najm and R. Nasser, “Age of information: The gamma awakening,”
in 2016 IEEE International Symposium on Information Theory (ISIT).
Ieee, 2016, pp. 2574–2578.

[9] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Information freshness and popularity in mobile
caching,” in 2017 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2017, pp. 136–140.

[10] J. Zhong, R. D. Yates, and E. Soljanin, “Two freshness metrics
for local cache refresh,” in 2018 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2018, pp. 1924–1928.

[11] D. Wessels, Web caching. ” O’Reilly Media, Inc.”, 2001.
[12] [Online]. Available: http://www2.ece.ohio-state.edu/∼eryilmaz/

papers/FreshCachingReport2021
[13] S. Sahni, “Approximate algorithms for the 0/1 knapsack problem,”

Journal of the ACM (JACM), vol. 22, no. 1, pp. 115–124, 1975.

