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Abstract—Kron reduction is a network-reduction method
that eliminates nodes with zero current injections from
electrical networks operating in sinusoidal steady state. In
the time domain, the state-of-the-art application of Kron
reduction has been in networks with transmission lines that
have constant R/L ratios. In contrast, this letter considers
the generalized setting of RL networks without such restric-
tion and puts forth a provably exact time-domain version of
Kron reduction. Exemplifying empirical tests on a − �
network are provided to validate the analytical results.

Index Terms—Kron reduction, network-reduced model,
time-domain reduction.

I. INTRODUCTION

COMPLEX electrical networks are encountered in sev-
eral engineering domains from integrated circuits to

power grids. Oftentimes, some nodes in such networks are
not connected to external energy sources/sinks; henceforth
referred to as interior nodes. To facilitate analysis and
computation, it is desirable to eliminate interior nodes and
obtain reduced network models that exclusively retain the
extant boundary nodes. The workhorse enabling reduction
of electrical networks derives from the classical Kron reduc-
tion [1]. A familiar example of this is the elemental wye-delta
( -�) transform. (See Fig. 1.) The method is well defined
when all excitations are in sinusoidal steady state and all
network interconnections are modeled as impedances at a
fixed frequency. Kron reduction in such a setting boils down
to computing a Schur complement of the admittance matrix
(that establishes the algebraic map between nodal voltages
and current injections). The effort [2] provides a compre-
hensive survey of Kron reduction and establishes connections

Manuscript received 21 March 2022; revised 20 May 2022; accepted
7 June 2022. Date of publication 23 June 2022; date of current ver-
sion 15 July 2022. This work was supported in part by the DOE
Office of Energy Efficiency and Renewable Energy under Solar Energy
Technologies Office (SETO) under Agreement EE0009025; in part by
the National Science Foundation under Grant 1444745, Grant 1901134,
Grant 2128593, Grant 2126052, and Grant 2212318; and in part by the
UMN’s MnDRIVE Program. Recommended by Senior Editor C. Prieur.
(Corresponding author: Manish K. Singh.)

Manish K. Singh, Sairaj Dhople, and Georgios B. Giannakis are with
the Department of Electrical and Computer Engineering, University of
Minnesota, Minneapolis, MN 55414 USA (e-mail: msingh@umn.edu;
sdhople@umn.edu; georgios@umn.edu).

Florian Dörfler is with the Department of Information Technology and
Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland (e-mail:
doerfler@control.ee.ethz.ch).

Digital Object Identifier 10.1109/LCSYS.2022.3185939

Fig. 1. Prominent existing results and proposed advancement towards
reduction of RL networks with zero-injection interior nodes. State-of-the
art for phasor domain is the classical Kron reduction (top); that in the
time domain is restricted to networks with constant R/L ratios (middle).
We provide a generalization in the time domain (bottom) that recovers
prior results applied to the considered setting as special cases.

to a wide range of graph- and system-theoretic constructs;
see [3], [4], [5] for some recent and diverse applications.

Interestingly, Kron reduction is not as widely studied in the
time domain with arbitrary excitation, wherein the govern-
ing dynamics are differential-algebraic equations (DAEs). To
investigate such a setting, this letter considers an RL network
featuring interior nodes with no current injections. While
the considered setup will allow us to succinctly present our
key idea, practical generalizations may feature known non-
zero current injections at the interior nodes, cf. [2], [6], [7];
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and network modeled as RLC circuits [8]. For the setting of
RL networks with zero-injection interior nodes, exact model-
reduction results are restricted to homogeneous networks,
which either assume lines to have constant R/L ratios [6], [8],
or consider purely resistive and inductive networks [9].
An approximate Kron reduction approach including non-
homogeneous RL networks is developed using frequency-
domain analysis in [7]. However, the model obtained therein
is accurate only in steady state with sinusoidal excitation.

Pursuing a time-domain generalization of Kron reduction,
this letter overcomes the restrictive constant R/L constraint.
For the considered setting, this letter develops a projection-
based generalized time-domain reduced model with two
prominent advantages: i) the reduction is exact, implying
equivalence to the full-order model; and ii) the time-domain
analysis permits inclusion of arbitrary initial conditions (as
opposed to frequency-domain approaches). Phasor-domain
Kron reduction and time-domain Kron reduction with constant
R/L ratios are recovered as special cases.

II. PRELIMINARIES

A. Phasor Representation

In sinusoidal steady state at frequency ω, we express time-
domain signals as x(t) = |x| cos(ωt + θx), where (|x|, θx)

are constants. For analytical ease, we represent x(t) by a
corresponding complex-valued rotating vector

−→x (t) = x(t) + jx(t − π/2ω) = |x|ejθx ejωt = xejωt.

The complex constant quantity x = |x|ejθx is referred to as a
phasor. Dynamics satisfied by real-valued signals x(t) in a lin-
ear and time-invariant system are also satisfied by −→x (t). This
facilitates translating differential equations in x(t) to algebraic
equations in x and underscores the popularity of phasors in
steady-state analysis of electrical networks.

B. Electrical-Network Model

Consider an RL network described by a connected graph
G = (N , E). The node set is indexed as N = {1, . . . , N}, and
let E = |E |. Arbitrarily assigning directions, an edge e from
node m to n is denoted as e = (m, n). Line resistances and
inductances for an edge e ∈ E are denoted by re, �e ≥ 0.
The topology of G is captured by the incidence matrix B ∈
{0,±1}N×E with entries Bk,e = 1(−1) if k = m(n) when
∃ e = (m, n) ∈ E ; and Bk,e = 0, otherwise.

Let the real-valued signals vn(t) and in(t) denote the instan-
taneous voltage and current injection at node n; and fe(t)
represent current flow on edge e. In what follows, the explicit
time dependence of signals will be omitted for notational ease.
For all lines e = (m, n), the line currents and node voltages
obey the first-order RL-dynamics

�eḟe + refe = vm − vn. (1)

The model in (1) requires �e �= 0 to retain dynamics.
Otherwise, the flows can be trivially expressed in terms of the
node voltages. Thus, the following non-prohibitive assumption
is made at the outset to facilitate exposition.

Assumption 1: For all edges e ∈ E , inductance �e > 0.

Define the vectors v = {vn}n∈N , i = {in}n∈N , and
f = {fe}e∈E . Collectively, line dynamics in (1), along with
Kirchoff’s current law (KCL) can be succinctly written using
matrix-vector notation as

Lḟ = −Rf + B�v, (2a)

i = Bf, (2b)

where R = diag({re}e∈E ) and L = diag({�e}e∈E ). This
letter focuses on the dynamical system in (2), identifying:
input v, state f, and output i. (While this letter considers
a voltage-actuated network with currents serving as outputs,
the developed approach can be extended to settings with
current actuation and voltage outputs.) Since L is invert-
ible per Assumption 1, the model (2) constitutes an ordinary
differential equation (ODE) with a linear output equation.

C. Problem Statement

Suppose the network graph G has N0 ≥ 1 interior nodes
collected in the set N0 ⊂ N . Without loss of generality,
the network nodes can be numbered to feature the bound-
ary nodes first, thereby enabling the partitioning i = [i�1 i�0 ]�
and v = [v�

1 v�
0 ]�. Corresponding to the interior nodes N0,

we have i0 = 0. To explicitly impose zero-current injection
for the nodes in N0, let us partition the incidence matrix
as B� = [B�

1 B�
0 ], where B0 has N0 rows. The ensuing

dynamical system is now governed by the DAE

Lḟ = −Rf + B�v, (3a)

0 = B0f, (3b)

with the corresponding output equation

i1 = B1f. (4)

In a nutshell, Kron reduction aspires to uncover the link
between current injections i1 and voltages v1. Our effort is to
do so by reducing the DAE (3) to an ODE with inputs being
exclusively the voltages v1. Before we present this result, we
overview prior efforts.

III. PRIOR MODEL-REDUCTION RESULTS

A. Kron Reduction in Steady State

Consider a steady-state operating condition, wherein flows,
injections, and nodal voltages are in sinusoidal steady state
with frequency ω. In line with the discussion in Section II for
steady-state analysis, let us denote the complex-valued rotat-
ing vectors for current flow, injection, and nodal voltages by−→
f ,

−→
i ,

−→v , and recognize that they satisfy (2). Substituting−→
f = fejωt,

−→
i = iejωt, and −→v = vejωt yields:

jωLfejωt = −Rfejωt + B�vejωt, (5a)

iejωt = Bfejωt. (5b)

Solving for f from (5a) and substituting the resultant in (5b)
yields the familiar algebraic network model

i = B(R + jωL)−1B�v = Yv, (6)

where Y = B(R + jωL)−1B� is the admittance matrix. The
inverse (R+ jωL)−1 exists owing to the invertibility of L per
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Assumption 1 and non-negativity of resistances re ≥ 0, ∀e ∈
E . Suitably partitioning (6) provides[

i1
0

]
=

[
Y11 Y10

Y�
10 Y00

][
v1
v0

]
. (7)

From the second row in (7), we can isolate v0 = −Y−1
00 Y�

10v1,
which, when substituted back in the first row, yields the
reduced model

i1 = (Y \ Y00)v1 = Yrv1, (8)

where Yr = (Y \ Y00) = Y11 − Y10Y−1
00 Y�

10 is the Schur
complement of Y00 of the admittance matrix, Y, and is com-
monly referred to as the Kron-reduced admittance matrix.
The Kron-reduced admittance matrix Yr corresponds to an
equivalent connected network of series impedances [2]. The
previous manipulation relies on the invertibility of Y00, which
is guaranteed per the result below.

Lemma 1: Given a strict subset N0 ⊂ N , the submatrix
Y00 defined as per (7) is invertible if one of the following
conditions hold: c1) re > 0, ∀e ∈ E ; c2) le > 0, ∀e ∈ E .
A proof is provided in Appendix A. The sufficient condition
c2) coincides with Assumption 1, thus ensuring applicability
of Lemma 1 to the networks considered in this letter.

Remark 1: Under varying network models, results related
to Lemma 1 may be found in the recent works [10], [11]. These
establish invertibility for principal submatrices of Y under a
set of conditions including c1). The furnished approaches are
complicated by the presence of shunt elements and transform-
ers, see [11]. However, for RL networks considered here, the
relatively simpler proof for Lemma 1 suffices.

B. Time-Domain Reduction for Homogeneous Networks

The homogeneous network assumption dictates that all
edges, e ∈ E , have a constant re/�e ratio, translating to R =
αL for some α > 0 [6], [8]. Substituting this homogeneity
condition in (3a) yields

ḟ = −αf + L−1B�v. (9)

Pre-multiplying (9) with B and using KCL (as transcribed
in (2b)) provides the dynamic model in current injections:

i̇ = −αi + BL−1B�v = −αi + L̃v, (10)

where L̃ = BL−1B�. Similar to Y in (6), L̃ in (10) corre-
sponds to a Laplacian of the graph G. One can partition (10),
use i0 = 0 (and hence i̇0 = 0), to obtain[

i̇1
0

]
= −α

[
i1
0

]
+

[
L̃11 L̃10

L̃�
10 L̃00

][
v1
v0

]
. (11)

The structure of (11) conveniently allows for elimination of
the voltages v0, as was done in transiting from (7) to (8).
Specifically, the equation in the second row yields v0 =
−L̃−1

00 L̃�
10v1, which, when substituted in the first row, yields

the reduced dynamical model in terms of current injections:

i̇1 = −αi1 + (L̃ \ L̃00)v1. (12)

The invertibility of L̃00 is ascertained from the following
observation: The definition of L̃ in (10) indicates that for a
purely inductive network with inductances given by L, the

related matrix Y can be written as jωL̃; see (6). Owing to
Lemma 1 and Assumption 1, the invertibility of Y00 or jωL̃00
(equivalently L̃00) is guaranteed.

The above delineated steps feature resemblance to Kron
reduction in (7)-(8), and the reduced model (12) admits strik-
ing network-theoretic similarities as well. Specifically, matrix
(L̃ \ L̃00) in (12) corresponds to a Laplacian of a reduced
graph, which topologically coincides with the one obtained
from Yr in (8) (see Fig. 1(middle)). The topology of the
reduced network depends on the originating one, and is agnos-
tic to the edge weights, see [12, Proposition 5.7]. While
not explicitly captured in the mathematical presentation, the
previous approach applies to purely R, L, and C networks
as well [9]. The above approach accomplishes model reduc-
tion by transforming the states from f to i, thereby applying
the zero-injection condition directly on i. Interestingly, struc-
turally similar settings arise in various engineering domains;
see for instance [5] that delineates a reduction approach sim-
ilar to the transition from (11) to (12) for a mass-damper
system. However, when considering RL circuits, the maneu-
vers involved only apply to homogeneous networks. The next
section addresses a general setting.

IV. GENERALIZED TIME-DOMAIN MODEL REDUCTION

This section puts forth the proposed approach to elimi-
nate zero-injection nodes N0 from the time-domain model (3).
Next, it is shown that the prior results of Section III can
be obtained as special instances of our generalized approach.
Subsequently, flexibilities in the reduced-model structure are
elaborated and circuit interpretations are outlined.

A. Main Result

The RL dynamics (3a) feature E differential equations
in E-length state-vector f. However, constraint (3b) restricts
the flows f to a low-dimensional subspace; specifically f ∈
null(B0). It is worth noting that

dim(null(B0)) = E − N0,

where N0 = |N0|. (See Appendix B for proof.) Therefore,
one can obtain a low-dimensional embedding f̂ ∈ RE−N0 for
vectors f ∈ null(B0) via

f = P̂f, (13)

where the matrix P should be chosen to yield range(P) =
null(B0). In a graph-theoretic sense, matrix P spans the space
orthogonal to the cutset space defined by cuts of interior nodes
in N0 [12]. Being a (potentially abstract) representation of
network current flows, we refer to f̂ as pseudoflows. Using the
prescribed embedding, the ensuing result formally establishes
the sought reduced model.

Theorem 1: Consider the differential equation

L̂˙̂f = −R̂̂f + B̂�v1, (14)

where, L̂ = P�LP, R̂ = P�RP, and B̂ = B1P. The following
hold:

• Matrix L̂ is invertible rendering (14) an ODE.
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• Solutions of network flows obtained from (14) with initial
condition f̂0 alongside (13) coincide with the solutions
of (3) with f(t = 0) = P̂f0.

Proof: We will start with establishing the invertibility of
L̂. Note that positive �e’s from Assumption 1 imply L 
 0.
Further, since columns of P are linearly independent, we get
L̂ 
 0. This guarantees the invertibility of L̂, and renders (14)
an ODE. Towards establishing the equivalence of (14) and (3),
we substitute (13) in (3a) to obtain

LP˙̂f = −RP̂f + B�v. (15)

Equation (15) constitutes an over-determined system of E dif-
ferential equations with linear dependence. To eliminate the
linear dependence, pre-multiply (15) with P� to obtain

P�LP˙̂f = −P�RP̂f + P�[B�
0 B�

1 ]

[
v0
v1

]

= −P�RP̂f + P�B�
1 v1, (16)

where, the second line follows from the fact that range(P) =
null(B0), or B0P = 0. Substituting the definitions of (L̂, R̂, B̂)

yields (14).
In line with the problem statement in Section II-C, the

reduced ODE model (14) eliminates the unknown voltages v0
and features exclusively the voltages v1 as inputs. Finally, the
output equation (4) gets modified using (13) to

i1 = B1P̂f, (17)

thus yielding the sought relation from input v1 to output i1.
Remark 2 (Is P Unique?): Given matrix B�

0 , the matrix P
featuring in the reduced model of Theorem 1 is not unique.
It can be built by collecting as columns, an arbitrary basis
for null(B0). Technical details on choice of a specific P and
related interpretations are provided in Section IV-C.

B. Prior Results as Special Cases

This section reconciles the prior results (8) and (12) with
the proposed generalized reduced model (14). To this end, we
first evaluate the reduced models yielded by Theorem 1 for
the two special cases of Section III. Next we will show that
these models coincide with (8) and (12).

1) Steady-State Model: Assigning the steady-state form to
pseudoflows as f̂ejωt and substituting in (14) yields (after
some elementary algebraic manipulations) (R̂+jωL̂)̂f = B̂v̄1.
Subsequently using f = P̂f and i1 = B1f, from (4) and (13)
applied to steady-state values, one gets

i1 = B1P
(

P�(R + jωL)P
)−1

P�B�
1 v1, (18)

where the definitions of (L̂, R̂, B̂) follow from Theorem 1.
2) Homogeneous Networks: Substituting the homogeneous-

network condition R = αL, or equivalently R̂ = αL̂, in (14)
and premultipying by L̂−1 provides

˙̂f = −α̂f + L̂−1B̂�v1.

Further, premultiplying by B1P (invoking (4) and (13)), and
substituting the definitions of (L̂, B̂) yields

i̇1 = −αi1 + B1P(P�LP)−1P�B�
1 v1. (19)

Next, we show the equivalence of the reduced models (18)
and (19) to prior results (8) and (12) in two steps. First, we
note that (18) and (19) feature matrix P, which is not unique.
Hence, we provide an algebraic claim in Lemma 2 to eliminate
the apparent ambiguity from the non-uniqueness of P. Second,
we show in Proposition 1 that via appropriate instantiation of
a weighting matrix, the models in (18) and (19) coincide with
the prior results (8) and (12). The proof of Proposition 1 builds
upon the technical Lemma 2.

Lemma 2: For a connected graph (N , E), consider
complex-valued edge weights we �= 0,∀e ∈ E , and a
row-block partition of the companion incidence matrix as
B� = [B�

1 B�
0 ]; define W = diag({we}e∈E ). Given a full-

column-rank matrix P with range(P) = null(B0), it holds
that

P(P�WP)−1P�

= W−1 − W−1B�
0 (B0W−1B�

0 )−1B0W−1. (20)

Proof (Sketch): A result similar to Lemma 2 is obtained
in [13, Lemma 4], with the distinction that equivalent matrices
P and B�

0 are assumed to have orthonormal columns. While
the columns of matrices P and B�

0 in this letter are not nec-
essarily orthonormal, they are, however, linearly independent.
Therefore, the proof of [13, Lemma 4] can be extended to
establish (20) as shown next.

Given matrix P with linearly independent columns, one can
obtain a QR decomposition P = P̄R̄, where P̄ is orthonormal
and R̄ is invertible. Substituting the decomposition in the LHS
of (20) yields

P(P�WP)−1P� = P̄R̄(R̄�P̄�WP̄R̄)−1R̄�P̄�

= P̄(P̄�WP̄)−1P̄�.

Similarly, it holds that

B�
0 (B0W−1B�

0 )−1B0 = B̄�
0 (B̄0W−1B̄�

0 )−1B̄0,

where the columns of B̄�
0 are orthonormal. Invoking

[13, Lemma 4] next completes the proof.
Lemma 2 establishes that despite the non-uniqueness of

P, the structural form in the LHS of (20) equals the unique
matrix in the RHS. The next result, proved in Appendix C
reconciles (18) to (8), and (19) to (12).

Proposition 1: For the complex edge weights {we} intro-
duced in Lemma 2, define Laplacian matrix W̃ = BW−1B�,
and let W̃00 be the matrix block partition corresponding to the
interior nodes N0. Then, it holds that

B1P(P�WP)−1P�B�
1 = W̃ \ W̃00. (21)

Choosing W = R + jωL in (21) establishes the equiva-
lence of (18) and (8); and choosing W = L establishes the
equivalence of (19) and (12).

C. Choices of P and Related Interpretations

1) Given the flows on all-but-one edges incident on an inte-
rior node, one can trivially recover the extant flow via
KCL. Thus, a sub-vector f̂ built by omitting from f,
one incident-edge flow per interior node can serve as a
reduced representation. Hence, one can express f = P̂f
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by stacking the rows of P as suitable canonical vec-
tors corresponding to the retained flows; and as {0,±1}
vectors to calculate the omitted flows.

2) Compute the basis vectors spanning null (B0). Stack
these as columns to obtain P.

3) One can choose P to yield diagonal (L̂, R̂) via the fol-
lowing steps: i) Compute a matrix P′ to span null (B�

0 )

as described in choice 2); ii) Set L̂′ = P′�LP′ and
R̂′ = P′�RP′; iii) Obtain the generalized eigen-value
decomposition L̂′V = R̂′VD; and iv) set P = P′V.
It can be verified that thus-obtained P yields diagonal
(L̂, R̂) with non-negative entries. The latter stems from
using L, R � 0 in the definitions of L̂, R̂. The reduced
model (14) can then be interpreted as (E − N0) inde-
pendent RL-circuits actuated by a linear combination
of voltages in v1; see Fig. 1(bottom). The individual
equations read as

L̂kk
˙̂fk + R̂kkf̂k =

N−N0∑
n=1

βknvn,

where βkn’s are entries of the product P�B�
1 .

V. NUMERICAL TESTS

This section empirically illustrates the effectiveness of the
proposed generalization using -� transformation as an exam-
ple. For comparison, we adopt a baseline approach from [7]
that extends Kron reduction to the time domain for non-
homogeneous RL networks. Denoted as (B), the approach
involves the following steps: (S1) Given a -connected RL
network with one interior node (see Fig. 1), choose a frequency
ω0 and build an admittance matrix per (6) that corresponds
to a -connected impedance network. (S2) Obtain a reduced
�-connected impedance network using (8). (S3) Separate
out real and imaginary parts of impedances in the reduced
� connection and factor out ω0 to recover a �-connected
RL network. Two ambiguities are encountered in implement-
ing (B): (A1) To obtain a time-domain solution of the

-connected RL network, one would be presented with the
initial conditions f0 ∈ R3×1. On obtaining the �-connected
RL network in (S3), how does one obtain a corresponding
f�0 ? (A2) How to choose ω0 in (S1) for networks actuated by
arbitrary voltages?

A. Setup

Two sets of numerical tests will be presented next to
compare our approach, (B), and a ground-truth DAE model
implemented in the MATLAB-Simulink environment. Both are
conducted for a -connected RL network with RL param-
eters randomly drawn from [0.5, 1], and given by R =
diag([0.98 0.99 0.58]) 
 and L = diag([0.55 0.64 0.77]) H;
and initial branch currents f0 = −[5, 5,−10]� A. To obtain

an initial condition for the current flows f�0 given f0 in (B), we
have to ensure the boundary-node current injections agree in
both � and representations. One such solution, f̃�0 can be

obtained using MATLAB command lsqminnorm(Br, f0 ),
where Br is the incidence matrix of the � connection. This
operation returns a minimum-norm solution to Brf�0 = f0 .

Fig. 2. Current injections i1(t) obtained with: a) sinusoidal-voltage
excitation; and b) step-voltage excitation.

With cyclic edge direction assignment in the � connection,
we have Br1 = 0; hence for any scalar γ , vector f̃�0 + γ 1
conforms with the required initial-current injections. Given the
ambiguity, 5 random instances of γ are drawn uniformly from
[−5, 5] A in our execution of (B).

B. Results and Inferences

In the first set of tests, we apply 1.5 Hz sinusoidal volt-
ages with amplitudes 120 V and phases (0, 30◦,−30◦) to the
three boundary nodes. To implement our approach, P was
obtained using MATLAB command null(B0), the initial con-
dition for simulating the proposed reduced model (14) was
evaluated from (13). To implement (B), ω0 was picked to be
2π × 1.5 rad · s−1. The current injections at node 1, i1(t),
obtained via the three approaches are illustrated in Fig. 2(a).
The following observations are in order: i) the initial values for
all approaches coincide by design; ii) results from the reduced
model obtained with the proposed approach coincide point
wise with the ground-truth DAE model; and iii) results from
(B) with randomized initializations vary during transient con-
ditions but align with the ground-truth DAE model in steady
state. While zero initial conditions were assumed in [7] to
claim exactness under steady state, the above tests strengthen
their claim by demonstrating the exactness to hold for non-zero
initializations.

In the next set of tests, the excitation voltages were
changed to be step functions assuming steady-state values
[120, 100, 110]� V. The current injections at node 1, i1(t),
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obtained via the three approaches are illustrated in Fig. 2(b).
One observes that: i) results from the reduced model obtained
with the proposed approach coincide point wise with the
ground-truth DAE model; and ii) results of (B) with random-
ized initializations coincide with each other in steady state, but
all are different from the ground-truth. These sets of numerical
tests demonstrate the efficacy of the proposed model reduction
for arbitrary voltage-actuated RL networks in the time domain.

VI. CONCLUDING REMARKS

This letter put forth a time-domain generalization of Kron
reduction for RL networks. Prominent prior results for steady-
state conditions and homogeneous networks were shown to
be special instances of the proposed model. Numerical tests
on the well-known − � transformation setup validated the
approach and highlighted the limitations of existing heuris-
tics. Given that the projection matrix P relates to the cut-set
space of the underlying graph, it is tempting to further
investigate graph-theoretic interpretations of the proposed low-
dimensional embedding. Explicitly encoding desirable system-
theoretic attributes in the synthesis of P is another interesting
direction for future work.

APPENDIX A
PROOF OF LEMMA 1

Having re, �e ≥ 0 entails �(Y) and �(Y) are positive
semidefinite; implying �(Y00), �(Y00) � 0. Next, we prove
the invertibility of Y00 assuming condition c1) is satisfied. The
proof for c2) follows similarly. Given re > 0 ∀e, the matrix
�(Y) is a Laplacian matrix. Furthermore, matrix �(Y00) is
a strict principal submatrix of �(Y) as N0 ⊂ N ; hence
�(Y00) 
 0. Proving by contradiction, let us assume that the
matrix Y00 is singular, implying ∃ x = xr + jxi �= 0 such
that Y00x = 0. Separating the real and imaginary parts of
Y00x = 0 reads

�(Y00)xr − �(Y00)xi = 0, (22a)

�(Y00)xr + �(Y00)xi = 0. (22b)

Since �(Y00) 
 0, (22a) yields

xr = [�(Y00)]
−1�(Y00)xi. (23)

Substituting xr from (23) in (22b) yields(
�(Y00)[�(Y00)]

−1�(Y00) + �(Y00)
)

xi = 0. (24)

Using �(Y00) � 0, �(Y00) 
 0, one finds
(�(Y00)[�(Y00)]−1�(Y00) + �(Y00)) is invertible, implying
xi = 0 from (24). Further, (23) yields xr = 0, or x = 0,
leading to a contradiction; thus, Y00 is invertible.

APPENDIX B
PROOF FOR dim ( null (B0)) = E − N0

Since B is the incidence matrix of a connected graph, it
features N −1 linearly independent rows with 1�B = 0. Thus,
any N0 < N rows are linearly independent. Hence, the rows
of matrix B0 are linearly independent implying the dimension
of null(B0) is E − N0.

APPENDIX C
PROOF OF PROPOSITION 1

From the definition W̃ = BW−1B�, and the partition B� =
[B�

1 B�
0 ], matrix W̃ can be expressed as

W̃ =
[

W̃11 W̃10

W̃�
10 W̃00

]
=

[
B1
B0

]
W−1[B�

1 B�
0 ]

=
[

B1W−1B�
1 B1W−1B�

0
B0W−1B�

1 B0W−1B�
0

]
.

The Schur complement W̃ \ W̃00 is given by

W̃ \ W̃00 = W̃11 − W̃10W̃−1
00 W̃�

10

= B1W−1B�
1 − B1W−1B�

0 (B0W−1B�
0 )−1B0W−1B�

1

= B1

(
P(P�WP)−1P�)

B�
1 ,

where, the second equality follows from substituting the matrix
blocks, and the last equality follows from Lemma 2.
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