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Abstract—Tucker decomposition is the generalization of Prin-
cipal Component Analysis to high-order tensors. The L2-norm-
based formulation of standard Tucker suffers from severe sen-
sitivity to outliers. L1-norm-based Tucker (L1-Tucker) has been
proposed as an outlier-resistant alternative with documented suc-
cess in an array of applications. L1-HOSVD is a straightforward
solver for L1-Tucker that computes each basis by conducting L1-
PCA on the matrix that is derived by flattening the data tensor
across the corresponding mode. In this paper, L1-HOSVD is
further enhanced via an additional L1-fitting step. The proposed
method combines the outlier-resistance of L1-HOSVD with that
of L1-fitting and returns jointly-computed bases of enhanced
robustness, as corroborated by our numerical studies on synthetic
and real-world datasets.

Index Terms—Tensors, Tucker, L1-norm, outliers, robustness.

I. INTRODUCTION

Tensors are high-order arrays that naturally represent multi-
way data in many real-world applications. Accordingly, ten-
sor analysis methods are becoming increasingly popular in
data science, machine learning, and signal processing. In
these areas, tensor method applications include factor analy-
sis, anomaly detection, missing data estimation, compression,
compressive sensing, denoising, data fusion, co-clustering, and
feature extraction for classification [1–8], to name a few.
More recently, tensor methods have been successfully used
for parameter compression in deep neural networks [9–11].

Tucker tensor decomposition [12, 13] is a standard gener-
alization of Principal Component Analysis (PCA) to tensors
and a tensor method of choice for problems including multi-
linear subspace analysis, dimensionality reduction, denoising,
parameter estimation, fusion, and compression [14–18], among
others. Higher Order Singular Value Decomposition (HOSVD)
[12] and Higher Order Orthogonal Iterations (HOOI) [13] are
the two most common algorithms for Tucker decomposition.
Despite their success in processing nominal data, HOSVD and
HOOI are known to be sensitive against data corruptions in
the form of highly deviating entries, fibers, or slabs [19, 20].
The reason can be traced to the L2-norm formulation of
Tucker decomposition, that quadratically emphasizes periph-
eral points. Similar to L1-norm based PCA alternatives [21–
23], to remedy the impact of outliers, L1-norm-based Tucker
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(L1-Tucker) variants have been proposed in the literature,
such as L1-HOSVD and L1-HOOI [20, 24–26]. These al-
ternatives have already demonstrated marked robustness, for
similar computational effort. L1-HOSVD computes each basis
individually by performing L1-PCA [27] on the matrix that is
derived by flattening the data tensor across the corresponding
mode [20]. L1-HOOI initializes at L1-HOSVD and then jointly
updates the bases in an iterative fashion. Both L1-HOSVD
and L1-HOOI achieve similar performance as their standard
L2-norm counterparts when applied on clean data, while
they are much more robust when applied to corrupted data.
Specifically, L1-HOOI performs better for moderate levels of
outlier corruption, while L1-HOSVD is preferred for higher
corruption levels.

This paper introduces a novel method for multi-linear
subspace estimation, based on L1-Tucker decomposition, im-
proved by a single, L1-fitting step. The proposed method,
named L1T-L1F (which stands for “L1-Tucker followed by
L1-Fitting”) computes the bases jointly. Moreover, the L1-
fitting step allows for a marked improvement in robustness,
as corroborated by the presented numerical studies.

II. PRELIMINARIES OF TUCKER DECOMPOSITION

Tensors are multi-way arrays. Vectors and matrices are 1-
way and 2-way tensors, respectively. Each entry of an N -
way tensor X 2 RD1⇥D2⇥···⇥DN is referenced by N indices
{in}Nn=1, where in 2 [Dn] := {1, 2, . . . , Dn} 8n. Analogous
to matrix rows and columns, for any n 2 [N ], mode-n
fibers of a tensor are identified by fixing all the indexes
in {im}m2[N ]\n. A tensor can be matricized by arranging
all its mode-n fibers as columns of a matrix. The mode-n
matricization (or “flattening”) of X is denoted by X (n) 2
RDn⇥

Q
i2[N]\n Di . The order of fiber arrangements follows

standard conventions [13]. The mode-n product of tensor
X 2 RD1⇥D2⇥···⇥DN with matrix U 2 Rrn⇥Dn , expressed as
Y = X ⇥nU, is a tensor of size D1 ⇥D2 · · ·⇥ rn · · ·⇥DN ,
such that Y(n) = U X (n). In shorthand notation, X ⇥n2[N ]

Un is equal to X ⇥1 U1 · · · ⇥N UN . Note that the order in
which the mode-n products are applied does not matter [13].

Tucker tensor decomposition low-rank approximates a ten-
sor X 2 RD1⇥D2···⇥DN as X̂ ⇡ G ⇥n2[N ] Un, where G 2
Rd1⇥d2···⇥dN is the core tensor, {Ui}i2[N ] 2 S(Di, di) are the
factor matrices (or bases), and dn < Dn is the (low) Tucker
rank for mode n. Here S(D, d) = {U 2 RD⇥d

;U>U = Id}
is the Stiefel manifold containing all orthonormal bases in



RD⇥d. In essence, G is the compressed version of X . In
its standard formulation, Tucker decomposition sets G =

X ⇥n2[N ] U
>
n and chooses bases {Un}n2[N ] such that the

L2-norm of the core (sum of its squared entries) is maximized:

max.
{Ui2S(Di,di)}i2[N]

��X ⇥i2[N ] U
>
i

��2
F
. (1)

In general, the exact solution to (1) is not known, but HOSVD
[12] and HOOI [13] are two standard approximate solvers.

Extending the L2-norm formulation of PCA to tensors,
Tucker inherits its outlier sensitivity, by quadratically ben-
efiting peripheral entries. To counteract this outlier sensi-
tivity of Tucker, researchers have extended L1-PCA to L1-
Tucker, for tensor processing [20]. L1-Tucker reformulates
(1), seeking the bases that maximize instead the L1-norm
of the core (sum of its absolute entries),

��X ⇥i2[N ] U
>
i

��
1
.

Analogous to HOSVD and HOOI, L1-HOSVD and L1-HOOI
[20], respectively, are the two state-of-the-art algorithms for
solving L1-Tucker. L1-HOSVD computes Un individually by
performing L1-PCA [27] of the mode-n flattening of the data,
X (n). L1-HOOI initializes at the L1-HOSVD solution and
iteratively updates Un by L1-PCA of the mode-n flattening
of the projected data [X ⇥m 6=n U>

m](n). In all cases, L1-PCA
can be solved exactly [27] or approximately [28], with low
computational cost.

In a multitude of numerical studies, both L1-HOSVD and
L1-HOOI have exhibited similar performance to that of their
standard L2-norm counterparts when applied on clean data. At
the same time, the L1-norm methods are much more robust
than standard, L2-norm HOSVD and HOOI, when applied
to corrupted data. Specifically, L1-HOOI has been seen to
perform better for moderate levels of outlier corruption, while
L1-HOSVD is preferred for higher corruption levels.

III. PROPOSED METHOD

This work proposes L1T-L1F: a novel algorithm for multi-
linear subspace estimation that improves the performance of
L1-Tucker (implemented simply by L1-HOSVD) by supple-
menting it with an L1-norm Fitting step [29]. A step-by-step
description of the proposed method follows.

First, the bases are initialized to the solution of L1-HOSVD.
That is, for every n,

Ũn  L1-PCA(Xn, dn), (2)

where Xn = X (n) and L1-PCA(Xn, dn) returns an exact or
approximate solution to

max
U2S(Dn,dn)

kU>Xnk1. (3)

In this work, to maintain a low computational cost, L1-
PCA is solved by means of the L1-BF algorithm of [28].
{Ũn}n2[N ] is the L1-HOSVD solution and its robustness
has been documented. In this work, L1-HOSVD is further
enhanced by means of the following L1-Fitting step.

For every n 2 [N ], taken in increasing order (or even
arbitrary), tensor Gn 2 Rd1⇥d2⇥···⇥Dn⇥···⇥dN is computed
by the L1-fitting

Gn = argmin
G

���X � G ⇥m<n U⇤
m ⇥k>n Ũk

���
1
. (4)

The mode-n fibers of Gn are expected to span the sought-after
mode-n subspace. Also, they are expected to be nearly outlier-
free, as they are computed by means of robust L1-fitting on
the robust L1-HOSVD bases.

As a final step, we return the mode-n basis that derives by
L1-PCA on the corresponding fitting matrix, as

U⇤
n  L1-PCA(An, dn), (5)

where An = [Gn ⇥m<n U⇤
m ⇥k>n Ũk](n).

Note on L1-Fitting: The problem in (4) is a linear regression
with L1-norm fitting error. The mode-n flattening of Gn in (4),
Gn 2 RDn⇥pn , for pn =

Q
m2[N ]\n dm, can be directly found

as
Gn = argmin

G2RDn⇥pn

���WnG
> �Xn

>
���
1
, (6)

where Wn = (UN ⌦UN�1 ⌦ · · · ⌦Un+1 ⌦Un�1 ⌦ · · · ⌦
U1) 2 RPn⇥pn , Pn =

Q
m2[N ]\n Dm, and ⌦ is the Kronecker

product. Accordingly, for each i 2 [Dn], the i-th row of Gn,
gn(i) = [Gn]

>
i,:, can be individually found as

gn(i) = argmin
g2Rpn

kWng � xn(i)k1 , (7)

where xn(i) = [Xn]
>
i,:. It is worth noting that (7) can be

rewritten as a standard linear program (LP) of the form

min
g2Rpn ; t2RPn

t>1Pn (8)

s.t. � [t]j  [Wn]j,:g � [xn(i)]j  [t]j 8j 2 [Pn] (9)

and solved by means of a standard LP solver, such as the
simplex algorithm or the interior-point method [30]. This can
be solved in polynomial time with respect to Dn and pn. The
problem in (7) can also be rewritten as

min
g2Rpn ; z2RPn

kzk1 (10)

s.t. Wng � z = xn(i) (11)

and solved by Alternating Direction Method of Multipliers
(ADMM) [31].

Note on scalability: The L1 regression problem in (7) is
typically over-constrained (Pn � pn) and can have pro-
hibitively high computational cost, compared to that of L1-
HOSVD/HOOI, as the size of the processed tensor increases.
However, the problem is readily amenable to standard cost-
reduction techniques for regression, such as sketching and
sampling [32–35].

Note on additional iterations: After the bases {Un}n2[N ]

are obtained, one could optionally repeat the steps 2-5 of the
algorithm in Fig. 1 T times, in an iterative fashion. Numerical
studies have shown that this could further improve the quality
of the derived bases.



Algorithm 1. Proposed L1T-L1F algorithm.
Input: Data X 2 RD1⇥D2⇥···⇥DN , Subspace ranks {dn}n2[N ].

1: Ũn  L1-PCA(X (n), dn) 8n.
2: for n = 1, 2, . . . , N :
3: Gn  argminG

���X � G ⇥m<n U⇤
m ⇥k>n Ũk

���
1
.

4: An = [Gn ⇥m<n U⇤
m ⇥k>n Ũk](n).

5: U⇤
n  L1-PCA(An, dn).

Return: {U⇤
n}n2[N ].

Fig. 1. Pseudocode of proposed algorithm L1T-L1F that enhances the L1-
HOSVD solution by an L1-norm Fitting step.

IV. NUMERICAL STUDIES

A. Synthetic Data: Subspace Learning

In this section, the performance of the proposed algorithm
L1T-L1F is evaluated on multi-linear subspace estimation,
in comparison with HOSVD, HOOI, L1-HOSVD, and L1-
HOOI, on synthetic data, in the presence of data corruptions.
The model dimensions are set to D1 = D3 = D5 = 5,
D2 = D4 = 8, and d1 = d2 = 3, d3 = d4 = d5 = 2.
First, a low-rank Tucker-structured tensor is generated as
X = G⇥n2[5]Un, where the entries of G 2 R3⇥3⇥2⇥2⇥2 are
independently drawn from N (0, 9) and the factor matrices are
arbitrarily fixed orthonormal bases {Un}n2[5] 2 S(Dn, dn).
The clean tensor is additively corrupted by dense noise and
sparse outliers. The resulting available data tensor is X corr =

X + N + O, where N contains independent entries from
N (0, 1) and O is a sparse tensor with only No = 10 non-
zero entries, drawn from N (0,�2

o) (i.e., outlier frequency
of occurrence as low as 0.125%). Using the aforementioned
methods, {Un}n2[5] is estimated.

To quantify the intensity of corruption, with respect to the
added noise, the Outlier-to-Noise Ratio (ONR) is defined as

ONR =
E{kOk2F }
E{kN k2F }

=
NoQ

n2[N ] Dn

�2
o

�2
n

. (12)

In this study, �o is set to 0, 2, . . . , 16, corresponding to ONR
values ranging between 0 and 0.32. The subspace-estimation
performance is measured by means of the Mean Aggregated
Normalized Subspace Squared Error (MANSSE)

MANSSE =

X

n2[N ]

1

2Ndn

���
���UnU

>
n � ÛnÛ

>
n

���
���
2

F
, (13)

where for any n 2 [5], Un is the sought-after mode-n
basis and Ûn is the estimated one. Fig. 2 shows the perfor-
mance curve of MANSSE vs. ONR over 1000 noise/outlier
realizations. For ONR  0.05, HOOI, L1-HOOI, and L1T-
L1F exhibit miniscule error. HOSVD and L1-HOSVD follow
with somewhat inferior performance. For higher levels of
corruption, both HOSVD and HOOI break down. L1-HOSVD
maintains similar levels of robustness across the board. L1-
HOOI performs better than L1-HOSVD for ONR = 0.25
but its performance deteriorate for higher levels of corruption.
Quite interestingly, the proposed L1T-L1F maintains outstand-
ing robustness and minimal error for every value of ONR.
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Fig. 2. Numerical experiment on subspace estimation (synthetic data).
MANSSE attained by HOSVD, HOOI, L1-HOSVD, L1-HOO1, and the
proposed L1T-L1F vs. ONR.

TABLE I
RUNTIME COMPARISON OF THE ALGORITHMS ON THE SYNTHETIC DATA.

Algorithm Runtime (s)
HOSVD 0.0032

L1-HOSVD 0.2212
HOOI 0.3282

L1-HOOI 0.7581
L1T-L1F (proposed) 3.1663

Moreover, we observe that iterating steps 2-5 of the proposed
method T = 10 times can further improve the performance.

A runtime comparison of the algorithms is shown in Table
I. L1 regression in (7) is solved by means of ADMM. We
observe that L1T-L1F requires more computational effort
compared to its counterparts. However, the computational cost
of the regression can be reduced by means of randomization
and other standard approximation techniques such as sketching
and sampling [32–35].

Another robust method for Tucker is Higher-Order Robust
PCA (HORPCA) [36], which seeks to decompose X corr into
two additive components, a low-rank one X̂ that estimates
X and a sparse one Ô that estimates O. A tunable param-
eter � regularizes emphasis between the low-rank-ness of X̂

and the sparsity of Ô. HORPCA can be solved by means
of the HORPCA-S algorithm introduced in [36]. HORPCA
can demonstrate outstanding robustness, similar to L1T-L1F
for very high SNR and optimally tuned parameter �. For
suboptimal choices of � and/or lower levels of SNR (when
X corr does not have a “low-rank plus sparse” structure), the
performance of HORPCA significantly drops (the reader is
referred to the numerical study in [20]). On the contrary, L1T-
L1F suppresses both outliers and noise and its performance
does not depend on any tunable parameter.



B. Uber Pickups Dataset: Compression

In this study, Tucker decomposition is used for tensor
compression/reconstruction and the performance of L1T-L1F
is compared with those of HOSVD, HOOI, L1-HOSVD,
and L1-HOOI. Our study is on the “Uber Pickups” dataset
[37], which consists of the number of Uber pickups in New
York City over six months. The original tensor is a 4-way
tensor of size 183 ⇥ 24 ⇥ 1140 ⇥ 1717, in which modes
represent number of days, hours, longitude and latitude, re-
spectively. In this study the tensor is reduced to a 3-way tensor
X 2 RD1=125⇥D2=125⇥D3=183, where the first two modes
represent location coordinates and third mode represents days.
The reduced tensor is obtained by summing the number of
Uber pickups in each day over all 24 hours, and under-
sampling each 1140⇥1717 slice of the tensor to size 125⇥125
by summing the entries over blocks.

In this study, the first 14 days of the data, corresponding
to X :,:,1:14, is used as training data, denoted by X tr 2
R125⇥125⇥14. The training data is corrupted by additive
outliers as X corr = X tr + O. A single 125 ⇥ 125

slab of X tr is arbitrarily selected and entries within it
are randomly corrupted with probability �. The corrupted
entries within O are randomly generated non-zero inte-
ger numbers generated by unif(v/10, v), for v 2 V :=

{10, 50, 100, 200, 250, 300, 350, 400, 450, 500}. The corrupted
training data X corr is Tucker decomposed along first two
modes with factor matrices U1, and U2 2 S(125, d) com-
puted. The third mode is considered to be the sample mode
with the third factor matrix constrained as U3 = I125⇥125.
The remaining entries of the collected data, X :,:,15:183, form
the test dataset, denoted by X te, and is used to evaluate
the effectiveness of the computed bases by each algorithm in
performing compression and reconstruction of unseen data. To
that end, the test data is reconstructed using the Tucker factors
computed on the training data by X̂ = X te ⇥n2[2] ÛnÛT

n .
The performance is measured by Mean Normalized Squared
Error (MNSE) defined by k bX � X tek2F kX tek�2

F . In this
study, the performances are evaluated over 1000 realizations
of corruption.

Fig. 3 demonstrates MNSE versus d, for 2  d  10,
and � = 0.2, and v = 500. The figure suggest that as
d increases, the error generally decreases for all methods.
HOOI and HOSVD, achieve the highest reconstruction errors
compared to the L1-based tucker decomposition counterparts.
Among the L1-based methods, L1T-L1F attains the lowest
reconstruction error for all d values.

Fig. 4 demonstrates MNSE versus the corruption magnitude
v, for d = 4, � = 0.2, and v 2 V . As the corruption magnitude
increases, the reconstruction error of all methods increase.
However for v � 100, L1T-L1F shows the most robustness
against the corruptions among all the methods, by achieving
the lowest error.

V. CONCLUSION

This work introduced L1T-L1F: a novel algorithm for multi-
linear subspace estimation that improves the performance of
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Fig. 3. Numerical Experiment on compression/reconstruction of tensor on
Uber Pickup dataset. MNSE attained by HOSVD, L1-HOSVD, HOOI, L1-
HOOI, and the proposed L1T-L1F vs. d. The corruption ratio is � = 0.2, and
the corruption magnitude is v = 500.
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Fig. 4. Numerical experiment on compression/reconstruction of tensor on
Uber pickup dataset. MNSE attained by HOSVD, L1-HOSVD, HOOI, L1-
HOOI, and the proposed L1T-L1F vs. v (corruption magnitude). The corrup-
tion ratio within corrupted slab is � = 0.2, and d = 4.

L1-Tucker (implemented by L1-HOSVD) by supplementing
it with an L1-norm Fitting step. Aiming at robustness against
corruptions, the proposed method utilizes L1-fitting for further
reducing the effect of outliers in the processed data, and jointly
computing the tucker factor matrices. The numerical studies
on synthetic and real data, for subspace estimation, and tensor
reconstruction, corroborate the effectiveness of L1T-L1F in all
the tested levels of data corruption.
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