Topology and its Applications 316 (2022) 108103

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Loday constructions on twisted products and on tori )

Check for
Updates

Alice Hedenlund *, Sarah Klanderman”, Ayelet Lindenstrauss “*, Birgit Richter ¢,
Foling Zou®

# Department of Mathematics, Uppsala University, Box 480, 751 06 Uppsala, Sweden

b Department of Mathematics, Marian University, 3200 Cold Spring Rd, Indianapolis, IN 46222, USA
¢ Department of Mathematics, Indiana University, 831 East 3rd Street, Bloomington, IN 47405, USA
4 Fachbereich Mathematik der Universitit Hamburg, Bundesstrafie 55, 20146 Hamburg, Germany

¢ Department of Mathematics, University of Michigan, 530 Church St, Ann Arbor, MI 48109, USA

ARTICLE INFO ABSTRACT
Article history: We develop a spectral sequence for the homotopy groups of Loday constructions
Received 31 January 2020 with respect to twisted cartesian products in the case where the group involved is

Received in revised form 30 June
2020
Available online 7 April 2022

discrete. We show that for commutative Hopf algebra spectra Loday constructions
are stable, generalizing a result by Berest, Ramadoss and Yeung, but prove that
several Loday constructions of truncated polynomial rings with reduced coefficients
MSC- are not stable by investigating their torus homology.

primary 18G90 © 2022 Elsevier B.V. All rights reserved.
secondary 55P43

Keywords:

Torus homology

(Higher) Hochschild homology
(Higher) topological Hochschild
homology

Stability

Twisted cartesian products

0. Introduction

Topological Hochschild homology and its higher versions are important homology theories in the study of
commutative rings and ring spectra. These are specific examples of the Loday construction, whose definition
relies on the fact that commutative ring spectra are enriched in simplicial sets: for a simplicial set X and a
commutative ring spectrum R one can define the tensor X ® R as a simplicial spectrum whose n-simplices
are
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N\ R

reX,

By slight abuse of notation, X ® R also denotes the commutative ring spectrum that is the geometric re-
alization of this simplicial spectrum. This recovers topological Hochschild homology of R, THH(R), when
X = S*, and higher topological Hochschild homology, THH™ (R), for higher dimensional spheres S™. Ten-
soring satisfies several properties [7, VII, §2; §3], two of which are:

e If X =X, US‘(O X5 is a homotopy pushout, the tensor product of R with X splits as a homotopy pushout
in the category of commutative ring spectra (which is the derived smash product):

(X1 U%, X2) ® R~ (X1 ® R) Alx,pr) (X2 © R).
e A product of simplicial sets X x Y gives rise to an iterated tensor product:
(XXY)®@R~X® (Y ®R).

This last expression does not, however, imply that calculating the homotopy groups of (X X Y) ® R is
easy. In particular, if one iterates the trace map from algebraic K-theory to topological Hochschild homology
n times, one obtains a map

KM™(R)= K(K(...(K(R))...)) = (S* x ... x SHY ®R.
— —_—
Since iterated K-theory is of interest in the context of chromatic red-shift, one would like to know as much
about (S x ... x S')® R as possible.

In some good cases, the homotopy type of X ® R only depends on the suspension of X in the sense that
if ¥ X ~ 3Y, then one has X ® R ~ Y ® R. This property is called stability. Stability for instance holds for
Thom spectra R that arise from an infinite loop map to the classifying space BGL1(S) (see Theorem 1.1
of [22]), or for R = KU and R = KO [10, §4].

One can also work relative to a fixed commutative ring spectrum R and consider commutative R-algebra
spectra A and ask whether X ® p A only depends on the homotopy type of X.X. In this paper, we will often
work with coefficients. For a pointed simplicial set X we place a commutative A-algebra spectrum C' at the
basepoint of X. In other words, when X is pointed then the inclusion of the basepoint makes X ®pr A into
a commutative augmented A-algebra, and we consider LE(A;C) = C Aa (X ®r A), the Loday construction
with respect to X of A over R with coefficients in C. We call the pair (A;C) stable if the homotopy
type of LE(A;C) only depends on the homotopy type of XX. Note that the ring R is not part of the
notation when we say that (4; C) is stable although the question depends on the choice of R, so the context
should specify the R we are working over. We call the commutative R-algebra A multiplicatively stable as
in [10, Definition 2.3] if X ~ Y as pointed simplicial sets implies that LE(A) ~ LE(A) as commutative
augmented A-algebra spectra. If A is multiplicatively stable, then for any cofibrant commutative A-algebra
C, the pair (4;C) is stable (see [10, Remark 2.5]).

Moore introduced twisted cartesian products as simplicial models for fiber bundles. We develop a Serre
type spectral sequence for Loday constructions of twisted cartesian products where the twisting is governed
by a constant simplicial group. As a concrete example we compute the Loday construction with respect to
the Klein bottle for a polynomial algebra over a field with characteristic not equal to 2.

Work of Berest, Ramadoss and Yeung implies that the homotopy types of LE*(HA; Hk) and LiF(HA)
only depend on the homotopy type of XX if k is a field and if A is a commutative Hopf algebra over k. We
generalize this result to commutative Hopf algebra spectra.
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We investigate several algebraic examples, i.e., commutative ring spectra that are Eilenberg-Mac Lane
spectra of commutative rings. For instance, we show that the pairs (HQt]/t™; HQ) are not stable for all
m > 2 by examining the Loday construction of the m-torus. This extends a result by Dundas and Tenti [6].
We also prove integral and mod-p versions of this result.

Content. In Section 1 we recall the definition of the Loday construction and fix notation. Section 2 contains
the construction of a spectral sequence for the homotopy groups of Loday constructions with respect to
twisted cartesian products. Our results on commutative Hopf algebra spectra can be found in Section 3. In
Section 4 we prove that truncated polynomial algebras of the form Q[¢]/t™ and Z[t]/t™ for m > 2 are not
multiplicatively stable by comparing the Loday construction of tori to the Loday construction of a bouquet
of spheres corresponding to the cells of the tori. We also show that for 2 < m < p the pairs (F,[t]/t"™;F,)
are not stable.
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1. The Loday construction: basic features

We recall some definitions concerning the Loday construction and we fix notation.

For most of our work we can use any good symmetric monoidal category of spectra whose category of
commutative monoids is Quillen equivalent to the category of E..-ring spectra, such as symmetric spectra
[9], orthogonal spectra [14] or S-modules [7]. As parts of the paper require us to work with a specific model
category we chose to work with the category of S-modules everywhere except in Section 3, where we will
work in the co-category of spectra in the sense of Lurie [13].

Let X be a finite pointed simplicial set and let R — A — C be a sequence of maps of commutative ring
spectra.

Definition 1.1. The Loday construction with respect to X of A over R with coefficients in C' is the simplicial
commutative augmented C-algebra spectrum L% (A;C) given by

LYA;C)=Cn N\ A

2E€X, \*

where the smash products are taken over R. Here, * denotes the basepoint of X and we place a copy of C
at the basepoint.

The simplicial commutative augmented A-algebra spectrum X ®p A, which in the Loday construction
notation would be written as LE(A) = LE(A; A), is given by Nsex, A in degree n where again all smash
products are over R. It has face maps d; defined by multiplying all the copies of A over z € X, for which
d;x = y into the copy of A over y for every y € X,,_1, and degeneracy maps s; defined similarly which insert
the unit maps 74: R — A over all (n + 1)-simplices which are not hit by s;: X,, — X, 1. Then LE(A;C),
is CAa/\,c x, A, a pushout in the category of commutative ring spectra, for all n. Using the smash product
of the identity of C' with the simplicial structure maps above defines the simplicial structure on £ (4;C).
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As defined above, E;}(A; () is a simplicial commutative augmented C-algebra spectrum. In the following
we will always assume that R is a cofibrant commutative S-algebra, A is a cofibrant commutative R-algebra
and C is a cofibrant commutative A-algebra. This ensures that the homotopy type of LE(4;C) is well-
defined and depends only on the homotopy type of X.

Remark 1.2. When R — A — C is a sequence of maps of commutative rings, we can of course use the above
definition for HR — HA — HC. The original construction by Loday [11, Proposition 6.4.4] used

Co @ 4

zE€X, \*

instead with the tensors taken over R as the n-simplices in L& (4;C).

This algebraic definition also makes sense if R is a commutative ring and A — C' is a map of commutative
simplicial R-algebras. It continues to work if R is a commutative ring and A — C' is a map of graded-
commutative R-algebras, with the n-simplices defined as above, but the maps between them require a sign
correction as terms are pulled past each other—see [19, Equation (1.7.2)].

An important case is X = S™. In this case LE, (4; C) is known as THH™-E(A; C) and is the higher order
topological Hochschild homology of order n of A over R with coefficients in C. Let k be a commutative ring,
A be a commutative k-algebra, and M be an A-module. If A is flat over k, then 7, TH Hik (HA; HM) =
HH”(A4; M) [7, Theorem IX.1.7] and this also holds for higher order Hochschild homology in the sense of
Pirashvili [19]:

m THHI R (A M) 22 HHIYF (A M) (1.3)
if A is k-flat [5, Proposition 7.2].
Given a commutative ring A and an element a € A, we write A/a instead of A/(a).

2. A spectral sequence for twisted cartesian products

We will start by letting R — A be a map of commutative rings and studying Loday constructions £&( A7)
over a finite simplicial set B, where 7 indicates a twisting by a discrete group G that acts on A via ring
isomorphisms. This construction can be adapted analogously to Definition 1.1 to allow coefficients in an
A-algebra C if B is pointed. Also, as discussed in Remark 1.2, it can be extended to settings where R — A
is a map of commutative ring spectra, or R is a commutative ring and A is a graded-commutative R-algebra
or a simplicial commutative R-algebra.

If we have a twisted cartesian product (TCP) in the sense of [15, Chapter IV] E(r) = F x, B where
the fiber F' is a simplicial R-algebra and the simplicial structure group G acts on F' by simplicial R-algebra
isomorphisms, it is possible to generalize this definition of the Loday construction to allow twisting by a
simplicial structure group, as explained in Definition 2.1 below.

We show an example where such a TCP arises: if we start with a TCP E(7) = F x, B of simplicial
sets with twisting in a simplicial structure group G acting on F' simplicially on the left and with a map of
commutative rings R — A, we can use that twisting to construct a TCP with fiber equal to the simplicial
commutative R-algebra £L£(A) and with the structure group G acting on L&(A) by R-algebra isomorphisms.
In that situation, we get that

L (A) = LE(LEA)T),
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Wthh generalizes the fact that for a product, L&, 5(A) = LE(LE(A)). If the structure group G is discrete,
e., if G is a constant simplicial group, £ E(T)(A) can be written as a bisimplicial set and we get a spectral
sequence for calculating its homotopy groups.

Definition 2.1. Let B be a finite simplicial set, R be a commutative ring, and A be a commutative R-
algebra (or a graded-commutative R-algebra, or a simplicial commutative R-algebra). Let G be a discrete
group acting on A from the left via isomorphisms of R-algebras, and let 7 be a function from the positive-
dimensional simplices of B to G so that

7(b) = [r(dob)] " 7(d1b) for ¢ > 1,b € By,

7(d;b) = 7(b) fori>2,g>1,b€ By, (2.2)
T(8:b) = () fori >1,¢>0,b€ By, and '
T(sob) = for ¢ > 0,b € B,.

The twisted Loday construction with respect to B of A over R twisted by T is the simplicial commutative
(resp., graded-commutative, or bisimplicial commutative) R-algebra LE(A™) given by

LEA), =LE ()= ) A

bEB,

where the tensor products are taken over R, with

d0<® fb)z ® ge with g. = H T(b>(fb)a

beB, cEBp 1 b:dgb=c

di<®fb>= ® ge With g. = H fy for 1 <i<mn, and

beB, c€EB, 1 b:d;b=c

si<®fb>: Q) hawithhg= [[ foforo<i<n.

beB,, d€By 41 bisib=d

We should think of the copy of A sitting over a simplex b € B, as sitting over its Oth vertex, and of 7(b)
as translating between the A over b’s Oth vertex and the A over b’s 1st vertex.

Lemma 2.3. The definition above makes LE(A™) into a simplicial set.

Proof. To check this we need only check the relations involving dg, since the ones that do not involve 7 work
in the same way that they do in the usual Loday construction. For j > 1, we get dod; = d;j_1dy because in
both terms, for any ¢ € B,,_» we get the product over all b € B,, with dod;jb = d;j_1dpb = c of terms that are
either 7(b)(fy) or 7(d;b)(fp). These are the same by the condition in Equation (2.2) above. For j = 1, we
get the product over all b € B,, with dod1b = dodob = ¢ of terms that are either 7(d10)(fp) or 7(dob)7(b)(fp),
which again agree by Equation (2.2). We get dysg = id since 7(sob) = eg, and dgs; = s;—1dp for i > 0 since
for those i, 7(s;b) = 7(b). O

Following Moore, May considers the following simplicial version of a fiber bundle [15, Definition 18.3]:

Definition 2.4. Let F' and B be simplicial sets and let G be a simplicial group which acts on F' from the
left. Let 7: By — G4—1 for all ¢ > 0 be functions so that
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do7(b) = [7(dob)]*7(d1b) for ¢ > 1,b € By,
7(d;1b) = d;7(b) fori>1,q>1,b€ By,
7(8i410) = $;7(b) for i > 0,9 > 0,b € By, and
T(s0b) = eq for ¢ > 0,b € B,.

The twisted cartesian product (TCP) E(t) = F x, B is the simplicial set whose n-simplices are given by
E(T)n = F, X By,
with simplicial structure maps

(i) do(f,0) = (7(b) - dof, dob),
di(£,b) = (dif,d;b) Vi > 0, and

These structure maps satisfy the necessary relations to be a simplicial set because of the conditions that 7
satisfies.

Definition 2.5. If R is a commutative ring and E(7) = C' X, B is a TCP as in Definition 2.4 where C is a
commutative simplicial R-algebra and the simplicial group G acts on C by R-algebra isomorphisms (that
is, for every ¢ > 0, the group G, acts on the commutative R-algebra C, by R-algebra isomorphisms), then
we can use the twisting 7 to define the twisted Loday construction with respect to B of C over R, twisted
by T,

‘Cg(CT)n = ‘an (On) = ® Cn

beB,

with twisted structure maps given on monomials ), B, Jv, with f, € C, for all b € By, by

d0<® fb> = Q) gewithge= [[ r(b)(dofs),

beB, cEB, 1 b:dob=c

dl<® fb> = ® g. with g. = H difp for 1 <i<mn, and (2.6)

beEB, CcEBn 1 b:d;b=c
s; <® fb> = ® ha with hg = H sify for 0 <i < n.
beB,, d€Bn 11 b:s;b=d

Note that there are two sets of simplicial structure maps being used, those of C' inside and those of B
outside. This looks like the diagonal of a bisimplicial set, but since our twisting 7: By4+1 — G4 explains only
how to twist elements in Cy, this is not the case unless the structure group G is a discrete group, viewed as
a constant simplicial group.

If the structure group G is discrete, there is overlap between Definition 2.1 and Definition 2.5. The
simplicial commutative R-algebra case of Definition 2.1 actually gives a bisimplicial set: we use only the
simplicial structure of B in the definition and if A also has simplicial structure, that remains untouched.
The diagonal of that bisimplicial set agrees with the constant simplicial group case of Definition 2.5.

Given any TCP of simplicial sets E(7) = F' x, B as in Definition 2.4 and a map R — A of commutative
rings, we can construct LE(A) x, B which is a TCP of commutative simplicial R-algebras as in Definition 2.5
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using the same structure group G and twisting function 7: B; — G4—1. We use the simplicial left action of
G, on F,, which we denote by (g, f) — gf, to obtain a left action by simplicial R-algebra isomorphisms

Gn x LE (A) = LE (A)

(g, ® ar) — ® Ag-1§. (2.7)

J€Fn f€Fn

Since the original action of G, on F,, was a left action, this is a left action. In the original monomial, the
fth coordinate is ay. After g € G, acts on it, the fth coordinate is by = az-1;. After h € G, acts on the
result of the action of g, the fth coordinate is by-1; = ag-1,-15, which is the same as the result of acting
by hg on the monomial.

Proposition 2.8. If E(7) = F x,; B is a TCP and R — A is a map of commutative rings, and we use
the simplicial set twisting function T to construct a simplicial R-algebra twisting function to obtain a TCP
LE(A) x, B as above, we get that

L3 (A) = LE(LE(A)T).

This uses the definition of the Loday construction of a simplicial algebra twisted by a simplicial group
in Definition 2.5.
Proposition 2.8 generalizes the well-known fact that for a product of simplicial sets,

L. p5(A) = LE(LE(A)).
Proof. Both Eg(T)(A) and LE(LE(A)7) have the same set of n-simplices for every n > 0:
Ri- ® 12Q (® A
e€E(T)n (f,b)EF, X B, beB, feF,

We have to show that the simplicial structure maps agree with respect to this identification.
For 1 <i < n, for any choice of elements z () € A,

d; QR wyw | = X Y(g.c)

(f,b)eFnx By (9,¢)€Fp_1XBn_1

where

Y(g.0) = H Z(fb) = H H Z(£.b)

(f:b):(di f,dib)=(g,c) b:dib=c \ f:dif=g

The internal product on the right-hand side is what we get from d; on £(A) and the external product is
what we get from d; of L%, so this agrees with the definition in Equation (2.6).

The proof that the s;, 0 < ¢ < n agree is very similar.

The interesting case is that of do. For any choice of elements z ;) € A, the boundary dy associated to
LE(T)(A) satisfies

do ® Tb) | = ® Y(g,c)s (29)

(f7b)EFn><Bn (gvc)an—IXanl
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where

Y(g.0) = H T(fb) = H H Z(f.b)

(f;b):do (f,0)=(g,¢) bidob=c \ f:7(b)-dof=g

From the LE(LE(A)) point of view, by Equation (2.6).

d| @(XRzun)]| =& [] *®do| & zsu)

beB, feF, c€Byp—1 bidob=c feF,
= II o & 1II zuw
¢€B,_1 b:idob=c g€F, 1 f:dof=g

- ® H ® H Z(f.b)

c€Bp—1 bidob=c \g€Fn_1 f:dof=7(b)"1g

= 11 I 2w

(g,¢)€EFp_1XBy_1 bidob=c \ f:dof=7(b)"1g
which is exactly what we got in (2.9). O

If G is a discrete group and E(7) is constructed using G, then for every ¢ > 0 there is a function
T: By — G satisfying the conditions listed in Equation (2.2) and G acts simplicially on F' on the left.

Theorem 2.10. If E(7) = F X, B is a TCP where the twisting is by a constant simplicial group G and if
R — A is a map of commutative rings such that m,(LE(A)) is flat over R, then there is a spectral sequence

Ep o = mp((LE(mLE(A)))g) = Tprq(LEr)(A))- (2.11)

Here, m.LE(A) is a graded commutative R-algebra. For any fixed p and g, we consider the degree g
part of ,Cgp (m LE(A)T), denoted by (Egp (mLE(A)T)),. This forms a simplicial abelian group which in
degree p is (L (m.LE(A)))q, with simplicial structure maps induced by those of B with the twisting by 7,
and 7, ((LE(m.LE(A)T)),) denotes its pth homotopy group. The flatness assumption above is for instance
satisfied if R is a field.

Proof. Since the twisting is by a constant simplicial group G, we are able to form a bisimplicial R-algebra

(m.n)— Q) X A (2.12)

bEBy, fEF,

In the n-direction, the simplicial structure maps d” and s!” will simply be the simplicial structure maps of
the Loday construction £L£(A) applied simultaneously to all the copies of LE(A) over all the b € B,,. In the
m direction, d? and s are the simplicial structure maps of the twisted Loday construction, as in Equation
(2.2) in Definition 2.1. These commute exactly because the simplicial structure maps in G are all equal to
the identity. For any choice of x;, € LE(A),, for all b € B,,,

d5d5(®xb)=d§(®d5<xb>)= Q Tl )

bEB, bEB, CcEB,,—1 b:dpb=c
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while

dfd{?(@xb):df QR II ®» )= & [ a'@E®) - ),

beEB, cEB,,—1 b:dpb=c cEB,y,—1 b:dgb=c

which is the same since

d (r(B) - 2) = dy(7(b)) - dF () = 7(b) - 47 ():
Note that since the twisting is by a constant simplicial group, L3 (4) = LE(LE(A)7) is exactly the
diagonal of the bisimplicial R-algebra in Equation (2.12).

We use the standard result (see for instance [8, Theorem 2.4 of Section IV.2.2]) that the total complex
of a bisimplicial abelian group with the alternating sums of the vertical and the horizontal face maps is
chain homotopy equivalent to the usual chain complex associated to the diagonal of that bisimplicial abelian
group. Since we know that the realization of the diagonal is homeomorphic to the double realization of the
bisimplicial abelian group, in order to know the homotopy groups of the double realization of a bisimplicial
abelian group, we can calculate the homology of its total complex with respect to the alternating sums of
the vertical and the horizontal face maps. Filtering by columns gives a spectral sequence calculating the
homology of the total complex associated to a bisimplicial abelian group consisting of what we get by first
taking vertical homology and then taking horizontal homology. In the case of the bisimplicial abelian group
we have in Equation (2.12), the vertical gth homology of the columns will be the gth homology with respect
to Yo (—1)"d!" of the complex

&) L£F(A)

beB,,

and this is isomorphic to (®beBm LE(A)). Since we assumed that 7, (LE(A)) is flat over R, we obtain

Tq ( X E?M)) = (Q) m(LE(A)))g.

beB, bEB,

Here, the subscript ¢ denotes the degree g part of the graded abelian group @, T (LE(A)).

Moreover, the effect of the horizontal boundary map on @),z 7. (LE(A)) is the boundary of the twisted
Loday construction, with the action of G on the graded-commutative R-algebra m.(L%(A)) induced by that
of G on the commutative simplicial R-algebra £(A). As the boundary map preserves internal degree, we
get the desired spectral sequence. O

2.1. Norms and finite coverings of S*

The connected n-fold cover of S! given by the degree n map can be made into a TCP as follows. Let
B = S! be the standard simplicial circle and C,, = (y: v = 1) be the cyclic group of order n with generator
~. The twisting function 7: S(} — C, sends the non-degenerate simplex in S} to v and is then determined
by Equation (2.2). Let F = C,,, viewed as a constant simplicial set; then C,, acts on itself at every simplicial
degree in F by left multiplication. Then E(7) = F X, B is in fact another simplicial model of S! with n
non-degenerate 1-simplices. Therefore,

LR (A) ~ LB (A) and  7m.(LE . (A) = HHE(A)
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for every commutative R-algebra A. In this case, LEA = A®r" is the constant commutative simplicial
R-algebra, with the C),-action given by

Y1 ® - @ap) =, @1 @ @ ap_1.

As LE(A) is a constant simplicial object, we obtain that

A®RT 5 =0,

T LR(A) =
) {0, £ > 0.

If A is flat over R, the spectral sequence of Equation (2.11) is

(A).

Eﬁil] = Wp(ﬁgl (A®Rn)7)q = 7Tp+q£§(_’_) (A) =~ HHII?%-HI

In our case, the spectral sequence is concentrated in g-degree zero and hence it collapses, yielding
(L& (A®TM)T) = HHJY(A).

With Proposition 2.8 we can identify C%(T) (A) if A is a commutative ring spectrum and we recover the
known result (see for instance [2, p. 2150]) that

THH¢, (NS A) ~ THH(A). (2.13)

Here, THH¢, (A) = Ngl (A) is the C,-relative THH defined in [2, Definition 8.2], where NS A is the
Hill-Hopkins-Ravanel norm. See also [1, Definition 2.0.1]. The identification in (2.13) is an instance of the
transitivity of the norm: NglNec"A ~ NeslA.

2.2. The case of the Klein bottle

For the Klein bottle, K¢, we compute the homotopy groups of the Loday construction of the polynomial
algebra k[z] for a field k& using our TCP spectral sequence. We assume that the characteristic of k is not
2, so 2 is invertible in k. Note that away from the prime 2, the obvious projection map K¢ — S! is an
equivalence, so we know that

e (Lhco(K[z])) 2 ma (L (Kla])) 2 HHE (K[2]) 2 Klo] © A(ex).

In this subsection, we show how one could also calculate this using the TCP spectral sequence.
We will use the following simplicial model for the Klein bottle:

K0 = (I xSY/(0,t) ~ (1,lip(t))

where flip is the reflection of the circle about the y-axis. We use the model of the circle with two vertices
vo and v; and two edges o and ag:

U1

(€3] &%)

Vo
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Then the flip map is a simplicial map fixing vy and v; and exchanging the «;s. It induces a map on
T (L% (k[z]) = k[z] ® A(ez). It maps x to = because k[z] corresponds to the value at the base point. Set
Zag = Lsgug @ Legvy @ Tay @ 1oy and o, 1= leipy @ Lsgu, ® Loy ® Za, . The generator ez can be represented
by z4, — Za,, S0 exchanging the o;s sends ex to —ez.

The nontrivial twist 7: S* — Cy = (v) maps the non-degenerate 1-cell a € S} to v and is then determined
by (2.2), yielding

do(ap® a1 ®...Qap) =ag 701 Qa2 ...R ay. (2.14)

The TCP spectral sequence (2.11) in this case takes the form

B2, =, ((c’g (mw’;l(k[x])r))q) o gy (k)

and since m, L%, (k[z]) = k[z] @ A(ex),

El, =m ((c’g (k:[a:] ® A(sa:)T) > q) ,

which is the pth homotopy group of the simplicial k-vector space whose p-simplices are

(c’g}) (k[z] ® A(ea:)T))q

For each p, U;‘; (k[z] @ Alex)) ~ E’;;(k[x]) Rk ﬁ’[}; (A(ex)), and so Lk, (k[z] ® A(ex)™) ~ LK, (k[z]) @k
E’gl (A(ex)™). We can think of this tensor product of simplicial k-algebras as the diagonal of a bisimplicial
abelian group, and by [8, Theorem 2.4 of Section IV.2.2] the total complex of a bisimplicial abelian group
with the alternating sums of the vertical and the horizontal face maps is chain homotopy equivalent to the
usual chain complex associated to the diagonal of that bisimplicial abelian group. In this case of a tensor
product, the total complex was obtained by tensoring together two complexes, and since we are working
over a field its homology is the tensor product of the homology of the two complexes, so

(25 (el o Ao ) ) ) = (@atkia)).) . (€5 (Ae)).).

The first factor is just the Hochschild homology of k[z]. It sits in the Oth row of the E? term since x has
internal degree zero, and gives us . (L%, (k[z]) = k[z] ® A(ex) concentrated in positions (0,0) and (1,0).
All spectral sequence differentials vanish on it for degree reasons, and so it will just contribute k[z] ® A(ex)
to the E* term.

The second factor in the E? term is the twisted Hochschild homology for A(ex). To calculate it, we
can use the normalized chain complex. Elements of the form ex ® ... ® ex will map to zero under the
Hochschild boundary map. We need to consider the odd and even cases of differentials on elements of the
form 1®ex®...®cx. The d; maps in the twisted and untwisted Hochschild complex are all the same except
for dy, which incorporates the twisting action of 7. Therefore we have

d(1 ® (ex)®?*) = —(ex)®?* 4 (=1)%(=1)(e2)®%F = —2(ex)®?*

d(l ® (El‘)®2k+1) _ —(5x)®2k+1 + (—1)2k+1(1)(€$)®2k+1 — —2(€$)®2k+1.

Here, the first —1 comes from the v action on ez as in (2.14) and the extra +1 in brackets come from passing
the one-dimensional ex past an odd or an even number of copies of itself. Since we are assuming that 2 is
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invertible in k, we get that the second part of the E? term has only k left in degree 0. So, if 2 is invertible
in k, then the entire E? term is just k[z] ® A(ex) in the Oth row, and the TCP spectral sequence collapses
and confirms that

T LR, (k[x]) 22 k[z] @ Aex).
3. Hopf algebras in spectra

In this section, we prove that the Loday construction is stable for commutative Hopf algebra spectra,
generalizing a result of Berest, Ramadoss, and Yeung [3]. Since dealing with comonoid objects in model
categories of spectra is very restrictive, see [18], in this section we will work in the co-category of spectra,
Sp, in the sense of Lurie [13]. We start by describing what we mean by the notion of a commutative Hopf
algebra in the co-category Sp. Let CAlg denote the co-category of E-ring spectra.

Definition 3.1. A commutative Hopf algebra spectrum is a cogroup object in CAlg.
Hopf algebra spectra are fairly rare, so let us list some important examples.

Example 3.2. If G is a topological abelian group then the spherical group ring S[G] = ¥°G, equipped with
the product induced by the product in G, the coproduct induced by the diagonal map G — G x G, and
the antipodal map induced by the inverse map from G to G is a commutative Hopf algebra spectrum. This
follows from the fact that the suspension spectrum functor ¥5°: & — Sp is a strong symmetric monoidal
functor. Here S denotes the co-category of spaces.

Example 3.3. If A is an ordinary commutative Hopf algebra over a commutative ring k& and A is flat as a
k-module, then the Eilenberg-Mac Lane spectrum H A is a commutative Hopf algebra spectrum over Hk
because the canonical map

HAANgr HA — H(A@k A)
is an equivalence.

The category of commutative ring spectra is tensored over unpointed topological spaces and simplicial
sets in a compatible way [7, VII, §2, §3]. By [12, Corollary 4.4.4.9], this yields an equivalence of mapping
spaces of co-categories

CAlg(X ® A, B) ~ S(X, CAlg(A, B)). (3.4)

See also [20, §2] for a detailed account on tensors in co-categories.

If we consider a commutative Hopf algebra spectrum #, then the space of maps CAlg(#, B) has a
basepoint: the composition of the counit map to the sphere spectrum H — S followed by the unit map
S — B is a map of commutative ring spectra. The functor that takes an unbased space X to the topological
sum of X with a point + is left adjoint to the forgetful functor, so we obtain an equivalence

S(X,CAlg(H, B)) ~ S.(X4,CAlg(H, B)) (3.5)

where S, denotes the oo-category of based spaces. For path-connected spaces Z, May showed that the free
E,-space on Z, Cy,(Z), is equivalent to Q"X"Z [16, Theorem 6.1]. This equivalence is natural in Z. Segal
extended this result to spaces that are not necessarily connected. He showed that for well-based spaces
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Y there is a model of the free Ej-space, C1(Y), as follows: The spaces C1(Y) and C7(Y) are homotopy
equivalent, C1(Y") is a monoid, its classifying space BC/(Y) is equivalent to X(Y") [23, Theorem 2], and thus,
C1(Y) = QBC{(Y) is a group completion. We can apply this result to Y = X, because X is well-based,
thus BC{(X ) ~ ¥(X4). Note that QBC](X4) ~ QOX(X4).

Nikolaus gives an overview about group completions in the context of co-categories [17]. He shows that
for every Fj-monoid M, the map M — QBM gives rise to a localization functor of oco-categories in the
sense of [12, Definition 5.2.7.2], such that the local objects are grouplike F;-spaces. In particular, there is a
homotopy equivalence of mapping spaces [12, Proposition 5.2.7.4]

MapEl‘S(QBCi (X-i-)? W) = MapEIS(C{ <X+)7 W)

if W is a grouplike E;-space. Here, 1S denotes the co-category of Ei-spaces.
If H is a commutative Hopf-algebra, then the space CAlg(H, B) is a grouplike E;-space. Therefore, by
using Equations (3.4) and (3.5), we obtain a chain of homotopy equivalences

CAlg(X @M, B) ~ S(X, CAlg(H, B))
~ S, (X, CAlg(H, B))
~ Mapp, 5(C(X), CAlg(H, B))
~ Mapp, s(QBC} (X.), CAlg(H, B))
~ Map, s (Q5(X ), CAlg(#, B)).

If ¥(X,) ~ %(Y}) is an equivalence in S, then QX (X ) ~ QX (Y, ) as grouplike Fj-spaces, and therefore
we get a natural homotopy equivalence

CAlg(X ® H,B) ~ CAlg(Y ® H, B)

for all B € CAlg.
Since the Yoneda embedding is fully faithful, this gives:

Theorem 3.6. If H is a commutative Hopf algebra spectrum and if ¥(X 1) ~ 3(Y}) is an equivalence in Sy,
then there is an equivalence X @ H ~Y ® H in CAlg.

Remark 3.7. If X is a pointed simplicial set, then the suspension ¥ (X ) is equivalent to (X )V.S*. Therefore,
if X and Y are pointed simplicial sets, such that X(X) ~ X(Y) as pointed simplicial sets, then we also
obtain an equivalence between X (X ) and (Y7 ).

We stated the theorem above in the absolute setting of CAlg but one can also work relative to a fixed
commutative ring spectrum R and obtain an analogue of the above result for commutative R-Hopf algebras.
Let CAlgy denote the co-category of Eo-R-ring spectra.

Corollary 3.8. Let k be a commutative ring and let A be a commutative Hopf algebra over k that is flat as
an underlying k-module.

o If (X)) = X(Y}) is an equivalence in S, then there is an equivalence X Qpr HA ~Y @ HA in
CAlgyy-
o If XY €8, and if 2(X) =~ X(Y) in Sk, then X @ur HA~Y Qi HA in CAlgy,.
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The above result slightly generalizes the stability result that can be obtained from [3, Theorems 5.1, 5.2]
because the authors of [3] work relative to a field k. It is known that Thom spectra are stable [22, Theorem
1.1], so the case of suspension spectra of topological groups does not give anything new.

Segal’s result from [23] also works for n larger than 1. If two spaces are equivalent after an n-fold
suspension, then having an F,,-coalgebra structure on a Hopf algebra guarantees that the Loday construction
will be equivalent on these two spaces. There are interesting pairs of spaces that are not equivalent after
just one suspension, but need iterated suspensions to become equivalent: Christoph Schaper [21, Theorem 3]
shows for instance that for affine arrangements A one needs at least a (7.4 +2)-fold suspension in order to get
a homotopy type that only depends on the poset structure of the arrangement. Here, 74 is a number that
depends on the poset data of the arrangement, namely the intersection poset and the dimension function.

4. Truncated polynomial algebras

One way of showing that a commutative R-algebra spectrum A is not stable is to prove that the homotopy
groups of the Loday construction £X,(A) differ from those of £§n V( ) gr(A), as in [6]. Here, we write
k=1 n

k

\/() Sk for the (Z)—fold V-sum of S*. Indeed, there is a homotopy equivalence
k

(1) =3\ \/ 5H). (4.1)
M=)

If A is augmented over R, then for proving that R — A is not stable, it suffices to show that

L7 (AR) % Ly se(AR).

()
See [10, §2] for details and background on different notions of stability.

In the following we restrict our attention to Eilenberg-Mac Lane spectra of commutative rings and we will
use this strategy to show that none of the commutative Q-algebras Q[t] /™ for m > 2 can be multiplicatively
stable. We later generalize this to quotients of the form Q[¢t]/¢(¢) where ¢(t) is a polynomial without constant
term, and to integral and mod-p results.

Pirashvili determined higher order Hochschild homology of truncated polynomial algebras of the form
k[z]/z"t1 additively when k is a field of characteristic zero [19, Section 5.4] in the case of odd spheres.
A direct adaptation of the methods of [5, Theorem 8.8] together with the flowchart from [4, Proposition 2.1]
yields the higher order Hochschild homology with reduced coefficients for all spheres. See also [6, Lemma 3.4].

Proposition 4.2. For allm > 2 andn > 1

Ag(zn) ® Qynt1], ifn is odd,
H[n]yQ t tm; ~ Q
S el {Q[!ﬁn] Q@ AQ(Yn+1), if n is even.

In both cases, Hochschild homology of order n is a free graded commutative Q-algebra on two generators
in degrees n and n + 1, respectively, and the result does not depend on m.
We will determine for which m and n we get a decomposition identifying m, T"( [t]/t"™; Q) with
*vazl V(n) o (Q[t]/t™; Q). Note that

k

Q) HHEC(Qlt) /1™ Q), (4.3)

n
k= 1(k

Ly s @ Q) = Q@ L8 @I/
@) k=1 ()
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where all unadorned tensor products are formed over Q. Thus, if we have an isomorphism between
Q m. Q
T L (Q[t]/t™; Q) and ﬂ'*ﬂ\/Z:l V(;;)

W*E%L(Q[t]/tm; Q) from Proposition 4.2.
We first set up a spectral sequence converging to 77*13% (Q[t]/t™; Q): Expressing Q[t]/t™ as the pushout
of the diagram

o (Q[t]/t™;Q), then we can read off the homotopy groups of

t—t™

Q[t]

t»—»Ol

Q

Qlt]

allows us to express the Loday construction for Q[t]/t™, now viewed as a commutative HQ-algebra spec-
trum, as the homotopy pushout of the diagram

CEC(HQ); HQ) — =" £EQ(HQ]; HQ)

twol

HQ.

In other words,

CHQ(HQIY /1™ HQ) =~ LEL(HQ[; HQ) Ak uo o) HO

and we get a spectral sequence

B2, = TorT (S0 RUEHO) (0 (1 HO (o) HQ)), Q) = m LU (HQ[H]/t™; HQ), (4.4)

where the action of =, (ﬁ?? (HQJt]; HQ)) on itself is induced by the map ¢ +— ™.

As Q[t] is smooth, and even a free symmetric algebra over Q, by [6, Example 2.6] Q[t] is stable over Q in
the sense that the homotopy type of the linear Loday construction E% (Q[t]), and therefore also of the linear
construction with reduced coefficients E%(Q[t]; Q)= E%(Q[t]) ®q[y Q, depends only on the homotopy type
of ¥X. But as discussed in Equation (1.3) above, this means that the same is true for the homotopy groups
of the spectrum version. We obtain an isomorphism

n

T L QUM Q) = m Ly, (o (@D = & HHIC(Qt); Q).

1)

With the help of [4, Proposition 2.1] we can identify the terms as follows:

HHYC Q[ @) = (4:5)

QJxk), if k is even,
Ag(zy), if k is odd.

Lemma 4.6. There is an isomorphism of graded commutative Q-algebras

Ll vy s+ (@@ 2 m L (@ Q) @ Torf (@) @, ).
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Proof. Let Symg(xx) denote the free graded commutative Q-algebra generated by an element xy in degree
k and Symg (2, yr+1) denote the free graded commutative Q-algebra generated by an element xy in degree
k and an element y41 in degree k + 1. By Equation (4.3) and Equation (4.5) above, we obtain

As W*ﬁgn QI Q) 2R, ®(:) Symg(zx), we obtain that

n+1

Tor, " £7n(QUQ) (Q,Q) = ® ® Symg (ye)
(en1)

and hence the tensor product of the two gives a graded commutative Q-algebra isomorphic to that in
Equation (4.7). O

Let A, denote the graded commutative Q-algebra mﬁgn (Q[t]; Q) and B, denote . Egn (Q[t]; Q) viewed
as an A,-module via a morphism of graded commutative Q-algebras f: A, — B,.

Lemma 4.8. Let fi: A — B, be the morphism f1 = np, oca, where €a,: A, — Q is the augmentation
that sends all elements of positive degree to zero and where np,: Q — B, is the unit map of B.. Let
fa: Ay — B, be any map of graded commutative algebras such that there is an element x € A,, with n > 0
such that fo(x) = w # 0. Let Tor?+7(B,,Q) denote the graded Tor-groups calculated with respect to the
A,-module structure on B, given by fi. Then

dimg(Torfy/*(B.,Q)), < dimg(Torl: " (B, Q).

where (Torf”;’fi (B4, Q)0 = B,y on Torﬁ;’fi (B, Q).
The proof is a standard exercise in homological algebra. The impatient reader is invited to skip it.

Proof. We construct a small A,-free resolution P, of Q. Since Q is concentrated in degree zero and Ay = Q,
we can choose Py to be A,. Then we choose P = @ el > A, with the minimal possible number of copies
of A, in each suspension degree, beginning from the bottom. This ensures that d;: @j er, XM Ay — Py is
injective, and moreover

ker(d; : @ XM A, — Py) C @ X" ker(ea,)
JE jeIL

For every £ > 0 we choose P, with P, = @jeh " A, so that dg: @jele " Ay — Pp_q is injective and
ker(dy: @ XM A, — Pioqp) C @ X" ker(ea,)
JjEl, JEIy

The Tor groups we want are the homology groups of

B.®a. Py=B.oa PrvA. =B,

JEL, J€l,

with respect to the differential id ® d for either A,-module structure.
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As f1: A, — B, factors through the augmentation, the differentials in the chain complex
B* ®A* Po

with the A,-module structure given by f; are trivial: they are of the form id ® d where d is the differential

of P,. As d sends every X1 € B, ;, " A, to something in €P,;, | E" ker(ea, ),

([d®d)(b®a, B1) € Q{b} ®a. P =™ ker(ea,) =0

JEIL—1

for all b € B,. Hence Toré;’fl (B., Q) = (Gajele Y By)s = GBJEI@ > B,_s. In particular, Tor(‘i;’fl (B.,Q) =
By for all s.

For the A,-module structure on B, given by fo we obtain that
Torj (B, Q) = B. ©4. Q

but here, the tensor product results in a nontrivial quotient of B,. Recall that we assumed that fo(z) =
w # 0. The element w ® 1 € B, ®4, Q is trivial because the degree of x is positive and hence € 4, (x) = 0:

wel=fz)®@l=1®es(2)=120=0.
Therefore,
dimq Tory';”* (B., Q) < dimg Tory; " (B., Q).

The other Tor-terms in total degree n of the form Tor;f;‘f 2(By, Q) with r + s = n are subquotients of

@ Y B,

Jelr
and hence for all (r, s) with r + s = n and r > 0 we obtain
dimg Torf’;’f2 (B.,Q) < dimg Torf,;’f1 (B.,Q). O
Note that if f: A, — B, factors through the augmentation A, — Q then
Tor)* (B.,Q) = B, @ Tory* (Q, Q). (4.9)

We show the failure of stability by showing that

Theorem 4.10. Let n > 2. Then
dimg m, L2, (Q[¢]/1"; Q) < dimg LY, Vi) S (Q[t]/t™; Q).
k

In particular, for all n > 2 the pair (Q[t]/t™; Q) is not stable and Q — Q[t]/t™ is not multiplicatively stable.

The n = 2 case of Theorem 4.10 was obtained earlier by Dundas and Tenti [6].
Our proof of Theorem 4.10 investigates the map fo: A, — B, induced by sending ¢ +— t™, and shows that
it sends an element in positive degree to a nonzero element. Therefore, we get from Lemma 4.8 that the
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E?-term of the spectral sequence of Equation (4.4) already has a smaller dimension over Q in total degree
Vi, ()
further, dimg Wnﬁgn (Q[t]/t™; Q) which is the dimension over Q of the total degree n part of the E*°-term
will have to be smaller than dimg W"LSZ'Zl \/(n) or (Q[t]/t™; Q).

n than dimg 7, £ o1 (Q[t]/t"; Q). Then, even if the spectral sequence differentials do not reduce it

k
Before we prove the theorem, we state the following integral version of it:

Corollary 4.11. For all n > 2 the pair (Z[t]/t";Z) is not stable and Z — Z[t]/t"™ is not multiplicatively
stable.

Proof of Corollary 4.11. If for some n > 2 the pair (Z[t]/t™; Z) were stable, then in particular

m L (L) =l i (Z[H/E 2).

()

Localizing at Z \ {0} would then imply

L2 QU Q) 2 r Ll | e (Ql/Q)

()

in contradiction to Theorem 4.10. 0O
4.1. Proof of Theorem 4.10

We prove Theorem 4.10 by identifying an element in A, of positive degree that is sent to a nontrivial
element of B,. More precisely, we have that S' V...V S! is the 1-skeleton of T™ and S™ is the quotient
of T™ by its (n — 1)-skeleton. We will give a particular element of Wnﬁgn(Q[t]; Q) (which the collapse of
the (n — 1)-skeleton sends to the indecomposable element in Wnﬁgn (Q[t]; Q)), and show that the map that
sends t to t" sends it, up to a unit, to the element

dty dtsy -~ dt, € oL, 6 (Q[t]Q), (4.12)

viewed as an element of ﬂnﬁgn (Q[t]; Q) by the map induced by the inclusion of the 1-skeleton. Here each
dt; is the image of the element of Wlﬁgl (Q[t]; Q) represented by 1 ® t under the inclusion S* < T™ as the
1th factor.

In the following we use the standard model of S' as S' = A;/9A; with S} = [p] and we consider T"
as the diagonal of an n-fold simplicial set where every ([pi1], ..., [pa]) € (A)" is mapped to S} x ... xS} .
Then E% (Q[t]; Q) can also be interpreted as the diagonal of an n-fold simplicial Q-vector space with an
associated n-chain complex. By abuse of notation we still denote this n-chain complex by £2, (Q[t]; Q).

Note that in n-chain degree (p1,...,pn) of /3% (Q[t]; Q), we have Q @ Q[t]®((P1+1) - (Pn+1)=1) where the
Q is placed at spot (0,...,0). We think of a tensor monomial in this tensor product as an n-dimensional
multi-matrix of dimensions (p1+1) X - - - X (pr, +1). We use the following terminology for the n-chain complex

L2, (Q[t]: Q):

e 0, =(0,0,...,0) and 1,, = (1,1,...,1) are the vectors containing only 0 or 1, respectively, repeated
m times.

e A vector V € N” is viewed as a multi-degree of an element in the n-chain complex.

e A vector v € N” for which 0, < v < V in every entry can be thought of as specifying a coordinate
in the multi-matrix of an element in multi-degree V. We call the ith entry of a vector v.€ N the ith
place in v. It is always assumed that V = 1,,, putting us in total degree n, if not otherwise specified.



A. Hedenlund et al. / Topology and its Applications 316 (2022) 108103 19

o Each element of E(%, (Q[t]; Q) in degree V = (vy,...,v,) is a sum of tensor monomials, each of which
is a tensor of (vy +1) x (v2+1) X -+ X (v, + 1) entries which we write in a multi-matrix of dimension
(v1 +1,...,v, + 1) whose entries are in Q[t] at coordinates v # 0,, and in Q at coordinate 0,,.

o zy for z € Q[t] and v € N™ is the multi-matrix with term x at coordinate v and 1 at other coordinates.
We say a term is trivial if it is 1; thus, 1, is trivial in all its coordinates.

o Therefore v - yy for z,y € Q[t] and v, w € N" is the product of 2, and y in degree V of e, (Q[t], Q)
regarded as an n-simplicial ring. Explicitly, if v £ w, it is the multi-matrix with = at coordinate v, y at
coordinate w, and 1 elsewhere; if v = w, it is the multi-matrix with xy at coordinate v and 1 elsewhere.

Suppose that C, is an n-chain complex with differentials dq,...,d,, in the n different directions, then the
total chain complex Tot(C,) has differential in component (v, ...,v,) given by

d=> (=1)n-Fvig,,

=1

In our case we will have each d; = Eg;o(_l)jdi,j where d; j: Coy v = Cop,ovie1, 0

We are interested in low degrees, especially in 1,,. Any v; = 1 will imply d; = 0 since the d; are cyclic

is the face map.

n

differentials and Q[t] is commutative. This allows us to eliminate the d; from d. We have the following three
lemmas about homologous classes and tori of different dimensions:

Lemma 4.13 (Split Moving Lemma). Let a,b be coordinates in degree 1,_1 (that is, in 2 X 2 X ... X 2-
dimensional matrices). Then

T(a,1) " Y(b,1) ~ T(a,0) " Y(b,1) T T(a,1) " Y(b,0)-

Proof. Their difference is a boundary of an element of degree (1,1, 2):

(@1  Ymb2) = (1" dn (@)  Yb,2)) = T(a0) * Y(b,1) — T(a1) * Y(b,1) + T(a1) * Y(byo)- O

For example, when n =2, a = 0,b = 1, the difference is

(i )-0a)-G0 )

Let b be a coordinate of a multi-matrix of an element in degree 1,_,, such that b # 0,,_,,,. For any
multi-matrix ¢ in degree W € N™, we can form the following multi-matrix in degree (W,1,,_,,) € N™

ca  at coordinate (a,0,_,);
¢(—,0) ® Y(o,b) has terms { y, at coordinate (0,,,b);

1 elsewhere.

Lemma 4.14. The following is a chain map:

Tot(£2, (Q[t],Q)) — Tot(£2. (Q[t], Q));

C — 0(7,0) (24 y(O,b)'

Proof. Clearly d;(c(— 0)®¥(0,b)) = dic(—,0)@¥Y(0,b) for 0 < i < m. But since the multi-degree of ¢(_ 0)®Yy(0,b)
is V=(W,1,,_) € N” and whenever v; =1, d; = d; o — d;,1 = 0, we also get

di(c(—0) ®Yo,p)) =0, form <i<n. O
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This lemma also applies when y g p) is replaced by another multi-matrix that has more than one nontrivial
term, as long as the nontrivial terms are all in coordinates of the form (0,,,b) for b in degree 1,,_,, and
b # 0,,_,,. It has the following immediate corollary:

Lemma 4.15 (Orthogonal Moving Lemma). Let b be a coordinate in degree 1,_,, such that b # 0,_,,. Let
¢, ¢ be elements in multi-degree W € N™. If ¢ ~ ¢’ in multi-degree W, then

C(=0nm) D Y(0,b) ~ (= 00_1) @ Y(O,b)
in multi-degree (W, 1, )

Conceptually, the moving lemmas tell us how to move the nontrivial elements z,y in certain multi-
matrices to lower coordinates. They are stated for a special case for simplicity, but of course they work for
any permutation of copies of N™ in the statement. The split moving lemma says that if we have z, and
yw Where the coordinates share a 1 in a particular place, the 1’s can be moved to coordinate 0 separately.
The orthogonal moving lemma says that the x in x, and the y in yy can be moved separately if they are
supported in orthogonal tori (that is, have their nontrivial entries in different coordinates).

Proposition 4.16. Let v and w be two coordinates of degree 1,,.
(1) If v and w are both O in the ith place for some 1 < i < n, then
Ty Yw ~ 0.

In particular, if v # 1,, then xy ~ 0.
(2) In general,

Ty " Yw ~~ g Ty - Yw',
v <v,w <w,
v +w'=1,

where the sum is taken over all coordinates v/ and w' such that
o They are place-wise no greater than v and w respectively;
o They take 1 in complementary places.

(8) Fork > 1 and n > 1, we have the following homologous relation:

k
(tk>1n ~ Z Hth‘

Wi, Wi #0p, =1
wi+t..+twp=1,

In particular, if kK = n and we let e; denote the coordinate that has 1 at the ith place and O at other
places, we get

(t")1, ~n! [ ] te.- (4.17)
i=1
Also, if k > n, this gives us

(t*)1, ~0
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Proof. The class in (1) is a cycle because everything in multi-degree 1,, is a cycle; it is null-homologous
because it is in the image of the degeneracy s; o in the ith place.

For (2) we write |v| for the sum of the places of the vector v. We induct on |v| 4 |w]|. Notice that a
coordinate v of degree 1,, is just a sequence of length n of 0’s and 1’s and |v]| is just the number of 1’s in it.

For |v| + |w| < n, there are two cases: One is that v and w are both 0 in one place. Then the claim holds
because the right-hand side is the empty sum and the left-hand side is 0 by part (7). The other case is that
v+ w = 1,. Then the claim also holds because the right-hand side has only one copy that is exactly the
left-hand side.

Assume that the claim is true for |v| 4+ |w| < m where m > n and suppose now |v| + |w| = m + 1. Since
m+12>n+1, vand w have to be both 1 in some place. Without loss of generality, we assume that

v = (vg,1), w = (wg, 1) where vo,wo < 1,,_1.

By the Split Moving Lemma (Lemma 4.13),

Ty “Yw ™~ T(vp,0) " Yw + xy - Y(wo,0)-

Since |(vo,0)| + |w| = |v| + |(Wo, 0)| = m, by inductive hypothesis we have that

Ty * Yw ~ E T(vo’,0) * Yw' T E Ty’ " Y(wo’,0)
vo' <vo.w'<w, v/ <v,wo’ <wo,
(vo',0)+w'=1,, v/ +(wo’,0)=1,

= Z Ty * Yw' -

!
v <v,w <w,
v +w'=1,

For (8) we order the pair (k,n) by the lexicographical ordering. We induct on (k,n). When k = 1, the
claim is trivially true.

Suppose the claim is true for all pairs less than (k,n) where k > 2. Taking v =w = 1,, ¢ = t and
y = t*! in part (2), we get that

(tk)ln ~ Z tw, - (tkil)V’ = Z tw, - (tkil)V“ (4.18)

wi+v/=1, wi1#0,
wi+v'=1,

The second step above uses that tg, = 0 because ¢ is 0 in the Q[¢]-module Q. Let m = |v’|. By the inductive
hypothesis, we have

k
("), ~ > 11t (4.19)

’ ’ y—
Whyeo oy Wi #Opy,, 1=2

/ ’
w2+...+wk:1m

For each w/ which is a coordinate of degree 1,,, we add in 0 in places where v’ is 0 to make it a coordinate of
degree 1,,. Denote it by w;. Then the Orthogonal Moving Lemma (Lemma 4.15), (4.18) and (4.19) combine
to

k
(t*)q, ~ > I]tw. ©

Wi, Wi #0y,, =1
wi+...+wr=1,
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For any n > 2, we call t1, the diagonal class and denote it by A,. If we include S' < T™ as the ith
coordinate and identify the first Hochschild homology group with the Kéhler differentials, the generator
dt of HH2(Q[#]; Q) maps to the generator we call df; in the Loday construction of the torus. Note that
H:-L:l te, is exactly the degree-n class dt; dty - - - dt,, from Equation (4.12).

Proof of Theorem 4.10. By Equation (4.17) we know that the map ¢ — " induces a map on w*ﬁgn (Q[t]; Q),
that sends the diagonal class, A,,, to n! dt; dts - - - dt,,. Hence, by Lemma 4.8 we know that in the Tor-spectral
sequence (4.4) that converges to m(ﬁg" (Q[t]/t™; Q)) the dimension of the E?-term in total degree n is
strictly smaller than the dimension of the total degree n-part of

TorT (S5 @D (£ (@[] Q)), Q)

where the W*(an (QJt]; Q))-module structure of w*(ﬁgn (Q[t]; Q)) is given by the augmentation followed
by the unit map. Equation (4.9) and Lemma 4.6 show that this total degree n part is isomorphic to

Ty ) 5+ @/ Q)

In the spectral sequence (4.4) for m(z:% (Q[t]/t™; Q)) differentials could cut down the dimension even
further, but in any case we obtain

T (L2 (QU/1 Q) Z ma(Ly, o (QU/4Q)). O

(1)

Remark 4.20. For the non-reduced Loday construction £2, (Q[t]), parts (1) and (2) of Proposition 4.16 are
still true. Part (3) will become

k
), ~ > IItw
wi+t...+wp=1, i=1

and Equation (4.17) is no longer true.
4.2. Q[t]/t™ on T™ for2 <m<n

We know that for Q[t]/t™ we get a discrepancy between 7, of the Loday construction on the n-torus and
that of the bouquet of spheres that correspond to the cells of the n-torus. We use this to first show that
Q[t]/t™ causes a similar discrepancy for 2 < m < n.

Proposition 4.21. Let 2 < m < n. Then

T L2, (Qt]/t™; Q) 2 wmc%:l v, s+ (Q[E/1™ Q).

()
Proof. We consider the Tor-spectral sequence
T L3 (Q[L];Q m
TorZ: T A (r, £2, Q11 @), Q) = m L2 QU475 Q)
where the ’/T*,an (Q[t]; Q)-module structure on ’/T*,Cg” (Q[t]; Q) is induced by t — ¢™. The m-chain complex

C’Lm) = E? (Q[t]; Q) can be considered as an n-chain complex whose m + 1, ..., n-coordinates are trivial.
Then

™ = £2.(Q[t; Q) = ¢™ = £2.(Q[1]; Q)
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is a sub-n-complex of Cin). We know that A,, — m!dty dts - - - dt,, in the homology of the total complex of
Cim), and so the same is true in C’i"). Therefore the map

T L (Q[t]; Q) = mm L3 (Qt); Q)

that is induced by ¢ +— " is nontrivial and by Lemma 4.8 the dimension of Wmﬁgn (Q[t]/t™; Q) is strictly
smaller than the dimension of

Tl Vi (Q[/t™Q). o

4.8. Quotients by polynomials without constant term

Let q(t) = amt™ + ... + a1t € QJt] be a polynomial which is not the zero polynomial. Then we can still
write Q[t]/q(t) as a pushout

t—q(t)

Q[t] —— Q]

tHOJ

Q > Q[t]/q(t)
and the above methods carry over.

Proposition 4.22. Let mg be the smallest natural number for which an,, # 0. Then

o+ (Q[t]/4(1); Q).

o QU (0 Q) 2 o Ly

Proof. Clearly 1 < mo < m. If mg = 1, then et € HH®(Q[t]; Q) maps to £(q(t)) € HHE(Q[t]; Q) under the
map ¢ — ¢(t). In the module of Kéhler differentials this element corresponds to

aydt + 2astdt + ... + mant™ tdt,

but all these summands are null-homologous except for the first one. So et — ajet # 0 and this, along with
Lemma 4.8, proves the claim.
We denote by A,,,(q(t)) the element (g(t))1,,,- If mo > 1, then the diagonal element A, (t) maps to

Ao (4() = Y @il ()
i:m(]
and this is homologous to

(mo)! am, dty dta - -+ dby, + terms of higher t-degree

by Equation (4.17). Hence A,,, () maps to a nontrivial element and again Lemma 4.8 gives the claim. O



24 A. Hedenlund et al. / Topology and its Applications 316 (2022) 108103

4.4. Truncated polynomial algebras in prime characteristic

The Loday construction on a (flat) commutative Hopf algebra is stable, so the Loday construction on a
truncated polynomial algebra of the form F,[¢]/ #* has the same homotopy groups when evaluated on an
n-torus and on the corresponding bouquet of spheres. However, we show that there is a discrepancy for
truncated polynomial algebras I, [t]/t" for 2 < n < p.

Theorem 4.23. If2 < n <p andn <m,

T (L (B[t /175 F,)) 2 (L iy 5+ E /).

k

In particular, for all 2 < n < p the pair (Fp[t]/t";F,) is not stable.

Proof. We consider the case m = n. The cases n < m follow by an argument similar to that for Proposi-
tion 4.21.
As F,[t] is smooth over F,,, we know that F, — IF,[¢] is stable, so that

n

T (L7 (B[t Fp) = m (L3 (o) Eo ) = QGO HHI (B, [ Fy ).
‘ =1 ()

The higher Hochschild homology HH¥-F» (Fp[t]; Fp) is calculated in [5, §8], so that we obtain
HHLF (Fplt]; Fp) = By yy

where B} = F,[t] and B}, = Torf,’:; (F,,F,), using the total grading on Torf,’:; (F,,Fp). In low degrees,
this gives HHI? (F,[t]; F,) = Ag, (et) with |et| = 1, HHEF»(F,[t]; F,) = Dg, (o%t) with |o%ct| = 2. As
T, (0%t) = @, Fploet]/(o¥et)?, we can iterate the result.

Note that in HHL”]’FT’ (F,[t]; F,) there is always an indecomposable generator of the form €g°... %t or

0%0° ... 0t in degree n. We call this generator A,,. We also obtain a class

ety ... ety € TaLr, o (Fplt];Fy) > mn Lon (Fy[t); F,).

The results from Proposition 4.16 work over the integers. If n < p, then n! is invertible in I, and therefore
the class A,, maps to nlet; ... et,. An argument analogous to Lemma 4.8 finishes the proof. O
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