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We develop a spectral sequence for the homotopy groups of Loday constructions 
with respect to twisted cartesian products in the case where the group involved is 
discrete. We show that for commutative Hopf algebra spectra Loday constructions 
are stable, generalizing a result by Berest, Ramadoss and Yeung, but prove that 
several Loday constructions of truncated polynomial rings with reduced coefficients 
are not stable by investigating their torus homology.
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0. Introduction

Topological Hochschild homology and its higher versions are important homology theories in the study of 
commutative rings and ring spectra. These are specific examples of the Loday construction, whose definition 
relies on the fact that commutative ring spectra are enriched in simplicial sets: for a simplicial set X and a 
commutative ring spectrum R one can define the tensor X ⊗R as a simplicial spectrum whose n-simplices 
are
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∧
x∈Xn

R.

By slight abuse of notation, X ⊗ R also denotes the commutative ring spectrum that is the geometric re-
alization of this simplicial spectrum. This recovers topological Hochschild homology of R, THH(R), when 
X = S1, and higher topological Hochschild homology, THH[n](R), for higher dimensional spheres Sn. Ten-
soring satisfies several properties [7, VII, §2, §3], two of which are:

• If X = X1∪h
X0

X2 is a homotopy pushout, the tensor product of R with X splits as a homotopy pushout 
in the category of commutative ring spectra (which is the derived smash product):

(X1 ∪h
X0

X2) ⊗R � (X1 ⊗R) ∧L
(X0⊗R) (X2 ⊗R).

• A product of simplicial sets X × Y gives rise to an iterated tensor product:

(X × Y ) ⊗R � X ⊗ (Y ⊗R).

This last expression does not, however, imply that calculating the homotopy groups of (X × Y ) ⊗ R is 
easy. In particular, if one iterates the trace map from algebraic K-theory to topological Hochschild homology 
n times, one obtains a map

K(n)(R) = K(K(. . . (K︸ ︷︷ ︸
n

(R)) . . .)) → (S1 × . . .× S1)︸ ︷︷ ︸
n

⊗R.

Since iterated K-theory is of interest in the context of chromatic red-shift, one would like to know as much 
about (S1 × . . .× S1) ⊗R as possible.

In some good cases, the homotopy type of X ⊗R only depends on the suspension of X in the sense that 
if ΣX � ΣY , then one has X ⊗R � Y ⊗R. This property is called stability. Stability for instance holds for 
Thom spectra R that arise from an infinite loop map to the classifying space BGL1(S) (see Theorem 1.1 
of [22]), or for R = KU and R = KO [10, §4].

One can also work relative to a fixed commutative ring spectrum R and consider commutative R-algebra 
spectra A and ask whether X ⊗R A only depends on the homotopy type of ΣX. In this paper, we will often 
work with coefficients. For a pointed simplicial set X we place a commutative A-algebra spectrum C at the 
basepoint of X. In other words, when X is pointed then the inclusion of the basepoint makes X ⊗R A into 
a commutative augmented A-algebra, and we consider LR

X(A; C) = C ∧A (X⊗RA), the Loday construction 
with respect to X of A over R with coefficients in C. We call the pair (A; C) stable if the homotopy 
type of LR

X(A; C) only depends on the homotopy type of ΣX. Note that the ring R is not part of the 
notation when we say that (A; C) is stable although the question depends on the choice of R, so the context 
should specify the R we are working over. We call the commutative R-algebra A multiplicatively stable as 
in [10, Definition 2.3] if ΣX � ΣY as pointed simplicial sets implies that LR

X(A) � LR
Y (A) as commutative 

augmented A-algebra spectra. If A is multiplicatively stable, then for any cofibrant commutative A-algebra 
C, the pair (A; C) is stable (see [10, Remark 2.5]).

Moore introduced twisted cartesian products as simplicial models for fiber bundles. We develop a Serre 
type spectral sequence for Loday constructions of twisted cartesian products where the twisting is governed 
by a constant simplicial group. As a concrete example we compute the Loday construction with respect to 
the Klein bottle for a polynomial algebra over a field with characteristic not equal to 2.

Work of Berest, Ramadoss and Yeung implies that the homotopy types of LHk
X (HA; Hk) and LHk

X (HA)
only depend on the homotopy type of ΣX if k is a field and if A is a commutative Hopf algebra over k. We 
generalize this result to commutative Hopf algebra spectra.
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We investigate several algebraic examples, i.e., commutative ring spectra that are Eilenberg-Mac Lane 
spectra of commutative rings. For instance, we show that the pairs (HQ[t]/tm; HQ) are not stable for all 
m � 2 by examining the Loday construction of the m-torus. This extends a result by Dundas and Tenti [6]. 
We also prove integral and mod-p versions of this result.

Content. In Section 1 we recall the definition of the Loday construction and fix notation. Section 2 contains 
the construction of a spectral sequence for the homotopy groups of Loday constructions with respect to 
twisted cartesian products. Our results on commutative Hopf algebra spectra can be found in Section 3. In 
Section 4 we prove that truncated polynomial algebras of the form Q[t]/tm and Z[t]/tm for m � 2 are not 
multiplicatively stable by comparing the Loday construction of tori to the Loday construction of a bouquet 
of spheres corresponding to the cells of the tori. We also show that for 2 � m < p the pairs (Fp[t]/tm; Fp)
are not stable.
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1. The Loday construction: basic features

We recall some definitions concerning the Loday construction and we fix notation.
For most of our work we can use any good symmetric monoidal category of spectra whose category of 

commutative monoids is Quillen equivalent to the category of E∞-ring spectra, such as symmetric spectra 
[9], orthogonal spectra [14] or S-modules [7]. As parts of the paper require us to work with a specific model 
category we chose to work with the category of S-modules everywhere except in Section 3, where we will 
work in the ∞-category of spectra in the sense of Lurie [13].

Let X be a finite pointed simplicial set and let R → A → C be a sequence of maps of commutative ring 
spectra.

Definition 1.1. The Loday construction with respect to X of A over R with coefficients in C is the simplicial 
commutative augmented C-algebra spectrum LR

X(A; C) given by

LR
X(A;C)n = C ∧

∧
x∈Xn\∗

A

where the smash products are taken over R. Here, ∗ denotes the basepoint of X and we place a copy of C
at the basepoint.

The simplicial commutative augmented A-algebra spectrum X ⊗R A, which in the Loday construction 
notation would be written as LR

X(A) = LR
X(A; A), is given by 

∧
x∈Xn

A in degree n where again all smash 
products are over R. It has face maps di defined by multiplying all the copies of A over x ∈ Xn for which 
dix = y into the copy of A over y for every y ∈ Xn−1, and degeneracy maps si defined similarly which insert 
the unit maps ηA : R → A over all (n + 1)-simplices which are not hit by si : Xn → Xn+1. Then LR

X(A; C)n
is C∧A

∧
x∈Xn

A, a pushout in the category of commutative ring spectra, for all n. Using the smash product 
of the identity of C with the simplicial structure maps above defines the simplicial structure on LR

X(A; C).
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As defined above, LR
X(A; C) is a simplicial commutative augmented C-algebra spectrum. In the following 

we will always assume that R is a cofibrant commutative S-algebra, A is a cofibrant commutative R-algebra 
and C is a cofibrant commutative A-algebra. This ensures that the homotopy type of LR

X(A; C) is well-
defined and depends only on the homotopy type of X.

Remark 1.2. When R → A → C is a sequence of maps of commutative rings, we can of course use the above 
definition for HR → HA → HC. The original construction by Loday [11, Proposition 6.4.4] used

C ⊗
⊗

x∈Xn\∗
A

instead with the tensors taken over R as the n-simplices in LR
X(A; C).

This algebraic definition also makes sense if R is a commutative ring and A → C is a map of commutative 
simplicial R-algebras. It continues to work if R is a commutative ring and A → C is a map of graded-
commutative R-algebras, with the n-simplices defined as above, but the maps between them require a sign 
correction as terms are pulled past each other—see [19, Equation (1.7.2)].

An important case is X = Sn. In this case LR
Sn(A; C) is known as THH[n],R(A; C) and is the higher order 

topological Hochschild homology of order n of A over R with coefficients in C. Let k be a commutative ring, 
A be a commutative k-algebra, and M be an A-module. If A is flat over k, then π∗THHHk(HA; HM) ∼=
HHk

∗(A; M) [7, Theorem IX.1.7] and this also holds for higher order Hochschild homology in the sense of 
Pirashvili [19]:

π∗THH[n],Hk(HA;HM) ∼= HH[n],k
∗ (A;M) (1.3)

if A is k-flat [5, Proposition 7.2].
Given a commutative ring A and an element a ∈ A, we write A/a instead of A/(a).

2. A spectral sequence for twisted cartesian products

We will start by letting R → A be a map of commutative rings and studying Loday constructions LR
B(Aτ )

over a finite simplicial set B, where τ indicates a twisting by a discrete group G that acts on A via ring 
isomorphisms. This construction can be adapted analogously to Definition 1.1 to allow coefficients in an 
A-algebra C if B is pointed. Also, as discussed in Remark 1.2, it can be extended to settings where R → A

is a map of commutative ring spectra, or R is a commutative ring and A is a graded-commutative R-algebra 
or a simplicial commutative R-algebra.

If we have a twisted cartesian product (TCP) in the sense of [15, Chapter IV] E(τ) = F ×τ B where 
the fiber F is a simplicial R-algebra and the simplicial structure group G acts on F by simplicial R-algebra 
isomorphisms, it is possible to generalize this definition of the Loday construction to allow twisting by a 
simplicial structure group, as explained in Definition 2.1 below.

We show an example where such a TCP arises: if we start with a TCP E(τ) = F ×τ B of simplicial 
sets with twisting in a simplicial structure group G acting on F simplicially on the left and with a map of 
commutative rings R → A, we can use that twisting to construct a TCP with fiber equal to the simplicial 
commutative R-algebra LR

F (A) and with the structure group G acting on LR
F (A) by R-algebra isomorphisms. 

In that situation, we get that

LR
E(τ)(A) ∼= LR

B(LR
F (A)τ ),
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which generalizes the fact that for a product, LR
F×B(A) ∼= LR

B(LR
F (A)). If the structure group G is discrete, 

i.e., if G is a constant simplicial group, LR
E(τ)(A) can be written as a bisimplicial set and we get a spectral 

sequence for calculating its homotopy groups.

Definition 2.1. Let B be a finite simplicial set, R be a commutative ring, and A be a commutative R-
algebra (or a graded-commutative R-algebra, or a simplicial commutative R-algebra). Let G be a discrete 
group acting on A from the left via isomorphisms of R-algebras, and let τ be a function from the positive-
dimensional simplices of B to G so that

τ(b) = [τ(d0b)]−1τ(d1b) for q > 1, b ∈ Bq,

τ(dib) = τ(b) for i � 2, q > 1, b ∈ Bq,

τ(sib) = τ(b) for i � 1, q > 0, b ∈ Bq, and
τ(s0b) = eG for q > 0, b ∈ Bq.

(2.2)

The twisted Loday construction with respect to B of A over R twisted by τ is the simplicial commutative 
(resp., graded-commutative, or bisimplicial commutative) R-algebra LR

B(Aτ ) given by

LR
B(Aτ )n = LR

Bn
(A) =

⊗
b∈Bn

A

where the tensor products are taken over R, with

d0

(⊗
b∈Bn

fb

)
=
⊗

c∈Bn−1

gc with gc =
∏

b:d0b=c

τ(b)(fb),

di

(⊗
b∈Bn

fb

)
=
⊗

c∈Bn−1

gc with gc =
∏

b:dib=c

fb for 1 ≤ i ≤ n, and

si

(⊗
b∈Bn

fb

)
=
⊗

d∈Bn+1

hd with hd =
∏

b:sib=d

fb for 0 ≤ i ≤ n.

We should think of the copy of A sitting over a simplex b ∈ Bn as sitting over its 0th vertex, and of τ(b)
as translating between the A over b’s 0th vertex and the A over b’s 1st vertex.

Lemma 2.3. The definition above makes LR
B(Aτ ) into a simplicial set.

Proof. To check this we need only check the relations involving d0, since the ones that do not involve τ work 
in the same way that they do in the usual Loday construction. For j > 1, we get d0dj = dj−1d0 because in 
both terms, for any c ∈ Bn−2 we get the product over all b ∈ Bn with d0djb = dj−1d0b = c of terms that are 
either τ(b)(fb) or τ(djb)(fb). These are the same by the condition in Equation (2.2) above. For j = 1, we 
get the product over all b ∈ Bn with d0d1b = d0d0b = c of terms that are either τ(d1b)(fb) or τ(d0b)τ(b)(fb), 
which again agree by Equation (2.2). We get d0s0 = id since τ(s0b) = eG, and d0si = si−1d0 for i > 0 since 
for those i, τ(sib) = τ(b). �

Following Moore, May considers the following simplicial version of a fiber bundle [15, Definition 18.3]:

Definition 2.4. Let F and B be simplicial sets and let G be a simplicial group which acts on F from the 
left. Let τ : Bq → Gq−1 for all q > 0 be functions so that
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d0τ(b) = [τ(d0b)]−1τ(d1b) for q > 1, b ∈ Bq,

τ(di+1b) = diτ(b) for i ≥ 1, q > 1, b ∈ Bq,

τ(si+1b) = siτ(b) for i ≥ 0, q > 0, b ∈ Bq, and
τ(s0b) = eq for q > 0, b ∈ Bq.

The twisted cartesian product (TCP) E(τ) = F ×τ B is the simplicial set whose n-simplices are given by

E(τ)n = Fn ×Bn,

with simplicial structure maps

(i) d0(f, b) = (τ(b) · d0f, d0b),
(ii) di(f, b) = (dif, dib) ∀i > 0, and
(iii) si(f, b) = (sif, sib) ∀i ≥ 0.

These structure maps satisfy the necessary relations to be a simplicial set because of the conditions that τ
satisfies.

Definition 2.5. If R is a commutative ring and E(τ) = C ×τ B is a TCP as in Definition 2.4 where C is a 
commutative simplicial R-algebra and the simplicial group G acts on C by R-algebra isomorphisms (that 
is, for every q ≥ 0, the group Gq acts on the commutative R-algebra Cq by R-algebra isomorphisms), then 
we can use the twisting τ to define the twisted Loday construction with respect to B of C over R, twisted 
by τ ,

LR
B(Cτ )n = LR

Bn
(Cn) =

⊗
b∈Bn

Cn

with twisted structure maps given on monomials 
⊗

b∈Bn
fb, with fb ∈ Cn for all b ∈ Bn, by

d0

(⊗
b∈Bn

fb

)
=
⊗

c∈Bn−1

gc with gc =
∏

b:d0b=c

τ(b)(d0fb),

di

(⊗
b∈Bn

fb

)
=
⊗

c∈Bn−1

gc with gc =
∏

b:dib=c

difb for 1 ≤ i ≤ n, and (2.6)

si

(⊗
b∈Bn

fb

)
=
⊗

d∈Bn+1

hd with hd =
∏

b:sib=d

sifb for 0 ≤ i ≤ n.

Note that there are two sets of simplicial structure maps being used, those of C inside and those of B
outside. This looks like the diagonal of a bisimplicial set, but since our twisting τ : Bq+1 → Gq explains only 
how to twist elements in Cq, this is not the case unless the structure group G is a discrete group, viewed as 
a constant simplicial group.

If the structure group G is discrete, there is overlap between Definition 2.1 and Definition 2.5. The 
simplicial commutative R-algebra case of Definition 2.1 actually gives a bisimplicial set: we use only the 
simplicial structure of B in the definition and if A also has simplicial structure, that remains untouched. 
The diagonal of that bisimplicial set agrees with the constant simplicial group case of Definition 2.5.

Given any TCP of simplicial sets E(τ) = F ×τ B as in Definition 2.4 and a map R → A of commutative 
rings, we can construct LR

F (A) ×τB which is a TCP of commutative simplicial R-algebras as in Definition 2.5
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using the same structure group G and twisting function τ : Bq → Gq−1. We use the simplicial left action of 
Gn on Fn, which we denote by (g, f) �→ gf , to obtain a left action by simplicial R-algebra isomorphisms

Gn × LR
Fn

(A) → LR
Fn

(A)

(g,
⊗
f∈Fn

af ) �→
⊗
f∈Fn

ag−1f . (2.7)

Since the original action of Gn on Fn was a left action, this is a left action. In the original monomial, the 
fth coordinate is af . After g ∈ Gn acts on it, the fth coordinate is bf = ag−1f . After h ∈ Gn acts on the 
result of the action of g, the fth coordinate is bh−1f = ag−1h−1f , which is the same as the result of acting 
by hg on the monomial.

Proposition 2.8. If E(τ) = F ×τ B is a TCP and R → A is a map of commutative rings, and we use 
the simplicial set twisting function τ to construct a simplicial R-algebra twisting function to obtain a TCP 
LR
F (A) ×τ B as above, we get that

LR
E(τ)(A) ∼= LR

B(LR
F (A)τ ).

This uses the definition of the Loday construction of a simplicial algebra twisted by a simplicial group 
in Definition 2.5.

Proposition 2.8 generalizes the well-known fact that for a product of simplicial sets,

LR
F×B(A) ∼= LR

B(LR
F (A)).

Proof. Both LR
E(τ)(A) and LR

B(LR
F (A)τ ) have the same set of n-simplices for every n � 0:

⊗
e∈E(τ)n

A =
⊗

(f,b)∈Fn×Bn

A ∼=
⊗
b∈Bn

(
⊗
f∈Fn

A).

We have to show that the simplicial structure maps agree with respect to this identification.
For 1 � i � n, for any choice of elements x(f,b) ∈ A,

di

⎛
⎝ ⊗

(f,b)∈Fn×Bn

x(f,b)

⎞
⎠ =

⊗
(g,c)∈Fn−1×Bn−1

y(g,c)

where

y(g,c) =
∏

(f,b):(dif,dib)=(g,c)

x(f,b) =
∏

b:dib=c

⎛
⎝ ∏

f :dif=g

x(f,b)

⎞
⎠ .

The internal product on the right-hand side is what we get from di on LR
F (A) and the external product is 

what we get from di of LR
B , so this agrees with the definition in Equation (2.6).

The proof that the si, 0 � i � n agree is very similar.
The interesting case is that of d0. For any choice of elements x(f,b) ∈ A, the boundary d0 associated to 

LR
E(τ)(A) satisfies

d0

⎛
⎝ ⊗

x(f,b)

⎞
⎠ =

⊗
y(g,c), (2.9)
(f,b)∈Fn×Bn (g,c)∈Fn−1×Bn−1
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where

y(g,c) =
∏

(f,b):d0(f,b)=(g,c)

x(f,b) =
∏

b:d0b=c

⎛
⎝ ∏

f :τ(b)·d0f=g

x(f,b)

⎞
⎠ .

From the LR
B(LR

F (A)) point of view, by Equation (2.6).

d0

⎛
⎝⊗

b∈Bn

(
⊗
f∈Fn

x(f,b))

⎞
⎠ =

⊗
c∈Bn−1

∏
b:d0b=c

τ(b)d0

⎛
⎝⊗

f∈Fn

x(f,b)

⎞
⎠

=
⊗

c∈Bn−1

∏
b:d0b=c

τ(b)

⎛
⎝ ⊗

g∈Fn−1

∏
f :d0f=g

x(f,b)

⎞
⎠

=
⊗

c∈Bn−1

∏
b:d0b=c

⎛
⎝ ⊗

g∈Fn−1

∏
f :d0f=τ(b)−1g

x(f,b)

⎞
⎠

=
⊗

(g,c)∈Fn−1×Bn−1

∏
b:d0b=c

⎛
⎝ ∏

f :d0f=τ(b)−1g

x(f,b)

⎞
⎠ ,

which is exactly what we got in (2.9). �
If G is a discrete group and E(τ) is constructed using G, then for every q > 0 there is a function 

τ : Bq → G satisfying the conditions listed in Equation (2.2) and G acts simplicially on F on the left.

Theorem 2.10. If E(τ) = F ×τ B is a TCP where the twisting is by a constant simplicial group G and if 
R → A is a map of commutative rings such that π∗(LR

F (A)) is flat over R, then there is a spectral sequence

E2
p,q = πp((LR

B(π∗LR
F (A)τ ))q) ⇒ πp+q(LR

E(τ)(A)). (2.11)

Here, π∗LR
F (A) is a graded commutative R-algebra. For any fixed p and q, we consider the degree q

part of LR
Bp

(π∗LR
F (A)τ ), denoted by (LR

Bp
(π∗LR

F (A)τ ))q. This forms a simplicial abelian group which in 
degree p is (LR

Bp
(π∗LR

F (A)))q, with simplicial structure maps induced by those of B with the twisting by τ , 
and πp((LR

B(π∗LR
F (A)τ ))q) denotes its pth homotopy group. The flatness assumption above is for instance 

satisfied if R is a field.

Proof. Since the twisting is by a constant simplicial group G, we are able to form a bisimplicial R-algebra

(m,n) �→
⊗
b∈Bm

⊗
f∈Fn

A. (2.12)

In the n-direction, the simplicial structure maps dFi and sFi will simply be the simplicial structure maps of 
the Loday construction LR

F (A) applied simultaneously to all the copies of LR
F (A) over all the b ∈ Bn. In the 

m direction, dBi and sBi are the simplicial structure maps of the twisted Loday construction, as in Equation 
(2.2) in Definition 2.1. These commute exactly because the simplicial structure maps in G are all equal to 
the identity. For any choice of xb ∈ LR

F (A)n for all b ∈ Bm,

dB0 d
F
i

(⊗
xb

)
= dB0

(⊗
dFi (xb)

)
=

⊗ ∏
τ(b)dFi (xb)
b∈Bm b∈Bm c∈Bm−1 b:d0b=c
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while

dFi d
B
0

(⊗
b∈Bm

xb

)
= dFi

⎛
⎝ ⊗

c∈Bm−1

∏
b:d0b=c

τ(b) · xb

⎞
⎠ =

⊗
c∈Bm−1

∏
b:d0b=c

dFi (τ(b) · xb),

which is the same since

dFi (τ(b) · xb) = di(τ(b)) · dFi (xb) = τ(b) · dFi (xb).

Note that since the twisting is by a constant simplicial group, LR
E(τ)(A) ∼= LR

B(LR
F (A)τ ) is exactly the 

diagonal of the bisimplicial R-algebra in Equation (2.12).
We use the standard result (see for instance [8, Theorem 2.4 of Section IV.2.2]) that the total complex 

of a bisimplicial abelian group with the alternating sums of the vertical and the horizontal face maps is 
chain homotopy equivalent to the usual chain complex associated to the diagonal of that bisimplicial abelian 
group. Since we know that the realization of the diagonal is homeomorphic to the double realization of the 
bisimplicial abelian group, in order to know the homotopy groups of the double realization of a bisimplicial 
abelian group, we can calculate the homology of its total complex with respect to the alternating sums of 
the vertical and the horizontal face maps. Filtering by columns gives a spectral sequence calculating the 
homology of the total complex associated to a bisimplicial abelian group consisting of what we get by first 
taking vertical homology and then taking horizontal homology. In the case of the bisimplicial abelian group 
we have in Equation (2.12), the vertical qth homology of the columns will be the qth homology with respect 
to 
∑n

i=0(−1)idFi of the complex

⊗
b∈Bm

LR
F (A)

and this is isomorphic to πq

(⊗
b∈Bm

LR
F (A)

)
. Since we assumed that π∗(LR

F (A)) is flat over R, we obtain

πq

(⊗
b∈Bm

LR
F (A)

)
∼= (
⊗
b∈Bm

π∗(LR
F (A)))q.

Here, the subscript q denotes the degree q part of the graded abelian group 
⊗

b∈Bm
π∗(LR

F (A)).
Moreover, the effect of the horizontal boundary map on 

⊗
b∈Bm

π∗(LR
F (A)) is the boundary of the twisted 

Loday construction, with the action of G on the graded-commutative R-algebra π∗(LR
F (A)) induced by that 

of G on the commutative simplicial R-algebra LR
F (A). As the boundary map preserves internal degree, we 

get the desired spectral sequence. �
2.1. Norms and finite coverings of S1

The connected n-fold cover of S1 given by the degree n map can be made into a TCP as follows. Let 
B = S1 be the standard simplicial circle and Cn = 〈γ : γn = 1〉 be the cyclic group of order n with generator 
γ. The twisting function τ : S1

q → Cn sends the non-degenerate simplex in S1
1 to γ and is then determined 

by Equation (2.2). Let F = Cn, viewed as a constant simplicial set; then Cn acts on itself at every simplicial 
degree in F by left multiplication. Then E(τ) = F ×τ B is in fact another simplicial model of S1 with n
non-degenerate 1-simplices. Therefore,

LR
E(τ)(A) � LR

S1(A) and π∗(LR
E(τ)(A)) ∼= HHR

∗ (A)
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for every commutative R-algebra A. In this case, LR
FA = A⊗Rn is the constant commutative simplicial 

R-algebra, with the Cn-action given by

γ(a1 ⊗ · · · ⊗ an) = an ⊗ a1 ⊗ · · · ⊗ an−1.

As LR
F (A) is a constant simplicial object, we obtain that

π∗LR
F (A) ∼=

{
A⊗Rn, ∗ = 0,
0, ∗ > 0.

If A is flat over R, the spectral sequence of Equation (2.11) is

E2
p,q = πp(LR

S1(A⊗Rn)τ )q ⇒ πp+qLR
E(τ)(A) ∼= HHR

p+q(A).

In our case, the spectral sequence is concentrated in q-degree zero and hence it collapses, yielding

πp(LR
S1(A⊗Rn)τ ) ∼= HHR

p (A).

With Proposition 2.8 we can identify LS
E(τ)(A) if A is a commutative ring spectrum and we recover the 

known result (see for instance [2, p. 2150]) that

THHCn
(NCn

e A) � THH(A). (2.13)

Here, THHCn
(A) = NS1

Cn
(A) is the Cn-relative THH defined in [2, Definition 8.2], where NCn

e A is the 
Hill-Hopkins-Ravanel norm. See also [1, Definition 2.0.1]. The identification in (2.13) is an instance of the 
transitivity of the norm: NS1

Cn
NCn

e A � NS1

e A.

2.2. The case of the Klein bottle

For the Klein bottle, K�, we compute the homotopy groups of the Loday construction of the polynomial 
algebra k[x] for a field k using our TCP spectral sequence. We assume that the characteristic of k is not 
2, so 2 is invertible in k. Note that away from the prime 2, the obvious projection map K� → S1 is an 
equivalence, so we know that

π∗(Lk
K�(k[x])) ∼= π∗(Lk

S1(k[x])) ∼= HHk
∗(k[x]) ∼= k[x] ⊗ Λ(εx).

In this subsection, we show how one could also calculate this using the TCP spectral sequence.
We will use the following simplicial model for the Klein bottle:

K� = (I × S1)/(0, t) ∼ (1,flip(t))

where flip is the reflection of the circle about the y-axis. We use the model of the circle with two vertices 
v0 and v1 and two edges α0 and α1:

��
���v1

α1 �
v0

α0� �
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Then the flip map is a simplicial map fixing v0 and v1 and exchanging the αis. It induces a map on 
π∗(Lk

S1(k[x]) ∼= k[x] ⊗ Λ(εx). It maps x to x because k[x] corresponds to the value at the base point. Set 
xα0 := 1s0v0 ⊗ 1s0v1 ⊗ xα0 ⊗ 1α1 and xα1 := 1s0v0 ⊗ 1s0v1 ⊗ 1α0 ⊗ xα1 . The generator εx can be represented 
by xα0 − xα1 , so exchanging the αis sends εx to −εx.

The nontrivial twist τ : S1 → C2 = 〈γ〉 maps the non-degenerate 1-cell α ∈ S1
1 to γ and is then determined 

by (2.2), yielding

d0(a0 ⊗ a1 ⊗ . . .⊗ an) = a0 · γa1 ⊗ a2 ⊗ . . .⊗ an. (2.14)

The TCP spectral sequence (2.11) in this case takes the form

E2
p,q = πp

((
Lk
S1

(
π∗(Lk

S1(k[x]))τ
))

q

)
=⇒ πp+qLk

K�(k[x])

and since π∗Lk
S1(k[x]) ∼= k[x] ⊗ Λ(εx),

E2
p,q = πp

((
Lk
S1

(
k[x] ⊗ Λ(εx)τ

))
q

)
,

which is the pth homotopy group of the simplicial k-vector space whose p-simplices are(
Lk
S1
p
(k[x] ⊗ Λ(εx)τ )

)
q
.

For each p, Lk
S1
p
(k[x] ⊗ Λ(εx)) � Lk

S1
p
(k[x]) ⊗k Lk

S1
p
(Λ(εx)), and so Lk

S1(k[x] ⊗ Λ(εx)τ ) � Lk
S1(k[x]) ⊗k

Lk
S1(Λ(εx)τ ). We can think of this tensor product of simplicial k-algebras as the diagonal of a bisimplicial 

abelian group, and by [8, Theorem 2.4 of Section IV.2.2] the total complex of a bisimplicial abelian group 
with the alternating sums of the vertical and the horizontal face maps is chain homotopy equivalent to the 
usual chain complex associated to the diagonal of that bisimplicial abelian group. In this case of a tensor 
product, the total complex was obtained by tensoring together two complexes, and since we are working 
over a field its homology is the tensor product of the homology of the two complexes, so

π∗

((
Lk
S1

(
k[x] ⊗ Λ(εx)τ

))
∗

)
∼= π∗

((
Lk
S1(k[x])

)
∗
)
⊗ π∗

((
Lk
S1(Λ(εx)τ )

)
∗
)
.

The first factor is just the Hochschild homology of k[x]. It sits in the 0th row of the E2 term since x has 
internal degree zero, and gives us π∗(Lk

S1(k[x]) ∼= k[x] ⊗ Λ(εx) concentrated in positions (0, 0) and (1, 0). 
All spectral sequence differentials vanish on it for degree reasons, and so it will just contribute k[x] ⊗Λ(εx)
to the E∞ term.

The second factor in the E2 term is the twisted Hochschild homology for Λ(εx). To calculate it, we 
can use the normalized chain complex. Elements of the form εx ⊗ . . . ⊗ εx will map to zero under the 
Hochschild boundary map. We need to consider the odd and even cases of differentials on elements of the 
form 1 ⊗εx ⊗ . . .⊗εx. The di maps in the twisted and untwisted Hochschild complex are all the same except 
for d0, which incorporates the twisting action of τ . Therefore we have

d(1 ⊗ (εx)⊗2k) = −(εx)⊗2k + (−1)2k(−1)(εx)⊗2k = −2(εx)⊗2k

d(1 ⊗ (εx)⊗2k+1) = −(εx)⊗2k+1 + (−1)2k+1(1)(εx)⊗2k+1 = −2(εx)⊗2k+1.

Here, the first −1 comes from the γ action on εx as in (2.14) and the extra ±1 in brackets come from passing 
the one-dimensional εx past an odd or an even number of copies of itself. Since we are assuming that 2 is 
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invertible in k, we get that the second part of the E2 term has only k left in degree 0. So, if 2 is invertible 
in k, then the entire E2 term is just k[x] ⊗ Λ(εx) in the 0th row, and the TCP spectral sequence collapses 
and confirms that

π∗Lk
K�(k[x]) ∼= k[x] ⊗ Λ(εx).

3. Hopf algebras in spectra

In this section, we prove that the Loday construction is stable for commutative Hopf algebra spectra, 
generalizing a result of Berest, Ramadoss, and Yeung [3]. Since dealing with comonoid objects in model 
categories of spectra is very restrictive, see [18], in this section we will work in the ∞-category of spectra, 
Sp, in the sense of Lurie [13]. We start by describing what we mean by the notion of a commutative Hopf 
algebra in the ∞-category Sp. Let CAlg denote the ∞-category of E∞-ring spectra.

Definition 3.1. A commutative Hopf algebra spectrum is a cogroup object in CAlg.

Hopf algebra spectra are fairly rare, so let us list some important examples.

Example 3.2. If G is a topological abelian group then the spherical group ring S[G] = Σ∞
+ G, equipped with 

the product induced by the product in G, the coproduct induced by the diagonal map G → G × G, and 
the antipodal map induced by the inverse map from G to G is a commutative Hopf algebra spectrum. This 
follows from the fact that the suspension spectrum functor Σ∞

+ : S → Sp is a strong symmetric monoidal 
functor. Here S denotes the ∞-category of spaces.

Example 3.3. If A is an ordinary commutative Hopf algebra over a commutative ring k and A is flat as a 
k-module, then the Eilenberg-Mac Lane spectrum HA is a commutative Hopf algebra spectrum over Hk

because the canonical map

HA ∧Hk HA → H(A⊗k A)

is an equivalence.

The category of commutative ring spectra is tensored over unpointed topological spaces and simplicial 
sets in a compatible way [7, VII, §2, §3]. By [12, Corollary 4.4.4.9], this yields an equivalence of mapping 
spaces of ∞-categories

CAlg(X ⊗A,B) � S(X,CAlg(A,B)). (3.4)

See also [20, §2] for a detailed account on tensors in ∞-categories.
If we consider a commutative Hopf algebra spectrum H, then the space of maps CAlg(H, B) has a 

basepoint: the composition of the counit map to the sphere spectrum H → S followed by the unit map 
S → B is a map of commutative ring spectra. The functor that takes an unbased space X to the topological 
sum of X with a point + is left adjoint to the forgetful functor, so we obtain an equivalence

S(X,CAlg(H, B)) � S∗(X+,CAlg(H, B)) (3.5)

where S∗ denotes the ∞-category of based spaces. For path-connected spaces Z, May showed that the free 
En-space on Z, Cn(Z), is equivalent to ΩnΣnZ [16, Theorem 6.1]. This equivalence is natural in Z. Segal 
extended this result to spaces that are not necessarily connected. He showed that for well-based spaces 
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Y there is a model of the free E1-space, C ′
1(Y ), as follows: The spaces C1(Y ) and C ′

1(Y ) are homotopy 
equivalent, C ′

1(Y ) is a monoid, its classifying space BC ′
1(Y ) is equivalent to Σ(Y ) [23, Theorem 2], and thus, 

C ′
1(Y ) → ΩBC ′

1(Y ) is a group completion. We can apply this result to Y = X+ because X+ is well-based, 
thus BC ′

1(X+) � Σ(X+). Note that ΩBC ′
1(X+) � ΩΣ(X+).

Nikolaus gives an overview about group completions in the context of ∞-categories [17]. He shows that 
for every E1-monoid M , the map M → ΩBM gives rise to a localization functor of ∞-categories in the 
sense of [12, Definition 5.2.7.2], such that the local objects are grouplike E1-spaces. In particular, there is a 
homotopy equivalence of mapping spaces [12, Proposition 5.2.7.4]

MapE1S(ΩBC ′
1(X+),W ) � MapE1S(C ′

1(X+),W )

if W is a grouplike E1-space. Here, E1S denotes the ∞-category of E1-spaces.
If H is a commutative Hopf-algebra, then the space CAlg(H, B) is a grouplike E1-space. Therefore, by 

using Equations (3.4) and (3.5), we obtain a chain of homotopy equivalences

CAlg(X ⊗H, B) � S(X,CAlg(H, B))

� S∗(X+,CAlg(H, B))

� MapE1S(C ′
1(X+),CAlg(H, B))

� MapE1S(ΩBC ′
1(X+),CAlg(H, B))

� MapE1S(ΩΣ(X+),CAlg(H, B)).

If Σ(X+) � Σ(Y+) is an equivalence in S∗, then ΩΣ(X+) � ΩΣ(Y+) as grouplike E1-spaces, and therefore 
we get a natural homotopy equivalence

CAlg(X ⊗H, B) � CAlg(Y ⊗H, B)

for all B ∈ CAlg.
Since the Yoneda embedding is fully faithful, this gives:

Theorem 3.6. If H is a commutative Hopf algebra spectrum and if Σ(X+) � Σ(Y+) is an equivalence in S∗, 
then there is an equivalence X ⊗H � Y ⊗H in CAlg.

Remark 3.7. If X is a pointed simplicial set, then the suspension Σ(X+) is equivalent to Σ(X) ∨S1. Therefore, 
if X and Y are pointed simplicial sets, such that Σ(X) � Σ(Y ) as pointed simplicial sets, then we also 
obtain an equivalence between Σ(X+) and Σ(Y+).

We stated the theorem above in the absolute setting of CAlg but one can also work relative to a fixed 
commutative ring spectrum R and obtain an analogue of the above result for commutative R-Hopf algebras. 
Let CAlgR denote the ∞-category of E∞-R-ring spectra.

Corollary 3.8. Let k be a commutative ring and let A be a commutative Hopf algebra over k that is flat as 
an underlying k-module.

• If Σ(X+) � Σ(Y+) is an equivalence in S∗, then there is an equivalence X ⊗Hk HA � Y ⊗Hk HA in 
CAlgHk.

• If X, Y ∈ S∗ and if Σ(X) � Σ(Y ) in S∗, then X ⊗Hk HA � Y ⊗Hk HA in CAlgHk.
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The above result slightly generalizes the stability result that can be obtained from [3, Theorems 5.1, 5.2]
because the authors of [3] work relative to a field k. It is known that Thom spectra are stable [22, Theorem 
1.1], so the case of suspension spectra of topological groups does not give anything new.

Segal’s result from [23] also works for n larger than 1. If two spaces are equivalent after an n-fold 
suspension, then having an En-coalgebra structure on a Hopf algebra guarantees that the Loday construction 
will be equivalent on these two spaces. There are interesting pairs of spaces that are not equivalent after 
just one suspension, but need iterated suspensions to become equivalent: Christoph Schaper [21, Theorem 3]
shows for instance that for affine arrangements A one needs at least a (τA+2)-fold suspension in order to get 
a homotopy type that only depends on the poset structure of the arrangement. Here, τA is a number that 
depends on the poset data of the arrangement, namely the intersection poset and the dimension function.

4. Truncated polynomial algebras

One way of showing that a commutative R-algebra spectrum A is not stable is to prove that the homotopy 
groups of the Loday construction LR

Tn(A) differ from those of LR∨n
k=1

∨
(n
k
) Sk(A), as in [6]. Here, we write ∨

(nk) S
k for the 

(
n
k

)
-fold ∨-sum of Sk. Indeed, there is a homotopy equivalence

Σ(Tn) � Σ(
n∨

k=1

∨
(nk)

Sk). (4.1)

If A is augmented over R, then for proving that R → A is not stable, it suffices to show that

LR
Tn(A;R) �� LR∨n

k=1
∨
(n
k
) Sk(A;R).

See [10, §2] for details and background on different notions of stability.
In the following we restrict our attention to Eilenberg-Mac Lane spectra of commutative rings and we will 

use this strategy to show that none of the commutative Q-algebras Q[t]/tm for m � 2 can be multiplicatively 
stable. We later generalize this to quotients of the form Q[t]/q(t) where q(t) is a polynomial without constant 
term, and to integral and mod-p results.

Pirashvili determined higher order Hochschild homology of truncated polynomial algebras of the form 
k[x]/xr+1 additively when k is a field of characteristic zero [19, Section 5.4] in the case of odd spheres. 
A direct adaptation of the methods of [5, Theorem 8.8] together with the flowchart from [4, Proposition 2.1]
yields the higher order Hochschild homology with reduced coefficients for all spheres. See also [6, Lemma 3.4].

Proposition 4.2. For all m � 2 and n � 1

HH[n],Q
∗ (Q[t]/tm;Q) ∼=

{
ΛQ(xn) ⊗Q[yn+1], if n is odd,
Q[xn] ⊗ ΛQ(yn+1), if n is even.

In both cases, Hochschild homology of order n is a free graded commutative Q-algebra on two generators 
in degrees n and n + 1, respectively, and the result does not depend on m.

We will determine for which m and n we get a decomposition identifying π∗LQ
Tn(Q[t]/tm; Q) with 

π∗LQ∨n
k=1

∨
(n
k
) Sk(Q[t]/tm; Q). Note that

π∗LQ∨n
k=1

∨
(n
k
) Sk(Q[t]/tm;Q) ∼=

n⊗
k=1

⊗
n

π∗LQ
Sk(Q[t]/tm;Q) =

n⊗
k=1

⊗
n

HH[k],Q
∗ (Q[t]/tm;Q), (4.3)
(k) (k)
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where all unadorned tensor products are formed over Q. Thus, if we have an isomorphism between 
π∗LQ

Tn(Q[t]/tm; Q) and π∗LQ∨n
k=1

∨
(n
k
) Sk(Q[t]/tm; Q), then we can read off the homotopy groups of 

π∗LQ
Tn(Q[t]/tm; Q) from Proposition 4.2.

We first set up a spectral sequence converging to π∗LQ
Tn(Q[t]/tm; Q): Expressing Q[t]/tm as the pushout 

of the diagram

Q[t] t�→tm

t�→0

Q[t]

Q

allows us to express the Loday construction for Q[t]/tm, now viewed as a commutative HQ-algebra spec-
trum, as the homotopy pushout of the diagram

LHQ
Tn (HQ[t];HQ) t�→tm

t�→0

LHQ
Tn (HQ[t];HQ)

HQ.

In other words,

LHQ
Tn (HQ[t]/tm;HQ) � LHQ

Tn (HQ[t];HQ) ∧L
LHQ

Tn (HQ[t];HQ) HQ

and we get a spectral sequence

E2
∗,∗ = Torπ∗(LHQ

Tn (HQ[t];HQ))
∗,∗ (π∗(LHQ

Tn (HQ[t];HQ)),Q) ⇒ π∗LHQ
Tn (HQ[t]/tm;HQ), (4.4)

where the action of π∗(LHQ
Tn (HQ[t]; HQ)) on itself is induced by the map t �→ tm.

As Q[t] is smooth, and even a free symmetric algebra over Q, by [6, Example 2.6] Q[t] is stable over Q in 
the sense that the homotopy type of the linear Loday construction LQ

X(Q[t]), and therefore also of the linear 
construction with reduced coefficients LQ

X(Q[t]; Q) ∼= LQ
X(Q[t]) ⊗Q[t]Q, depends only on the homotopy type 

of ΣX. But as discussed in Equation (1.3) above, this means that the same is true for the homotopy groups 
of the spectrum version. We obtain an isomorphism

π∗LQ
Tn(Q[t];Q) ∼= π∗LQ∨n

k=1
∨
(n
k
) Sk(Q[t];Q) ∼=

n⊗
k=1

⊗
(nk)

HH[k],Q
∗ (Q[t];Q).

With the help of [4, Proposition 2.1] we can identify the terms as follows:

HH[k],Q
∗ (Q[t];Q) ∼=

{
Q[xk], if k is even,
ΛQ(xk), if k is odd.

(4.5)

Lemma 4.6. There is an isomorphism of graded commutative Q-algebras

π∗LQ∨n
k=1

∨
n

Sk(Q[t]/tm;Q) ∼= π∗LQ
Tn(Q[t];Q) ⊗ Torπ∗LQ

Tn (Q[t];Q)
∗ (Q,Q).
(
k
)
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Proof. Let SymQ(xk) denote the free graded commutative Q-algebra generated by an element xk in degree 
k and SymQ(xk, yk+1) denote the free graded commutative Q-algebra generated by an element xk in degree 
k and an element yk+1 in degree k + 1. By Equation (4.3) and Equation (4.5) above, we obtain

π∗LQ∨n
k=1

∨
(n
k
) Sk(Q[t]/tm;Q) ∼=

n⊗
k=1

⊗
(nk)

HH[k],Q
∗ (Q[t]/tm;Q) ∼=

n⊗
k=1

⊗
(nk)

SymQ(xk, yk+1). (4.7)

As π∗LQ
Tn(Q[t]; Q) ∼=

⊗n
k=1
⊗

(nk) SymQ(xk), we obtain that

Torπ∗LQ
Tn (Q[t];Q)

∗ (Q,Q) ∼=
n+1⊗
�=2

⊗
( n
�−1)

SymQ(y�)

and hence the tensor product of the two gives a graded commutative Q-algebra isomorphic to that in 
Equation (4.7). �

Let A∗ denote the graded commutative Q-algebra π∗LQ
Tn(Q[t]; Q) and B∗ denote π∗LQ

Tn(Q[t]; Q) viewed 
as an A∗-module via a morphism of graded commutative Q-algebras f : A∗ → B∗.

Lemma 4.8. Let f1 : A∗ → B∗ be the morphism f1 = ηB∗ ◦ εA∗ where εA∗ : A∗ → Q is the augmentation 
that sends all elements of positive degree to zero and where ηB∗ : Q → B∗ is the unit map of B∗. Let 
f2 : A∗ → B∗ be any map of graded commutative algebras such that there is an element x ∈ An with n > 0
such that f2(x) = w �= 0. Let TorA∗,fi

∗,∗ (B∗, Q) denote the graded Tor-groups calculated with respect to the 
A∗-module structure on B∗ given by fi. Then

dimQ(TorA∗,f2
∗,∗ (B∗,Q))n < dimQ(TorA∗,f1

∗,∗ (B∗,Q))n

where (TorA∗,fi
∗,∗ (B∗, Q))n =

⊕
r+s=n TorA∗,fi

r,s (B∗, Q).

The proof is a standard exercise in homological algebra. The impatient reader is invited to skip it.

Proof. We construct a small A∗-free resolution P∗ of Q. Since Q is concentrated in degree zero and A0 = Q, 
we can choose P0 to be A∗. Then we choose P1 =

⊕
j∈I1

ΣnjA∗ with the minimal possible number of copies 
of A∗ in each suspension degree, beginning from the bottom. This ensures that d1 :

⊕
j∈I1

ΣnjA0 → P0 is 
injective, and moreover

ker(d1 :
⊕
j∈I1

ΣnjA∗ → P0) ⊆
⊕
j∈I1

Σnj ker(εA∗).

For every � > 0 we choose P� with P� =
⊕

j∈I�
ΣnjA∗ so that d� :

⊕
j∈I�

ΣnjA0 → P�−1 is injective and

ker(d� :
⊕
j∈I�

ΣnjA∗ → P�−1) ⊆
⊕
j∈I�

Σnj ker(εA∗).

The Tor groups we want are the homology groups of

B∗ ⊗A∗ P� = B∗ ⊗A∗

⊕
j∈I�

ΣnjA∗ ∼=
⊕
j∈I�

ΣnjB∗

with respect to the differential id ⊗ d for either A∗-module structure.
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As f1 : A∗ → B∗ factors through the augmentation, the differentials in the chain complex

B∗ ⊗A∗ P•

with the A∗-module structure given by f1 are trivial: they are of the form id ⊗ d where d is the differential 
of P•. As d sends every Σnj1 ∈

⊕
j∈I�

ΣnjA∗ to something in 
⊕

j∈I�−1
Σnj ker(εA∗),

(id ⊗ d)(b⊗A∗ Σnj1) ∈ Q{b} ⊗A∗

⊕
j∈I�−1

Σnj ker(εA∗) = 0

for all b ∈ B∗. Hence TorA∗,f1
�,s (B∗, Q) = (

⊕
j∈I�

ΣnjB∗)s =
⊕

j∈I�
ΣnjB∗−s. In particular, TorA∗,f1

0,s (B∗, Q) =
Bs for all s.

For the A∗-module structure on B∗ given by f2 we obtain that

TorA∗,f2
0,∗ (B∗,Q) = B∗ ⊗A∗ Q

but here, the tensor product results in a nontrivial quotient of B∗. Recall that we assumed that f2(x) =
w �= 0. The element w ⊗ 1 ∈ B∗ ⊗A∗ Q is trivial because the degree of x is positive and hence εA∗(x) = 0:

w ⊗ 1 = f2(x) ⊗ 1 = 1 ⊗ εA∗(x) = 1 ⊗ 0 = 0.

Therefore,

dimQ TorA∗,f2
0,n (B∗,Q) < dimQ TorA∗,f1

0,n (B∗,Q).

The other Tor-terms in total degree n of the form TorA∗,f2
r,s (B∗, Q) with r + s = n are subquotients of

⊕
j∈Ir

ΣnjB∗−s

and hence for all (r, s) with r + s = n and r > 0 we obtain

dimQ TorA∗,f2
r,s (B∗,Q) � dimQ TorA∗,f1

r,s (B∗,Q). �
Note that if f : A∗ → B∗ factors through the augmentation A∗ → Q then

TorA∗
� (B∗,Q) ∼= B∗ ⊗ TorA∗

� (Q,Q). (4.9)

We show the failure of stability by showing that

Theorem 4.10. Let n � 2. Then

dimQ πnLQ
Tn(Q[t]/tn;Q) < dimQ πnLQ∨n

k=1
∨
(n
k
) Sk(Q[t]/tn;Q).

In particular, for all n � 2 the pair (Q[t]/tn; Q) is not stable and Q → Q[t]/tn is not multiplicatively stable.

The n = 2 case of Theorem 4.10 was obtained earlier by Dundas and Tenti [6].
Our proof of Theorem 4.10 investigates the map f2 : A∗ → B∗ induced by sending t �→ tn, and shows that 

it sends an element in positive degree to a nonzero element. Therefore, we get from Lemma 4.8 that the 
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E2-term of the spectral sequence of Equation (4.4) already has a smaller dimension over Q in total degree 
n than dimQ πnLQ∨n

k=1
∨
(n
k
) Sk(Q[t]/tn; Q). Then, even if the spectral sequence differentials do not reduce it 

further, dimQ πnLQ
Tn(Q[t]/tn; Q) which is the dimension over Q of the total degree n part of the E∞-term 

will have to be smaller than dimQ πnLQ∨n
k=1

∨
(n
k
) Sk(Q[t]/tn; Q).

Before we prove the theorem, we state the following integral version of it:

Corollary 4.11. For all n � 2 the pair (Z[t]/tn; Z) is not stable and Z → Z[t]/tn is not multiplicatively 
stable.

Proof of Corollary 4.11. If for some n � 2 the pair (Z[t]/tn; Z) were stable, then in particular

π∗LZ
Tn(Z[t]/tn;Z) ∼= π∗LZ∨n

k=1
∨
(n
k
) Sk(Z[t]/tn;Z).

Localizing at Z \ {0} would then imply

π∗LQ
Tn(Q[t]/tn;Q) ∼= π∗LQ∨n

k=1
∨
(n
k
) Sk(Q[t]/tn;Q)

in contradiction to Theorem 4.10. �
4.1. Proof of Theorem 4.10

We prove Theorem 4.10 by identifying an element in A∗ of positive degree that is sent to a nontrivial 
element of B∗. More precisely, we have that S1 ∨ . . . ∨ S1 is the 1-skeleton of Tn and Sn is the quotient 
of Tn by its (n − 1)-skeleton. We will give a particular element of πnLQ

Tn(Q[t]; Q) (which the collapse of 
the (n − 1)-skeleton sends to the indecomposable element in πnLQ

Sn(Q[t]; Q)), and show that the map that 
sends t to tn sends it, up to a unit, to the element

dt1 dt2 · · · dtn ∈ πnLQ
S1∨...∨S1(Q[t];Q), (4.12)

viewed as an element of πnLQ
Tn(Q[t]; Q) by the map induced by the inclusion of the 1-skeleton. Here each 

dti is the image of the element of π1LQ
S1(Q[t]; Q) represented by 1 ⊗ t under the inclusion S1 ↪→ Tn as the 

ith factor.
In the following we use the standard model of S1 as S1 = Δ1/∂Δ1 with S1

p = [p] and we consider Tn

as the diagonal of an n-fold simplicial set where every ([p1], . . . , [pn]) ∈ (Δ)n is mapped to S1
p1

× . . .× S1
pn

. 
Then LQ

Tn(Q[t]; Q) can also be interpreted as the diagonal of an n-fold simplicial Q-vector space with an 
associated n-chain complex. By abuse of notation we still denote this n-chain complex by LQ

Tn(Q[t]; Q).
Note that in n-chain degree (p1, . . . , pn) of LQ

Tn(Q[t]; Q), we have Q ⊗Q[t]⊗((p1+1)·...·(pn+1)−1) where the 
Q is placed at spot (0, . . . , 0). We think of a tensor monomial in this tensor product as an n-dimensional 
multi-matrix of dimensions (p1+1) ×· · ·×(pn+1). We use the following terminology for the n-chain complex 
LQ
Tn(Q[t]; Q):

• 0m = (0, 0, . . . , 0) and 1m = (1, 1, . . . , 1) are the vectors containing only 0 or 1, respectively, repeated 
m times.

• A vector V ∈ Nn is viewed as a multi-degree of an element in the n-chain complex.
• A vector v ∈ Nn for which 0n � v � V in every entry can be thought of as specifying a coordinate

in the multi-matrix of an element in multi-degree V. We call the ith entry of a vector v ∈ Nn the ith 
place in v. It is always assumed that V = 1n, putting us in total degree n, if not otherwise specified.
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• Each element of LQ
Tn(Q[t]; Q) in degree V = (v1, . . . , vn) is a sum of tensor monomials, each of which 

is a tensor of (v1 + 1) × (v2 + 1) × · · · × (vn + 1) entries which we write in a multi-matrix of dimension 
(v1 + 1, . . . , vn + 1) whose entries are in Q[t] at coordinates v �= 0n and in Q at coordinate 0n.

• xv for x ∈ Q[t] and v ∈ Nn is the multi-matrix with term x at coordinate v and 1 at other coordinates. 
We say a term is trivial if it is 1; thus, 1v is trivial in all its coordinates.

• Therefore xv ·yw for x, y ∈ Q[t] and v, w ∈ Nn is the product of xv and yw in degree V of LQ
Tn(Q[t], Q)

regarded as an n-simplicial ring. Explicitly, if v �= w, it is the multi-matrix with x at coordinate v, y at 
coordinate w, and 1 elsewhere; if v = w, it is the multi-matrix with xy at coordinate v and 1 elsewhere.

Suppose that C• is an n-chain complex with differentials d1, . . . , dn in the n different directions, then the 
total chain complex Tot(C•) has differential in component (v1, . . . , vn) given by

d =
n∑

i=1
(−1)v1+...+vi−1di.

In our case we will have each di =
∑vi

j=0(−1)jdi,j where di,j : Cv1,...,vn
→ Cv1,...,vi−1,...vn is the face map. 

We are interested in low degrees, especially in 1n. Any vi = 1 will imply di = 0 since the di are cyclic 
differentials and Q[t] is commutative. This allows us to eliminate the di from d. We have the following three 
lemmas about homologous classes and tori of different dimensions:

Lemma 4.13 (Split Moving Lemma). Let a, b be coordinates in degree 1n−1 (that is, in 2 × 2 × . . . × 2-
dimensional matrices). Then

x(a,1) · y(b,1) ∼ x(a,0) · y(b,1) + x(a,1) · y(b,0).

Proof. Their difference is a boundary of an element of degree (1n−1, 2):

d(x(a,1) · y(b,2)) = (−1)n−1dn(x(a,1) · y(b,2)) = x(a,0) · y(b,1) − x(a,1) · y(b,1) + x(a,1) · y(b,0). �
For example, when n = 2, a = 0, b = 1, the difference is

d
(

1 x 1
1 1 y

)
=
(
x 1
1 y

)
−
(

1 x
1 y

)
+
(

1 x
y 1

)
.

Let b be a coordinate of a multi-matrix of an element in degree 1n−m such that b �= 0n−m. For any 
multi-matrix c in degree W ∈ Nm, we can form the following multi-matrix in degree (W, 1n−m) ∈ Nn:

c(−,0) ⊗ y(0,b) has terms

⎧⎪⎪⎨
⎪⎪⎩
ca at coordinate (a,0n−m);
yb at coordinate (0m,b);
1 elsewhere.

Lemma 4.14. The following is a chain map:

Tot(LQ
Tm(Q[t],Q)) → Tot(LQ

Tn(Q[t],Q));
c �→ c(−,0) ⊗ y(0,b).

Proof. Clearly di(c(−,0)⊗y(0,b)) = dic(−,0)⊗y(0,b) for 0 � i � m. But since the multi-degree of c(−,0)⊗y(0,b)
is V = (W, 1n−m) ∈ Nn and whenever vi = 1, di = di,0 − di,1 = 0, we also get

di(c(−,0) ⊗ y(0,b)) = 0, for m < i � n. �
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This lemma also applies when y(0,b) is replaced by another multi-matrix that has more than one nontrivial 
term, as long as the nontrivial terms are all in coordinates of the form (0m, b) for b in degree 1n−m and 
b �= 0n−m. It has the following immediate corollary:

Lemma 4.15 (Orthogonal Moving Lemma). Let b be a coordinate in degree 1n−m such that b �= 0n−m. Let 
c, c′ be elements in multi-degree W ∈ Nm. If c ∼ c′ in multi-degree W, then

c(−,0n−m) ⊗ y(0m,b) ∼ c′(−,0n−m) ⊗ y(0m,b)

in multi-degree (W, 1n−m)

Conceptually, the moving lemmas tell us how to move the nontrivial elements x, y in certain multi-
matrices to lower coordinates. They are stated for a special case for simplicity, but of course they work for 
any permutation of copies of Nn in the statement. The split moving lemma says that if we have xv and 
yw where the coordinates share a 1 in a particular place, the 1’s can be moved to coordinate 0 separately. 
The orthogonal moving lemma says that the x in xv and the y in yw can be moved separately if they are 
supported in orthogonal tori (that is, have their nontrivial entries in different coordinates).

Proposition 4.16. Let v and w be two coordinates of degree 1n.

(1) If v and w are both 0 in the ith place for some 1 � i � n, then

xv · yw ∼ 0.

In particular, if v �= 1n, then xv ∼ 0.
(2) In general,

xv · yw ∼
∑

v′�v,w′�w,
v′+w′=1n

xv′ · yw′ ,

where the sum is taken over all coordinates v′ and w′ such that
• They are place-wise no greater than v and w respectively;
• They take 1 in complementary places.

(3) For k � 1 and n � 1, we have the following homologous relation:

(tk)1n
∼

∑
w1,...,wk 
=0n,
w1+...+wk=1n

k∏
i=1

twi

In particular, if k = n and we let ei denote the coordinate that has 1 at the ith place and 0 at other 
places, we get

(tn)1n
∼ n!

n∏
i=1

tei
. (4.17)

Also, if k > n, this gives us

(tk)1n
∼ 0
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Proof. The class in (1) is a cycle because everything in multi-degree 1n is a cycle; it is null-homologous 
because it is in the image of the degeneracy si,0 in the ith place.

For (2) we write |v| for the sum of the places of the vector v. We induct on |v| + |w|. Notice that a 
coordinate v of degree 1n is just a sequence of length n of 0’s and 1’s and |v| is just the number of 1’s in it.

For |v| + |w| � n, there are two cases: One is that v and w are both 0 in one place. Then the claim holds 
because the right-hand side is the empty sum and the left-hand side is 0 by part (1). The other case is that 
v + w = 1n. Then the claim also holds because the right-hand side has only one copy that is exactly the 
left-hand side.

Assume that the claim is true for |v| + |w| � m where m � n and suppose now |v| + |w| = m + 1. Since 
m + 1 � n + 1, v and w have to be both 1 in some place. Without loss of generality, we assume that

v = (v0, 1), w = (w0, 1) where v0,w0 � 1n−1.

By the Split Moving Lemma (Lemma 4.13),

xv · yw ∼ x(v0,0) · yw + xv · y(w0,0).

Since |(v0, 0)| + |w| = |v| + |(w0, 0)| = m, by inductive hypothesis we have that

xv · yw ∼
∑

v0
′�v0,w′�w,

(v0
′,0)+w′=1n

x(v0
′,0) · yw′ +

∑
v′�v,w0

′�w0,
v′+(w0

′,0)=1n

xv′ · y(w0
′,0)

=
∑

v′�v,w′�w,
v′+w′=1n

xv′ · yw′ .

For (3) we order the pair (k, n) by the lexicographical ordering. We induct on (k, n). When k = 1, the 
claim is trivially true.

Suppose the claim is true for all pairs less than (k, n) where k � 2. Taking v = w = 1n, x = t and 
y = tk−1 in part (2), we get that

(tk)1n
∼

∑
w1+v′=1n

tw1 · (tk−1)v′ =
∑

w1 
=0n

w1+v′=1n

tw1 · (tk−1)v′ . (4.18)

The second step above uses that t0n
= 0 because t is 0 in the Q[t]-module Q. Let m = |v′|. By the inductive 

hypothesis, we have

(tk−1)1m
∼

∑
w′

2,...,w
′
k 
=0m,

w′
2+...+w′

k=1m

k∏
i=2

tw′
i

(4.19)

For each w′
i which is a coordinate of degree 1m, we add in 0 in places where v′ is 0 to make it a coordinate of 

degree 1n. Denote it by wi. Then the Orthogonal Moving Lemma (Lemma 4.15), (4.18) and (4.19) combine 
to

(tk)1n
∼

∑
w1,...,wk 
=0n,

k∏
i=1

twi
. �
w1+...+wk=1n
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For any n � 2, we call t1n
the diagonal class and denote it by Δn. If we include S1 ↪→ Tn as the ith 

coordinate and identify the first Hochschild homology group with the Kähler differentials, the generator 
dt of HHQ

1 (Q[t]; Q) maps to the generator we call dti in the Loday construction of the torus. Note that ∏n
i=1 tei

is exactly the degree-n class dt1 dt2 · · · dtn from Equation (4.12).

Proof of Theorem 4.10. By Equation (4.17) we know that the map t �→ tn induces a map on π∗LQ
Tn(Q[t]; Q), 

that sends the diagonal class, Δn, to n! dt1 dt2 · · · dtn. Hence, by Lemma 4.8 we know that in the Tor-spectral 
sequence (4.4) that converges to π∗(LQ

Tn(Q[t]/tn; Q)) the dimension of the E2-term in total degree n is 
strictly smaller than the dimension of the total degree n-part of

Torπ∗(LQ
Tn (Q[t];Q))

∗,∗ (π∗(LQ
Tn(Q[t];Q)),Q)

where the π∗(LQ
Tn(Q[t]; Q))-module structure of π∗(LQ

Tn(Q[t]; Q)) is given by the augmentation followed 
by the unit map. Equation (4.9) and Lemma 4.6 show that this total degree n part is isomorphic to 
πn(LQ∨n

k=1
∨
(n
k
) Sk(Q[t]/tn; Q)).

In the spectral sequence (4.4) for π∗(LQ
Tn(Q[t]/tn; Q)) differentials could cut down the dimension even 

further, but in any case we obtain

πn(LQ
Tn(Q[t]/tn;Q)) � πn(LQ∨n

k=1
∨
(n
k
) Sk(Q[t]/tn;Q)). �

Remark 4.20. For the non-reduced Loday construction LQ
Tn(Q[t]), parts (1) and (2) of Proposition 4.16 are 

still true. Part (3) will become

(tk)1n
∼

∑
w1+...+wk=1n

k∏
i=1

twi

and Equation (4.17) is no longer true.

4.2. Q[t]/tm on Tn for 2 � m < n

We know that for Q[t]/tn we get a discrepancy between πn of the Loday construction on the n-torus and 
that of the bouquet of spheres that correspond to the cells of the n-torus. We use this to first show that 
Q[t]/tm causes a similar discrepancy for 2 � m < n.

Proposition 4.21. Let 2 � m � n. Then

πmLQ
Tn(Q[t]/tm;Q) � πmLQ∨n

k=1
∨
(n
k
) Sk(Q[t]/tm;Q).

Proof. We consider the Tor-spectral sequence

Torπ∗LQ
Tn (Q[t];Q)

∗,∗ (π∗LQ
Tn(Q[t];Q),Q) ⇒ π∗LQ

Tn(Q[t]/tm;Q)

where the π∗LQ
Tn(Q[t]; Q)-module structure on π∗LQ

Tn(Q[t]; Q) is induced by t �→ tm. The m-chain complex 
C

(m)
∗ := LQ

Tm(Q[t]; Q) can be considered as an n-chain complex whose m + 1, . . . , n-coordinates are trivial. 
Then

C
(m)
∗ = LQ

Tm(Q[t];Q) ↪→ C
(n)
∗ := LQ

Tn(Q[t];Q)
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is a sub-n-complex of C(n)
∗ . We know that Δm �→ m! dt1 dt2 · · · dtm in the homology of the total complex of 

C
(m)
∗ , and so the same is true in C(n)

∗ . Therefore the map

πmLQ
Tn(Q[t];Q) → πmLQ

Tn(Q[t];Q)

that is induced by t �→ tm is nontrivial and by Lemma 4.8 the dimension of πmLQ
Tn(Q[t]/tm; Q) is strictly 

smaller than the dimension of

πmLQ∨n
k=1

∨
(n
k
) Sk(Q[t]/tm;Q). �

4.3. Quotients by polynomials without constant term

Let q(t) = amtm + . . . + a1t ∈ Q[t] be a polynomial which is not the zero polynomial. Then we can still 
write Q[t]/q(t) as a pushout

Q[t]
t�→q(t)

t�→0

Q[t]

Q Q[t]/q(t)

and the above methods carry over.

Proposition 4.22. Let m0 be the smallest natural number for which am0 �= 0. Then

πm0LQ
Tm0 (Q[t]/q(t);Q) � πm0LQ∨m0

k=1
∨
(m0

k
) Sk(Q[t]/q(t);Q).

Proof. Clearly 1 � m0 � m. If m0 = 1, then εt ∈ HHQ
1 (Q[t]; Q) maps to ε(q(t)) ∈ HHQ

1 (Q[t]; Q) under the 
map t �→ q(t). In the module of Kähler differentials this element corresponds to

a1dt + 2a2tdt + . . . + mamtm−1dt,

but all these summands are null-homologous except for the first one. So εt �→ a1εt �= 0 and this, along with 
Lemma 4.8, proves the claim.

We denote by Δm0(q(t)) the element (q(t))1m0
. If m0 > 1, then the diagonal element Δm0(t) maps to

Δm0(q(t)) =
m∑

i=m0

aiΔm0(ti)

and this is homologous to

(m0)! am0 dt1 dt2 · · · dtm0 + terms of higher t-degree

by Equation (4.17). Hence Δm0(t) maps to a nontrivial element and again Lemma 4.8 gives the claim. �
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4.4. Truncated polynomial algebras in prime characteristic

The Loday construction on a (flat) commutative Hopf algebra is stable, so the Loday construction on a 
truncated polynomial algebra of the form Fp[t]/tp

� has the same homotopy groups when evaluated on an 
n-torus and on the corresponding bouquet of spheres. However, we show that there is a discrepancy for 
truncated polynomial algebras Fp[t]/tn for 2 � n < p.

Theorem 4.23. If 2 � n < p and n � m,

π∗(LFp

Tm(Fp[t]/tn;Fp)) � π∗(LFp∨m
k=1

∨
(m

k
) Sk(Fp[t]/tn;Fp)).

In particular, for all 2 � n < p the pair (Fp[t]/tn; Fp) is not stable.

Proof. We consider the case m = n. The cases n < m follow by an argument similar to that for Proposi-
tion 4.21.

As Fp[t] is smooth over Fp, we know that Fp → Fp[t] is stable, so that

π∗(LFp

Tn(Fp[t];Fp)) ∼= π∗(LFp∨n
k=1

∨
(n
k
) Sk(Fp[t];Fp)) ∼=

n⊗
k=1

⊗
(nk)

HH[k],Fp
∗ (Fp[t];Fp).

The higher Hochschild homology HH[k],Fp
∗ (Fp[t]; Fp) is calculated in [5, §8], so that we obtain

HH[k],Fp
∗ (Fp[t];Fp) ∼= B′

k+1

where B′
1 = Fp[t] and B′

k+1 = TorB
′
k∗,∗(Fp, Fp), using the total grading on TorB

′
k∗,∗(Fp, Fp). In low degrees, 

this gives HHFp
∗ (Fp[t]; Fp) ∼= ΛFp

(εt) with |εt| = 1, HH[2],Fp
∗ (Fp[t]; Fp) ∼= ΓFp

(�0εt) with |�0εt| = 2. As 
ΓFp

(�0εt) ∼=
⊗

i�0 Fp[�kεt]/(�kεt)p, we can iterate the result.
Note that in HH[n],Fp

n (Fp[t]; Fp) there is always an indecomposable generator of the form ε�0 . . . �0εt or 
�0ε�0 . . . �0εt in degree n. We call this generator Δn. We also obtain a class

εt1 · . . . · εtn ∈ πnLFp

S1∨...∨S1(Fp[t];Fp) ↪→ πnLFp

Tn(Fp[t];Fp).

The results from Proposition 4.16 work over the integers. If n < p, then n! is invertible in Fp and therefore 
the class Δn maps to n! εt1 · . . . · εtn. An argument analogous to Lemma 4.8 finishes the proof. �
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