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In this paper we study the normalizer decomposition of a compact Lie group G
using the information of the fusion system F of G on a maximal discrete p-toral 
subgroup. We prove that there is an injective map from the set of conjugacy classes 
of chains of F-centric, F-radical discrete p-toral subgroups to the set of conjugacy 
classes of chains of p-centric, p-stubborn continuous p-toral subgroups. The map is a 
bijection when π0(G) is a finite p-group. We also prove that the classifying space of 
the normalizer of a chain of discrete p-toral subgroups of G is mod p equivalent to the 
classifying space of the normalizer of the corresponding chain of p-toral subgroups.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In [8], Dwyer formalized and unified three homology decompositions for the p-completed classifying 
space of a finite group G based on a collection of p-subgroups: the centralizer decomposition, the subgroup 
decomposition, and the normalizer decomposition. The first two had been studied in [11] and [12] for 
compact Lie groups, and the normalizer decomposition was new in this context. Dwyer showed that for a 
given collection of subgroups of a finite group G, either all three decompositions give the correct homotopy 
type for BG∧

p or none of them do. Such decompositions in the setting of Lie groups have since been studied 
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by other authors, for example [6,14,19,20]. In particular, in [14] Libman gives a normalizer decomposition 
and then unifies the three homology decompositions for Lie groups, as Dwyer did in the finite group case.

Recently, the homotopy theory of p-local compact groups [3, Defn 4.2] has provided a new, more general 
framework for dealing with the homotopy type of p-completed classifying spaces of compact Lie groups, 
in addition to other examples coming from finite loop spaces ([4]). One works with discrete p-toral groups 
(Definition 2.1) instead of p-toral groups. The formal structure of a p-local compact group consists of a 
triple (S, F , L) where F is a saturated fusion system over the discrete p-toral group S and L is a centric 
linking system associated to F . But in view of [15, Thm B] a p-local compact group is equivalent to just a 
pair (S, F), namely a saturated fusion system over a discrete p-toral group.

When the p-local compact group arises from a compact Lie group G, it encodes the essential p-local 
information needed to uniquely determine the homotopy type of BG∧

p (see [3], [5], [18], [15]). A great 
advantage of studying Lie groups via this theory is that it reduces the study of a topological group to the 
study of a collection of discrete subgroups. There are also other interesting examples of p-local compact 
groups. For example, one can construct a p-local compact group capturing the homotopy type of a p-compact 
group (an Fp-finite loop space together with a chosen p-complete delooping, see [7]). Other examples of p-
local compact groups are given in [4] and [9].

To state the form of a normalizer decomposition more precisely, consider a collection C of closed subgroups 
of a Lie group G. Define sd(C) to be the poset of G-conjugacy classes of chains of proper inclusions in C, 
say H∗ := (H0 ⊂ · · · ⊂ Hk). One can construct a functor δ : sd(C) → Top, and a natural transformation 
from δ to the constant functor with value BG, to induce a map

(
hocolim

sd(C)
δ

)∧

p

→ BG∧
p (1.1)

such that δ(H∗) � BNG(H0 ⊂ · · · ⊂ Hk) := B
(⋂

i NG(Hi)
)
. The following statement collects results 

of [14, Thm C, D], [12, Thm 1.4], and [3, Lemma 9.7] that establish collections for which the normalizer 
decomposition correctly computes the p-completed homotopy type of BG.

Theorem 1.2. Let G be a compact Lie group and let C be either (i) the collection of nontrivial p-radical 
p-toral subgroups or (ii) the collection of p-stubborn p-toral subgroups or (iii) the collection of p-centric 
p-toral subgroups of G (see Definition 4.1). Then (1.1) is an equivalence.

Our program’s goal, taken up in a forthcoming work [1], is a computable setup that generalizes the 
normalizer decomposition (1.1) from compact Lie groups to p-local compact groups. The formalism is a 
straightforward generalization of the earlier work of Libman [13] giving a normalizer decomposition for 
p-local finite groups. In a result similar to Theorem 1.2, [1] will also show that if the p-local compact group 
corresponds to the fusion system F , then the full subcategory of F consisting of F-centric and F-radical 
subgroups (Definition 4.1) is sufficient to determine the homotopy type of the p-completed classifying space. 
This result is in the literature for finite groups ([10, Thm 1.5]) and p-local finite groups ([2, Thm 3.5]), but 
not for p-local compact groups.

When it comes to actual computations, the analysis of the spaces coming into our normalizer decom-
positions for p-local compact groups can be delicate. This paper is largely in service of understanding the 
spaces in the decompositions that we obtain in certain examples. In particular, we need to understand what 
happens in the case of a p-local compact group that arises from a compact Lie group, because we want to 
compare the decomposition we obtain in [1] with the earlier one of Libman for the corresponding Lie group 
[14].

We turn to a description of the contents of this paper and how they fit into our program. Let G be 
a compact Lie group, and let S ⊆ G be a maximal p-toral subgroup of G with maximal discrete p-toral 
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subgroup S ⊆ S. The corresponding fusion system F associated to G is the category whose objects are the 
discrete p-toral subgroups of S, and whose morphisms are given by homomorphisms induced by conjugation 
by elements of G. The goal of this paper is to establish that the left side of (1.1), which is described in 
terms of chains of continuous p-toral groups and the action of G, can instead be described in terms of F , i.e. 
in terms of chains of discrete p-toral groups of G and morphisms in F . There are two issues: the indexing 
category, and the values of the functor δ.

Our first theorem addresses the indexing category, by relating conjugacy classes of chains of discrete 
p-toral subgroups of a compact Lie group G to conjugacy classes of chains of continuous p-toral subgroups 
of G. The following theorem establishes that the desired classes of chains can all be found by considering 
the p-stubborn p-toral subgroups of G, which are classified in [17] for classical groups. (See Definition 2.5
for p-discretization.)

Theorem 4.3. Let S be a maximal p-toral subgroup of a compact Lie group G, with p-discretization S ⊆ S. 
The closure map P �→ P defines an injective map

{P0 ⊆ . . . ⊆ Pk ⊆ S | all Pi are F-centric and F-radical} /G

{P0 ⊆ . . . ⊆ Pk ⊆ S | all Pi are p-toral, p-centric, and p-stubborn } /G.

The map is a one-to-one correspondence if π0G is a p-group.

Our second theorem deals with the values of the functor δ in (1.1). In particular, we relate the mod p

homotopy type of the classifying spaces of normalizers of chains of discrete p-toral subgroups to those of 
chains of continuous p-toral subgroups. Since our decomposition for p-local compact groups will involve the 
former, this theorem will relate (i) the decomposition given by our p-local compact group methods applied 
to the case of a compact Lie group and (ii) the decomposition for a compact Lie group that is obtained by 
[14].

Theorem 5.1. Let P0 ⊆ . . . ⊆ Pk be a chain of p-toral subgroups of a compact Lie group G, and let 
P0 ⊆ . . . ⊆ Pk be a chain of discrete p-toral subgroups such that each Pi is a p-discretization of Pi. Then

NG (P0 ⊆ . . . ⊆ Pk) −→ NG (P0 ⊆ . . . ⊆ Pk)

induces a mod p equivalence of classifying spaces.

The proof introduces the outer automorphism group of a chain H0 ⊆ · · · ⊆ Hk (Definition 5.2), which 
turns out to be a finite group and plays an important role in the argument. (See Proposition 5.3, Lemma 5.6, 
and diagram (5.14).)

In summary, this paper provides the technical results necessary to compare two normalizer decompositions 
for classifying spaces of compact Lie groups: the one obtained by applying [1] to a p-local compact group 
arising from a Lie group G, and the earlier one due to Libman [14], obtained by techniques using G-
actions. The two decompositions are related by taking closures of discrete p-toral subgroups, which brings 
up surprisingly subtle issues. Hence we develop some useful tools for studying the relationship between 
discrete p-toral groups and their closures, as well as the relationship between the classifying spaces of their 
respective normalizers.

Notation. Throughout the paper, G denotes a compact Lie group. Our convention for conjugation is that 
cg(x) = g−1xg. We generally use a boldface font to denote a topological group, as opposed to a discrete 
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group, with the exception of the ambient Lie group G itself. For example, we use P for a p-toral group, and 
P for a discrete p-toral group.

Organization. Section 2 includes background material on p-toral and discrete p-toral subgroups of a compact 
Lie group. Section 3 presents a key technical result on p-discretization of pairs, which allows us to understand 
how chains of discrete p-toral subgroups conjugate inside their closures. Some of the results of this section 
already appear in [3], but we present some simplified proofs. Section 4 contains the proof of Theorem 4.3. 
Lastly, in Section 5 we introduce the group of outer automorphisms of a chain and we prove Theorem 5.1.

Acknowledgments. This paper is the first part of the authors’ Women in Topology III project. A second part 
of that project will appear in a separate article [1]. We thank the organizers of the Women in Topology III 
workshop, as well as the Hausdorff Research Institute for Mathematics, where the workshop was held. The 
Women in Topology III workshop was supported by NSF grant DMS-1901795, the AWM ADVANCE grant 
NSF HRD-1500481, and Foundation Compositio Mathematica. The second author was partially supported 
by Spanish State Research Agency through the FEDER-MEC grant MTM2016-80439-P, and the Severo 
Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M). 
Finally, the authors gratefully acknowledge exchanges with Bill Dwyer, who suggested the approach to 
p-discretizations used in Section 3, and also thank the anonymous referee for a careful reading.

2. p-toral and discrete p-toral subgroups of Lie groups

In this section, we give background material on p-toral and discrete p-toral subgroups of a compact Lie 
group G. First, the definitions.

Definition 2.1.

(1) A group is p-toral of rank r if it is an extension of a torus of rank r by a finite p-group.
(2) A discrete p-torus of rank r is a group isomorphic to a product (Z/p∞)r.
(3) A discrete p-toral group of rank r is an extension of a discrete p-torus of rank r by a finite p-group.

Remark. When we want to emphasize the difference between a p-toral group and a discrete p-toral group, 
we will sometimes refer to the former as a continuous p-toral group.

The p-toral subgroups of a compact Lie group G play a key role in the analysis of the mod p homology 
of the classifying space of G, analogous to the role played by the p-subgroups in the case of a finite group. 
However, there is a key difference between the finite and topological contexts: subgroups of finite p-groups 
are finite p-groups, but subgroups of p-toral groups need not be p-toral. For example, S1 is a p-toral group, 
but it has finite subgroups of order prime to p (certainly not p-toral) as well as the subgroup Z/p∞ ⊂ S1

(also not p-toral, for a different reason). By contrast, a subgroup of a discrete p-toral group is necessarily 
another discrete p-toral group. This feature of discrete p-toral subgroups of a compact Lie group G gives 
them an advantage over continuous p-toral subgroups as tools to approximate G.

A compact Lie group G admits both maximal continuous p-toral subgroups and maximal discrete p-toral 
subgroups, both of which have properties analogous to those of the Sylow p-subgroups of a finite group.

Proposition 2.2 ([3, Prop. 9.3]). Let G be a compact Lie group.

(1) Every p-toral subgroup (respectively, discrete p-toral subgroup) of G is contained in a maximal one.
(2) All maximal p-toral subgroups (respectively, discrete p-toral subgroups) are conjugate in G.
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Unfortunately, discrete p-toral subgroups will not be good approximations to continuous p-toral groups 
when their group-theoretic properties interact badly with their embeddings. In particular, a discrete p-toral 
subgroup can have smaller rank than its closure, and this can occur even when the groups are just tori. For 
example, Z/p∞ can be embedded via a homomorphism as a dense subgroup of S1 × S1. To set apart good 
approximations from bad ones, we have the following definition.

Definition 2.3 ([3, Defn. 9.1]). A discrete p-toral subgroup P ⊆ G is snugly embedded if P is a maximal 
discrete p-toral subgroup of P .

Lemma 2.4 ([3, Prop. 9.2]). If P ⊆ G is a snugly embedded discrete p-toral group, then P ↪→ P induces a 
homotopy equivalence (BP )∧p �

(
BP

)∧
p
.

Not all discrete p-toral subgroups of a compact Lie group G are snugly embedded. However, since any 
p-toral group possesses maximal discrete p-toral subgroups by Proposition 2.2, a p-toral group can always 
be approximated by a snugly embedded discrete p-toral group. A more compact terminology will be helpful.

Definition 2.5. Let P be a p-toral subgroup of G, and let P ⊆ P be a snugly embedded discrete p-toral 
subgroup with P = P. We say that P is a p-discretization of P.

In particular, a p-discretization of P is characterized by being a maximal discrete p-toral subgroup of P.

Example 2.6. A torus has only one p-discretization, namely the subgroup consisting of all p-torsion elements. 
Similarly, Proposition 2.2(2) establishes that any abelian p-toral group has a unique p-discretization.

In general, however, a p-toral group P that has multiple components has many p-discretizations. If P ⊆ P
is one such, then the others are all conjugate to P in P by Proposition 2.2(2). The stabilizer of P is NP(P ), 
so the approximations are parametrized by P/NP(P ). (See also Remark 3.7.)

The simplest nontrivial example with more than one discretization is the 2-toral group P = O(2) ∼=
S1

� {±1}, where −1 is represented by reflection over the y-axis. An obvious 2-discretization is given by 
the subgroup P = Z/2∞ � {±1}. A direct matrix calculation shows that NP(P ) = P , so in fact the 
2-discretizations are parametrized by P/P ∼= S1/ (Z/2∞). The other parametrizations are given by

P ′ = (Z/2∞ × {1}) � (ξ · Z/2∞ × {−1}) (2.7)

where ξ is any fixed element of S1. And indeed, the proof of [3, 9.3] establishes that, in general, the different 
p-discretizations of a p-toral group P can be obtained by conjugation by an element of the torus of P.

We close this section by observing that, as in (2.7), any p-discretization must start with the unique 
p-discretization of the torus.

Lemma 2.8. If P is a p-toral group with maximal torus T, and Tp denotes the p-torsion elements of T, then 
any p-discretization P of P must contain Tp.

Proof. By Proposition 2.2, Tp can be expanded to a p-discretization P ′ of P, and P ′ is conjugate to P in P. 
However, Tp is a normal subgroup of P and hence is stabilized by the conjugation. Thus Tp ⊆ P as well. �
3. p-discretizations of pairs

Let P be a p-toral group. Proposition 2.2 tells us that all p-discretizations of P are conjugate in P. It 
also tells us that if Q ⊆ P is a p-toral subgroup and Q is a p-discretization of Q, then Q can be expanded to 
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a p-discretization P of P. However, it is likely that there is more than one way to expand Q; that is, there 
can be different pairs of discrete p-toral subgroups (Q, P1) and (Q, P2) that are p-discretizations for the pair 
(Q, P). The main goal of this section is to establish the following proposition, which can be thought of as 
a uniqueness statement about p-discretizations of pairs. The point is that P1 and P2 are conjugate in P by 
an element that fixes Q. Hence the pair (Q, P1) is conjugate in P to the pair (Q, P2).

Proposition 3.1. If P1 and P2 are p-discretizations of P, and Q ⊆ P1 ∩ P2, then there exists y ∈ CP(Q)
such that cy (P1) = P2.

Our approach is based on a non-canonical (and non-topological) splitting of p-toral groups, for which we 
use the following standard homological lemma.

Lemma 3.2. Let K be a finite group, and let

0 −→ I −→ X −→ V −→ 0

be a short exact sequence of Z[K]-modules. If V is uniquely |K|-divisible and I is an injective Z-module, 
then there is a splitting X ∼= I × V as Z[K]-modules.

Proof. Because I is an injective abelian group, there is a retraction of abelian groups r : X → I, which in 
turn defines a section s : V → X of abelian groups. However, HomZ(V, X) is uniquely |K|-divisible (because 
V is), so we can define a new section s̃ : V → X by averaging over the elements of K,

s̃ := 1
|K|

∑
y∈K

y−1sy.

Then s̃ is a section of X → V as Z[K]-modules, which establishes the lemma. �
We use the following notation for the splitting result below. Let T = Rr/Zr be a rank r torus, whose 

subgroup of torsion elements is denoted TQ := Qr/Zr. The quotient of T by the torsion elements is denoted 
T∞ := T/TQ. If p is a prime, then the p-torsion subgroup of T is denoted Tp := (Z/p∞)r, and we write Tp′

for the subgroup of T consisting of torsion elements of order prime to p, i.e. the product of all the subgroups 
(Z/q∞)r over primes q �= p.

Lemma 3.3. Let P be a p-toral group with p-discretization P ⊆ P. There exists a (non-canonical, discon-
tinuous) group homomorphism P → P that splits the inclusion P ↪→ P. Any such splitting has the property 
that if P ′ is another p-discretization of P, then P ′ → P → P is an isomorphism.

Proof. Let T be the maximal torus of P and let K = π0P = P/T, a finite p-group. By Lemma 3.2 applied 
to T (considered as a discrete group), there is a split short exact sequence of Z[K]-modules

0 −→ Tp −→ T −→ Tp′ × T∞ −→ 0.

Note that by Lemma 2.8, Tp ⊆ P . Further, because Tp′ × T∞ is split from T as a Z[K]-module, we know 
Tp′ × T∞ is normal in P and we can define the quotient P̃ := P/ (Tp′ × T∞), which is a discrete p-toral 
group. (We note here that we have completely discarded the topology on the torus. The key tool resulting 
from Lemma 3.3 is Lemma 3.5, and the topology is not needed there.)
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Consider the commutative ladder of exact sequences

0 Tp P

i

K

=

0

0 Tp × Tp′ × T∞︸ ︷︷ ︸T P

q

K

=

0

0 Tp P̃ K 0.

(3.4)

By construction, the compositions of the two maps in the first and third columns are identity maps on Tp

and K, respectively. Hence the composite f := q ◦ i : P → P̃ is an isomorphism. Then f−1 ◦ q : P → P is 
the required group homomorphism splitting the inclusion P ⊆ P.

If P ′ ⊂ P is another p-discretization of P, then P ′ also contains Tp (Lemma 2.8). Therefore we can 
substitute P ′ for P in (3.4) and the composite P ′ → P → P̃ will still be an isomorphism. Hence composing 
with the isomorphism f−1 : P̃ → P finishes the proof. �

Using the splitting, we are able to show a sense in which a p-discretization P ⊆ P is able to capture 
conjugation information present in P. The statement below is a slight generalization of [3, Lemma 9.4(a)]
and a couple of statements in its proof.

Lemma 3.5. Let P be a p-toral subgroup with p-discretization P . Let Q1 and Q2 be subgroups of P , and 
suppose that a group homomorphism f : Q1 → Q2 is induced by conjugation in P. Then f can be induced 
by conjugation in P .

Proof. Suppose that f : Q1 → Q2 is given by conjugation by y ∈ P. Let r : P → P be the retraction 
provided by Lemma 3.3, and consider the commutative diagram

Q1

f=cy

P P
r

cy

P

cr(y)

Q2 P P
r

P.

Although we cannot fill in the rectangle, because conjugation by y may not take P to P , we do know that 
(by assumption) that Q1 and Q2 are contained in P . Since P ↪→ P r−→ P is the identity map of P , the 
compositions across the top and bottom rows corestrict to the identity maps on Q1 and Q2, respectively. 
Therefore conjugation by y ∈ P and r(y) ∈ P induce the same map f : Q1 → Q2. �

We now have all the tools we need to establish Proposition 3.1.

Proof of Proposition 3.1. Since P1 and P2 are both p-discretizations of P, they are conjugate in P. Choose 
y ∈ P such that cy(P1) = P2. It is possible that cy does not stabilize Q, so let Q′ = cy(Q). Then Q and Q′

are both subgroups of P2, and cy : Q → Q′. By Lemma 3.5, there exists x ∈ P2 such that cx = cy : Q → Q′. 
Define y′ = y · x−1. Then y′ still conjugates P1 to P2, but y′ centralizes Q. �

In the remainder of this section, we give two applications of Proposition 3.1. First, we prove that the 
outer automorphism group in G of a p-discretization is the same as that of its closure. This is proved in 
[3, Lemma 9.4] using a different point of view. Second, we prove that for the purpose of understanding the 
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mod p homology of classifying spaces, centralizers and normalizers can be computed either in a discrete 
p-toral group or a continuous p-toral group. These two results are the base cases for inductions to establish 
the corresponding results for chains of subgroups in Section 5.

Lemma 3.6. Let P be a p-discretization of a p-toral subgroup P of G. Then OutG(P ) ∼= OutG(P).

Proof. We want to prove that the natural map

OutG(P ) := NG(P )
CG(P ) · P −−→ NG(P)

CG(P) ·P =: OutG(P)

is an isomorphism. To show that it is an epimorphism, suppose that n ∈ NG(P). Because cn(P ) and P
are both discretizations of P, there exists x ∈ P such that cx(cnP ) = P . Therefore n · x ∈ NG(P ), and it 
represents the same class as n in OutG(P).

To show injectivity, first suppose that n ∈ NG(P ) ∩ P. We would like to show that n is already in 
CG(P ) ·P . However, Lemma 3.5 tells us that the automorphism of P induced by n can be induced by some 
y ∈ P . Hence n · y−1 = c ∈ CG(P ) and n = c · y ∈ CG(P ) · P , as required.

To finish, suppose that n ∈ NG(P ) ∩[CG(P) · P], say n = c ·x with c ∈ CG(P) = CG(P ) and x ∈ P. Then 
x = n ·c−1 normalizes P . The previous argument shows that x ∈ CG(P ) ·P , and hence n = c ·x ∈ CG(P ) ·P , 
as required. �
Remark 3.7. Observe that NP(P ) = NG(P ) ∩P, and the proof of Lemma 3.6 establishes that NG(P ) ∩P =
(P · CG(P )) ∩ P. Since CG(P ) ∩ P = CG(P) ∩ P = Z(P), we have actually proved that if P is a p-
discretization of P, then NP(P ) = P · Z(P). This gives a refinement to the discussion of Example 2.6: 
p-discretizations of P are parametrized by P/NP(P ) = P/(P · Z(P)). We recover the result that if P is 
abelian (Z(P) = P), then the p-discretization is unique. Indeed, if the torus is central in P then there is a 
unique p-discretization of P, and otherwise there are infinitely many.

For our final result of this section, note that if Q ⊆ P is an inclusion of p-toral subgroups, then both 
NP(Q) and CP(Q) (and hence Z(Q)) are p-toral ([12, Lemma A.3]).

Proposition 3.8. Let Q ⊆ P be p-discretizations of p-toral groups Q ⊆ P. Then CP (Q) is a p-discretization 
of CP(Q), and NP (Q) is a p-discretization of NP(Q).

Proof. Let D be a p-discretization of CP(Q); we note that Z(Q) is necessarily contained in D, since Z(Q)
has only one p-discretization. Since D commutes with Q, their product D ·Q is a discrete p-toral subgroup 
of NP(Q). We can expand D ·Q to a p-discretization N of NP(Q), and then enlarge N to a p-discretization 
P ′ of P. So we have compatible p-discretizations

D D ·Q N P ′

CP(Q) NP(Q) P.

By construction, Q ⊆ N ∩ Q, and since Q is a maximal discrete p-toral subgroup of Q, we know that 
Q = N∩Q. Therefore N normalizes Q (because N normalizes both itself and Q), so N ⊆ NP ′(Q) ⊆ NP(Q). 
But N is a maximal discrete p-toral subgroup of NP(Q), so in fact N = NP ′(Q). Similarly, we have 
D ⊆ CP ′(Q) ⊆ CP(Q) and maximality gives us D = CP ′(Q).
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However, we have another p-discretization of P, namely P . Notice that Q is contained both P (by 
assumption) and P ′ (by construction), so Proposition 3.1 says that there exists y ∈ CP(Q) with cy(P ′) = P . 
We obtain the two commutative diagrams

CP ′(Q)
cy

CP (Q)

CP(Q)
cy

CP(Q)

NP ′(Q)
cy

NP (Q)

NP(Q)
cy

NP(Q).

The left vertical arrows are p-discretizations by construction, therefore the right vertical arrows are p-
discretizations as well. �
Corollary 3.9. If P is a p-discretization of P, then Z(P ) is a p-discretization of Z(P).

Proof. Apply Proposition 3.8 with P = Q. �
4. Chains of p-centric, p-stubborn subgroups of G

In [3], Broto, Levi and Oliver construct a saturated fusion system associated to a compact Lie group G, 
denoted FS(G), where S is a maximal discrete p-toral subgroup of G. It is a category whose objects are 
the subgroups of S and whose morphisms are homomorphisms induced by conjugation in G. The purpose 
of this section is to compare the collection of FS(G)-centric, FS(G)-radical subgroups (Definition 4.1) with 
the analogous collection of continuous p-toral subgroups, namely the p-centric, p-stubborn subgroups. In 
our forthcoming normalizer decomposition for p-local compact groups [1], the indexing category will be 
conjugacy classes of chains of FS(G)-centric, FS(G)-radical subgroups of S. In this section, we show that 
when π0G is a p-group, the set of such conjugacy classes is in one-to-one correspondence with conjugacy 
classes of chains of p-centric, p-stubborn subgroups of G (Theorem 4.3). Further, even when π0G is not a 
p-group, there is still an injection from the first set to the second.

First we need some definitions, taken from the definitions for a fusion system (see [3, Def. 2.6 and 
pp 380] and [12, Def. 1.3]). For streamlined notation, we suppress both G and the maximal discrete p-toral 
subgroup S.

Definition 4.1. Fix a compact Lie group G and a maximal discrete p-toral subgroup S ⊆ G.

(1) For discrete p-toral groups
(a) A subgroup P ⊆ S is F-centric if whenever Q ⊆ S is G-conjugate to P , we have CS(Q) = Z(P ). 

(In particular, CS(P ) = Z(P ).)
(b) A subgroup P ⊆ S is F-radical if OutG(P ) := NG(P )/ [CG(P ) · P ] has no nontrivial normal 

subgroups.
(2) For continuous p-toral groups

(a) A p-toral subgroup P ⊆ G is p-centric in G if Z(P) is a maximal p-toral subgroup of CG(P).
(b) A p-toral subgroup P ⊆ G is p-stubborn in G if NG(P)/P is finite and has no nontrivial normal 

p-subgroups.

Note that although the concepts of F-centric and F-radical depend on both S and G, we omit them from 
the notation because S and G are always clear from context, and the omission gives a slimmer notation. 
We also observe that the properties of being p-centric and p-stubborn are closed under G-conjugation since 
cg(CG(P)) = CG(cg(P)) and cg(NG(P)) = NG(cg(P)) for any g ∈ G.
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Remark 4.2. A p-toral subgroup P ⊆ G is p-radical if NG(P)/P has no nontrivial normal p-toral sub-
groups (no assumption that NG(P)/P is finite). For finite groups, the collection of p-radical subgroups was 
introduced by Bouc. In the compact Lie case, the p-radical subgroups were featured in [14].

However, when P ⊆ G is p-centric, then p-radical and p-stubborn become equivalent, because OutG(P)
is finite ([3, Lemma 9.4]) and the short exact sequence

0 → CG(P)/Z(P) → NG(P)/P → OutG(P) → 0

has CG(P)/Z(P) finite of order prime to p.

With the necessary vocabulary in hand, we are able to state the main theorem for this section.

Theorem 4.3. Let S be a maximal p-toral subgroup of a compact Lie group G, with p-discretization S ⊆ S. 
The closure map P �→ P defines an injective map

{P0 ⊆ . . . ⊆ Pk ⊆ S | all Pi are F-centric and F-radical} /G

{P0 ⊆ . . . ⊆ Pk ⊆ S | all Pi are p-toral, p-centric, and p-stubborn} /G.

The map is a one-to-one correspondence if π0G is a p-group.

The first task is to show that the map of Theorem 4.3 actually exists. That is, we need to establish that 
the closure of a discrete p-toral subgroup of S that is F-centric and F-radical is p-centric and p-stubborn. 
(It is certainly p-toral.) To use the results of Section 3, we need to know that the discrete p-toral groups we 
are dealing with are snugly embedded. The following lemma can be found in [3, Corollary 3.5, Lemma 9.9], 
but we give an elementary proof here that does not use the bullet construction.

Lemma 4.4. Let G be a compact Lie group with maximal discrete p-toral subgroup S, and let P be a subgroup 
of S. If P is F-centric and F-radical, then P is snugly embedded.

Proof. Let P = P , and expand P to a p-discretization Q′ of P. To prove that P is snugly embedded, 
we would like to prove that Q′ = P . Expand Q′ further to a p-discretization S′ of S, so that we have 
P ⊆ Q′ ⊆ S′ ⊆ S. Using Proposition 3.1 with P ⊆ S ∩ S′, choose y ∈ CS(P ) such that cy(S′) = S, and let 
Q = cy(Q′). Now we have P ⊆ Q ⊆ S ⊆ S and Q is a p-discretization of P, and our goal has become to 
prove Q = P .

Consider the homomorphism

NQ(P )/Z(P ) → NG(P )/CG(P ). (4.5)

Because P is F-centric by assumption, CS(P ) = Z(P ). Therefore the centralizer of P in Q ⊆ S is Z(P ) as 
well, and (4.5) is a monomorphism. We assert that the image is a normal subgroup of NG(P )/CG(P ). To 
prove this, we must take an element g ∈ NG(P ) and prove that we can adjust g by an element of x ∈ CG(P )
so that g · x normalizes NQ(P ). Given that g · x would certainly normalize P , it is sufficient to construct x
so that g · x normalizes Q.

Let Q′′ = cg(Q). Because g ∈ NG(P ) ⊆ NG(P), the groups Q′′ and Q are both p-discretizations of P, 
and we have P ⊆ Q ∩Q′′. Proposition 3.1 gives us an element x ∈ CP(P ) such that cx(Q′′) = Q. Therefore 
g ·x normalizes both Q and P and we conclude that (4.5) is the inclusion of a normal subgroup. Taking the 
quotient on both sides by P , we find that NQ(P )/P is a normal subgroup of OutG(P ).
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However, we have assumed that P is F-radical, meaning that OutG(P ) has no nontrivial p-subgroups. 
Therefore NQ(P )/P must be the trivial group, that is, NQ(P ) = P . Because P and Q are discrete p-toral 
groups, NQ(P ) = P implies that the inclusion of P into Q cannot be proper [3, Lemma 1.8], so P = Q. 
Hence P is a maximal discrete p-toral subgroup of P, as required. �

Now that we know that F-centric and F-radical subgroups of G must be snug, we can use the results of 
Section 3. Our next proposition shows that the map of Theorem 4.3 can be defined. That is, we show that 
the closure of an F-centric and F-radical discrete p-toral subgroup is in fact p-centric and p-stubborn. (See 
also the argument given in [3, Prop 8.4 and Lemma 9.6] for p-centricity.)

Proposition 4.6. If P is a p-discretization of P, and P is F-centric and F-radical, then P is p-centric and 
p-stubborn.

Proof. To show that P is p-centric, we must show that Z(P) is a maximal p-toral subgroup of CG(P). 
To see this, suppose that H ⊆ CG(P) is a maximal p-toral subgroup. Then H necessarily contains Z(P), 
because all choices for H are conjugate in CG(P) and Z(P) � CG(P). We construct a p-discretization of H
by expanding Z(P ) ⊆ H to a p-discretization H of H. Then we further expand the discrete p-toral subgroup 
H ·P to a maximal discrete p-toral subgroup S′ of G. (Note that S′ does not have to have the same closure 
as S.)

All maximal discrete p-toral subgroups of G are conjugate, so there exists g ∈ G with cg(S′) = S. Let 
Q = cg(P ) ⊆ S and J = cg(H) ⊆ S so we have the following picture:

Z(P )

cg

H

cg

P ·H

cg

S′

cg

G

cg

Z(Q) J Q · J S G.

By construction, H = CS′(P) = CS′(P ), and further, H is a p-discretization of H and H ⊆ S′. This means 
H = CS′(P ), and so J = CS(Q).

But we know that Q ⊆ S is G-conjugate to P , and by definition of F-centric, that implies Z(Q) =
CS(Q) = J . Hence Z(P ) = H as well. Lastly, because P is F-centric and F-radical, P is snug by Lemma 4.4, 
and therefore Z(P ) is a p-discretization of Z(P) by Corollary 3.9. Since H is a p-discretization of H by 
construction, and H = Z(P ), we find that H = Z(P), as required to prove that P is p-centric.

To show that P is p-stubborn, we must show that NGP/P is finite and contains no nontrivial normal 
p-subgroups. Consider the short exact sequence

1 −→ CG(P)/Z(P) −→ NG(P)/P −→ NG(P)/ [CG(P) · P]︸ ︷︷ ︸
OutG(P)

−→ 1. (4.7)

The right-hand term is OutG(P), which by Lemma 3.6 is isomorphic to OutG(P ). The definition of F-radical 
tells us that OutG(P ) contains no nontrivial normal p-subgroups, and hence the same is true of OutG(P).

Turning our attention to the left-hand term in (4.7), we have proved that Z(P) is a maximal p-toral 
subgroup of CG(P). The quotient CG(P)/Z(P) is a compact Lie group, but cannot contain an S1 by 
maximality of Z(P). Hence CG(P)/Z(P) is finite. Again by maximality of Z(P), we know CG(P)/Z(P)
has no p-torsion elements, so it has order prime to p. As a consequence, the image of a nontrivial normal 
p-subgroup of NG(P)/P would be a nontrivial p-subgroup of OutG(P) = OutG(P ), a contradiction of the 
assumption that P is F-radical.

It remains to establish that NG(P)/P is finite, for which is it sufficient to know that the right-hand 
term, OutG(P) ∼= OutG(P ), is finite. If OutG(P ) is not finite, then it has a nontrivial torus, and therefore 
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an infinite torsion subgroup. However, any torsion subgroup of OutG(P ) is finite [3, Prop. 1.5]. Therefore 
OutG(P) is finite, and hence NG(P)/P is finite with no nontrivial normal p-subgroups, meaning that P is 
p-stubborn, as required. �

So far, our progress toward proving Theorem 4.3 is to establish that the statement makes sense: the 
function actually exists! Next we establish that the function is injective.

Lemma 4.8. Let S ⊆ G be a maximal p-toral subgroup of the Lie group G, and fix a p-discretization S of S. 
Suppose that P0 ⊆ . . . ⊆ Pk and Q0 ⊆ . . . ⊆ Qk are two chains of snug discrete p-toral subgroups of S that 
both have P0 ⊆ . . . ⊆ Pk as their closure. Then P0 ⊆ . . . ⊆ Pk and Q0 ⊆ . . . ⊆ Qk are conjugate in Pk

(and hence necessarily in G).

Proof. We induct on k. The base case k = 0 is true because P0 and Q0 are both p-discretizations of P0, 
and hence are conjugate in P0. Now suppose that P0 ⊆ . . . ⊆ Pk−1 and Q0 ⊆ . . . ⊆ Qk−1 are conjugate by 
x ∈ Pk−1. Then cx(Pk) and Qk are p-discretizations of Pk, and Qk−1 ⊆ cx(Pk) ∩Qk. By Proposition 3.1, 
there exists y ∈ CPk

(Qk−1) such that cy (cx(Pk)) = Qk. Hence x · y ∈ Pk and conjugates P0 ⊆ . . . ⊆ Pk to 
Q0 ⊆ . . . ⊆ Qk. �

To address the extent to which the function in Theorem 4.3 is surjective, we first need to check whether 
it is always possible to obtain a discretization of a given chain in S within the chosen p-discretization S.

Lemma 4.9. Let S ⊆ G be a maximal p-toral subgroup of the Lie group G, and let P0 ⊆ . . . ⊆ Pk be a chain 
of p-toral subgroups of S. Fix a p-discretization S ⊆ S. Then there exists an S-conjugate of P0 ⊆ . . . ⊆ Pk

that has a chain of p-discretizations P0 ⊆ . . . ⊆ Pk contained in S.

Proof. Choose a p-discretization P0 of P0, and expand it one group at a time to a chain of p-discretizations 
P0 ⊆ . . . ⊆ Pk ⊆ S′ of P0 ⊆ . . . ⊆ Pk ⊂ S. Since S and S′ are both p-discretizations of S, there exists s ∈ S
such that cs(S′) = S. Then cs (P0 ⊆ . . . ⊆ Pk) is a p-discretization inside S of cs (P0 ⊆ . . . ⊆ Pk). �
Proof of Theorem 4.3. Most of the proof is in the preceding results. We have proved that the function 
exists (Proposition 4.6) and that it is injective (Lemma 4.8). Further, Lemma 4.9 lays the groundwork for 
an epimorphism statement, since a chain in the target has a simultaneous p-discretization in the chosen S. 
To finish the proof of the epimorphism statement, we must show that

(1) if P is p-stubborn and p-centric, with p-discretization P ⊆ S, then P is F-centric, and
(2) if in addition π0G is a p-group, then P is also F-radical.

Suppose that P is p-stubborn and p-centric. Then CG(P)/Z(P) ⊆ NG(P)/P is finite, and has order prime 
to p because P is p-centric. Mapping from S to G gives a monomorphism CS(P)/Z(P) ↪→ CG(P)/Z(P) from 
a p-toral group ([12, A.3]) to a finite group of order prime to p, and therefore the map is null. We conclude 
that Z(P) = CS(P). But by Proposition 3.8 and Corollary 3.9, we know that the groups Z(P ) ⊆ CS(P )
are p-discretizations of Z(P) = CS(P), respectively. Maximality implies that Z(P ) = CS(P ), that is, the 
group P satisfies the required condition to be F-centric.

We must also check that if Q ⊆ S is G-conjugate to P , then CS(Q) = Z(Q). The subgroup Q is snug, 
because P is. Let Q be the closure of Q, and observe that Q is G-conjugate to P, by the same element that 
takes Q to P . Further, Q is p-stubborn and p-centric, because P is, and those properties are preserved by 
conjugation in G. Since Q ⊆ Q is a p-discretization, the argument of the previous paragraph shows that Q
is F-centric as well.
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We must still show that P is F-radical when we know that π0G is a p-group, that is, we must show that 
OutG(P ) has no nontrivial normal p-subgroups. By Lemma 3.6, OutG(P ) ∼= OutG(P), so we can use the 
short exact sequence of (4.7). The key ingredient is that if π0G is a p-group, then CG(P) is p-toral [12, A.5], 
and hence CG(P)/P ⊆ NG(P)/P is also p-toral. However, P is p-stubborn by assumption, so NG(P)/P
is finite, and CG(P)/P is therefore a finite p-group. If OutG(P) had a nontrivial normal p-subgroup, then 
its inverse image in NG(P)/P would be a normal p-subgroup, in contradiction of the assumption that P is 
p-stubborn. �
5. Normalizers

In Section 3 we studied relative discretizations and proved that centralizers and normalizers of p-toral 
groups inside other p-toral groups are compatible with p-discretizations (Proposition 3.8). In this section, 
we leverage the results of Section 3 to prove that if P0 ⊆ . . . ⊆ Pk is a chain of p-discretizations of 
P0 ⊆ . . . ⊆ Pk, then the corresponding map of G-normalizers induces a mod p homology isomorphism on 
classifying spaces.

Theorem 5.1. Let P0 ⊆ . . . ⊆ Pk be a chain of p-toral subgroups of a compact Lie group G, and let 
P0 ⊆ . . . ⊆ Pk be a chain of discrete p-toral subgroups such that each Pi is a p-discretization of Pi. Then

NG (P0 ⊆ . . . ⊆ Pk) −→ NG (P0 ⊆ . . . ⊆ Pk)

induces a mod p equivalence of classifying spaces.

Our forthcoming work on the normalizer decomposition of a p-local compact group will use Theorem 5.1
to establish that, when applied to a compact Lie group, our decomposition recovers a version of the theorem 
of Libman [14] using p-toral subgroups that are both p-centric and p-stubborn.

Our strategy to prove Theorem 5.1 is to study the “outer automorphism” group of a chain separately 
from the “inner automorphisms” of the chain.

Definition 5.2. Let H be a group, and let P0 ⊆ . . . ⊆ Pk be a chain of subgroups of H. We define OutH(P0 ⊆
. . . ⊆ Pk) as the quotient

NH (P0 ⊆ . . . ⊆ Pk)
CH(Pk) ·NPk

(P0 ⊆ . . . ⊆ Pk)
.

Note that the definition makes no restriction on the subgroups in the chain. In particular, in the next 
proposition, we establish the relationship between the outer automorphism group of a chain of continuous 
p-toral subgroups and that of a p-discretization of the chain.

Proposition 5.3. Let P0 ⊆ . . . ⊆ Pk be a chain of p-toral subgroups of G, and let P0 ⊆ . . . ⊆ Pk be a chain 
of p-discretizations of the p-toral chain. Then inclusion of normalizers induces an isomorphism

OutG(P0 ⊆ . . . ⊆ Pk)︸ ︷︷ ︸
NG

(
P0⊆...⊆Pk

)
CG(Pk)·NPk

(
P0⊆...⊆Pk

)

−−−→ OutG(P0 ⊆ . . . ⊆ Pk)︸ ︷︷ ︸
NG

(
P0⊆...⊆Pk

)
CG(Pk)·NPk

(
P0⊆...⊆Pk

)

. (5.4)

Proof. To show that the map is an epimorphism, we induct on k. The case k = 0 is Lemma 3.6. For the 
inductive hypothesis, assume that we have g ∈ NG (P0 ⊆ . . . ⊆ Pk), and that g stabilizes P0 ⊆ . . . ⊆ Pk−1. 
We need to adjust g to stabilize Pk as well.
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Suppose that cg(Pk) = P ′
k. Then Pk−1 ⊆ Pk ∩ P ′

k, and by Proposition 3.1 we can find y ∈ CPk
(Pk−1)

that conjugates P ′
k to Pk. Now we have an element g · y that stabilizes P0 ⊆ . . . ⊆ Pk. Since y is in 

NPk
(P0 ⊆ . . . ⊆ Pk), we conclude that we have an epimorphism

NG (P0 ⊆ . . . ⊆ Pk)
epi−−−−→ NG (P0 ⊆ . . . ⊆ Pk)

NPk
(P0 ⊆ . . . ⊆ Pk)

,

and therefore (5.4) is also surjective.
To establish injectivity, consider n ∈ NG (P0 ⊆ . . . ⊆ Pk) such that [n] is in the kernel of (5.4). We can 

write n = c · x where c ∈ CG(Pk) = CG(Pk) and x ∈ NPk
(P0 ⊆ . . . ⊆ Pk). Then in fact x stabilizes 

P0 ⊆ . . . ⊆ Pk, since both n and c do so. By Lemma 3.5, the automorphism of Pk induced by x can be 
induced by some element y ∈ Pk, and then x · y−1 ∈ CPk

(Pk). Further, since x and x · y−1 both stabilize 
P0 ⊆ . . . ⊆ Pk, so does y. We have expressed n = c · x = (c · x · y−1) · y as an element in the denominator of 
the left side of (5.4), which completes the proof. �
Corollary 5.5. Let P be a p-discretization of a p-toral group P, and let Q0 ⊆ . . . ⊆ Qk be a chain of snug 
subgroups of P . Then inclusions of normalizers induce isomorphisms

OutP (Q0 ⊆ . . . ⊆ Qk) OutP (Q0 ⊆ . . . ⊆ Qk)

OutP (Q0 ⊆ . . . ⊆ Qk) .

∼=

Prop. 5.3

Proof. The left diagonal map is clearly a monomorphism. To see that it is also an epimorphism, note that any 
automorphism of Qk induced by conjugation in P can also be induced by conjugation in P (Lemma 3.5). �

Outer automorphism groups of chains turn out to be finite, generalizing the result of [3, Prop. 9.4(b)] for 
a single group.

Lemma 5.6. Let G be a compact Lie group and let P0 ⊆ . . . ⊆ Pk be a chain of snug discrete p-toral subgroups. 
Then OutG (P0 ⊆ . . . ⊆ Pk) is finite.

Proof. We induct on k. The base case is given by [3, Prop. 9.4(b)]. Now suppose that OutG(P0 ⊆ . . .

⊆ Pk−1) is finite, and consider the homomorphism induced by deleting the smallest element of the chain:

NG (P0 ⊆ . . . ⊆ Pk)
CG(Pk) ·NPk

(P0 ⊆ . . . ⊆ Pk)
−−−→ NG (P1 ⊆ . . . ⊆ Pk)

CG(Pk) ·NPk
(P1 ⊆ . . . ⊆ Pk)

. (5.7)

The target is finite by the inductive hypothesis, so we need only show that the map is injective. The 
homomorphism of the numerators is certainly injective. Now suppose that

n ∈ NG (P0 ⊆ . . . ⊆ Pk) ∩ [CG(Pk) ·NPk
(P1 ⊆ . . . ⊆ Pk)] .

Then n = c · x for some c ∈ CG(Pk) and x ∈ NPk
(P1 ⊆ . . . ⊆ Pk). The element x also normalizes P0, since 

n and c do. Hence n = c · x ∈ CG(Pk) ·NPk
(P0 ⊆ . . . ⊆ Pk), as desired. �

We turn now to the comparison of the normalizers and centralizers of continuous and discrete p-toral 
subgroups of G. The starting point is Proposition 3.8, which tells us that if Q ⊆ P are p-discretizations 
for p-toral groups Q ⊆ P, then CP (Q) → CQ(P) and NP (Q) → NP(Q) are p-discretizations as well (and 
therefore induce mod p homology equivalences on classifying spaces by Lemma 2.4).
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To prove Theorem 5.1, we need to relate normalizers of p-toral subgroups of an ambient Lie group G

(which could itself be p-toral) with normalizers of their p-discretizations. We begin with a special case.

Proposition 5.8. Let P be a p-discretization of a p-toral group P, and let Q0 ⊆ . . . ⊆ Qk be a chain of snugly 
embedded discrete p-toral subgroups of P , with closures Q0 ⊆ . . . ⊆ Qk. Then the inclusion

NP (Q0 ⊆ . . . ⊆ Qk) −→ NP (Q0 ⊆ . . . ⊆ Qk)

induces a mod p homology isomorphism on classifying spaces.

Proof. We induct on the length of the chain. The case k = 0 is provided by Proposition 3.8.
For the inductive hypothesis, assume that for any p-toral group B and p-discretization B ⊆ B, the 

inclusion

NB (Q0 ⊆ . . . ⊆ Qk−1) −→ NB (Q0 ⊆ . . . ⊆ Qk−1) (5.9)

induces a mod p homology isomorphism of classifying spaces. Consider the relationship of the desired 
statement for k to the corresponding outer automorphism groups:

NP (Q0 ⊆ . . . ⊆ Qk) OutP (Q0 ⊆ . . . ⊆ Qk)

∼= by Corollary 5.5

NP (Q0 ⊆ . . . ⊆ Qk) OutP (Q0 ⊆ . . . ⊆ Qk) .

(5.10)

The horizontal maps are epimorphisms, and the map of kernels is given by

CP (Qk) ·NQk
(Q0 ⊆ . . . ⊆ Qk) −−→ CP(Qk) ·NQk

(Q0 ⊆ . . . ⊆ Qk) . (5.11)

To streamline notation, let Q∗ := (Q0 ⊆ . . . ⊆ Qk) and Q∗ := (Q0 ⊆ . . . ⊆ Qk). Then (5.10) induces a 
commutative ladder of classifying spaces, where the rows are fibrations:

B (CP (Qk) ·NQk
(Q∗)) B (NP (Q∗)) B OutP (Q∗)

∼=

B (CP(Qk) ·NQk
(Q∗)) B (NP (Q∗)) B OutP (Q∗) .

(5.12)

Since the base spaces are the same, it is sufficient to prove that the map between fibers is a mod p ho-
mology isomorphism; a Serre spectral sequence argument then establishes that the middle map is also an 
isomorphism on mod p homology.

To understand the map in (5.11), we need to understand the map on each factor, and also on their 
intersection. The groups CP (Qk) and NQk

(Q∗) are commuting subgroups of P , and their intersection 
is Z(Qk). We have a central extension

0 −→ Z(Qk) −→ CP (Qk) ×NQk
(Q∗) −→ CP (Qk) ·NQk

(Q∗) −→ 0

and the analogous one involving Q∗ and P. The fibrations induced by these short exact sequences are 
principal, and we have the following commutative diagram of horizontal fibrations:
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BCP (Qk) ×BNQk
(Q∗) B (CP (Qk) ·NQk

(Q∗)) B2Z(Qk)

BCP(Qk) ×BNQk
(Q∗) B (CP(Qk) ·NQk

(Q∗)) B2Z(Qk).

(5.13)

First consider the fibers. The map on the first factor is a mod p homology isomorphism by Propo-
sition 3.8. For the second factor, we can apply the inductive hypothesis, because NQk

(Q∗) is actually 
NQk

(Q0 ⊆ . . . ⊆ Qk−1) (the normalizer of a shorter chain); likewise NQk
(Q∗) is NQk

(Q0 ⊆ . . . ⊆ Qk−1). 
Therefore BNQk

(Q∗) → BNQk
(Q∗) is a mod p homology isomorphism.

Turning to the base, we know that BZ(Qk) → BZ(Qk) induces a mod p homology isomorphism by 
Corollary 3.9. The Rothenberg-Steenrod spectral sequence [16, Corollary 7.29] then shows that B2Z(Qk) →
B2Z(Qk) likewise induces an isomorphism on mod p homology.

We apply the Serre spectral sequence to (5.13). The base spaces are simply connected. The maps between 
the bases and the fibers are mod p homology isomorphisms. Hence the map of total spaces is a mod p

homology isomorphism as well. Feeding this result back into (5.12) finishes the proof. �
Finally, we arrive at the proof of this section’s main result.

Proof of Theorem 5.1. Let P∗ denote the chain P0 ⊆ . . . ⊆ Pk, and similarly let P∗ denote the chain 
P0 ⊆ . . . ⊆ Pk. We compare the normalizers via the ladder of short exact sequences

0 CG(Pk) ·NPk
(P∗) NG (P∗) OutG(P∗)

∼= by Proposition 5.3

0

0 CG(Pk) ·NPk
(P∗) NG (P∗) OutG(P∗) 0.

(5.14)

We are in the exact same situation as in the proof of Proposition 5.8. The inclusion NPk
(P∗) ↪→ NPk

(P∗)
induces an isomorphism on mod p homology of classifying spaces by Proposition 5.8. The centralizers 
CG(Pk) and CG(Pk) are equal. And lastly, CG(Pk) ∩NPk

(P∗) = Z(Pk) and CG(Pk) ∩NPk
(P∗) = Z(Pk), 

and Z(Pk) → Z(Pk) induces an isomorphism on mod p homology of classifying spaces by Corollary 3.9. �
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