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subgroup. We prove that there is an injective map from the set of conjugacy classes
of chains of F-centric, F-radical discrete p-toral subgroups to the set of conjugacy
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1. Introduction

In [8], Dwyer formalized and unified three homology decompositions for the p-completed classifying
space of a finite group G based on a collection of p-subgroups: the centralizer decomposition, the subgroup
decomposition, and the normalizer decomposition. The first two had been studied in [11] and [12] for
compact Lie groups, and the normalizer decomposition was new in this context. Dwyer showed that for a
given collection of subgroups of a finite group G, either all three decompositions give the correct homotopy
type for BGI/J\ or none of them do. Such decompositions in the setting of Lie groups have since been studied
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by other authors, for example [6,14,19,20]. In particular, in [14] Libman gives a normalizer decomposition
and then unifies the three homology decompositions for Lie groups, as Dwyer did in the finite group case.

Recently, the homotopy theory of p-local compact groups [3, Defn 4.2] has provided a new, more general
framework for dealing with the homotopy type of p-completed classifying spaces of compact Lie groups,
in addition to other examples coming from finite loop spaces ([4]). One works with discrete p-toral groups
(Definition 2.1) instead of p-toral groups. The formal structure of a p-local compact group consists of a
triple (S, F, L) where F is a saturated fusion system over the discrete p-toral group S and L is a centric
linking system associated to F. But in view of [15, Thm B] a p-local compact group is equivalent to just a
pair (S, F), namely a saturated fusion system over a discrete p-toral group.

When the p-local compact group arises from a compact Lie group G, it encodes the essential p-local
information needed to uniquely determine the homotopy type of BG) (see [3], [5], [18], [15]). A great
advantage of studying Lie groups via this theory is that it reduces the study of a topological group to the
study of a collection of discrete subgroups. There are also other interesting examples of p-local compact
groups. For example, one can construct a p-local compact group capturing the homotopy type of a p-compact
group (an F,-finite loop space together with a chosen p-complete delooping, see [7]). Other examples of p-
local compact groups are given in [4] and [9)].

To state the form of a normalizer decomposition more precisely, consider a collection C of closed subgroups
of a Lie group G. Define 3d(C) to be the poset of G-conjugacy classes of chains of proper inclusions in C,
say H, := (Hy C --- C Hg). One can construct a functor ¢: 3d(C) — Top, and a natural transformation
from ¢ to the constant functor with value BG, to induce a map

A
(hocolim 5) — BG;\ (1.1)
5d(C) ,

such that 6(H,) ~ BNg(Hy C --- C Hy) := B([), Na(H;)). The following statement collects results
of [14, Thm C, D], [12, Thm 1.4], and [3, Lemma 9.7] that establish collections for which the normalizer
decomposition correctly computes the p-completed homotopy type of BG.

Theorem 1.2. Let G be a compact Lie group and let C be either (i) the collection of nontrivial p-radical
p-toral subgroups or (ii) the collection of p-stubborn p-toral subgroups or (i) the collection of p-centric
p-toral subgroups of G (see Definition 4.1). Then (1.1) is an equivalence.

Our program’s goal, taken up in a forthcoming work [1], is a computable setup that generalizes the
normalizer decomposition (1.1) from compact Lie groups to p-local compact groups. The formalism is a
straightforward generalization of the earlier work of Libman [13] giving a normalizer decomposition for
p-local finite groups. In a result similar to Theorem 1.2, [1] will also show that if the p-local compact group
corresponds to the fusion system F, then the full subcategory of F consisting of F-centric and F-radical
subgroups (Definition 4.1) is sufficient to determine the homotopy type of the p-completed classifying space.
This result is in the literature for finite groups ([10, Thm 1.5]) and p-local finite groups ([2, Thm 3.5]), but
not for p-local compact groups.

When it comes to actual computations, the analysis of the spaces coming into our normalizer decom-
positions for p-local compact groups can be delicate. This paper is largely in service of understanding the
spaces in the decompositions that we obtain in certain examples. In particular, we need to understand what
happens in the case of a p-local compact group that arises from a compact Lie group, because we want to
compare the decomposition we obtain in [1] with the earlier one of Libman for the corresponding Lie group
[14].

We turn to a description of the contents of this paper and how they fit into our program. Let G be
a compact Lie group, and let S C G be a maximal p-toral subgroup of G with maximal discrete p-toral
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subgroup S C S. The corresponding fusion system JF associated to GG is the category whose objects are the
discrete p-toral subgroups of S, and whose morphisms are given by homomorphisms induced by conjugation
by elements of G. The goal of this paper is to establish that the left side of (1.1), which is described in
terms of chains of continuous p-toral groups and the action of GG, can instead be described in terms of F, i.e.
in terms of chains of discrete p-toral groups of G and morphisms in F. There are two issues: the indexing
category, and the values of the functor 4.

Our first theorem addresses the indexing category, by relating conjugacy classes of chains of discrete
p-toral subgroups of a compact Lie group G to conjugacy classes of chains of continuous p-toral subgroups
of G. The following theorem establishes that the desired classes of chains can all be found by considering
the p-stubborn p-toral subgroups of G, which are classified in [17] for classical groups. (See Definition 2.5
for p-discretization.)

Theorem 4.3. Let S be a mazimal p-toral subgroup of a compact Lie group G, with p-discretization S C S.
The closure map P+~ P defines an injective map

{Po C...C P, CS| all P; are F-centric and F-radical} /|G

|

{PoC...C P, CS| all P; are p-toral, p-centric, and p-stubborn } /G.
The map is a one-to-one correspondence if moG is a p-group.

Our second theorem deals with the values of the functor § in (1.1). In particular, we relate the mod p
homotopy type of the classifying spaces of normalizers of chains of discrete p-toral subgroups to those of
chains of continuous p-toral subgroups. Since our decomposition for p-local compact groups will involve the
former, this theorem will relate (i) the decomposition given by our p-local compact group methods applied
to the case of a compact Lie group and (7) the decomposition for a compact Lie group that is obtained by
[14].

Theorem 5.1. Let Py C ... C Py be a chain of p-toral subgroups of a compact Lie group G, and let
Py C ... C P be a chain of discrete p-toral subgroups such that each P; is a p-discretization of P;. Then

NG(PO cC... ng) —)Ng(PogCPk)
induces a mod p equivalence of classifying spaces.

The proof introduces the outer automorphism group of a chain Hy C --- C Hj, (Definition 5.2), which
turns out to be a finite group and plays an important role in the argument. (See Proposition 5.3, Lemma 5.6,
and diagram (5.14).)

In summary, this paper provides the technical results necessary to compare two normalizer decompositions
for classifying spaces of compact Lie groups: the one obtained by applying [1] to a p-local compact group
arising from a Lie group G, and the earlier one due to Libman [14], obtained by techniques using G-
actions. The two decompositions are related by taking closures of discrete p-toral subgroups, which brings
up surprisingly subtle issues. Hence we develop some useful tools for studying the relationship between
discrete p-toral groups and their closures, as well as the relationship between the classifying spaces of their
respective normalizers.

Notation. Throughout the paper, G denotes a compact Lie group. Our convention for conjugation is that
cy(x) = g~'zg. We generally use a boldface font to denote a topological group, as opposed to a discrete
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group, with the exception of the ambient Lie group G itself. For example, we use P for a p-toral group, and
P for a discrete p-toral group.

Organization. Section 2 includes background material on p-toral and discrete p-toral subgroups of a compact
Lie group. Section 3 presents a key technical result on p-discretization of pairs, which allows us to understand
how chains of discrete p-toral subgroups conjugate inside their closures. Some of the results of this section
already appear in [3], but we present some simplified proofs. Section 4 contains the proof of Theorem 4.3.
Lastly, in Section 5 we introduce the group of outer automorphisms of a chain and we prove Theorem 5.1.

Acknowledgments. This paper is the first part of the authors’ Women in Topology III project. A second part
of that project will appear in a separate article [1]. We thank the organizers of the Women in Topology III
workshop, as well as the Hausdorff Research Institute for Mathematics, where the workshop was held. The
Women in Topology IIT workshop was supported by NSF grant DMS-1901795, the AWM ADVANCE grant
NSF HRD-1500481, and Foundation Compositio Mathematica. The second author was partially supported
by Spanish State Research Agency through the FEDER-MEC grant MTM2016-80439-P, and the Severo
Ochoa and Marfa de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M).
Finally, the authors gratefully acknowledge exchanges with Bill Dwyer, who suggested the approach to
p-discretizations used in Section 3, and also thank the anonymous referee for a careful reading.

2. p-toral and discrete p-toral subgroups of Lie groups

In this section, we give background material on p-toral and discrete p-toral subgroups of a compact Lie
group G. First, the definitions.

Definition 2.1.

(1) A group is p-toral of rank r if it is an extension of a torus of rank r by a finite p-group.
T

(2) A discrete p-torus of rank r is a group isomorphic to a product (Z/p™)
(3) A discrete p-toral group of rank r is an extension of a discrete p-torus of rank r by a finite p-group.

Remark. When we want to emphasize the difference between a p-toral group and a discrete p-toral group,
we will sometimes refer to the former as a continuous p-toral group.

The p-toral subgroups of a compact Lie group G play a key role in the analysis of the mod p homology
of the classifying space of GG, analogous to the role played by the p-subgroups in the case of a finite group.
However, there is a key difference between the finite and topological contexts: subgroups of finite p-groups
are finite p-groups, but subgroups of p-toral groups need not be p-toral. For example, S* is a p-toral group,
but it has finite subgroups of order prime to p (certainly not p-toral) as well as the subgroup Z/p> C S!
(also not p-toral, for a different reason). By contrast, a subgroup of a discrete p-toral group is necessarily
another discrete p-toral group. This feature of discrete p-toral subgroups of a compact Lie group G gives
them an advantage over continuous p-toral subgroups as tools to approximate G.

A compact Lie group G admits both maximal continuous p-toral subgroups and maximal discrete p-toral
subgroups, both of which have properties analogous to those of the Sylow p-subgroups of a finite group.

Proposition 2.2 (/3, Prop. 9.3]). Let G be a compact Lie group.

(1) Ewvery p-toral subgroup (respectively, discrete p-toral subgroup) of G is contained in a mazimal one.
(2) All maximal p-toral subgroups (respectively, discrete p-toral subgroups) are conjugate in G.
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Unfortunately, discrete p-toral subgroups will not be good approximations to continuous p-toral groups
when their group-theoretic properties interact badly with their embeddings. In particular, a discrete p-toral
subgroup can have smaller rank than its closure, and this can occur even when the groups are just tori. For
example, Z /p™ can be embedded via a homomorphism as a dense subgroup of S! x S1. To set apart good
approximations from bad ones, we have the following definition.

Definition 2.3 (/3, Defn. 9.1]). A discrete p-toral subgroup P C G is snugly embedded if P is a maximal
discrete p-toral subgroup of P.

Lemma 2.4 ([3, Prop. 9.2]). If P C G is a snugly embedded discrete p-toral group, then P < P induces a
homotopy equivalence (BP);\ ~ (B?);.

Not all discrete p-toral subgroups of a compact Lie group G are snugly embedded. However, since any
p-toral group possesses maximal discrete p-toral subgroups by Proposition 2.2, a p-toral group can always
be approximated by a snugly embedded discrete p-toral group. A more compact terminology will be helpful.

Definition 2.5. Let P be a p-toral subgroup of G, and let P C P be a snugly embedded discrete p-toral
subgroup with P = P. We say that P is a p-discretization of P.

In particular, a p-discretization of P is characterized by being a maximal discrete p-toral subgroup of P.

Example 2.6. A torus has only one p-discretization, namely the subgroup consisting of all p-torsion elements.
Similarly, Proposition 2.2(2) establishes that any abelian p-toral group has a unique p-discretization.

In general, however, a p-toral group P that has multiple components has many p-discretizations. If P C P
is one such, then the others are all conjugate to P in P by Proposition 2.2(2). The stabilizer of P is Np(P),
so the approximations are parametrized by P/Np(P). (See also Remark 3.7.)

The simplest nontrivial example with more than one discretization is the 2-toral group P = O(2) =
S x {£1}, where —1 is represented by reflection over the y-axis. An obvious 2-discretization is given by
the subgroup P = Z/2%° x {£1}. A direct matrix calculation shows that Np(P) = P, so in fact the

2-discretizations are parametrized by P/P =2 S1/(Z/2°°). The other parametrizations are given by
P = (Z/2% x {1}) U (£-2/2% x {-1}) (2.7)

where ¢ is any fixed element of S*. And indeed, the proof of [3, 9.3] establishes that, in general, the different
p-discretizations of a p-toral group P can be obtained by conjugation by an element of the torus of P.

We close this section by observing that, as in (2.7), any p-discretization must start with the unique
p-discretization of the torus.

Lemma 2.8. If P is a p-toral group with mazimal torus T, and T}, denotes the p-torsion elements of T, then
any p-discretization P of P must contain T,,.

Proof. By Proposition 2.2, T, can be expanded to a p-discretization P’ of P, and P’ is conjugate to P in P.
However, T}, is a normal subgroup of P and hence is stabilized by the conjugation. Thus 7}, C P as well. O

3. p-discretizations of pairs

Let P be a p-toral group. Proposition 2.2 tells us that all p-discretizations of P are conjugate in P. It
also tells us that if Q C P is a p-toral subgroup and @ is a p-discretization of Q, then ) can be expanded to
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a p-discretization P of P. However, it is likely that there is more than one way to expand @; that is, there
can be different pairs of discrete p-toral subgroups (@, P;) and (Q, P») that are p-discretizations for the pair
(Q,P). The main goal of this section is to establish the following proposition, which can be thought of as
a uniqueness statement about p-discretizations of pairs. The point is that P; and P, are conjugate in P by
an element that fixes (). Hence the pair (Q, P;) is conjugate in P to the pair (Q, P).

Proposition 3.1. If P, and P, are p-discretizations of P, and Q C Py N Ps, then there exists y € Cp(Q)
such that cy (P1) = Ps.

Our approach is based on a non-canonical (and non-topological) splitting of p-toral groups, for which we
use the following standard homological lemma.

Lemma 3.2. Let K be a finite group, and let

0—I1—>X—>V—0

be a short exact sequence of Z[K|-modules. If V is uniquely |K|-divisible and I is an injective Z-module,
then there is a splitting X = I x V as Z[K]-modules.

Proof. Because [ is an injective abelian group, there is a retraction of abelian groups r: X — I, which in
turn defines a section s: V' — X of abelian groups. However, Homg (V, X) is uniquely | K |-divisible (because
V is), so we can define a new section §: V' — X by averaging over the elements of K,

_ 1 _
S = W Z Yy 18y.
yeK

Then § is a section of X — V as Z[K]-modules, which establishes the lemma. O

We use the following notation for the splitting result below. Let T = R"/Z" be a rank r torus, whose
subgroup of torsion elements is denoted Ty := Q" /Z". The quotient of T by the torsion elements is denoted
Ts :=T/Tg. If p is a prime, then the p-torsion subgroup of T is denoted T}, := (Z/p*>)", and we write T},
for the subgroup of T consisting of torsion elements of order prime to p, i.e. the product of all the subgroups
(Z/q®>)" over primes q # p.

Lemma 3.3. Let P be a p-toral group with p-discretization P C P. There exists a (non-canonical, discon-
tinuous) group homomorphism P — P that splits the inclusion P — P. Any such splitting has the property
that if P' is another p-discretization of P, then P’ — P — P is an isomorphism.

Proof. Let T be the maximal torus of P and let K = P = P /T, a finite p-group. By Lemma 3.2 applied
to T (considered as a discrete group), there is a split short exact sequence of Z[K]-modules

0—T1, —T —Ty xTo —0.

Note that by Lemma 2.8, T,, C P. Further, because T}y x Ty is split from T as a Z[K]-module, we know
T, x Ts is normal in P and we can define the quotient P := P/ (T, x Ts,), which is a discrete p-toral
group. (We note here that we have completely discarded the topology on the torus. The key tool resulting
from Lemma 3.3 is Lemma 3.5, and the topology is not needed there.)
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Consider the commutative ladder of exact sequences

0 T, P K 0
00— T, x Ty x T P K 0 (3.4)
\W_/T
q =
0 T, p K 0

By construction, the compositions of the two maps in the first and third columns are identity maps on 7,
and K, respectively. Hence the composite f := goi: P — P is an isomorphism. Then f~'ogq: P — P is
the required group homomorphism splitting the inclusion P C P.

If P" C P is another p-discretization of P, then P’ also contains 7}, (Lemma 2.8). Therefore we can
substitute P’ for P in (3.4) and the composite P’ — P — P will still be an isomorphism. Hence composing
with the isomorphism f~!: P — P finishes the proof. O

Using the splitting, we are able to show a sense in which a p-discretization P C P is able to capture
conjugation information present in P. The statement below is a slight generalization of [3, Lemma 9.4(a)]
and a couple of statements in its proof.

Lemma 3.5. Let P be a p-toral subgroup with p-discretization P. Let Q1 and Q2 be subgroups of P, and
suppose that a group homomorphism f: Q1 — Q2 is induced by conjugation in P. Then f can be induced
by conjugation in P.

Proof. Suppose that f: Q1 — @2 is given by conjugation by y € P. Let r: P — P be the retraction
provided by Lemma 3.3, and consider the commutative diagram

Q: ¢ P P P

Q> ¢ P P P.

Although we cannot fill in the rectangle, because conjugation by y may not take P to P, we do know that
(by assumption) that Q; and @, are contained in P. Since P < P 5 P is the identity map of P, the
compositions across the top and bottom rows corestrict to the identity maps on ()1 and Q), respectively.
Therefore conjugation by y € P and r(y) € P induce the same map f: Q1 — Q2. O

We now have all the tools we need to establish Proposition 3.1.

Proof of Proposition 3.1. Since P, and P, are both p-discretizations of P, they are conjugate in P. Choose
y € P such that ¢, (P1) = P». It is possible that ¢, does not stabilize @, so let Q" = ¢y(Q). Then @ and Q’
are both subgroups of P», and ¢y: @ — @Q'. By Lemma 3.5, there exists © € P, such that ¢; =¢y: Q — Q'.
Define y' =y - 27!. Then y’ still conjugates P; to P, but y’ centralizes Q. O

In the remainder of this section, we give two applications of Proposition 3.1. First, we prove that the
outer automorphism group in G of a p-discretization is the same as that of its closure. This is proved in
[3, Lemma 9.4] using a different point of view. Second, we prove that for the purpose of understanding the
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mod p homology of classifying spaces, centralizers and normalizers can be computed either in a discrete
p-toral group or a continuous p-toral group. These two results are the base cases for inductions to establish
the corresponding results for chains of subgroups in Section 5.

Lemma 3.6. Let P be a p-discretization of a p-toral subgroup P of G. Then Outg(P) = Outg(P).

Proof. We want to prove that the natural map

Ne(P) — NeP) _ o0 py

Outg(P) = Ca(P) P CaP) P

is an isomorphism. To show that it is an epimorphism, suppose that n € Ng(P). Because ¢, (P) and P
are both discretizations of P, there exists x € P such that cx(cy P) = P. Therefore n - x € Ng(P), and it
represents the same class as n in Outg(P).

To show injectivity, first suppose that n € Ng(P) N P. We would like to show that n is already in
Cg(P) - P. However, Lemma 3.5 tells us that the automorphism of P induced by n can be induced by some
y€ P.Hencen- -yt =ce€ Cg(P)and n=c-y € Cg(P) - P, as required.

To finish, suppose that n € Ng(P)N[Ce(P) - P], say n = ¢-x with ¢ € Cg(P) = C¢(P) and x € P. Then

1

x = n-c~ ! normalizes P. The previous argument shows that x € Cg(P)- P, and hence n = ¢-x € C¢(P)- P,

as required. O

Remark 3.7. Observe that Np(P) = Ng(P) NP, and the proof of Lemma 3.6 establishes that Ng(P)NP =
(P-Cq(P))NP. Since Ca(P)NP = Ce(P)NP = Z(P), we have actually proved that if P is a p-
discretization of P, then Np(P) = P - Z(P). This gives a refinement to the discussion of Example 2.6:
p-discretizations of P are parametrized by P/Np(P) = P/(P - Z(P)). We recover the result that if P is
abelian (Z(P) = P), then the p-discretization is unique. Indeed, if the torus is central in P then there is a
unique p-discretization of P, and otherwise there are infinitely many.

For our final result of this section, note that if Q C P is an inclusion of p-toral subgroups, then both
Np(Q) and Cp(Q) (and hence Z(Q)) are p-toral ([12, Lemma A.3]).

Proposition 3.8. Let Q C P be p-discretizations of p-toral groups Q C P. Then Cp(Q) is a p-discretization
of Cp(Q), and Np(Q) is a p-discretization of Np(Q).

Proof. Let D be a p-discretization of Cp(Q); we note that Z(Q) is necessarily contained in D, since Z(Q)
has only one p-discretization. Since D commutes with @, their product D - @ is a discrete p-toral subgroup
of Np(Q). We can expand D - Q to a p-discretization N of Np(Q), and then enlarge N to a p-discretization
P’ of P. So we have compatible p-discretizations

D D-Q N 4
Cp(Q) Np(Q) —— P.

By construction, @ C N N Q, and since @ is a maximal discrete p-toral subgroup of Q, we know that
@ = NNQ. Therefore N normalizes @) (because N normalizes both itself and Q), so N C Np/(Q) C Np(Q).
But N is a maximal discrete p-toral subgroup of Np(Q), so in fact N = Np/(Q). Similarly, we have
D C Cp/(Q) C Cp(Q) and maximality gives us D = Cp/(Q).
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However, we have another p-discretization of P, namely P. Notice that @ is contained both P (by
assumption) and P’ (by construction), so Proposition 3.1 says that there exists y € Cp(Q) with ¢, (P') = P.
We obtain the two commutative diagrams

Cp(Q) 7 Cr(Q) Np/(Q) T Np(Q)
Cr(Q) —— Cr(Q) Np(Q) — = Ne(Q).

The left vertical arrows are p-discretizations by construction, therefore the right vertical arrows are p-
discretizations as well. O

Corollary 3.9. If P is a p-discretization of P, then Z(P) is a p-discretization of Z(P).
Proof. Apply Proposition 3.8 with P =Q. 0O
4. Chains of p-centric, p-stubborn subgroups of G

In [3], Broto, Levi and Oliver construct a saturated fusion system associated to a compact Lie group G,
denoted Fg(G), where S is a maximal discrete p-toral subgroup of G. It is a category whose objects are
the subgroups of S and whose morphisms are homomorphisms induced by conjugation in GG. The purpose
of this section is to compare the collection of Fg(G)-centric, Fg(G)-radical subgroups (Definition 4.1) with
the analogous collection of continuous p-toral subgroups, namely the p-centric, p-stubborn subgroups. In
our forthcoming normalizer decomposition for p-local compact groups [1], the indexing category will be
conjugacy classes of chains of Fg(G)-centric, Fs(G)-radical subgroups of S. In this section, we show that
when myG is a p-group, the set of such conjugacy classes is in one-to-one correspondence with conjugacy
classes of chains of p-centric, p-stubborn subgroups of G (Theorem 4.3). Further, even when 7yG is not a
p-group, there is still an injection from the first set to the second.

First we need some definitions, taken from the definitions for a fusion system (see [3, Def. 2.6 and
pp 380] and [12, Def. 1.3]). For streamlined notation, we suppress both G and the maximal discrete p-toral
subgroup S.

Definition 4.1. Fix a compact Lie group G and a maximal discrete p-toral subgroup S C G.

(1) For discrete p-toral groups
(a) A subgroup P C S is F-centric if whenever Q C S is G-conjugate to P, we have Cs(Q) = Z(P).
(In particular, Cs(P) = Z(P).)
(b) A subgroup P C S is F-radical if Outg(P) := Ng(P)/[Ca(P) - P] has no nontrivial normal
subgroups.
(2) For continuous p-toral groups
(a) A p-toral subgroup P C G is p-centric in G if Z(P) is a maximal p-toral subgroup of Cx(P).
(b) A p-toral subgroup P C G is p-stubborn in G if Ng(P)/P is finite and has no nontrivial normal
p-subgroups.

Note that although the concepts of F-centric and F-radical depend on both S and G, we omit them from
the notation because S and G are always clear from context, and the omission gives a slimmer notation.
We also observe that the properties of being p-centric and p-stubborn are closed under G-conjugation since
¢4(Ca(P)) = Calcy(P)) and ¢, (NG (P)) = Na (e (P)) for any g € G.
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Remark 4.2. A p-toral subgroup P C G is p-radical if Ng(P)/P has no nontrivial normal p-toral sub-
groups (no assumption that Ng(P)/P is finite). For finite groups, the collection of p-radical subgroups was
introduced by Bouc. In the compact Lie case, the p-radical subgroups were featured in [14].

However, when P C G is p-centric, then p-radical and p-stubborn become equivalent, because Outg(P)
is finite ([3, Lemma 9.4]) and the short exact sequence

0— Cq(P)/Z(P) —» Ng(P)/P — Outg(P) — 0
has C¢(P)/Z(P) finite of order prime to p.
With the necessary vocabulary in hand, we are able to state the main theorem for this section.

Theorem 4.3. Let S be a mazimal p-toral subgroup of a compact Lie group G, with p-discretization S C S.
The closure map P+ P defines an injective map

{Py C...C P, C S|all P, are F-centric and F-radical} /G

|

{Po C ... C Py CS|all P; are p-toral, p-centric, and p-stubborn} /G.
The map is a one-to-one correspondence if moG is a p-group.

The first task is to show that the map of Theorem 4.3 actually exists. That is, we need to establish that
the closure of a discrete p-toral subgroup of S that is F-centric and F-radical is p-centric and p-stubborn.
(It is certainly p-toral.) To use the results of Section 3, we need to know that the discrete p-toral groups we
are dealing with are snugly embedded. The following lemma can be found in [3, Corollary 3.5, Lemma 9.9],
but we give an elementary proof here that does not use the bullet construction.

Lemma 4.4. Let G be a compact Lie group with mazimal discrete p-toral subgroup S, and let P be a subgroup
of S. If P is F-centric and F-radical, then P is snugly embedded.

Proof. Let P = P, and expand P to a p-discretization Q' of P. To prove that P is snugly embedded,
we would like to prove that Q' = P. Expand Q’ further to a p-discretization S’ of S, so that we have
P C Q' C S CS. Using Proposition 3.1 with P C SN .S’, choose y € Cs(P) such that ¢, (S") = 5, and let
Q = ¢y(Q"). Now we have P C Q € S C S and Q is a p-discretization of P, and our goal has become to
prove @ = P.

Consider the homomorphism

Nq(P)/Z(P) = Ng(P)/Cqa(P). (4.5)

Because P is F-centric by assumption, Cs(P) = Z(P). Therefore the centralizer of P in Q C S is Z(P) as
well, and (4.5) is a monomorphism. We assert that the image is a normal subgroup of Ng(P)/Cq(P). To
prove this, we must take an element g € Ng(P) and prove that we can adjust g by an element of z € C(P)
so that ¢ -  normalizes Ng(P). Given that g - = would certainly normalize P, it is sufficient to construct z
so that g -  normalizes Q.

Let Q" = ¢4(Q). Because g € Ng(P) C Ng(P), the groups Q" and @ are both p-discretizations of P,
and we have P C QN Q". Proposition 3.1 gives us an element « € Cp(P) such that ¢, (Q"”) = Q. Therefore
g -« normalizes both @ and P and we conclude that (4.5) is the inclusion of a normal subgroup. Taking the
quotient on both sides by P, we find that Ng(P)/P is a normal subgroup of Outg(P).
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However, we have assumed that P is F-radical, meaning that Outg(P) has no nontrivial p-subgroups.
Therefore Ng(P)/P must be the trivial group, that is, Ng(P) = P. Because P and @ are discrete p-toral
groups, Ng(P) = P implies that the inclusion of P into () cannot be proper [3, Lemma 1.8], so P = Q.
Hence P is a maximal discrete p-toral subgroup of P, as required. O

Now that we know that F-centric and F-radical subgroups of G must be snug, we can use the results of
Section 3. Our next proposition shows that the map of Theorem 4.3 can be defined. That is, we show that
the closure of an F-centric and F-radical discrete p-toral subgroup is in fact p-centric and p-stubborn. (See
also the argument given in [3, Prop 8.4 and Lemma 9.6] for p-centricity.)

Proposition 4.6. If P is a p-discretization of P, and P is F-centric and F-radical, then P is p-centric and
p-stubborn.

Proof. To show that P is p-centric, we must show that Z(P) is a maximal p-toral subgroup of C¢(P).
To see this, suppose that H C Cg(P) is a maximal p-toral subgroup. Then H necessarily contains Z(P),
because all choices for H are conjugate in Cq(P) and Z(P) < Ce(P). We construct a p-discretization of H
by expanding Z(P) C H to a p-discretization H of H. Then we further expand the discrete p-toral subgroup
H - P to a maximal discrete p-toral subgroup S’ of G. (Note that S’ does not have to have the same closure
as S.)

All maximal discrete p-toral subgroups of G are conjugate, so there exists g € G with ¢,(S") = S. Let
Q =cy(P) C S and J =¢,(H) C S so we have the following picture:

Z/(P)——=H——>P-H—— 5 ——G

)
ZQ) ——=J ——Q-J—— S5 ——=G.

By construction, H = Cs/(P) = Cs/(P), and further, H is a p-discretization of H and H C S’. This means
H = Cg(P), and so J = Cs(Q).

But we know that @ C S is G-conjugate to P, and by definition of F-centric, that implies Z(Q) =
Cs(Q) = J. Hence Z(P) = H as well. Lastly, because P is F-centric and F-radical, P is snug by Lemma 4.4,
and therefore Z(P) is a p-discretization of Z(P) by Corollary 3.9. Since H is a p-discretization of H by
construction, and H = Z(P), we find that H = Z(P), as required to prove that P is p-centric.

To show that P is p-stubborn, we must show that NgP/P is finite and contains no nontrivial normal
p-subgroups. Consider the short exact sequence

1 — Cg(P)/Z(P) — Ng(P)/P — Ng(P)/[Ca(P) - P] — 1. (4.7)

Outg (P)

The right-hand term is Out(P), which by Lemma 3.6 is isomorphic to Outg (P). The definition of F-radical
tells us that Outg(P) contains no nontrivial normal p-subgroups, and hence the same is true of Outg(P).

Turning our attention to the left-hand term in (4.7), we have proved that Z(P) is a maximal p-toral
subgroup of Cg(P). The quotient Cq(P)/Z(P) is a compact Lie group, but cannot contain an S by
maximality of Z(P). Hence C(P)/Z(P) is finite. Again by maximality of Z(P), we know C¢(P)/Z(P)
has no p-torsion elements, so it has order prime to p. As a consequence, the image of a nontrivial normal
p-subgroup of N¢(P)/P would be a nontrivial p-subgroup of Outg(P) = Outg(P), a contradiction of the
assumption that P is F-radical.

It remains to establish that Ng(P)/P is finite, for which is it sufficient to know that the right-hand
term, Outg(P) & Outg(P), is finite. If Outg(P) is not finite, then it has a nontrivial torus, and therefore



12 E. Belmont et al. / Topology and its Applications 316 (2022) 108101

an infinite torsion subgroup. However, any torsion subgroup of Outg(P) is finite [3, Prop. 1.5]. Therefore
Outg(P) is finite, and hence Ng(P)/P is finite with no nontrivial normal p-subgroups, meaning that P is
p-stubborn, as required. O

So far, our progress toward proving Theorem 4.3 is to establish that the statement makes sense: the
function actually exists! Next we establish that the function is injective.

Lemma 4.8. Let S C G be a maximal p-toral subgroup of the Lie group G, and fix a p-discretization S of S.
Suppose that Py C ... C P, and Qo C ... C Qp are two chains of snug discrete p-toral subgroups of S that
both have Py C ... C Py as their closure. Then Py C ... C P and Qp C ... C Qy are conjugate in Py
(and hence necessarily in G).

Proof. We induct on k. The base case k = 0 is true because Py and @)y are both p-discretizations of Py,
and hence are conjugate in Py. Now suppose that Py C ... C Py_1 and Qp C ... C Qx_1 are conjugate by
x € Pj_1. Then cx(Py) and Qy are p-discretizations of Py, and Qr—1 C cx(Px) N Q. By Proposition 3.1,
there exists y € Cp, (Qr—1) such that cy (cx(Px)) = Qk. Hence x -y € Py, and conjugates Py C ... C Py to
QoC...CQ O

To address the extent to which the function in Theorem 4.3 is surjective, we first need to check whether
it is always possible to obtain a discretization of a given chain in S within the chosen p-discretization S.

Lemma 4.9. Let S C G be a mazimal p-toral subgroup of the Lie group G, and let Py C ... C Py be a chain
of p-toral subgroups of S. Fix a p-discretization S C S. Then there exists an S-conjugate of Pg C ... C Py
that has a chain of p-discretizations Py C ... C Py contained in S.

Proof. Choose a p-discretization Py of Py, and expand it one group at a time to a chain of p-discretizations
PhC...C P, CSof PpC...C P, CS. Since S and S’ are both p-discretizations of S, there exists s € S
such that ¢s(S") = S. Then ¢s (Py C ... C Py) is a p-discretization inside S of ¢s (Pg C ... CPg). O

Proof of Theorem 4.3. Most of the proof is in the preceding results. We have proved that the function
exists (Proposition 4.6) and that it is injective (Lemma 4.8). Further, Lemma 4.9 lays the groundwork for
an epimorphism statement, since a chain in the target has a simultaneous p-discretization in the chosen S.
To finish the proof of the epimorphism statement, we must show that

(1) if P is p-stubborn and p-centric, with p-discretization P C S, then P is F-centric, and
(2) if in addition moG is a p-group, then P is also F-radical.

Suppose that P is p-stubborn and p-centric. Then Cq(P)/Z(P) C Ng(P)/P is finite, and has order prime
to p because P is p-centric. Mapping from S to G gives a monomorphism Cs(P)/Z(P) < Cq(P)/Z(P) from
a p-toral group ([12, A.3]) to a finite group of order prime to p, and therefore the map is null. We conclude
that Z(P) = Cs(P). But by Proposition 3.8 and Corollary 3.9, we know that the groups Z(P) C Cg(P)
are p-discretizations of Z(P) = Cs(P), respectively. Maximality implies that Z(P) = Cg(P), that is, the
group P satisfies the required condition to be JF-centric.

We must also check that if @ C S is G-conjugate to P, then Cs(Q) = Z(Q). The subgroup @ is snug,
because P is. Let Q be the closure of @), and observe that Q is G-conjugate to P, by the same element that
takes @ to P. Further, Q is p-stubborn and p-centric, because P is, and those properties are preserved by
conjugation in G. Since @) C Q is a p-discretization, the argument of the previous paragraph shows that @
is F-centric as well.
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We must still show that P is F-radical when we know that moG is a p-group, that is, we must show that
Outg(P) has no nontrivial normal p-subgroups. By Lemma 3.6, Outg(P) = Outg(P), so we can use the
short exact sequence of (4.7). The key ingredient is that if moG is a p-group, then Cq(P) is p-toral [12, A.5],
and hence Cg(P)/P C Ng(P)/P is also p-toral. However, P is p-stubborn by assumption, so Ng(P)/P
is finite, and Cg(P)/P is therefore a finite p-group. If Oute(P) had a nontrivial normal p-subgroup, then
its inverse image in Ng(P)/P would be a normal p-subgroup, in contradiction of the assumption that P is
p-stubborn. O

5. Normalizers

In Section 3 we studied relative discretizations and proved that centralizers and normalizers of p-toral
groups inside other p-toral groups are compatible with p-discretizations (Proposition 3.8). In this section,
we leverage the results of Section 3 to prove that if Py C ... C P, is a chain of p-discretizations of
Py C ... C Py, then the corresponding map of G-normalizers induces a mod p homology isomorphism on
classifying spaces.

Theorem 5.1. Let Py C ... C Py be a chain of p-toral subgroups of a compact Lie group G, and let
Py C ... C Py be a chain of discrete p-toral subgroups such that each P; is a p-discretization of P;. Then

NG(Pogng)HNg(PogCPk)

induces a mod p equivalence of classifying spaces.

Our forthcoming work on the normalizer decomposition of a p-local compact group will use Theorem 5.1
to establish that, when applied to a compact Lie group, our decomposition recovers a version of the theorem
of Libman [14] using p-toral subgroups that are both p-centric and p-stubborn.

Our strategy to prove Theorem 5.1 is to study the “outer automorphism” group of a chain separately
from the “inner automorphisms” of the chain.

Definition 5.2. Let H be a group, and let Py C ... C Py, be a chain of subgroups of H. We define Outy (Py C
... C P) as the quotient

Nu(PyC...CPy)
CH(Pk)'NPk (POQCPk)

Note that the definition makes no restriction on the subgroups in the chain. In particular, in the next
proposition, we establish the relationship between the outer automorphism group of a chain of continuous
p-toral subgroups and that of a p-discretization of the chain.

Proposition 5.3. Let Py C ... C Py be a chain of p-toral subgroups of G, and let Py C ... C Py be a chain
of p-discretizations of the p-toral chain. Then inclusion of normalizers induces an isomorphism

Outg(Po c...C Pk) E— Outg(Po c...C Pk) (54)
Ng(PpC...CPy) Ng(PpC...CPy)
Cg(Pp)-Np, (PoC...CPg) Cq(PL)-Np, (PoC...CPy)

Proof. To show that the map is an epimorphism, we induct on k. The case k£ = 0 is Lemma 3.6. For the
inductive hypothesis, assume that we have g € Ng (Po C ... C Py), and that g stabilizes Py C ... C Py_1.
We need to adjust g to stabilize P as well.
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Suppose that cy(Py) = P. Then P,_; C P, N P/, and by Proposition 3.1 we can find y € Cp, (Py—1)
that conjugates Pj to P,. Now we have an element g -y that stabilizes Py C ... C Pj. Since y is in
Np, (Py C ... C Py), we conclude that we have an epimorphism

epi . Ng(PoC...CPy)
c...C P
Ng(Po C...C F) Np, (PyC...CPy)’

and therefore (5.4) is also surjective.

To establish injectivity, consider n € Ng (P C ... C Py) such that [n] is in the kernel of (5.4). We can
write n = ¢ - x where ¢ € Cg(Py) = Cg(Py) and x € Np, (Pg C ... CPy). Then in fact x stabilizes
Py C ... C Py, since both n and ¢ do so. By Lemma 3.5, the automorphism of P induced by x can be
induced by some element y € Py, and then x -y~ € Cp, (Py). Further, since x and x - y~! both stabilize
Py C ... C P, so does y. We have expressed n = c-x = (c-x-y~!) -y as an element in the denominator of
the left side of (5.4), which completes the proof. O

Corollary 5.5. Let P be a p-discretization of a p-toral group P, and let Qo C ... C Qi be a chain of snug
subgroups of P. Then inclusions of normalizers induce isomorphisms

OutP(QOgng) OutP(Qogng)

\ Prop. 5.3

OutP(Qog...ng).

Proof. The left diagonal map is clearly a monomorphism. To see that it is also an epimorphism, note that any
automorphism of @y induced by conjugation in P can also be induced by conjugation in P (Lemma 3.5). O

Outer automorphism groups of chains turn out to be finite, generalizing the result of [3, Prop. 9.4(b)] for
a single group.

Lemma 5.6. Let G be a compact Lie group and let Py C ... C Py be a chain of snug discrete p-toral subgroups.
Then Outg (Py C ... C Py) is finite.

Proof. We induct on k. The base case is given by [3, Prop. 9.4(b)]. Now suppose that Outg(Py C ...
C Py_1) is finite, and consider the homomorphism induced by deleting the smallest element of the chain:

Ng(PyC...CP) Ng(PLC...CP)
Cg(P]c)-Npk (P C... ng) CG(Pk:)'NPk (Pl c... ng)

(5.7)

The target is finite by the inductive hypothesis, so we need only show that the map is injective. The
homomorphism of the numerators is certainly injective. Now suppose that

nENg(Pog...ng) N [Cg(Pk)NpkUDlgng)]

Then n = ¢ -z for some ¢ € Cq(Py) and € Np, (P; C ... C Py). The element x also normalizes Py, since
n and ¢ do. Hence n = ¢z € Cg(Py) - Np, (Po C ... C Py), as desired. O

We turn now to the comparison of the normalizers and centralizers of continuous and discrete p-toral
subgroups of G. The starting point is Proposition 3.8, which tells us that if Q C P are p-discretizations
for p-toral groups Q C P, then Cp(Q) — Cq(P) and Np(Q) — Np(Q) are p-discretizations as well (and
therefore induce mod p homology equivalences on classifying spaces by Lemma 2.4).
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To prove Theorem 5.1, we need to relate normalizers of p-toral subgroups of an ambient Lie group G
(which could itself be p-toral) with normalizers of their p-discretizations. We begin with a special case.

Proposition 5.8. Let P be a p-discretization of a p-toral group P, and let Qg C ... C Qg be a chain of snugly
embedded discrete p-toral subgroups of P, with closures Qo C ... C Q. Then the inclusion

Np(QoC...CQx) — Np(QoC...CQy)
induces a mod p homology isomorphism on classifying spaces.

Proof. We induct on the length of the chain. The case k = 0 is provided by Proposition 3.8.
For the inductive hypothesis, assume that for any p-toral group B and p-discretization B C B, the
inclusion

Np(QoC...CQr-1) — N (QoC ... C Qi_1) (5.9)

induces a mod p homology isomorphism of classifying spaces. Consider the relationship of the desired
statement for £ to the corresponding outer automorphism groups:

Np(QoC...C Q) — Outp(Qo C ... C Qx)
J \L% by Corollary 5.5 (510)

Np(QoC...C Qi) —=Outp (QuC ... CQp).

The horizontal maps are epimorphisms, and the map of kernels is given by

Cp(Qr) N, (QuC...CQr) — Cp(Qx) - Nq, (Qo € ... C Q). (5.11)

To streamline notation, let Q. := (Qo C ... C Q) and Q. := (Qp C ... C Qg). Then (5.10) induces a
commutative ladder of classifying spaces, where the rows are fibrations:

B(Cp(Qr) - No, (Q«)) — B(Np(Q.)) —— BOutp (Q)

| R e

B(Cp(Qk) - Nq, (Q«)) — B(Np (Qs)) — BOutp (Q.).

Since the base spaces are the same, it is sufficient to prove that the map between fibers is a mod p ho-
mology isomorphism; a Serre spectral sequence argument then establishes that the middle map is also an
isomorphism on mod p homology.

To understand the map in (5.11), we need to understand the map on each factor, and also on their
intersection. The groups Cp(Q)) and Ng, (Q.) are commuting subgroups of P, and their intersection
is Z(Q). We have a central extension

0 — Z(Qk) — Cp(Qk) x Ng, (@«) — Cp(Qk) - Ng, (@) — 0

and the analogous one involving Q. and P. The fibrations induced by these short exact sequences are
principal, and we have the following commutative diagram of horizontal fibrations:
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BCp(Qr) x BNq, (Q+) —= B(Cp(Qk) - No, (Qx)) — B*Z(Qx)

| | e

BCp(Qr) x BNq, (Q«) —= B(Cp(Qx) - Nq, (Q.)) — B*Z(Qu).

First consider the fibers. The map on the first factor is a mod p homology isomorphism by Propo-
sition 3.8. For the second factor, we can apply the inductive hypothesis, because Ng, (Q.) is actually
Ng, (Qo € ... C Qr—1) (the normalizer of a shorter chain); likewise Nq, (Q.) is Nq, (Qo C ... C Qi_1).
Therefore BNg, (Q+«) = BNq, (Q.) is a mod p homology isomorphism.

Turning to the base, we know that BZ(Qr) — BZ(Qy) induces a mod p homology isomorphism by
Corollary 3.9. The Rothenberg-Steenrod spectral sequence [16, Corollary 7.29] then shows that B2Z(Qy) —
B?Z(Qy) likewise induces an isomorphism on mod p homology.

We apply the Serre spectral sequence to (5.13). The base spaces are simply connected. The maps between
the bases and the fibers are mod p homology isomorphisms. Hence the map of total spaces is a mod p
homology isomorphism as well. Feeding this result back into (5.12) finishes the proof. O

Finally, we arrive at the proof of this section’s main result.

Proof of Theorem 5.1. Let P, denote the chain Py C ... C Pk, and similarly let P, denote the chain
Py C ... C Pg. We compare the normalizers via the ladder of short exact sequences

0 — = Cg(P) - Np, (P.) — Ng (P,) —— Outg(P,) —= 0

\[\ \[\ \L: by Proposition 5.3 (514)

0—— Cg(Pk) . Npk (P*) — Ng (P*) E—— Outg(P*) — 0.

We are in the exact same situation as in the proof of Proposition 5.8. The inclusion Np, (Py) — Np, (P.)
induces an isomorphism on mod p homology of classifying spaces by Proposition 5.8. The centralizers
Cg(Py) and Cg(Py) are equal. And lastly, Cq(Py) N Np, (P) = Z(P) and Cq(Py) N Np, (P.) = Z(Py),
and Z(Py) — Z(P},) induces an isomorphism on mod p homology of classifying spaces by Corollary 3.9. O
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