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1. Introduction

The trace method approach to algebraic K-theory uses topological versions of classical constructions
from homological algebra to approximate K-theory. In recent years this approach has been instrumental in
many important algebraic K-theory calculations. Topological Hochschild homology (THH) plays a key role
in trace methods. Indeed, understanding THH is essential for defining topological cyclic homology (see [8]
or [34]), which often approximates algebraic K-theory quite closely.
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Building on the work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory [20], the
topological Hochschild homology of a ring spectrum R can be viewed as the norm N5’ R (see [3] and [10]).
This viewpoint leads to several natural generalizations. In particular, for a Cj,-equivariant ring spectrum
R, one can consider the norm Ngi R, which is the C,,-relative, or twisted, topological Hochschild homology
of R, as defined in [3]. The norm NgiR can be explicitly constructed as a twisted cyclic bar construction.
While the foundations for twisted THH of equivariant spectra are laid out in [3], no computations have
appeared in the literature for this new theory. The primary goal of this article is to develop computational
tools for twisted topological Hochschild homology and to study key examples.

One of the foundational tools for computing ordinary topological Hochschild homology is the Bokstedt
spectral sequence. For a field k and a ring spectrum R, this spectral sequence has the form

E?, = HHY(H,.(R;k)) = H.(THH(R); k).

It is natural to ask whether computations of relative topological Hochschild homology can be approached
via an analogous spectral sequence. In this paper we construct an equivariant analogue of the Bokstedt
spectral sequence, converging to the equivariant homology of twisted THH. In the statement below, E, (R)
denotes the RO(G)-graded commutative Green functor w, (E A R).

Theorem 1.0.1. Let G C S* be a finite subgroup and g a generator of G. Let R be a G-ring spectrum and E
a commutative G-ring spectrum such that g acts trivially on E. If E,(R) is flat over E,, then there is an
equivariant Bokstedt-type spectral sequence

4 = HHP* (B, (R)) = B, (i THHG(R))
that converges strongly.

In the classical Bokstedt spectral sequence, the E?-term is ordinary Hochschild homology of a k-algebra.
Here, however, the E%-term is a type of Hochschild homology for Green functors. The basic construction
of Hochschild homology for Green functors is due to Blumberg, Gerhardt, Hill, and Lawson [7]. In the
current paper we extend their work to define a theory of Hochschild homology for RO(G)-graded E,-
algebras, which is what appears in the E2-term of the equivariant Bokstedt spectral sequence above. This
is a spectral sequence of Mackey functors; evaluating at G/e recovers a version of the classical Bokstedt
spectral sequence, which computes THH with coefficients in the twisted bimodule 9 R:

HH (E.(R);“E.(R)) = Eu;.(THH(R; °R)).

Using the equivariant Bokstedt spectral sequence, we compute the RO(Cy)-graded equivariant homology
of the Cy-relative THH of the real bordism spectrum M Ug.

Theorem 1.0.2. The RO(C3)-graded equivariant homology of THHe, (MUR) is
HS? (i, THH, (MUR);Fy) = HF,, [b1, ba, .. ] ®F, Ap, (21,22, . ..)
as an HF 5, -module. Here |b;| = ip and |z| = 1 +ip, where p is the regular representation of Cs.

This calculation requires understanding the algebraic structure in the equivariant Bokstedt spectral
sequence, which can be formulated as follows.

Theorem 1.0.3. If R is endowed with the structure of a commutative G-ring spectrum, then the equivariant
Bokstedt spectral sequence inherits the structure of a spectral sequence of RO(G)-graded algebras over E, .
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For classical THH, work of Blumberg, Cohen, and Schlichtkrull facilitates the study of topological
Hochschild homology of Thom spectra. In [6], they showed that the Thom spectrum functor and the cyclic
bar construction “commute” in a suitable sense, due to nice symmetric monoidal properties of the Thom
spectrum functor and its behavior under colimits. They could then easily compute the topological Hochschild
homology of various Thom spectra, such as HF, and HZ, MO, MU, and other cobordism spectra. In the
current paper, we study (twisted) topological Hochschild homology of equivariant Thom spectra.

Recent results due to Behrens and Wilson [5] and Hahn and Wilson [18] show that certain equivariant
Eilenberg-MacLane spectra can be constructed as equivariant Thom spectra. As proven in [23], the equivari-
ant Thom spectrum functor is appropriately G-symmetric monoidal and commutes with G-colimits, which
enables us to describe the THH and twisted THH of equivariant Thom spectra, and to make the following
computations.

Theorem 1.0.4. As Cs-spectra,

THHC2<H£2) ~ HEQ A (\/ SQkp vV \/ S2kp+2)
k>0 k>0

and
THHe, (HZ5)) ~ HZ) A (HP(20 +2)) .
Here o denotes the sign representation of Ca, and p = o + 1 denotes its reqular representation.

In [7], the authors define a relative version of Hochschild homology for Green functors as well. For H C G,
and R an H-Green functor, the H-relative Hochschild homology of R, @2 (R)«, is defined using a G-twisted
cyclic bar construction on the Mackey functor norm, NG R (see Section 3.2 for details). A Green functor
for the trivial group is just a classical ring, and hence the relative theory of Hochschild homology for Green
functors also yields new ring invariants. For a ring R, HHY(R), is defined using a G-twisted cyclic bar
construction on the Mackey functor norm N&(R).

In [7] the authors also construct a type of cyclotomic structure on Hochschild homology for Green
functors. In the case of rings, this cyclotomic structure provides the framework for the definition of an
algebraic analogue of topological restriction (TR) homology, which the authors call ¢r(A). In this paper,
we perform the following new computations of the Cj»-twisted Hochschild homology of rings and of this
algebraic TR-theory.

Proposition 1.0.5. For the constant {e}-Green functor Z,

A% k=0
HHS" (Z), = {2

0 : otherwise,
and

7> k=0

0 : otherwise.

tri.(Z;p) = {

Here A°P" is the Cpn-Burnside Mackey functor.
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1.1. Organization

In Section 2, we recall the definition of C),-relative, or twisted, topological Hochschild homology for
Cp-ring spectra. In Section 3 we review the definitions of Mackey and Green functors, as well as the
theory of Hochschild homology for Green functors. We discuss how this theory of Hochschild homology
relates to classical and equivariant topological Hochschild homology. We also make new computations of
Hochschild homology for Green functors and of an algebraic analogue of topological restriction homology in
this section. Section 4 focuses on the construction, algebraic structure, and applications of the equivariant
Bokstedt spectral sequence. In Section 5 we explore a different computational approach in the context of
the twisted THH of equivariant Thom spectra.

1.2. Notation and conventions

Throughout, we are working with genuine orthogonal G-spectra indexed on a complete universe. We use
* to denote integer gradings, » to denote RO(G)-gradings, and e to denote simplicial gradings.

1.8. Acknowledgments

This paper is one part of the authors’ Women in Topology III project. A second part of that project
appears in a separate article [1]. We are grateful to the organizers of the Women in Topology IIT workshop, as
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The second author was supported by NSF grant DMS-1810575. The Women in Topology III workshop was
supported by NSF grant DMS-1901795, the AWM ADVANCE grant NSF HRD-1500481, and Foundation
Compositio Mathematica.

2. Twisted topological Hochschild homology of equivariant spectra

In [3], Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell define a theory of C,-relative, or
twisted, topological Hochschild homology for C,,-ring spectra. Given a C,-ring spectrum R, its C,-relative
topological Hochschild homology, THH¢, (R), is a relative norm, Ngl (R). We now recall the explicit con-
struction of this norm in terms of a twisted cyclic bar construction. More details of this construction can
be found in [3].

Let R be an associative orthogonal C,,-ring spectrum indexed on the trivial universe R*°. The C,-twisted

. . cy,Cn . . . .
cyclic bar construction on R, B, (R), is a simplicial spectrum, where

cy,Chp _ +1
BvOn(R) = RN,

Let g denote the generator e2™/™ of C,,, and let oy - RMNat1)  RAMa+1) denote the map that cyclically
permutes the last factor to the front and then acts on the new first factor by g. Let u and 7 denote the

multiplication map and unit map of R, respectively. The face and degeneracy maps on Bgy*cn (R) are given
by

1M ApATaMeTTY r0<i<g
YT (wAT1dMT Yo gy 11 =gq,

and
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s; = Id"NOTD A nA M9 vV0o<i<gqg.

This yields a simplicial object B&"“" (R).

Recall that there is an operator 7, on the g-th simplicial level of the classical cyclic bar construction such
that qu+1 = Id. This operator 7 satisfies certain relations with the face and degeneracy maps, giving the
cyclic bar construction the structure of a cyclic set, which implies that the geometric realization admits an
Sl-action ([13], [11], [25]). The C,-twisted cyclic bar construction, however, is not a cyclic object. Note,

n(g+1)
q

though, that for every g, the operator «,, satisfies o = Id. Furthermore, the operator o, satisfies the

following relations with respect to the face and degeneracy maps.

doog = dg

diaq = Oéqfldifl 1 < ) < q
Sitg = og+18i—1 1 <1 <gq
So0tg = 07415

The C,-twisted cyclic bar construction thus admits the structure of a A%-object, in the sense of Bokstedt-
Hsiang-Madsen [8]. By [8] the geometric realization of the Cj-twisted cyclic bar construction therefore has
an S'-action, extending the simplicial Cy,-action generated on the g-th level by ad*?,

The norm from C,, to S, which is a C,,-relative version of topological Hochschild homology, is defined
in terms of this twisted cyclic bar construction.

Definition 2.0.1. Let U be a complete S'-universe, and let U= 1., U, the pullback of the universe to Cj,.
Let R be an associative orthogonal C),-ring spectrum indexed on U. The C,-relative topological Hochschild
homology of R is defined to be the norm Ngi (R), given by

THHe, (R) = NG, (R) = g | B (I R)|,
where Z denotes a change-of-universe functor.

In [3] the authors prove that when R is a commutative C),-ring spectrum, the norm functor from commu-
tative C,-ring spectra to commutative S!-ring spectra is left adjoint to the forgetful functor, as one would
expect from a norm construction.

In the nonequivariant case, THH of any commutative ring spectrum A can be constructed in terms of the
natural simplicial tensoring of commutative ring spectra over simplicial sets, as A ® S! [33]. Analogously,
the C),-relative THH of a commutative C),-spectrum R is a relative tensor

THHe, (R) ~ Ig~ (R ®c, S'),

which is constructed as follows. If U = v, U, then R®c, S' is the coequalizer
IR ©C, 08" —Z (IF"R)& S,

where one map comes from the usual action of C,, on S! and the other from the induced action (I%mR) ®
Cn = IEF"R.

Ordinary topological Hochschild homology of a ring spectrum admits a cyclotomic structure (see [19] or
[34] for more on cyclotomic spectra). This cyclotomic structure on THH yields maps

R: THH(A)%" — THH(A)%
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called restriction maps, which can be used to define topological restriction homology:

TR(A; p) := holim THH(A)“»".
R

Topological restriction homology gives rise in turn to topological cyclic homology, which is a close approxi-
mation to algebraic K-theory under good circumstances. Understanding the invariants THH and TC is key
to understanding algebraic K-theory via the trace method approach.

Cyclotomic structures arise in the equivariant setting as well. In particular, in [3] the authors prove that
if R is a Cy,-ring spectrum, and p is prime to n, then THH¢, (R) is a p-cyclotomic spectrum. It is thus
possible to define Cy-relative topological restriction homology and topological cyclic homology, TR¢, (R; p)
and TC¢, (R;p).

3. Hochschild homology for Green functors

Topological Hochschild homology is a topological analogue of the classical algebraic theory of Hochschild
homology. Indeed, topological Hochschild homology can be constructed via a cyclic bar construction, directly
modeled after the algebraic construction. For a ring A, the topological Hochschild homology of the Eilenberg-
MacLane spectrum H A and the Hochschild homology of A are related via a linearization map

e (THH(HA)) — HH,(A),
which factors the Dennis trace map from algebraic K-theory to Hochschild homology
K,(A) —» my (THH(HA)) — HH,(A).

In [7] the authors addressed the natural question of whether there is an algebraic analogue of C),-relative
topological Hochschild homology. Recall that C),-relative THH takes as input C),-ring spectra. For C,,-ring
spectra to arise as Eilenberg-MacLane spectra, the construction of Eilenberg-MacLane spectra must be
extended from abelian groups and ordinary rings to Mackey functors and Green functors. The algebraic
analogue of C),-relative topological Hochschild homology should thus be a theory of Hochschild homology
for Green functors. We recall this theory in Section 3.2 below, after reviewing basic definitions for Mackey
and Green functors.

3.1. Mackey and Green functors

Throughout this section, let G denote a finite abelian group.

In equivariant homotopy theory, Mackey functors play the role that abelian groups play in the non-
equivariant theory. In particular, a G-spectrum X has associated homotopy Mackey functors, rather than
just homotopy groups. We begin by recalling the definition of a Mackey functor.

Definition 3.1.1. Given finite G-sets S and T', a span from S to T' is a diagram
S+ U—T,

where U is also a finite G-set, and the maps are G-equivariant. An isomorphism of spans is a commuting
diagram of finite G-sets
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U
S/ §\T.
RN

Composition of spans is given by pullback. There is also a monoidal product on the set of spans with fixed
endpoints. Given two spans, S < U — T and S < U’ — T, their product is defined via the disjoint union,
S« UuUnuv —T.

Definition 3.1.2. The Burnside category of G, Ag, has as objects all finite G-sets. For finite G-sets S and
T, the morphism set Ag(S,T) is the group completion of the monoid of isomorphism classes of spans
S+U—-T.

Definition 3.1.3. A Mackey functor is an additive functor M : AZ — Ab.

Note that any finite G-set X is isomorphic to a disjoint union of orbits G/H for various subgroups H
of G. Tt follows that every Mackey functor is determined by its values on the orbits G/H, since Mackey
functors are additive.

Explicitly, a Mackey functor M is equivalent to a pair of functors from finite G-sets to abelian groups

M,, M* : GSets — Ab,

where M, is covariant and M™* contravariant, such that both functors take disjoint unions to direct sums,
and the following conditions are satisfied. For any G-set X, M, (X) = M*(X), and the common value is
denoted M (X). Further, if

’

w2 x

)

—_—
is a pullback diagram in GSets, then M*(f)M.(g) = M.(¢")M*(f").
Every sequence of subgroup inclusions K’ C H C G induces a natural surjection g g : G/K — G/H.
The homomorphism M, (¢x.r) : M(G/K) — M(G/H) is called the transfer map and denoted trif. The
homomorphism M*(qx i) : M(G/H) — M(G/K) is called the restriction map and denoted resZL.

Definition 3.1.4. The Burnside ring of G, A(G), is the group completion of the monoid of isomorphism
classes of finite G-sets under disjoint union. Multiplication in this ring is given by Cartesian product.

Example 3.1.5. The Burnside Mackey functor for G, denoted A, is defined by A(G/H) = A(H) for all
H C G. The transfer and restriction maps are given by induction and restriction maps on finite sets. More
explicitly, for K C H C G, and X a finite K-set and Y a finite H-set,

trig([X]) = [H xx X] and resg([Y]) = [[K(Y)],
where ifl : HSet — K Set is the restriction functor.

Example 3.1.6. Let X be a G-spectrum. For all ¢, the equivariant homotopy groups of X form a G-Mackey

functor, 7&, defined by
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G H
Ty (X)NG/H) = 7g(X7).
The category Mackg of G-Mackey functors admits a symmetric monoidal structure defined as follows.

Definition 3.1.7. The box product LOM of two G-Mackey functors L and M is defined as a left Kan extension
over the Cartesian product of finite G-sets

Ac x Ac Abx Ab ———— Ab
LoM
Ac

and is again a G-Mackey functor.

It is easy to see that the Burnside Mackey functor A is a unit for the box product.
The box product in Mackey functors is closely related to the smash product of orthogonal G-spectra. It
follows from [30, 1.3] that for cofibrant (—1)-connected G-spectra X and Y, there is a natural isomorphism

moX0OmY Z (X AY). (3.1.1)

A G-Mackey functor M has an associated Eilenberg-Mac Lane G-spectrum, HM, the defining property
of which is that

M k=0
EkG(HM)g{O_ k40

(see, for example, [14] or [15]). We can then give a homotopical description of the box product of Mackey
functors. It follows from isomorphism (3.1.1) above that for any two G-Mackey functors L and M:

LOM = ry(HL A HM).

Definition 3.1.8. A Green functor is an associative monoid in the symmetric monoidal category Mackg. A
commutative Green functor is a commutative monoid.

In this article, we also need graded Mackey functors, both Z-graded and RO(G)-graded, where RO(G)
denotes the real representation ring of G.

Definition 3.1.9. (1) A Z-graded Mackey functor for G, M, is a functor from the discrete category Z to
Mackg, i.e., a set {M, | ¢ € Z} of Mackey functors. A map of Z-graded Mackey functors for G, L, — M,
is a natural transformation, i.e., a set {Lq —M,|qe Z} of maps of Mackey functors.

(2) An RO(G)-graded Mackey functor for G, M, is a functor from the discrete category RO(G) to
Mackg, ie., a set {M, | @« € RO(G)} of Mackey functors. A map of RO(G)-graded Mackey functors,
L, — M, is a natural transformation, i.e., a set {L, — M, | « € RO(G)} of maps of Mackey functors.

Example 3.1.10. For every G-spectrum X, there is a Z-graded homotopy Mackey functor, 7¢(X), given by
7 (X)(G/H) = my(XH) for all ¢ € Z.
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Recall that for a G-spectrum, X, one can define RO(G)-graded equivariant homotopy groups as follows.
An element a@ € RO(G) can be written as a = [f] — [y], where 8 and v are finite dimensional real rep-
resentations of G. Let H be a subgroup of G. Then the equivariant homotopy group m,(X) is defined
as

7o (XT) = [SP AG/H,, 57 A X]g

Note that this is a priori only well defined up to non-canonical isomorphism. In order to get around this, one
can work with hRO(G,U), the homotopy category of a certain category of representations of G embedded
in a chosen complete G-universe U. See Section XIII.1 of [31] for details. This ensures that we account for
a Burnside ring’s worth of automorphisms of each oo € RO(G).

Example 3.1.11. For a G-spectrum X, there is an RO(G)-graded homotopy Mackey functor, 7¢(X), given
by 75¢(X)(G/H) = 7o (XH) for all « € RO(G).

As discussed in [30], there is a graded version of the box product, given by Day convolution, endowing
the categories of Z-graded and RO(G)-graded Mackey functors with symmetric monoidal structures.

Definition 3.1.12. Let L, and M, be Z-graded Mackey functors for G. The graded box product L,O0M, is
defined in terms of the ungraded box product by

(L.OM,), = €D L,oM;.
i+j=q
Similarly, the graded box product L, 0M, of RO(G)-graded Mackey functors L, and M is given by
(L,oM,)e = @ L,oM,.
y+B=a

The unit for the (Z or RO(G))-graded box product is the (Z or RO(G))-graded Burnside Mackey functor
A, , which is the Burnside Mackey functor A in degree 0, and 0 in all other degrees.
It is important in this paper to know that the RO(G)-graded homotopy functor is monoidal.

Lemma 3.1.13. /30, Theorem 5.1] For every finite group G, the RO(G)-graded homotopy functor m, from
G-spectra to RO(G)-graded Mackey functors is monoidal.

In this work we will also need to consider graded Green functors. We recall their definition from [30],
where they are referred to as graded Mackey functor rings.

Definition 3.1.14. A graded Green functor (with a Z or RO(G)-grading) is an associative monoid in the
category of graded Mackey functors, with respect to the graded box product.

Lemma 3.1.13 implies that if R is a G-ring spectrum, then 7, (R) is an RO(G)-graded Green functor.
3.2. Hochschild homology for Green functors

In this section we recall the construction of Hochschild homology for Green functors, given by Blumberg,
Gerhardt, Hill, and Lawson in [7]. We then extend this construction to graded Green functors.

We begin by observing that if G is cyclic, then every G-Mackey functor M admits a natural G-action.
To see this, recall that for any group G and G-Mackey functor M, the Weyl group Wg(H) = Ng(H)/H
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acts on M(G/H). If G is a cyclic group, then Wg(H) = G/H for every subgroup H of G. It follows that
M(G/H) is a G-module for all H, and the restriction and transfer maps are maps of G-modules, i.e., the
Mackey functor M admits a G-action. We define the G-twisted cyclic bar construction for a G-Mackey
functor using this action.

Definition 3.2.1. Let G C S! be a finite subgroup, and let g denote the generator €>7/|¢| of G. Let R be
a G-Green functor. The G-twisted cyclic bar construction on R, Efy’G(ﬂ), is a simplicial Green functor,
where

cy,G o +1
qu (E)_ED(Q )

The face and degeneracy maps are defined as they are for the twisted cyclic bar construction in Section 2
above.

More generally, one can define the twisted cyclic nerve of a G-Green functor R with coefficients in an
R-bimodule M, with respect to an element g € G. First, we explain how to twist module structures over
Green functors.

Definition 3.2.2. Let G C S' be a finite subgroup, and let g € G. Let R be a Green functor for G, and let
M be a left R-module with action map A. The g-twisted module structure on M, denoted 9M, has action
map 9\ specified by the commuting diagram

ROM
X
gol
ROM >~ M.

Definition 3.2.3. Let G C S' be a finite subgroup, and let g € G. Let R be a Green functor for G, and let
M be an R-bimodule. The G-twisted cyclic nerve, B"%(R;9M), is the simplicial Mackey functor with ¢
simplices

B (R, M) = MOR™.

The face maps d; are given as usual by multiplication of the ith and (i + 1)st factors if 0 < ¢ < ¢. The face
map dy is the ordinary right module action map for M, while the last face map, dy, rotates the last factor to
the front and then uses the twisted left action map of Definition 3.2.2. The degeneracy maps s; are induced
by inclusion of the unit after the ith factor, for 0 <i < g¢.

The twisted cyclic bar construction above is the case where the bimodule M is R itself, and g is the
generator e2™/IC1 of G, i.e.,

BYC(R) = B&°(R;R).

We can now define the G-twisted Hochschild homology of R by taking the homology of this simplicial
object.

Definition 3.2.4. Let G C S! be a finite group and R an associative Green functor for G. The G-twisted
Hochschild homology of R is defined by

HHY(R) = H;(BY(R)).
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Applying the Dold-Kan correspondence at each orbit gives rise to an equivalence between the category of
simplicial Mackey functors and the category of non-negatively graded dg Mackey functors. By definition, the
homology of a simplicial Mackey functor is the homology of the associated normalized dg Mackey functor.
See [7] for more discussion of simplicial and differential graded Mackey functors.

One motivation for developing a Hochschild theory for Green functors is the desire for an algebraic
analogue of the twisted topological Hochschild homology discussed in Section 2. Let H C G C S* be finite
subgroups and R an H-ring spectrum. As seen in [7], there is a weak equivalence

1 THHy (R) = N R Ang e ‘NG R,

where NG R denotes the enveloping algebra NG R A (NG R)°P, and ING R denotes N§ R with the bimodule
structure twisted on one side by the Weyl action. A full algebraic analogue of relative THH therefore
requires a notion of G-twisted Hochschild homology for an H-Green functor R, defined using norms on
Mackey functors. We now recall the definition of Mackey functor norms from [22].

Definition 3.2.5. Let H be a subgroup of a finite group G, and let M be an H-Mackey functor. The norm
NG M is defined to be the G-Mackey functor

NfM := z§ Nf (HM).

Definition 3.2.6. Let H C G C S! be finite subgroups, and let R be an associative Green functor for H.
The G-twisted Hochschild homology of R is defined to be

HHf (R); = Hy(B"“(NFR)).

The Hochschild homology for Green functors defined in [7] and recalled above is an equivariant analogue
of taking classical Hochschild homology of a ring (i.e., a Z-algebra). In this article, we also need an analogue
of Hochschild homology of an associative k-algebra, for k£ any commutative ring.

To define this analogue, we need the relative box product [30], which is a particular case of the general
construction of a relative tensor product in a monoidal category. Let R be a commutative Green functor,
and let L and M be left and right R-modules respectively. The Mackey functor LOrM is defined to be the
coequalizer

pOid

LOROM —Z LOM — LOgM.
idOA

=

Here p is the right action map for L and A the left action map for M. Lewis and Mandell prove in [30]
that the category of left R-modules, Modpg, is a closed symmetric monoidal abelian category with monoidal
product Or. The Green functor R is commutative, so left modules become bimodules by using the same
action on the right. We will call a monoid in this category an associative R-algebra. We define Hochschild
homology for associative R-algebras as above, but replacing 0O with Og. For T an associative R-algebra for
G, we denote its G-twisted Hochschild homology by HHEC (T).

3.8. Cpn-twisted Hochschild homology of Z

Since a Green functor for the trivial group is just a ring, the theory of Hochschild homology for Green
functors described above also yields new ring invariants. In [7], the authors computed the Cpn-twisted
Hochschild homology of the ring [F,,. Here we provide an additional explicit example, computing the Cpn-
twisted Hochschild homology of Z.
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Example 3.3.1. The ring Z, considered as a Green functor for the trivial group, is the Burnside Mackey
functor for the trivial group. The norm from H to G of the H-Burnside Mackey functor is the G-Burnside
Mackey functor [32], so NEPZ is the C,-Burnside functor, A",

| 1
Since the Burnside functor is a unit for the box product, (ACP) (¢+1)

= A% for all ¢, whence the Cp-
twisted cyclic bar construction on A% is A% in each degree. The action of the Weyl group is trivial, so
each face map is an isomorphism. Calculating the homology of the complex

Cp O AC, = 4Cp O 4C, 2 4C
0 AP~ AP+ A" — AP — A" - |
we obtain

A% =0

0 : otherwise.

-

Likewise, for any C,, C S*, NEC"Z is the C,-Burnside Mackey functor, A, Then, the same argument
as above shows

A =0
0 : otherwise.

HHS"(Z); = {

3.4. Relationship to classical and twisted THH

As mentioned above, one motivation for studying Hochschild homology for Green functors is that it
serves as an algebraic analogue of twisted topological Hochschild homology of equivariant spectra. Indeed,
Blumberg, Gerhardt, Hill, and Lawson [7] prove that for H ¢ G C S! finite subgroups and R a (-1)-
connected commutative H-ring spectrum, there is a linearization map

¢ THHy (R) — HHG (z¥ R)y,,

which is an isomorphism in degree zero. This is analogous to the classical linearization map from topological
Hochschild homology to Hochschild homology in the non-equivariant setting. In Section 4, we show that
the relationship between relative THH and Hochschild homology for Green functors goes even deeper, by
producing an equivariant version of the Bokstedt spectral sequence.

When H is the trivial group, the linearization map above yields new trace maps from algebraic K-theory.
Indeed, in [7] the authors prove that for A a commutative ring and G' C S! a finite group, there is a trace
map

K,(A) — HHS (A)(G/G)q,
which lifts the classical Dennis trace

K,(A) — HH,(A).

The trace map K,(A) — HHS (A)(G/G), factors through 7 THH(A)(G/G) = m,(THH(A)%). As discussed
in Section 2, the cyclotomic structure on THH yields maps

R : THH(A)®" — THH(A)%

called restriction maps, which can be used to define topological restriction homology:
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TR(A; p) := holim THH(A)“»".
R

Topological restriction homology gives rise in turn to topological cyclic homology.

It is natural to ask whether the algebraic theory HHY (4)(G/G), admits structure maps analogous to
the restriction maps on THH. In [7], the authors proved that Hochschild homology for Green functors does
have a type of cyclotomic structure, which in particular yields maps

n Cpn—l
r HHEP" (A)g(Cpn /Cyn) = HHe ™" (A) g (Cpn1 /Cpn),

the algebraic restriction maps. One can then define an algebraic analogue of TR-theory, tr, given in degree
k by

tri,(A;p) = lim HHE™" (A)g(Cpn /Cpr).

T

In [7] the authors showed that

Zy, k=0

0 : otherwise.

tr, (Fp; p) = {

Below, we compute a second example, the algebraic TR of Z.

Proposition 3.4.1. The algebraic T R-theory of Z is given by

7> k=0

0 : otherwise.

tri.(Z;p) = {

Proof. The algebraic restriction map,
Cone
r: HHE™ (Z)1(Cpn /Cpn) = HHe™" ™ (Z)1(Cpn1 /Cpn—1),
is constructed in [7, Corollary 5.18] on the chain level as the composite

52O (N9 2) (G /) (B2 (N 2) D47 B, (47) €y )

— ¢ (Ezyvcpn (Necpn Z)) (Cp"*l/cp"*l)

cy,Cpn—1

B (N9 2) Gy ),

where EFc, (A%™) is the subMackey functor of A“*" generated by A(Cyn»/H) for all H not containing C,,
[7, Definition 5.4]. The first map is induced by the quotient map of Mackey functors A — A/EFc, (ACP” )
The second and third maps are isomorphisms, due respectively to the definition of the geometric fixed
points functor, ®“», and the cyclotomic structure of the twisted Hochschild complex [7, Definition 5.10,
Proposition 5.17].

Recall from the computation of the Cpn-twisted Hochschild homology of Z in Example 3.3.1 that
ﬁzy’c”" (NEP"Z) = A% for all k > 0. As an abelian group, A°"" (Cpn /Cpr) = Z**1. Here we choose
the isomorphism so that the ith component of Z**! corresponds to the orbit Cpi [Cpi—i for 0 < i < k.
Recall from Example 3.1.5 that the transfer maps in the Burnside Mackey functor come from induction
maps on finite sets. In the Burnside Mackey functor ACP" we have
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Cox
trC:;l (1, xk) = (0,21, ..., k)

In degree zero, the first map in the composition above is the quotient of A»" (Cpn /Cyn) = Z™T! by the
transfers from e, the only subgroup of Cp» not containing C, [7, Definition 5.4]. Using the formula for
transfers given above, we see the image of these transfers is the last copy of Z. So, the map induced on
Hochschild homology by the composition is the map Z"T! — Z" quotienting by the last factor.

Taking the inverse limit of HHY*" (Z), along these maps, we obtain

tro(Z;p) = Z°°.
For all other k, the groups HHS*" (Z)1,(Cpn /Cyn ) are zero and so try(Z;p) = 0. O
4. The equivariant Bokstedt spectral sequence

One of the key computational tools for classical topological Hochschild homology is the Bokstedt spectral
sequence. This spectral sequence, arising from the skeletal filtration of the simplicial spectrum THH(R),
computes the homology of THH(R). In particular, for a ring spectrum R and a field k, the Bokstedt spectral
sequence has the form

E?, = HH}(H.(R; k)) = H.(THH(R); k),

where HH’*C denotes Hochschild homology over the field k. In this section, under appropriate flatness con-
ditions we construct an equivariant analogue of the Bokstedt spectral sequence, which converges to the
equivariant homology (integer or RO(G)-graded) of G-relative THH, for G a finite subgroup of S*:

E?, = HHY*9(E,(R)) = E,,(ig THHG(R)).

Here E is a commutative G-ring spectrum such that the generator g = e>™/IGl of G acts trivially on E
(see the discussion before Proposition 4.2.3), R is a G-ring spectrum, and E, (R) denotes m, (E A R). The
E2-term of this spectral sequence, which we construct in Section 4.2, is the Hochschild homology of an
algebra over a graded Green functor.

If R is a commutative ring spectrum, the classical Bokstedt spectral sequence is a spectral sequence
of algebras [16]. We prove an analogous result in Section 4.2 for the equivariant Bokstedt spectral se-
quence. Finally in Section 4.3, we use this new spectral sequence to compute the equivariant homology of
THH¢, (MUg), the Cay-relative THH of the real bordism spectrum.

To construct the equivariant Bokstedt spectral sequence, we first need to generalize the theory of
Hochschild homology for Green functors. In [7] this theory is defined for (ungraded) Green functors, while
we require a theory of Hochschild homology for integer- and RO(G)-graded Green functors, and for algebras
over a graded commutative Green functor. We begin by setting up these theories.

4.1. Graded twisted Hochschild homology

We explain here how to extend the work of [7] to the graded setting, in a manner analogous to the
extension of ordinary Hochschild homology from rings to graded rings or even differential graded algebras,
based on the framework elaborated in [30].

Let G C S! be a finite subgroup. Let R, be a Z-graded G-Green functor and let M, be an R,-bimodule.
We define the G-twisted cyclic nerve of R, with coefficients in M, as in Section 3, but with a modification
of the sign on the last face map. In particular, let
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BO(R.;IM,) = M DR,

For 1 <14 < g —1, the face map d; multiples the ith and (i 4+ 1)st box factors. The map dy applies the right
action of R, on M, . To define the last face map, dg, we need the following isomorphism, which is analogous
to the usual symmetry isomorphism for the tensor product of graded modules over a commutative ring.

Definition 4.1.1. Let A, and B, be two Z-graded Mackey functors. The rotating isomorphism
7:A,0B, - B,0A,

is defined in level k to be the composite of the isomorphisms Aililﬁj = B; OA, (where k = i+ j) induced by
the symmetry isomorphism of the tensor product of abelian groups, and the automorphism B; 0A, - B ;UA,;
induced by multiplication by (—1)%¥.

The face map d, is then defined to be the composite

9 oId _
QM*DEE(q 1)’

9M,0R% —~ R,09M, ORI
where the map 7, is given by iterating the rotating isomorphism, bringing the last factor to the front. The
G-twisted Hochschild homology HHY(R,;9M,) is then the homology of E;y’G(ﬂ*ﬂM .), equipped with
the face maps defined above. When M, = R, and g is the generator e2mi/1Gl of G, we write EZG(E*) =
HHY(R,:9R,) This construction can be generalized easily to define HHS (R, ); for a graded H-Green functor
R,, by incorporating norms as we did earlier.
For RO(G)-graded Mackey functors, the situation is more subtle. As above, in the graded case we will
pick up an additional “sign” in the last face map. When the gradings live in the representation ring RO(G),
however, these generalized signs are elements of the Burnside ring for G.

Definition 4.1.2. Let G C S! be a finite subgroup, and let o, 8 be two finite-dimensional, real representations
of G, with corresponding representation spheres S® and S?. The switch map S® A S% — S8 A S specifies
an element in the Burnside ring A(G) = 7§ (S°), which we denote by o(a, 3).

Remark 4.1.3. The switch map for G = C,, is computed, for instance, in [36, Proposition 2.56, 2.58].

Definition 4.1.4. Let A, and B, be RO(G)-graded Mackey functors. The rotating isomorphism T :
A, 0B, — B,A, is defined in level a to be the composite of the isomorphisms A@DEW ~ E’YDAB
(where @ = 8 4+ v) induced by the symmetry isomorphism of the tensor product of abelian groups, and of
the automorphism B, [JA; — B,[JA; induced by a(v,B).

The rotating isomorphism enables us to define an appropriate notion of commutative Green functors in
the RO(G)-graded case.

Definition 4.1.5. An RO(G)-graded Green functor A, with multiplication map p: A,0A4, — A, is commu-
tative if ur = p, where 7: A, 0A, — A, 00A, is the rotating isomorphism.

Note that this definition of commutativity is compatible with that of commutative equivariant ring
spectra, in the following sense.

Proposition 4.1.6. /30, Theorem 5.1] If R is a commutative ring G-spectrum, then ¢ (R) is a commutative
RO(G)-graded Green functor.
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Definition 4.1.7. Let G C S! be a finite subgroup, let g € G, and let R, be an RO(G)-graded Green functor
for G and M, an R,-bimodule. The twisted cyclic nerve of R, with coefficients in M, is the simplicial
RO(G)-graded Mackey functor with g-simplices given by

[Q] = Eg%c(ﬂ*% QM*) = QM*DEEQ~

For 1 <i < g—1, the face map d; multiplies the ith and (i 4+ 1)st box factors. The 0th face map dy applies
the right action of R, on M, . The gth face map d, is given by the composite

9 ORY T_gE*DgM*DEE(q—l) ﬂgM*DEE(q—n

where 9\ denotes the G-twisted left action of R on M (Definition 3.2.2). The map 7, is given by iterating
the rotating isomorphism, moving the last factor to the front. For 0 < i < ¢ — 1, the degeneracy map s; is
induced by the unit in the (¢ + 1)st factor.

As in the ungraded case, it is straightforward to verify that, with the sign introduced in the rotating
map, the definition above indeed specifies a simplicial object.

Definition 4.1.8. Let G C S! be a finite subgroup, let g € G, and let R, be an RO(G)-graded Green
functor for G and M, an R,-bimodule. The twisted Hochschild homology of R, with coefficients in M, ,
HHSY(R,;9M.,), is the homology of the twisted cyclic nerve BS"%(R,;9M, ). When M, = R, and g is the
generator e27/IG of G, we write HHY (R, ) = HHY(R,;R,).

Remark 4.1.9. Let R, be an RO(G)-graded Green functor for G. When R, is concentrated in degree 0, the
twisted Hochschild homology of the RO(G)-graded Green functor R, is an RO(G)-graded Mackey functor
concentrated in degree 0. The degree 0 part coincides with the twisted Hochschild homology of the ungraded
Green functor R:

HHY (R, )o = HHY (R,).

Let E, be an RO(G)-graded commutative Green functor, and consider the symmetric monoidal category
of E,-algebras (£,-Alg,0g, ,E,). As in Section 3.2, we can define the Hochschild homology @?*’G(ﬁ*)
of a E,-algebra R, in terms of a relative graded box product.

4.2. The equivariant Békstedt spectral sequence

Before constructing the equivariant Bokstedt spectral sequence, we briefly review the classical case. The
classical spectral sequence was originally constructed by Bokstedt, who used it to compute the topological
Hochschild homology of F, and Z [9]. A construction of the Bokstedt spectral sequence for generalized
homology theories in the context of EKMM spectra (S-modules) can be found in [16].

Theorem 4.2.1. [16, IX, Theorem 2.9] Let E be a commutative ring spectrum, R a ring spectrum, and M a
cellular (R, R)-bimodule. If E.(R) is E.-flat, then there is a spectral sequence of the form

B2, = HHY (B.(R); E.(M)) = Eyyo( THH(R; M)).

This spectral sequence is a special case of the following general theorem ([16, X, Theorem 2.9]), which
provides a spectral sequence for computing the homology of the geometric realization |K,| of a simplicial
object K, in spectra. The construction is based on the simplicial filtration of |K,|. Recall that a simplicial
spectrum K, is proper if the map from the degenerate subspectrum, sK, — K, is a cofibration for each g.
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Theorem 4.2.2. Let K, be a proper simplicial spectrum and E any spectrum. There is a natural homological
spectral sequence

B2, = Hy(Ey(K.)) = Epyq|K)).

In this section we develop an equivariant version of the Bokstedt spectral sequence to study the equivariant
homology of twisted topological Hochschild homology. One can define both integer and RO(G)-graded
versions of this equivariant Bokstedt spectral sequence. However, the flatness conditions in the spectral
sequence are more likely to hold in the RO(G)-graded case, so we focus our discussion on the RO(G)-
graded spectral sequence.

Let E be a commutative G-spectrum and R a G-spectrum. In order to construct the equivariant Bokstedt
spectral sequence converging to the RO(G)-graded homology E, (if, THH¢(R)), we first need to understand
how the g-twisting on R interacts with equivariant E-homology.

For a group G and an element g € G, we let ¢, denote the conjugation automorphism

cg: G — G,

where ¢4(h) = g~ 'hg. For a G-spectrum X, left multiplication by g induces an isomorphism of G-spectra
(see, for instance, [35, Section 3.1]):

lg:c;X = Xtz ga.

When G is an abelian group, the conjugation map ¢, : G — G is the identity for every g € G and the induced

*
g

for every G-spectrum X and every g € G. We often denote this map simply by g : X — X. When [, is

endofunctor ¢ on the category of G-spectra is the identity functor, whence i, : X — X is G-equivariant

equivariantly homotopic to the identity map, we say that g acts trivially on X.
This general observation specializes to the following useful result.

Proposition 4.2.3. Let G be an abelian group. For every G-spectrum X, the G-action on X induces a levelwise
G-action on the graded Mackey functor w (X).

Proof. The induced G-action on RO(G)-graded homotopy Mackey functors m, acts grading-wise via the
quotient G/H, i.e., for each subgroup H C G and each « in RO(G), the G-action is specified by

G xm,(X)(G/H) = G/H x 71, (X)(G/H) = m,(X)(G/H),
where the second map is the Weyl group action. O

Definition 4.2.4. Let R be a G-ring spectrum and g an element of G. The g-twisted R-module structure on
R, denoted YR, has right action map given by the usual multiplication, y, and a twisted left action map,

AN

RAR L~ R

9, given by

For E a commutative G-ring spectrum, and R a G-ring spectrum, the E, (R)-module E (9R) will arise
in the construction of the equivariant Bokstedt spectral sequence. In the next lemma, we compare E, (YR),
as an E, (R)-module, to the twisted module 9E, (R), where the twisting is defined as in Definition 3.2.2.
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Lemma 4.2.5. Let G be an abelian group, and let g € G. Let E be a commutative G-ring spectrum such that
g acts trivially on E. For every G-ring spectrum R, the identity is a morphism of left E, (R)-modules

IE.(R) = E,(R).

Proof. Tt suffices to check EAYR ~ 9(E A R) as left E A R-modules.
By the assumption, the following diagram homotopy commutes:

(EAR)A(EAR) - (EAR)A(EAR)
J{Ho(g/\g/\ld/\ld) J{,uo(ld/\g/\ld/\ld)

EAR Id EAR

where the left vertical arrow is the module action of 9(E A R) and the right one is that of EA9R. The result
follows after passing to homotopy Mackey functors. 0O

The construction of twisted topological Hochschild homology recalled in Section 2 produces an S!-
spectrum. We restrict it to a G-spectrum and compute its associated RO(G)-graded homology. Viewed
as a GG-spectrum, the twisted topological Hochschild homology of a G-ring spectrum is isomorphic to the
G-equivariant topological Hochschild homology over the twisted module 9R.

Proposition 4.2.6. For every G-ring spectrum R, there is a natural isomorphism of G-spectra:
THH(R;YR) = i, THHg(R).

Proof. The identity map induces an isomorphism of simplicial G-spectra between B¢ (R), and
B%(R;9R),, the usual cyclic nerve of R with coefficients in the R-biomodule 9R. Passing to the geometric
realization, we obtain a G-spectrum isomorphism. O

Let E be a commutative G-ring spectrum. The simplicial filtration of BY(R;9R),
- Fg 1 CFs CFepq C-+- C BY(R;9R),,
gives rise to a spectral sequence
E;,* =FE,  (Fs/Fs_1) = E,, (THH(R;YR)),
which is strongly convergent by [16, X.2.9].
Let @ € RO(G). The terms E} , form a chain complex with

s+«

B, (FF) 2 E,,, (ZS(BC-”(R; 9R),/oBY(R; gR)S)),

in degree s, where 0 BY(R;9R), denotes the degeneracy subspectrum.
It follows that E! , is isomorphic to the normalized chain complex of E, (B (R;9R)s).

*,Q0

Theorem 4.2.7. Let G C S be a finite subgroup and g = €>™/|¢1 o generator of G. Let R be a G-ring
spectrum and E a commutative G-ring spectrum such that g acts trivially on E. If E,(R) is flat over E,
then there is an equivariant Békstedt spectral sequence of the following form:

E?, = HHF*9(E,(R)) = E,,(ii; THHG(R)).
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Proof. Since Ei)a is isomorphic to the normalized chain complex of E_ (B (R;9R),), it suffices to compute
the homology of this chain complex.
Since E, (R) is flat over E,, in degree s the chain complex E, (B (R;9R),) is isomorphic to

By (E.(R):E,(R)),,

the E,-module of s-simplices of the cyclic bar construction in the category of E,-modules of E,(R) with
coefficients in £, (R). By Lemma 4.2.5, it is also isomorphic as an E -module to

By (B, (R);?E,(R)),.

S

Formal diagram chasing shows that the d; differential of the spectral sequence under this isomorphism can
be identified with the differential of the complex computing HHZ* ’G(E*R). Therefore, we can identify the
Es-term of the spectral sequence above with the Hochschild homology HHE*C(E, (R)). This completes
the proof. O

As in the classical case, when the input ring spectrum is actually commutative, the resulting spectral
sequence inherits a multiplicative structure.

Proposition 4.2.8. Let g € G, E, and R be as in Theorem 4.2.7. If R is endowed with the structure of a
commutative G-ring spectrum, then the equivariant Bokstedt spectral sequence inherits the structure of a
spectral sequence of RO(G)-graded algebras over E, .

Proof. It is easy to check that if R is a commutative G-ring spectrum, then the cyclic nerve BY(R;9R), is
a simplicial object in commutative ring G-spectra, where the levelwise multiplication is defined as usual for
a tensor product of algebras. Commutativity of R is not required for the degeneracies to be algebra maps,
but is necessary for the face maps to be algebra maps. The particular case of d, in simplicial level g relies
on the fact that g acts on R as an algebra map.

Since F is also a commutative ring G-spectrum, E' A B (R;9R), is a simplicial object in commutative
ring G-spectra. Proposition 4.1.6 implies that E (ch(R; 9R),.) is then a simplicial object in RO(G)-graded
commutative Green functors over E,. Normalizing, we obtain a differential graded object in RO(G)-graded
commutative Green functors over E,; this is the E'-page of the spectral sequence. Since the simplicial
filtration of B (R;9R), respects its algebra structure, all the differentials in the spectral sequence respect
the multiplicative structure as well. O

4.8. Twisted THH of the real bordism spectrum

In this section we consider MUg, the Cs-equivariant real bordism spectrum of Landweber [27] and
Fujii [17], for which it is natural to compute Cy-relative topological Hochschild homology. We compute the
equivariant homology of THH¢,(MUR) using the equivariant Bokstedt spectral sequence constructed in
Section 4, converging to

HS2 (i, THH, (MUR); F,).

It follows from the calculations of 7, (HF,) in [24] that the Weyl action on m, (HF,) is trivial. In other
words, the generator g of Cs induces the identity map after passing to RO(Cs)-graded Mackey functors.
In particular, it induces the identity map on RO(Cs)-graded homotopy groups. Work by Hu—Kriz [24] also
calculates the Cs-equivariant Steenrod algebra. The only element inducing the identity map in the Cs-
equivariant Steenrod algebra is the unit 1. Therefore [, is homotopic to the identity map, allowing us to use
the spectral sequence of Theorem 4.2.7 to make this computation.
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As discussed in Section 4, in order to identify the E2-term of the equivariant Békstedt spectral sequence
with Hochschild homology for Green functors, we need to verify a flatness condition, which turns out to
hold in the RO(Cy)-graded case. In particular we prove that x$2(MUg A HE,) is flat (indeed, free) as a
x, (HF,)-module. For ease of notation, we let HF,, denote =, (HF,).

Proposition 4.3.1. The RO(Cs)-graded Mackey functor z$2(MUg A HE,) is free as an HE,, -module. In
particular

7(?(MUR A HE,) & HE,, [b1, ba, . . .].
Here the degree of b; is ip, where p denotes the regular representation of Cs.

Proof. Let V be a representation of Cs. As in [20], we use the notation

SO[SV] — \/ (SV)/\j

Jj=0

for the free associative algebra on the V-sphere. As shown in Corollary 5.18 of Hill-Hopkins-Ravenel [20],
building off of work of Araki [4], there is a weak equivalence

MUg A HF, ~ HF, A [\ S°[S%].
i>1

This gives an isomorphism of RO(Cs)-graded Green functors
72 (MUg A HFEy) = HF 5, [b1,bs, .. ],
where the degree of b; is ip. O

As the appropriate flatness condition holds, the equivariant Bokstedt spectral sequence for MUk has the
form

E?, = HH"F2x O (3 (MUR;F,)) = HS2, (it, THHe, (MUR); E,),

where we are considering H SQ (MUg;F,) as an HF,,-algebra. From Proposition 4.3.1, it follows that the
E?-term is

B, = HHI®2% O (HF 5, [b1, b, .. ]).
The next proposition is the key to computing this E?-term.
Proposition 4.3.2. Let G C S' be a finite subgroup, and let g € G be the generator €>™/IG! Let R, be an

RO(G)-graded commutative Green functor for G, and M, an associative R, -algebra. If M, is flat as an
R, -module, there is a natural isomorphism

My Op, MY

HHE*%(M,) = Tor, (M,,9M,),

where Tor, , is the ith derived functor of the box product over R, .
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Proof. Note that HHE*%(M,) = HHE* (M, ,9M,), where the latter is the homology of the ordinary
Hochschild complex with bimodule coefficients. By [30] and [29], since G is a finite group, the homological
behavior of graded G-Mackey functors is standard, so that the usual homological algebra argument implies
that

HHI™ (M, M) = Tort 2 ™" (M1, 9M,). O
We now apply the proposition to computing @*HE?* C2 (ESQ (MUR;F,)).
Proposition 4.3.3. The Cs-twisted Hochschild homology of the HIF ,, -algebra ESQ(MUR; F,) is
HHFox 2 (P (MUR;F,y)) = HE o, [b1, b2, ... Opr,, Anw,, (21,22, ..),

where |b;| = (0,ip) and |z;| = (1,ip).

Proof. For ease of notation, let M, denote HS?(MUg;F,) = HE,,[b1,bo, .. ], |bi| = ip, and let MS denote
M, oy, , M3P. By Proposition 4.3.2 above,

HHPFox C2 (0 ) = TortF (M, 9 M),
where g denotes a generator of Cs.
We first consider the Cs-action on M, . As noted earlier, the Cs-action on HF,, is trivial. The Cy-action
on the generator b; is induced by the action on S, whence g - b; = b;. We conclude that the Cy-action on
M, is trivial, so that

HHFoxC2 (M ) = Tort* (M, M,).

Using the homological algebra foundations for RO(Cj)-graded Mackey functors laid out in [30], the
standard argument of Cartan and Eilenberg [12, Thm X.6.1] shows that

Tort¥ (M, M,) = M, Oyp,, Tor™* (HF,,, HF,,).

Using the Koszul complex as in the classical case, one can compute that

Tor /TP (HE, , HE,, ) 2 Ay, , (21,2, ),
where |z;| = (1,]b;]). Thus we conclude that

Tort (M, M,) = HF,,[br, by, .| O,y Mg, (21, 22,..),
where |b;| = (0,ip) and |z;| = (1,ip). O
We now compute the equivariant homology of THH¢, (M Ug).
Theorem 4.3.4. The RO(C3)-graded equivariant homology of THHe, (MUR) is
H{?(iy, THHe, (MUR); Fy) = HF 5, [by, b2, .. .| @F, AR, (21, 22, ..)

as an HF 5, -module. Here |b;| = ip and |z;| = 1 +ip.
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Proof. We use the equivariant Bokstedt spectral sequence of Theorem 4.2.7:
B2, = HHFx O (HD (MUg; Fp)) = H2,(i8, THHe, (MUR); Es).
By Proposition 4.3.3, the E2-term of this spectral sequence is:

Ezy* = HEZ*[bl,bQ,. . ] DHEQ* AHEQ* (2’1,22, .. .),

where |b;] = (0,ip) and |z;| = (1,4p). Note that an element of RO(C3) has the form a + bo, where o denotes
the sign representation. Thus we can view the RO(Cs)-graded equivariant Bokstedt spectral sequence for
MUpR as a trigraded spectral sequence with integer gradings, and differentials:

T . 2 2
d: Es,a,b — Esfr,aJrrfl,b'

The Cs-ring spectrum MUy is commutative, so by Proposition 4.2.8, this equivariant Bokstedt spectral
sequence is a spectral sequence of HF,, -algebras. We observe that all of the HF, -algebra generators of
the E%-term are in filtration less than or equal to 1. Therefore the differentials on the generators are all
zero, and hence the spectral sequence collapses. To complete the proof we observe that as HF,,-modules,

HEQ*[bl,bz, .. ] OHF, 4 AHEQ* (2’1,22, .. ) = HE2*[b1,b2, .. ] Qm, A]FQ(ZMZZ, .. ) O

Since HF,, was computed in Proposition 6.2 of [24], Theorem 4.3.4 provides an explicit description of
the homology of THH, (MUR).

5. Twisted topological Hochschild homology of Thom spectra

Given any map f : X — BO, one can construct its Thom spectrum, whose n!* space is the Thom
space of the restriction of f to f~*(BO(n)). More generally, one can define the Thom spectrum Th(f)
of amap f : X — Pic(R), where R is a commutative ring spectrum. A point-set model for Th(f) was
described in Chapter IX of [28], and an infinity-categorical model in [2]. For example, if f is nullhomotopic,
Th(f) ~ RAX,.If fis an E,-map between E,-spaces, then Th(f) is an F,-ring spectrum.

Mahowald showed that HTF, is the Thom spectrum of a 2-fold loop map Q253 — BO; a similar descrip-
tion holds for the other Eilenberg-MacLane spectra HF,, and for HZ). In [6], Blumberg, Cohen, and
Schlichtkrull studied the symmetric monoidal properties of the Thom spectrum functor, which they applied
to give a simple description of the topological Hochschild homology of these Eilenberg-MacLane spectra.

In this section, we exploit the G-symmetric monoidal properties of the equivariant Thom spectrum functor
[23], along with the description of HF, and HZ ) as equivariant Thom spectra in [5] and [18], to compute
THH¢, of these Co-ring spectra.

The first step is to give a “conjugation action” description, as in [26], of the topological Hochschild
homology of equivariant Thom spectra. The idea for this conjugation action comes from the description of
the Hochschild homology of a group ring k[I'] as group homology, H.,(T'; k[T']??), where k[T']*? indicates that
I" acts by conjugation. This description follows from the isomorphism

HH,, (K[T) = Torf M (k[1), k[1))
by performing a change of rings along the map k[I'] — k[I'] ® k[[']°? sending v € T' to v ® v~ . Similarly,

one can describe THH(X5°QX) as the left-derived smash product B((X5°0QX)*, £ QX, S) by performing
a change of rings along the map
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NPOX = (F0X) A (DFQX)P

sending a loop v € QX to (v,77 1) € QX x (Q2X)°P. Note that this is the map inducing the conjugation
action of 7 (X) on itself. In [26], this “conjugation action” description was generalized to encompass THH
of Thom spectra Th(f : QX — BGL;(R)), rather than just suspension spectra. Our first goal is to establish
a similar description of THH (and twisted THH) of equivariant Thom spectra.

5.1. Description of THH

Construction Let X be a pointed G-space, and let A be the Thom spectrum Th(Q2f) of a loop map
Qf : QX = BOg (or Pic(R) for R a commutative G-ring spectrum). We construct an action of ¥QX
on A induced by the conjugation action of 22X on itself. More explicitly, this action arises from a map of
G-ring spectra A, : ¥°QX — A A A°P, induced on Thom spectra by the following commutative diagram.

QX — 2+ 90X x (QX)

\ l (mult)o(QLf X (2f)°P)

BO¢

The map A sends v € QX to (v,77!) € QX x (QX)P. As proven in [23], AA A° is the Thom spectrum
of the vertical map. Its composite with the map A is null, because the concatenation of a loop with its
inverse is trivial. Since the Thom spectrum of a null map is the suspension spectrum of the base space, A
induces a map of G-ring spectra X°QX — A A A°P. The usual left action of A A A°” on A then pulls back
to a left action of XX on A.

Theorem 5.1.1. Under the action defined above of X°QX on A, there is an equivalence of G-spectra
THH(A) ~ B(A,X7QX,S).
Additionally, if G = C,, with generator g,
THH¢, (A) ~ B(A?,X7°QX,S).

Proof. We mimic the proof of Theorem 5.7 of [26]. Since THH(A) ~ B(A, A A A°?  A) and THH¢, (A) ~
B(A9, AN A°P, A), by a change of rings, it suffices to show that as an A-bimodule,

A~ B(AN AP SP0X,S).

The right action of ¥3°Q2X on A A A°? comes from the map of ring spectra, A, : QX — AN AP,
Alternatively, ¥°QX is a Thom spectrum over QX, and A A A°? is a Thom spectrum over QX x (Q2X)°P;
we can describe the action on these spaces.

Let QX act on QX x (2X)° on the right as follows: v € QX takes (a, 8) to (ay,7 13). There is a
homotopy fiber sequence

mult

QX — 2+ QX x (QX)or QX X

)

where the last map evaluates at the midpoint of the interval. It follows that mult : QX x (2X)? — QX
descends to an equivalence of QX with the homotopy orbits of the QX-action above on QX x (Q2X)°P. More
explicitly, we can realize this as an equivalence of G-spaces endowed with an QX x (2X)°P-action
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B(QX x (2X)P,QX, %) — QX,

which sends a p-simplex ((a, B), (V1 -+, Vp), *) t0 a(Y1.-7) (Vp) "1o..(71) 71 B. (One can use a strictly associa-
tive model for QX such as Moore loops or the Kan loop group.) The loop space QX x (QX)° acts on the
left on B(QX x (QX)°P, X, *) by multiplication on QX x (Q2X)°? and on the target QX by conjugation.
Since the diagram
B(QX x (QX)P, QX, %) ——— QX

lB(QfX(Qf)°p7*7*) Qf

B(BOg x (BOg)°?, BOg, ) — BOg
commutes, the Thom spectrum of the top-to-right composite is equivalent to the Thom spectrum of the
left-to-bottom composite. The Thom spectrum functor respects equivalences of G-spaces over BOg, respects

colimits, and is G-symmetric monoidal (see [23]), so the Thom spectrum of the top-to-right composite is A
and that of the left-to-bottom composite is B(A A AP, X°QX,S). We obtain

B(ANA? YXFOX,S) ~ A,
as required. 0O
5.2. Computation
Lemma 5.2.1. As Cs-spectra,
THHc, (HE,) ~ THH(HE,)
and
THHc, (HZ3)) ~ THH(HZy))

Proof. We will prove this for HF,; the proof for H Z(z) is identical.

In [14], dos Santos constructs a model for HF, in which the V" space is given by Fo[S"]. After forgetting
to naive Cy-spectra, the action of the generator of Cs is trivial, thus the twisting in the twisted cyclic bar
construction is trivial, and the result follows. 0O

In [5], Behrens and Wilson showed that HIF, is the Thom spectrum of a p-fold loop map Q2°S?™* — BOg,,
and Hahn and Wilson showed in [18] that H Zy) is the Thom spectrum of a (20 4 1)-fold loop map
029(5%711 (20 + 1)) — Pic(S(9)). Here o denotes the sign representation of Cy, p = 1 + o denotes the
regular representation, and S(y) denotes the Cz-equivariant 2-local sphere spectrum. Hahn and Wilson
proved that S29*1! is the loop space of HP>, whence S?°*1(20 + 1) ~ Q(HP>(20 + 2)). Both HF, and
H Z(Q) are thus equivariant Thom spectra of loop maps, so we can use Theorem 5.1.1 to compute the
topological Hochschild homology of these Ca-ring spectra. By Lemma 5.2.1, this also computes THH, .

Theorem 5.2.2. As Cy-spectra,
THH(HE,) ~ HF, A Q7527

and



K. Adamyk et al. / Topology and its Applications 316 (2022) 108102 25

THH(HZ ) ~ HZ ) A7 (HP® (20 4 2)) ¢
Proof. We show this for HF,; the proof for HZ ) is identical. To compute THH, we use Theorem 5.1.1.
As in Section 5 of [26], we show that the EprSp“—action on HF, is trivial, i.e., the map EprSP“ —
End(HF,) factors as ¥°Q°SP*t — S — End(HF,), where the first map is the augmentation, and the

second is adjoint to idgp,. The desired equivalence follows immediately, as B(S, XFQX,S) ~ ¥¥X.
The action of EprS"H on HF, is given by the composite

A Nid
NeOPSPH A HE, =5 (HF, A HFP) A HE, —~ HF,.

Since HF, is Ca-commutative, the action

(HF, A HFS") A HE, —“~ HF,
is equal to

multAid

(HF, A HE) A HE, ™ HF, A HF, —~~ HF,.
Since the composite

Ay
NeQrSet 20 (HF, A HFY) 2% [,

is induced on Thom spectra by the null map QPSP+ — $°0PSPHL | the action of X057 on HF,
is trivial, as required. 0O

Combining this theorem with Lemma 5.2.1, we complete the desired computations of Cs-relative THH.
Corollary 5.2.3. As Cs-spectra,
THHc, (HE,) ~ HF, A Q7S+
and
THHe, (HZ ) ~ HZ ) A Q%7 (HP™ (20 4 2)) 4.

Theorem 4.3 of [21] gives an equivariant version of the James splitting, which allows us to explicitly
describe THH¢, (HEF,).

Corollary 5.2.4. THHc, (HF,) ~ HF, A (V5 §2kp s Viso §2kp+2)

References

[1] Katharine Adamyk, Teena Gerhardt, Kathryn Hess, Inbar Klang, Hana Jia Kong, A shadow framework for equivariant
Hochschild homologies, preprint, arXiv:2111.04152, 2021.

[2] Matthew Ando, Andrew J. Blumberg, David Gepner, Michael J. Hopkins, Charles Rezk, An oo-categorical approach to
R-line bundles, R-module Thom spectra, and twisted R-homology, J. Topol. 7 (3) (2013) 869-893.

[3] Vigleik Angeltveit, Andrew J. Blumberg, Teena Gerhardt, Michael A. Hill, Tyler Lawson, Michael A. Mandell, Topological
cyclic homology via the norm, Doc. Math. 23 (2018) 2101-2163.

[4] Shord Araki, Orientations in 7-cohomology theories, Jpn. J. Math. (N.S.) 5 (2) (1979) 403-430.


http://refhub.elsevier.com/S0166-8641(22)00104-3/bib571CD07EB6EF64768682B04CAE2A2C82s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib571CD07EB6EF64768682B04CAE2A2C82s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib2E30BE66C413FBF067FB8991B80F501As1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib2E30BE66C413FBF067FB8991B80F501As1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibCA5AE4AEF0723E65E861E8CAF3373ED2s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibCA5AE4AEF0723E65E861E8CAF3373ED2s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib620AF1BA370BC34803AEEF0B3CA2A1D7s1

26 K. Adamyk et al. / Topology and its Applications 316 (2022) 108102

[5] Mark Behrens, Dylan Wilson, A Cz-equivariant analog of Mahowald’s Thom spectrum theorem, Proc. Am. Math. Soc.
146 (11) (2018) 5003-5012.

[6] Andrew J. Blumberg, Ralph L. Cohen, Christian Schlichtkrull, Topological Hochschild homology of Thom spectra and the
free loop space, Geom. Topol. 14 (2) (2010) 1165-1242.

[7] Andrew J. Blumberg, Teena Gerhardt, Michael A. Hill, Tyler Lawson, The Witt vectors for Green functors, J. Algebra
537 (2019) 197-244.

[8] M. Bokstedt, W.C. Hsiang, I. Madsen, The cyclotomic trace and algebraic K-theory of spaces, Invent. Math. 111 (3)
(1993) 465-539.

[9] Marcel Bokstedt, Topological Hochschild Homology of Z and Z/p, Universitiat Bielefeld, 1985, preprint.

0] Morten Brun, Bjgrn Dundas, Martin Stolz, Equivariant structure on smash powers, preprint, arXiv:1604.05939, 2016.

1] D. Burghelea, Z. Fiedorowicz, Cyclic homology and algebraic K-theory of spaces. II, Topology 25 (3) (1986) 303-317.

2] Henri Cartan, Samuel Eilenberg, Homological Algebra, Princeton University Press, Princeton, N.J., 1956.

3] Alain Connes, Cohomologie cyclique et foncteurs Ext”, C. R. Acad. Sci. Paris Sér. I Math. 296 (23) (1983) 953-958.

4] Pedro F. dos Santos, A note on the equivariant Dold-Thom theorem, J. Pure Appl. Algebra 183 (1-3) (2003) 299-312.

5] Pedro F. dos Santos, Zhaohu Nie, Stable equivariant abelianization, its properties, and applications, Topol. Appl. 156 (5)

(2009) 979-996.

[16] A.D. Elmendorf, I. Kriz, M.A. Mandell, J.P. May, Rings, Modules, and Algebras in Stable Homotopy Theory, Mathematical
Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997, With an appendix by M. Cole.

[17] Michikazu Fujii, Cobordism theory with reality, Math. J. Okayama Univ. 18 (2) (1975/1976) 171-188.

[18] Jeremy Hahn, Dylan Wilson, Eilenberg-Mac Lane spectra as equivariant Thom spectra, Geom. Topol. 24 (6) (2020)
2709-2748.

[19] Lars Hesselholt, Ib Madsen, On the K-theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1) (1997)
29-101.

[20] M.A. Hill, M.J. Hopkins, D.C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. Math. (2) 184 (1)
(2016) 1-262.

[21] Michael A. Hill, On the algebras over equivariant little disks, preprint, arXiv:1709.02005, 2017.

[22] Michael A. Hill, Michael J. Hopkins, Equivariant symmetric monoidal structures, preprint, arXiv:1610.03114, 2016.

[23] Asaf Horev, Inbar Klang, Foling Zou, Equivariant non-abelian Poincaré duality and equivariant factorization homology of
Thom spectra, preprint, arXiv:2006.13348, 2020, With an appendix by Jeremy Hahn and Dylan Wilson.

[24] Po Hu, Igor Kriz, Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence, Topology
40 (2) (2001) 317-399.

[25] John D.S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (2) (1987) 403-423.

[26] Inbar Klang, The factorization theory of Thom spectra and twisted nonabelian Poincaré duality, Algebraic Geom. Topol.
18 (5) (2018) 2541-2592.

[27] Peter S. Landweber, Conjugations on complex manifolds and equivariant homotopy of MU, Bull. Am. Math. Soc. 74
(1968) 271-274.

[28] L.G. Lewis Jr., J.P. May, M. Steinberger, J.E. McClure, Equivariant Stable Homotopy Theory, Lecture Notes in Mathe-
matics, vol. 1213, Springer-Verlag, Berlin, 1986, With contributions by J.E. McClure.

[29] L. Gaunce Lewis Jr., When projective does not imply flat, and other homological anomalies, Theory Appl. Categ. 5 (9)
(1999) 202-250.

[30] L. Gaunce Lewis Jr., Michael A. Mandell, Equivariant universal coefficient and Kiinneth spectral sequences, Proc. Lond.
Math. Soc. (3) 92 (2) (2006) 505-544.

[31] J.P. May, Equivariant Homotopy and Cohomology Theory, CBMS Regional Conference Series in Mathematics, vol. 91,
Published for the Conference Board of the Mathematical Sciences/American Mathematical Society, Washington, DC/Prov-
idence, RI, 1996, With contributions by M. Cole, G. Comezana, S. Costenoble, A.D. Elmendorf, J.P.C. Greenlees, L.G.
Lewis, Jr., R.J. Piacenza, G. Triantafillou, and S. Waner.

[32] Kristen Mazur, On the structure of Mackey functors and Tambara functors, PhD thesis, University of Virginia, 2013.

[33] J. McClure, R. Schwiénzl, R. Vogt, THH (R) =2 R® S! for E ring spectra, J. Pure Appl. Algebra 121 (2) (1997) 137-159.

[34] Thomas Nikolaus, Peter Scholze, On topological cyclic homology, Acta Math. 221 (2) (2018) 203-409.

[35] Stefan Schwede, Global Homotopy Theory, New Mathematical Monographs, vol. 34, Cambridge University Press, Cam-
bridge, 2018.

[36] Megan Guichard Shulman, Equivariant local coefficients and the RO(G)-graded cohomology of classifying spaces, preprint,
arXiv:1405.1770, 2014.


http://refhub.elsevier.com/S0166-8641(22)00104-3/bib81043F8C681575BCA3E4EFF6AFBD9DB9s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib81043F8C681575BCA3E4EFF6AFBD9DB9s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibAE9178757DD2A29CF80C1F5B9F34882Es1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibAE9178757DD2A29CF80C1F5B9F34882Es1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibFAAFD0EA99CF5F4D2807283692E2B3F8s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibFAAFD0EA99CF5F4D2807283692E2B3F8s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibCB4EEA774D166F98C6BC5FC878E7964As1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibCB4EEA774D166F98C6BC5FC878E7964As1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib1046D57CED17B192D68978F4350E47F0s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib6CEEF5CD7D571CE7006E073DF6EB7F98s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib1E41885D1A133518C30EF177502EF28Bs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibC1FF6D70F6D9B9FAC5D471C59ED963E3s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib90F910A44798E0D68879B43382042A40s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib4A05D4392CA388A815C877C2D8A0E010s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibC66DC63A311B07C9946C09E3C254F9C8s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibC66DC63A311B07C9946C09E3C254F9C8s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibA5C12C229733D169724DFB4833F05F83s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibA5C12C229733D169724DFB4833F05F83s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib035D978DE45088FC7ECA33F0B6E22DBBs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib4BD2241A3A809D3CC2BB28E951CC183As1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib4BD2241A3A809D3CC2BB28E951CC183As1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibD2B27321F8843C5A6EDF00FCCCDE7F53s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibD2B27321F8843C5A6EDF00FCCCDE7F53s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibAD4FA32C51CC00B4EEA494746FD476F1s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibAD4FA32C51CC00B4EEA494746FD476F1s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib3DCF9C44E61776EF26BAC227F41741A8s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib5B217550D40E21BF3C629AC930602CB9s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibE6003BD5CC5A13758533E45A6C361300s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibE6003BD5CC5A13758533E45A6C361300s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib69E1AAFECCC558D92F93BCF86FB913F5s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib69E1AAFECCC558D92F93BCF86FB913F5s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib48BC893FCBC0A33ED3AD2CF2D5D57CFEs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibD7E0F4B9F1DDAF3F7EA32DF0541B9C40s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibD7E0F4B9F1DDAF3F7EA32DF0541B9C40s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib959F543CEE6DE99EBD4569CEF5E6CD9Cs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib959F543CEE6DE99EBD4569CEF5E6CD9Cs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib66A8F2813DAC128F9D3D9ABEAAAE607Bs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib66A8F2813DAC128F9D3D9ABEAAAE607Bs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibB6B0A0C468B75B4FE18ECD6E18E7D374s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibB6B0A0C468B75B4FE18ECD6E18E7D374s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibB1D9094BE2BA1C780B1B976B7F6B89BFs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibB1D9094BE2BA1C780B1B976B7F6B89BFs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibB7BD1D48AED0A0AC19203CF8FD58720Fs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibB7BD1D48AED0A0AC19203CF8FD58720Fs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibB7BD1D48AED0A0AC19203CF8FD58720Fs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bibB7BD1D48AED0A0AC19203CF8FD58720Fs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib422F03A214E053597D8476CB3126E377s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib7A0BC7BBDB84B54A24C06C80885DDD7Ds1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib0F820B4102CF2E477BE7880FE2A8E706s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib09C17B75906FE81650DC8D6EBBBFDF62s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib09C17B75906FE81650DC8D6EBBBFDF62s1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib22506962CC5C553E5320CB685ECDE7CEs1
http://refhub.elsevier.com/S0166-8641(22)00104-3/bib22506962CC5C553E5320CB685ECDE7CEs1

	Computational tools for twisted topological Hochschild homology of equivariant spectra
	1 Introduction
	1.1 Organization
	1.2 Notation and conventions
	1.3 Acknowledgments

	2 Twisted topological Hochschild homology of equivariant spectra
	3 Hochschild homology for Green functors
	3.1 Mackey and Green functors
	3.2 Hochschild homology for Green functors
	3.3 Cpn-twisted Hochschild homology of Z
	3.4 Relationship to classical and twisted THH

	4 The equivariant Bökstedt spectral sequence
	4.1 Graded twisted Hochschild homology
	4.2 The equivariant Bökstedt spectral sequence
	4.3 Twisted THH of the real bordism spectrum

	5 Twisted topological Hochschild homology of Thom spectra
	5.1 Description of THH
	5.2 Computation

	References


