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Twisted topological Hochschild homology of Cn-equivariant spectra was introduced 
by Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell, building on the 
work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory. 
In this paper we introduce tools for computing twisted THH, which we apply to 
computations for Thom spectra, Eilenberg-MacLane spectra, and the real bordism 
spectrum MUR. In particular, we construct an equivariant version of the Bökstedt 
spectral sequence, the formulation of which requires further development of the 
Hochschild homology of Green functors, first introduced by Blumberg, Gerhardt, 
Hill, and Lawson.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The trace method approach to algebraic K-theory uses topological versions of classical constructions 
from homological algebra to approximate K-theory. In recent years this approach has been instrumental in 
many important algebraic K-theory calculations. Topological Hochschild homology (THH) plays a key role 
in trace methods. Indeed, understanding THH is essential for defining topological cyclic homology (see [8]
or [34]), which often approximates algebraic K-theory quite closely.

* Corresponding author.
E-mail addresses: kadamyk@uwo.ca (K. Adamyk), teena@math.msu.edu (T. Gerhardt), kathryn.hess@epfl.ch (K. Hess), 

klang@math.columbia.edu (I. Klang), hana.jia.kong@gmail.com (H.J. Kong).
https://doi.org/10.1016/j.topol.2022.108102
0166-8641/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.topol.2022.108102
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2022.108102&domain=pdf
mailto:kadamyk@uwo.ca
mailto:teena@math.msu.edu
mailto:kathryn.hess@epfl.ch
mailto:klang@math.columbia.edu
mailto:hana.jia.kong@gmail.com
https://doi.org/10.1016/j.topol.2022.108102


2 K. Adamyk et al. / Topology and its Applications 316 (2022) 108102
Building on the work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory [20], the 
topological Hochschild homology of a ring spectrum R can be viewed as the norm NS1

e R (see [3] and [10]). 
This viewpoint leads to several natural generalizations. In particular, for a Cn-equivariant ring spectrum 
R, one can consider the norm NS1

Cn
R, which is the Cn-relative, or twisted, topological Hochschild homology 

of R, as defined in [3]. The norm NS1

Cn
R can be explicitly constructed as a twisted cyclic bar construction. 

While the foundations for twisted THH of equivariant spectra are laid out in [3], no computations have 
appeared in the literature for this new theory. The primary goal of this article is to develop computational 
tools for twisted topological Hochschild homology and to study key examples.

One of the foundational tools for computing ordinary topological Hochschild homology is the Bökstedt 
spectral sequence. For a field k and a ring spectrum R, this spectral sequence has the form

E2
∗,∗ = HHk

∗(H∗(R; k)) ⇒ H∗(THH(R); k).

It is natural to ask whether computations of relative topological Hochschild homology can be approached 
via an analogous spectral sequence. In this paper we construct an equivariant analogue of the Bökstedt 
spectral sequence, converging to the equivariant homology of twisted THH. In the statement below, E�(R)
denotes the RO(G)-graded commutative Green functor π�(E ∧R).

Theorem 1.0.1. Let G ⊂ S1 be a finite subgroup and g a generator of G. Let R be a G-ring spectrum and E
a commutative G-ring spectrum such that g acts trivially on E. If E�(R) is flat over E�, then there is an 
equivariant Bökstedt-type spectral sequence

E2
s,� = HHE�,G

s (E�(R)) ⇒ Es+�(i∗G THHG(R))

that converges strongly.

In the classical Bökstedt spectral sequence, the E2-term is ordinary Hochschild homology of a k-algebra. 
Here, however, the E2-term is a type of Hochschild homology for Green functors. The basic construction 
of Hochschild homology for Green functors is due to Blumberg, Gerhardt, Hill, and Lawson [7]. In the 
current paper we extend their work to define a theory of Hochschild homology for RO(G)-graded E�-
algebras, which is what appears in the E2-term of the equivariant Bökstedt spectral sequence above. This 
is a spectral sequence of Mackey functors; evaluating at G/e recovers a version of the classical Bökstedt 
spectral sequence, which computes THH with coefficients in the twisted bimodule gR:

HHE∗
s (E∗(R); gE∗(R)) ⇒ Es+∗(THH(R; gR)).

Using the equivariant Bökstedt spectral sequence, we compute the RO(C2)-graded equivariant homology 
of the C2-relative THH of the real bordism spectrum MUR.

Theorem 1.0.2. The RO(C2)-graded equivariant homology of THHC2(MUR) is

HC2
� (i∗C2

THHC2(MUR);F2) ∼= HF2�[b1, b2, . . .] ⊗F2 ΛF2(z1, z2, . . .)

as an HF2�-module. Here |bi| = iρ and |zi| = 1 + iρ, where ρ is the regular representation of C2.

This calculation requires understanding the algebraic structure in the equivariant Bökstedt spectral 
sequence, which can be formulated as follows.

Theorem 1.0.3. If R is endowed with the structure of a commutative G-ring spectrum, then the equivariant 
Bökstedt spectral sequence inherits the structure of a spectral sequence of RO(G)-graded algebras over E�.
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For classical THH, work of Blumberg, Cohen, and Schlichtkrull facilitates the study of topological 
Hochschild homology of Thom spectra. In [6], they showed that the Thom spectrum functor and the cyclic 
bar construction “commute” in a suitable sense, due to nice symmetric monoidal properties of the Thom 
spectrum functor and its behavior under colimits. They could then easily compute the topological Hochschild 
homology of various Thom spectra, such as HFp and HZ, MO, MU , and other cobordism spectra. In the 
current paper, we study (twisted) topological Hochschild homology of equivariant Thom spectra.

Recent results due to Behrens and Wilson [5] and Hahn and Wilson [18] show that certain equivariant 
Eilenberg–MacLane spectra can be constructed as equivariant Thom spectra. As proven in [23], the equivari-
ant Thom spectrum functor is appropriately G-symmetric monoidal and commutes with G-colimits, which 
enables us to describe the THH and twisted THH of equivariant Thom spectra, and to make the following 
computations.

Theorem 1.0.4. As C2-spectra,

THHC2(HF2) � HF2 ∧ (
∨
k≥0

S2kρ ∨
∨
k≥0

S2kρ+2)

and

THHC2(HZ(2)) � HZ(2) ∧ Ω2σ(HP∞〈2σ + 2〉)+.

Here σ denotes the sign representation of C2, and ρ = σ + 1 denotes its regular representation.

In [7], the authors define a relative version of Hochschild homology for Green functors as well. For H ⊂ G, 
and R an H-Green functor, the H-relative Hochschild homology of R, HHG

H(R)∗, is defined using a G-twisted 
cyclic bar construction on the Mackey functor norm, NG

HR (see Section 3.2 for details). A Green functor 
for the trivial group is just a classical ring, and hence the relative theory of Hochschild homology for Green 
functors also yields new ring invariants. For a ring R, HHG

e (R)∗ is defined using a G-twisted cyclic bar 
construction on the Mackey functor norm NG

e (R).
In [7] the authors also construct a type of cyclotomic structure on Hochschild homology for Green 

functors. In the case of rings, this cyclotomic structure provides the framework for the definition of an 
algebraic analogue of topological restriction (TR) homology, which the authors call tr(A). In this paper, 
we perform the following new computations of the Cpn-twisted Hochschild homology of rings and of this 
algebraic TR-theory.

Proposition 1.0.5. For the constant {e}-Green functor Z,

HHCpn

e (Z)k =
{
ACpn : k = 0
0 : otherwise,

and

trk(Z; p) =
{
Z∞ : k = 0
0 : otherwise.

Here ACpn is the Cpn-Burnside Mackey functor.
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1.1. Organization

In Section 2, we recall the definition of Cn-relative, or twisted, topological Hochschild homology for 
Cn-ring spectra. In Section 3 we review the definitions of Mackey and Green functors, as well as the 
theory of Hochschild homology for Green functors. We discuss how this theory of Hochschild homology 
relates to classical and equivariant topological Hochschild homology. We also make new computations of 
Hochschild homology for Green functors and of an algebraic analogue of topological restriction homology in 
this section. Section 4 focuses on the construction, algebraic structure, and applications of the equivariant 
Bökstedt spectral sequence. In Section 5 we explore a different computational approach in the context of 
the twisted THH of equivariant Thom spectra.

1.2. Notation and conventions

Throughout, we are working with genuine orthogonal G-spectra indexed on a complete universe. We use 
∗ to denote integer gradings, � to denote RO(G)-gradings, and • to denote simplicial gradings.

1.3. Acknowledgments

This paper is one part of the authors’ Women in Topology III project. A second part of that project 
appears in a separate article [1]. We are grateful to the organizers of the Women in Topology III workshop, as 
well as to the Hausdorff Research Institute for Mathematics, where much of this research was carried out. We 
are grateful to Mike Hill and Dylan Wilson for many enlightening discussions related to this work. We also 
thank Christy Hazel, Asaf Horev, Dan Isaksen, Clover May, and Foling Zou for helpful conversations. The 
authors also thank an anonymous referee for helpful comments and for catching an error in a previous draft. 
The second author was supported by NSF grant DMS-1810575. The Women in Topology III workshop was 
supported by NSF grant DMS-1901795, the AWM ADVANCE grant NSF HRD-1500481, and Foundation 
Compositio Mathematica.

2. Twisted topological Hochschild homology of equivariant spectra

In [3], Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell define a theory of Cn-relative, or 
twisted, topological Hochschild homology for Cn-ring spectra. Given a Cn-ring spectrum R, its Cn-relative 
topological Hochschild homology, THHCn

(R), is a relative norm, NS1

Cn
(R). We now recall the explicit con-

struction of this norm in terms of a twisted cyclic bar construction. More details of this construction can 
be found in [3].

Let R be an associative orthogonal Cn-ring spectrum indexed on the trivial universe R∞. The Cn-twisted 
cyclic bar construction on R, Bcy,Cn

• (R), is a simplicial spectrum, where

Bcy,Cn
q (R) = R∧(q+1).

Let g denote the generator e2πi/n of Cn, and let αq : R∧(q+1) → R∧(q+1) denote the map that cyclically 
permutes the last factor to the front and then acts on the new first factor by g. Let μ and η denote the 
multiplication map and unit map of R, respectively. The face and degeneracy maps on Bcy,Cn

q (R) are given 
by

di =
{

Id∧i ∧ μ ∧ Id∧(q−i−1) : 0 ≤ i < q

(μ ∧ Id∧(q−1)) ◦ αq : i = q,

and
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si = Id∧(i+1) ∧ η ∧ Id∧(q−i) ∀ 0 ≤ i ≤ q.

This yields a simplicial object Bcy,Cn
• (R).

Recall that there is an operator τq on the q-th simplicial level of the classical cyclic bar construction such 
that τ q+1

q = Id. This operator τ satisfies certain relations with the face and degeneracy maps, giving the 
cyclic bar construction the structure of a cyclic set, which implies that the geometric realization admits an 
S1-action ([13], [11], [25]). The Cn-twisted cyclic bar construction, however, is not a cyclic object. Note, 
though, that for every q, the operator αq, satisfies αn(q+1)

q = Id. Furthermore, the operator αq satisfies the 
following relations with respect to the face and degeneracy maps.

doαq = dq
diαq = αq−1di−1 1 ≤ i ≤ q

siαq = αq+1si−1 1 ≤ i ≤ q

s0αq = α2
q+1sq

The Cn-twisted cyclic bar construction thus admits the structure of a Λop
n -object, in the sense of Bökstedt-

Hsiang-Madsen [8]. By [8] the geometric realization of the Cn-twisted cyclic bar construction therefore has 
an S1-action, extending the simplicial Cn-action generated on the q-th level by αq+1

q .
The norm from Cn to S1, which is a Cn-relative version of topological Hochschild homology, is defined 

in terms of this twisted cyclic bar construction.

Definition 2.0.1. Let U be a complete S1-universe, and let Ũ = ι∗Cn
U , the pullback of the universe to Cn. 

Let R be an associative orthogonal Cn-ring spectrum indexed on Ũ . The Cn-relative topological Hochschild 
homology of R is defined to be the norm NS1

Cn
(R), given by

THHCn
(R) = NS1

Cn
(R) = IU

R∞ |Bcy,Cn
• (IR∞

Ũ
R)|,

where I denotes a change-of-universe functor.

In [3] the authors prove that when R is a commutative Cn-ring spectrum, the norm functor from commu-
tative Cn-ring spectra to commutative S1-ring spectra is left adjoint to the forgetful functor, as one would 
expect from a norm construction.

In the nonequivariant case, THH of any commutative ring spectrum A can be constructed in terms of the 
natural simplicial tensoring of commutative ring spectra over simplicial sets, as A ⊗ S1 [33]. Analogously, 
the Cn-relative THH of a commutative Cn-spectrum R is a relative tensor

THHCn
(R) � IU

R∞(R⊗Cn
S1),

which is constructed as follows. If Ũ = ι∗Cn
U , then R⊗Cn

S1 is the coequalizer

(IR∞

Ũ
R) ⊗ Cn ⊗ S1 (IR∞

Ũ
R) ⊗ S1 ,

where one map comes from the usual action of Cn on S1 and the other from the induced action (IR∞

Ũ
R) ⊗

Cn → IR∞

Ũ
R.

Ordinary topological Hochschild homology of a ring spectrum admits a cyclotomic structure (see [19] or 
[34] for more on cyclotomic spectra). This cyclotomic structure on THH yields maps

R : THH(A)Cpn → THH(A)Cpn−1
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called restriction maps, which can be used to define topological restriction homology:

TR(A; p) := holim←−
R

THH(A)Cpn .

Topological restriction homology gives rise in turn to topological cyclic homology, which is a close approxi-
mation to algebraic K-theory under good circumstances. Understanding the invariants THH and TC is key 
to understanding algebraic K-theory via the trace method approach.

Cyclotomic structures arise in the equivariant setting as well. In particular, in [3] the authors prove that 
if R is a Cn-ring spectrum, and p is prime to n, then THHCn

(R) is a p-cyclotomic spectrum. It is thus 
possible to define Cn-relative topological restriction homology and topological cyclic homology, TRCn

(R; p)
and TCCn

(R; p).

3. Hochschild homology for Green functors

Topological Hochschild homology is a topological analogue of the classical algebraic theory of Hochschild 
homology. Indeed, topological Hochschild homology can be constructed via a cyclic bar construction, directly 
modeled after the algebraic construction. For a ring A, the topological Hochschild homology of the Eilenberg-
MacLane spectrum HA and the Hochschild homology of A are related via a linearization map

πq (THH(HA)) → HHq(A),

which factors the Dennis trace map from algebraic K-theory to Hochschild homology

Kq(A) → πq (THH(HA)) → HHq(A).

In [7] the authors addressed the natural question of whether there is an algebraic analogue of Cn-relative 
topological Hochschild homology. Recall that Cn-relative THH takes as input Cn-ring spectra. For Cn-ring 
spectra to arise as Eilenberg-MacLane spectra, the construction of Eilenberg-MacLane spectra must be 
extended from abelian groups and ordinary rings to Mackey functors and Green functors. The algebraic 
analogue of Cn-relative topological Hochschild homology should thus be a theory of Hochschild homology 
for Green functors. We recall this theory in Section 3.2 below, after reviewing basic definitions for Mackey 
and Green functors.

3.1. Mackey and Green functors

Throughout this section, let G denote a finite abelian group.
In equivariant homotopy theory, Mackey functors play the role that abelian groups play in the non-

equivariant theory. In particular, a G-spectrum X has associated homotopy Mackey functors, rather than 
just homotopy groups. We begin by recalling the definition of a Mackey functor.

Definition 3.1.1. Given finite G-sets S and T , a span from S to T is a diagram

S ← U → T,

where U is also a finite G-set, and the maps are G-equivariant. An isomorphism of spans is a commuting 
diagram of finite G-sets
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U

∼=S T.

V

Composition of spans is given by pullback. There is also a monoidal product on the set of spans with fixed 
endpoints. Given two spans, S ← U → T and S ← U ′ → T , their product is defined via the disjoint union, 
S ← U � U ′ → T .

Definition 3.1.2. The Burnside category of G, AG, has as objects all finite G-sets. For finite G-sets S and 
T , the morphism set AG(S, T ) is the group completion of the monoid of isomorphism classes of spans 
S ← U → T .

Definition 3.1.3. A Mackey functor is an additive functor M : Aop
G → Ab.

Note that any finite G-set X is isomorphic to a disjoint union of orbits G/H for various subgroups H
of G. It follows that every Mackey functor is determined by its values on the orbits G/H, since Mackey 
functors are additive.

Explicitly, a Mackey functor M is equivalent to a pair of functors from finite G-sets to abelian groups

M∗,M
∗ : GSets → Ab,

where M∗ is covariant and M∗ contravariant, such that both functors take disjoint unions to direct sums, 
and the following conditions are satisfied. For any G-set X, M∗(X) = M∗(X), and the common value is 
denoted M(X). Further, if

W
g′

f ′

X

f

Z
g

Y

is a pullback diagram in GSets, then M∗(f)M∗(g) = M∗(g′)M∗(f ′).
Every sequence of subgroup inclusions K ⊂ H ⊂ G induces a natural surjection qK,H : G/K → G/H. 

The homomorphism M∗(qK,H) : M(G/K) → M(G/H) is called the transfer map and denoted trHK . The 
homomorphism M∗(qK,H) : M(G/H) → M(G/K) is called the restriction map and denoted resHK .

Definition 3.1.4. The Burnside ring of G, A(G), is the group completion of the monoid of isomorphism 
classes of finite G-sets under disjoint union. Multiplication in this ring is given by Cartesian product.

Example 3.1.5. The Burnside Mackey functor for G, denoted A, is defined by A(G/H) = A(H) for all 
H ⊂ G. The transfer and restriction maps are given by induction and restriction maps on finite sets. More 
explicitly, for K ⊂ H ⊂ G, and X a finite K-set and Y a finite H-set,

trHK([X]) = [H ×K X] and resHK([Y ]) = [iHK(Y )],

where iHK : HSet → KSet is the restriction functor.

Example 3.1.6. Let X be a G-spectrum. For all q, the equivariant homotopy groups of X form a G-Mackey 
functor, πG

q , defined by
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πG
q (X)(G/H) := πq(XH).

The category MackG of G-Mackey functors admits a symmetric monoidal structure defined as follows.

Definition 3.1.7. The box product L�M of two G-Mackey functors L and M is defined as a left Kan extension 
over the Cartesian product of finite G-sets

AG ×AG

– × –

L×M
Ab×Ab

– ⊗ – Ab

AG

L�M

and is again a G-Mackey functor.

It is easy to see that the Burnside Mackey functor A is a unit for the box product.
The box product in Mackey functors is closely related to the smash product of orthogonal G-spectra. It 

follows from [30, 1.3] that for cofibrant (−1)-connected G-spectra X and Y , there is a natural isomorphism

π0X�π0Y
∼= π0(X ∧ Y ). (3.1.1)

A G-Mackey functor M has an associated Eilenberg-Mac Lane G-spectrum, HM , the defining property 
of which is that

πG
k (HM) ∼=

{
M : k = 0
0 : k �= 0,

(see, for example, [14] or [15]). We can then give a homotopical description of the box product of Mackey 
functors. It follows from isomorphism (3.1.1) above that for any two G-Mackey functors L and M :

L�M ∼= π0(HL ∧HM).

Definition 3.1.8. A Green functor is an associative monoid in the symmetric monoidal category MackG. A 
commutative Green functor is a commutative monoid.

In this article, we also need graded Mackey functors, both Z-graded and RO(G)-graded, where RO(G)
denotes the real representation ring of G.

Definition 3.1.9. (1) A Z-graded Mackey functor for G, M∗, is a functor from the discrete category Z to 
MackG, i.e., a set {M q | q ∈ Z} of Mackey functors. A map of Z-graded Mackey functors for G, L∗ → M∗, 
is a natural transformation, i.e., a set {Lq → Mq | q ∈ Z} of maps of Mackey functors.

(2) An RO(G)-graded Mackey functor for G, M�, is a functor from the discrete category RO(G) to 
MackG, i.e., a set {Mα | α ∈ RO(G)} of Mackey functors. A map of RO(G)-graded Mackey functors, 
L� → M�, is a natural transformation, i.e., a set {Lα → Mα | α ∈ RO(G)} of maps of Mackey functors.

Example 3.1.10. For every G-spectrum X, there is a Z-graded homotopy Mackey functor, πG
∗ (X), given by 

πG
q (X)(G/H) = πq(XH) for all q ∈ Z.
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Recall that for a G-spectrum, X, one can define RO(G)-graded equivariant homotopy groups as follows. 
An element α ∈ RO(G) can be written as α = [β] − [γ], where β and γ are finite dimensional real rep-
resentations of G. Let H be a subgroup of G. Then the equivariant homotopy group πα(XH) is defined 
as

πα(XH) := [Sβ ∧G/H+, S
γ ∧X]G

Note that this is a priori only well defined up to non-canonical isomorphism. In order to get around this, one 
can work with hRO(G, U), the homotopy category of a certain category of representations of G embedded 
in a chosen complete G-universe U . See Section XIII.1 of [31] for details. This ensures that we account for 
a Burnside ring’s worth of automorphisms of each α ∈ RO(G).

Example 3.1.11. For a G-spectrum X, there is an RO(G)-graded homotopy Mackey functor, πG
� (X), given 

by πG
α (X)(G/H) = πα(XH) for all α ∈ RO(G).

As discussed in [30], there is a graded version of the box product, given by Day convolution, endowing 
the categories of Z-graded and RO(G)-graded Mackey functors with symmetric monoidal structures.

Definition 3.1.12. Let L∗ and M∗ be Z-graded Mackey functors for G. The graded box product L∗�M∗ is 
defined in terms of the ungraded box product by

(L∗�M∗)q =
⊕

i+j=q

Li�M j .

Similarly, the graded box product L��M� of RO(G)-graded Mackey functors L� and M� is given by

(L��M�)α =
⊕

γ+β=α

Lγ�Mβ .

The unit for the (Z or RO(G))-graded box product is the (Z or RO(G))-graded Burnside Mackey functor 
A∗, which is the Burnside Mackey functor A in degree 0, and 0 in all other degrees.

It is important in this paper to know that the RO(G)-graded homotopy functor is monoidal.

Lemma 3.1.13. [30, Theorem 5.1] For every finite group G, the RO(G)-graded homotopy functor π� from 
G-spectra to RO(G)-graded Mackey functors is monoidal.

In this work we will also need to consider graded Green functors. We recall their definition from [30], 
where they are referred to as graded Mackey functor rings.

Definition 3.1.14. A graded Green functor (with a Z or RO(G)-grading) is an associative monoid in the 
category of graded Mackey functors, with respect to the graded box product.

Lemma 3.1.13 implies that if R is a G-ring spectrum, then π�(R) is an RO(G)-graded Green functor.

3.2. Hochschild homology for Green functors

In this section we recall the construction of Hochschild homology for Green functors, given by Blumberg, 
Gerhardt, Hill, and Lawson in [7]. We then extend this construction to graded Green functors.

We begin by observing that if G is cyclic, then every G-Mackey functor M admits a natural G-action. 
To see this, recall that for any group G and G-Mackey functor M , the Weyl group WG(H) = NG(H)/H
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acts on M(G/H). If G is a cyclic group, then WG(H) = G/H for every subgroup H of G. It follows that 
M(G/H) is a G-module for all H, and the restriction and transfer maps are maps of G-modules, i.e., the 
Mackey functor M admits a G-action. We define the G-twisted cyclic bar construction for a G-Mackey 
functor using this action.

Definition 3.2.1. Let G ⊂ S1 be a finite subgroup, and let g denote the generator e2πi/|G| of G. Let R be 
a G-Green functor. The G-twisted cyclic bar construction on R, Bcy,G

• (R), is a simplicial Green functor, 
where

Bcy,G
q (R) = R�(q+1).

The face and degeneracy maps are defined as they are for the twisted cyclic bar construction in Section 2
above.

More generally, one can define the twisted cyclic nerve of a G-Green functor R with coefficients in an 
R-bimodule M , with respect to an element g ∈ G. First, we explain how to twist module structures over 
Green functors.

Definition 3.2.2. Let G ⊂ S1 be a finite subgroup, and let g ∈ G. Let R be a Green functor for G, and let 
M be a left R-module with action map λ. The g-twisted module structure on M , denoted gM , has action 
map gλ specified by the commuting diagram

R�M

g�1
gλ

R�M
λ

M.

Definition 3.2.3. Let G ⊂ S1 be a finite subgroup, and let g ∈ G. Let R be a Green functor for G, and let 
M be an R-bimodule. The G-twisted cyclic nerve, Bcy,G

• (R; gM), is the simplicial Mackey functor with q
simplices

Bcy,G
q (R, gM) = gM�R�q.

The face maps di are given as usual by multiplication of the ith and (i + 1)st factors if 0 < i < q. The face 
map d0 is the ordinary right module action map for M , while the last face map, dq, rotates the last factor to 
the front and then uses the twisted left action map of Definition 3.2.2. The degeneracy maps si are induced 
by inclusion of the unit after the ith factor, for 0 ≤ i ≤ q.

The twisted cyclic bar construction above is the case where the bimodule M is R itself, and g is the 
generator e2πi/|G| of G, i.e.,

Bcy,G
• (R) = Bcy,G

• (R; gR).

We can now define the G-twisted Hochschild homology of R by taking the homology of this simplicial 
object.

Definition 3.2.4. Let G ⊂ S1 be a finite group and R an associative Green functor for G. The G-twisted 
Hochschild homology of R is defined by

HHG
i (R) = Hi(Bcy,G

• (R)).
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Applying the Dold-Kan correspondence at each orbit gives rise to an equivalence between the category of 
simplicial Mackey functors and the category of non-negatively graded dg Mackey functors. By definition, the 
homology of a simplicial Mackey functor is the homology of the associated normalized dg Mackey functor. 
See [7] for more discussion of simplicial and differential graded Mackey functors.

One motivation for developing a Hochschild theory for Green functors is the desire for an algebraic 
analogue of the twisted topological Hochschild homology discussed in Section 2. Let H ⊂ G ⊂ S1 be finite 
subgroups and R an H-ring spectrum. As seen in [7], there is a weak equivalence

ι∗G THHH(R) = NG
HR ∧NG

HRe
gNG

HR,

where NG
HRe denotes the enveloping algebra NG

HR∧ (NG
HR)op, and gNG

HR denotes NG
HR with the bimodule 

structure twisted on one side by the Weyl action. A full algebraic analogue of relative THH therefore 
requires a notion of G-twisted Hochschild homology for an H-Green functor R, defined using norms on 
Mackey functors. We now recall the definition of Mackey functor norms from [22].

Definition 3.2.5. Let H be a subgroup of a finite group G, and let M be an H-Mackey functor. The norm
NG

HM is defined to be the G-Mackey functor

NG
HM := πG

0 N
G
H (HM).

Definition 3.2.6. Let H ⊂ G ⊂ S1 be finite subgroups, and let R be an associative Green functor for H. 
The G-twisted Hochschild homology of R is defined to be

HHG
H(R)i = Hi(Bcy,G

• (NG
HR)).

The Hochschild homology for Green functors defined in [7] and recalled above is an equivariant analogue 
of taking classical Hochschild homology of a ring (i.e., a Z-algebra). In this article, we also need an analogue 
of Hochschild homology of an associative k-algebra, for k any commutative ring.

To define this analogue, we need the relative box product [30], which is a particular case of the general 
construction of a relative tensor product in a monoidal category. Let R be a commutative Green functor, 
and let L and M be left and right R-modules respectively. The Mackey functor L�RM is defined to be the 
coequalizer

L�R�M
ρ�id

id�λ
L�M L�RM.

Here ρ is the right action map for L and λ the left action map for M . Lewis and Mandell prove in [30]
that the category of left R-modules, ModR, is a closed symmetric monoidal abelian category with monoidal 
product �R. The Green functor R is commutative, so left modules become bimodules by using the same 
action on the right. We will call a monoid in this category an associative R-algebra. We define Hochschild 
homology for associative R-algebras as above, but replacing � with �R. For T an associative R-algebra for 
G, we denote its G-twisted Hochschild homology by HHR,G

∗ (T ).

3.3. Cpn-twisted Hochschild homology of Z

Since a Green functor for the trivial group is just a ring, the theory of Hochschild homology for Green 
functors described above also yields new ring invariants. In [7], the authors computed the Cpn-twisted 
Hochschild homology of the ring Fp. Here we provide an additional explicit example, computing the Cpn-
twisted Hochschild homology of Z.
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Example 3.3.1. The ring Z, considered as a Green functor for the trivial group, is the Burnside Mackey 
functor for the trivial group. The norm from H to G of the H-Burnside Mackey functor is the G-Burnside 
Mackey functor [32], so NCp

e Z is the Cp-Burnside functor, ACp .
Since the Burnside functor is a unit for the box product, 

(
ACp

)�(q+1) = ACp for all q, whence the Cp-
twisted cyclic bar construction on ACp is ACp in each degree. The action of the Weyl group is trivial, so 
each face map is an isomorphism. Calculating the homology of the complex

0 ← ACp 0←− ACp
∼=←− ACp 0←− ACp

∼=←− ACp ← · · · ,

we obtain

HHCp
e (Z)i =

{
ACp : i = 0
0 : otherwise.

Likewise, for any Cn ⊂ S1, NCn
e Z is the Cn-Burnside Mackey functor, ACn . Then, the same argument 

as above shows

HHCn
e (Z)i =

{
ACn : i = 0
0 : otherwise.

3.4. Relationship to classical and twisted THH

As mentioned above, one motivation for studying Hochschild homology for Green functors is that it 
serves as an algebraic analogue of twisted topological Hochschild homology of equivariant spectra. Indeed, 
Blumberg, Gerhardt, Hill, and Lawson [7] prove that for H ⊂ G ⊂ S1 finite subgroups and R a (-1)-
connected commutative H-ring spectrum, there is a linearization map

πG
k THHH(R) → HHG

H(πH
0 R)k,

which is an isomorphism in degree zero. This is analogous to the classical linearization map from topological 
Hochschild homology to Hochschild homology in the non-equivariant setting. In Section 4, we show that 
the relationship between relative THH and Hochschild homology for Green functors goes even deeper, by 
producing an equivariant version of the Bökstedt spectral sequence.

When H is the trivial group, the linearization map above yields new trace maps from algebraic K-theory. 
Indeed, in [7] the authors prove that for A a commutative ring and G ⊂ S1 a finite group, there is a trace 
map

Kq(A) → HHG
e (A)(G/G)q,

which lifts the classical Dennis trace

Kq(A) → HHq(A).

The trace map Kq(A) → HHG
e (A)(G/G)q factors through πG

q THH(A)(G/G) ∼= πq(THH(A)G). As discussed 
in Section 2, the cyclotomic structure on THH yields maps

R : THH(A)Cpn → THH(A)Cpn−1

called restriction maps, which can be used to define topological restriction homology:
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TR(A; p) := holim←−
R

THH(A)Cpn .

Topological restriction homology gives rise in turn to topological cyclic homology.
It is natural to ask whether the algebraic theory HHG

e (A)(G/G)q admits structure maps analogous to 
the restriction maps on THH. In [7], the authors proved that Hochschild homology for Green functors does 
have a type of cyclotomic structure, which in particular yields maps

r : HHCpn

e (A)q(Cpn/Cpn) → HHCpn−1
e (A)q(Cpn−1/Cpn−1),

the algebraic restriction maps. One can then define an algebraic analogue of TR-theory, tr, given in degree 
k by

trk(A; p) := lim←−
r

HHCpn

e (A)k(Cpn/Cpn).

In [7] the authors showed that

trk(Fp; p) =
{
Zp : k = 0
0 : otherwise.

Below, we compute a second example, the algebraic TR of Z.

Proposition 3.4.1. The algebraic TR-theory of Z is given by

trk(Z; p) =
{
Z∞ : k = 0
0 : otherwise.

Proof. The algebraic restriction map,

r : HHCpn

e (Z)k(Cpn/Cpn) → HHCpn−1
e (Z)k(Cpn−1/Cpn−1),

is constructed in [7, Corollary 5.18] on the chain level as the composite

B
cy,Cpn

k

(
N

Cpn

e Z
)

(Cpn/Cpn) →
(
B

cy,Cpn

k

(
N

Cpn

e Z
)

�
(
ACpn/EFCp

(
ACpn

)))
(Cpn/Cpn)

→ ΦCp

(
B

cy,Cpn

k

(
N

Cpn

e Z
))

(Cpn−1/Cpn−1)

→ B
cy,Cpn−1

k

(
N

Cpn

e Z
)

(Cpn−1/Cpn−1),

where EFCp
(ACpn ) is the subMackey functor of ACpn generated by A(Cpn/H) for all H not containing Cp

[7, Definition 5.4]. The first map is induced by the quotient map of Mackey functors A → A/EFCp

(
ACpn

)
. 

The second and third maps are isomorphisms, due respectively to the definition of the geometric fixed 
points functor, ΦCp , and the cyclotomic structure of the twisted Hochschild complex [7, Definition 5.10, 
Proposition 5.17].

Recall from the computation of the Cpn-twisted Hochschild homology of Z in Example 3.3.1 that 
B

cy,Cpn

k (NCpn

e Z) = ACpn for all k ≥ 0. As an abelian group, ACpn
(
Cpn/Cpk

) ∼= Zk+1. Here we choose 
the isomorphism so that the ith component of Zk+1 corresponds to the orbit Cpk/Cpk−i for 0 ≤ i ≤ k. 
Recall from Example 3.1.5 that the transfer maps in the Burnside Mackey functor come from induction 
maps on finite sets. In the Burnside Mackey functor ACpn we have
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tr
C

pk

C
pk−1

(x1, . . . , xk) = (0, x1, . . . , xk) .

In degree zero, the first map in the composition above is the quotient of ACpn (Cpn/Cpn) = Zn+1 by the 
transfers from e, the only subgroup of Cpn not containing Cp [7, Definition 5.4]. Using the formula for 
transfers given above, we see the image of these transfers is the last copy of Z. So, the map induced on 
Hochschild homology by the composition is the map Zn+1 → Zn quotienting by the last factor.

Taking the inverse limit of HHCpn

e (Z)0 along these maps, we obtain

tr0(Z; p) = Z∞.

For all other k, the groups HHCpn

e (Z)k(Cpn/Cpn) are zero and so trk(Z; p) = 0. �
4. The equivariant Bökstedt spectral sequence

One of the key computational tools for classical topological Hochschild homology is the Bökstedt spectral 
sequence. This spectral sequence, arising from the skeletal filtration of the simplicial spectrum THH(R)•, 
computes the homology of THH(R). In particular, for a ring spectrum R and a field k, the Bökstedt spectral 
sequence has the form

E2
∗,∗ = HHk

∗(H∗(R; k)) ⇒ H∗(THH(R); k),

where HHk
∗ denotes Hochschild homology over the field k. In this section, under appropriate flatness con-

ditions we construct an equivariant analogue of the Bökstedt spectral sequence, which converges to the 
equivariant homology (integer or RO(G)-graded) of G-relative THH, for G a finite subgroup of S1:

E2
s,� = HHE�,G

s (E�(R)) ⇒ Es+�(i∗G THHG(R)).

Here E is a commutative G-ring spectrum such that the generator g = e2πi/|G| of G acts trivially on E
(see the discussion before Proposition 4.2.3), R is a G-ring spectrum, and E�(R) denotes π�(E ∧ R). The 
E2-term of this spectral sequence, which we construct in Section 4.2, is the Hochschild homology of an 
algebra over a graded Green functor.

If R is a commutative ring spectrum, the classical Bökstedt spectral sequence is a spectral sequence 
of algebras [16]. We prove an analogous result in Section 4.2 for the equivariant Bökstedt spectral se-
quence. Finally in Section 4.3, we use this new spectral sequence to compute the equivariant homology of 
THHC2(MUR), the C2-relative THH of the real bordism spectrum.

To construct the equivariant Bökstedt spectral sequence, we first need to generalize the theory of 
Hochschild homology for Green functors. In [7] this theory is defined for (ungraded) Green functors, while 
we require a theory of Hochschild homology for integer- and RO(G)-graded Green functors, and for algebras 
over a graded commutative Green functor. We begin by setting up these theories.

4.1. Graded twisted Hochschild homology

We explain here how to extend the work of [7] to the graded setting, in a manner analogous to the 
extension of ordinary Hochschild homology from rings to graded rings or even differential graded algebras, 
based on the framework elaborated in [30].

Let G ⊂ S1 be a finite subgroup. Let R∗ be a Z-graded G-Green functor and let M∗ be an R∗-bimodule. 
We define the G-twisted cyclic nerve of R∗ with coefficients in gM∗ as in Section 3, but with a modification 
of the sign on the last face map. In particular, let
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Bcy,G
q (R∗; gM∗) = gM∗�R�q

∗ .

For 1 ≤ i ≤ q− 1, the face map di multiples the ith and (i + 1)st box factors. The map d0 applies the right 
action of R∗ on M∗. To define the last face map, dq, we need the following isomorphism, which is analogous 
to the usual symmetry isomorphism for the tensor product of graded modules over a commutative ring.

Definition 4.1.1. Let A∗ and B∗ be two Z-graded Mackey functors. The rotating isomorphism

τ : A∗�B∗ → B∗�A∗

is defined in level k to be the composite of the isomorphisms Ai�Bj
∼= Bj�Ai (where k = i + j) induced by 

the symmetry isomorphism of the tensor product of abelian groups, and the automorphism Bj�Ai → Bj�Ai

induced by multiplication by (−1)ij .

The face map dq is then defined to be the composite

gM∗�R�q
∗

τq
R∗�gM∗�R�(q−1)

∗
gλ�Id gM∗�R�(q−1)

∗ ,

where the map τq is given by iterating the rotating isomorphism, bringing the last factor to the front. The 
G-twisted Hochschild homology HHG

i (R∗; gM∗) is then the homology of Bcy,G
q (R∗; gM∗), equipped with 

the face maps defined above. When M∗ = R∗ and g is the generator e2πi/|G| of G, we write HHG
i (R∗) =

HHG
i (R∗; gR∗) This construction can be generalized easily to define HHG

H(R∗)i for a graded H-Green functor 
R∗, by incorporating norms as we did earlier.

For RO(G)-graded Mackey functors, the situation is more subtle. As above, in the graded case we will 
pick up an additional “sign” in the last face map. When the gradings live in the representation ring RO(G), 
however, these generalized signs are elements of the Burnside ring for G.

Definition 4.1.2. Let G ⊂ S1 be a finite subgroup, and let α, β be two finite-dimensional, real representations 
of G, with corresponding representation spheres Sα and Sβ . The switch map Sα ∧ Sβ → Sβ ∧ Sα specifies 
an element in the Burnside ring A(G) ∼= πG

0 (S0), which we denote by σ(α, β).

Remark 4.1.3. The switch map for G = Cp is computed, for instance, in [36, Proposition 2.56, 2.58].

Definition 4.1.4. Let A� and B� be RO(G)-graded Mackey functors. The rotating isomorphism τ :
A��B� → B��A� is defined in level α to be the composite of the isomorphisms Aβ�Bγ

∼= Bγ�Aβ

(where α = β + γ) induced by the symmetry isomorphism of the tensor product of abelian groups, and of 
the automorphism Bγ�Aβ → Bγ�Aβ induced by σ(γ, β).

The rotating isomorphism enables us to define an appropriate notion of commutative Green functors in 
the RO(G)-graded case.

Definition 4.1.5. An RO(G)-graded Green functor A� with multiplication map μ : A��A� → A� is commu-
tative if μτ = μ, where τ : A��A� → A��A� is the rotating isomorphism.

Note that this definition of commutativity is compatible with that of commutative equivariant ring 
spectra, in the following sense.

Proposition 4.1.6. [30, Theorem 5.1] If R is a commutative ring G-spectrum, then πG
� (R) is a commutative 

RO(G)-graded Green functor.
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Definition 4.1.7. Let G ⊂ S1 be a finite subgroup, let g ∈ G, and let R� be an RO(G)-graded Green functor 
for G and M� an R�-bimodule. The twisted cyclic nerve of R� with coefficients in gM� is the simplicial 
RO(G)-graded Mackey functor with q-simplices given by

[q] �→ Bcy,G
q (R�; gM�) = gM��R�q

� .

For 1 ≤ i ≤ q− 1, the face map di multiplies the ith and (i + 1)st box factors. The 0th face map d0 applies 
the right action of R� on M�. The qth face map dq is given by the composite

gM��R�q
�

τq−→ R��gM��R
�(q−1)
�

gλ�Id−−−−→ gM��R
�(q−1)
�

where gλ denotes the G-twisted left action of R on M (Definition 3.2.2). The map τq is given by iterating 
the rotating isomorphism, moving the last factor to the front. For 0 ≤ i ≤ q − 1, the degeneracy map si is 
induced by the unit in the (i + 1)st factor.

As in the ungraded case, it is straightforward to verify that, with the sign introduced in the rotating 
map, the definition above indeed specifies a simplicial object.

Definition 4.1.8. Let G ⊂ S1 be a finite subgroup, let g ∈ G, and let R� be an RO(G)-graded Green 
functor for G and M� an R�-bimodule. The twisted Hochschild homology of R� with coefficients in gM�, 
HHG

∗ (R�; gM�), is the homology of the twisted cyclic nerve Bcy,G
• (R�; gM�). When M� = R� and g is the 

generator e2πi/|G| of G, we write HHG
∗ (R�) = HHG

∗ (R�; gR�).

Remark 4.1.9. Let R� be an RO(G)-graded Green functor for G. When R� is concentrated in degree 0, the 
twisted Hochschild homology of the RO(G)-graded Green functor R� is an RO(G)-graded Mackey functor 
concentrated in degree 0. The degree 0 part coincides with the twisted Hochschild homology of the ungraded 
Green functor R0:

HHG
i (R�)0 ∼= HHG

i (R0).

Let E� be an RO(G)-graded commutative Green functor, and consider the symmetric monoidal category 
of E�-algebras (E�-Alg, �E� , E�). As in Section 3.2, we can define the Hochschild homology HHE�,G

i (R�)
of a E�-algebra R� in terms of a relative graded box product.

4.2. The equivariant Bökstedt spectral sequence

Before constructing the equivariant Bökstedt spectral sequence, we briefly review the classical case. The 
classical spectral sequence was originally constructed by Bökstedt, who used it to compute the topological 
Hochschild homology of Fp and Z [9]. A construction of the Bökstedt spectral sequence for generalized 
homology theories in the context of EKMM spectra (S-modules) can be found in [16].

Theorem 4.2.1. [16, IX, Theorem 2.9] Let E be a commutative ring spectrum, R a ring spectrum, and M a 
cellular (R, R)-bimodule. If E∗(R) is E∗-flat, then there is a spectral sequence of the form

E2
p,q = HHE∗

p,q(E∗(R);E∗(M)) ⇒ Ep+q(THH(R;M)).

This spectral sequence is a special case of the following general theorem ([16, X, Theorem 2.9]), which 
provides a spectral sequence for computing the homology of the geometric realization |K•| of a simplicial 
object K• in spectra. The construction is based on the simplicial filtration of |K•|. Recall that a simplicial 
spectrum K• is proper if the map from the degenerate subspectrum, sKq → Kq, is a cofibration for each q.
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Theorem 4.2.2. Let K• be a proper simplicial spectrum and E any spectrum. There is a natural homological 
spectral sequence

E2
p,q = Hp(Eq(K•)) ⇒ Ep+q(|K•|).

In this section we develop an equivariant version of the Bökstedt spectral sequence to study the equivariant 
homology of twisted topological Hochschild homology. One can define both integer and RO(G)-graded 
versions of this equivariant Bökstedt spectral sequence. However, the flatness conditions in the spectral 
sequence are more likely to hold in the RO(G)-graded case, so we focus our discussion on the RO(G)-
graded spectral sequence.

Let E be a commutative G-spectrum and R a G-spectrum. In order to construct the equivariant Bökstedt 
spectral sequence converging to the RO(G)-graded homology E�(i∗G THHG(R)), we first need to understand 
how the g-twisting on R interacts with equivariant E-homology.

For a group G and an element g ∈ G, we let cg denote the conjugation automorphism

cg : G → G,

where cg(h) = g−1hg. For a G-spectrum X, left multiplication by g induces an isomorphism of G-spectra 
(see, for instance, [35, Section 3.1]):

lg : c∗gX → X : x �→ gx.

When G is an abelian group, the conjugation map cg : G → G is the identity for every g ∈ G and the induced 
endofunctor c∗g on the category of G-spectra is the identity functor, whence lg : X → X is G-equivariant 
for every G-spectrum X and every g ∈ G. We often denote this map simply by g : X → X. When lg is 
equivariantly homotopic to the identity map, we say that g acts trivially on X.

This general observation specializes to the following useful result.

Proposition 4.2.3. Let G be an abelian group. For every G-spectrum X, the G-action on X induces a levelwise 
G-action on the graded Mackey functor π�(X).

Proof. The induced G-action on RO(G)-graded homotopy Mackey functors π� acts grading-wise via the 
quotient G/H, i.e., for each subgroup H ⊂ G and each α in RO(G), the G-action is specified by

G× πα(X)(G/H) → G/H × πα(X)(G/H) → πα(X)(G/H),

where the second map is the Weyl group action. �
Definition 4.2.4. Let R be a G-ring spectrum and g an element of G. The g-twisted R-module structure on 
R, denoted gR, has right action map given by the usual multiplication, μ, and a twisted left action map, 
gμ, given by

R ∧R

g∧1
gμ

R ∧R
μ

R.

For E a commutative G-ring spectrum, and R a G-ring spectrum, the E�(R)-module E�(gR) will arise 
in the construction of the equivariant Bökstedt spectral sequence. In the next lemma, we compare E�(gR), 
as an E�(R)-module, to the twisted module gE�(R), where the twisting is defined as in Definition 3.2.2.
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Lemma 4.2.5. Let G be an abelian group, and let g ∈ G. Let E be a commutative G-ring spectrum such that 
g acts trivially on E. For every G-ring spectrum R, the identity is a morphism of left E�(R)-modules

gE�(R) ∼= E�(gR).

Proof. It suffices to check E ∧ gR � g(E ∧R) as left E ∧R-modules.
By the assumption, the following diagram homotopy commutes:

(E ∧R) ∧ (E ∧R) (E ∧R) ∧ (E ∧R)

E ∧R E ∧R

Id

μ◦(g∧g∧Id∧Id) μ◦(Id∧g∧Id∧Id)

Id

where the left vertical arrow is the module action of g(E∧R) and the right one is that of E∧ gR. The result 
follows after passing to homotopy Mackey functors. �

The construction of twisted topological Hochschild homology recalled in Section 2 produces an S1-
spectrum. We restrict it to a G-spectrum and compute its associated RO(G)-graded homology. Viewed 
as a G-spectrum, the twisted topological Hochschild homology of a G-ring spectrum is isomorphic to the 
G-equivariant topological Hochschild homology over the twisted module gR.

Proposition 4.2.6. For every G-ring spectrum R, there is a natural isomorphism of G-spectra:

THH(R; gR) ∼= i∗G THHG(R).

Proof. The identity map induces an isomorphism of simplicial G-spectra between Bcy,G(R)• and 
Bcy(R; gR)•, the usual cyclic nerve of R with coefficients in the R-biomodule gR. Passing to the geometric 
realization, we obtain a G-spectrum isomorphism. �

Let E be a commutative G-ring spectrum. The simplicial filtration of Bcy(R; gR)•

· · ·Fs−1 ⊂ Fs ⊂ Fs+1 ⊂ · · · ⊂ Bcy(R; gR)•,

gives rise to a spectral sequence

E1
s,� = Es+�(Fs/Fs−1) ⇒ Es+�(THH(R; gR)),

which is strongly convergent by [16, X.2.9].
Let α ∈ RO(G). The terms E1

∗,α form a chain complex with

Es+α(Fs/Fs−1) ∼= Es+α

(
Σs

(
Bcy(R; gR)s/σBcy(R; gR)s

))
,

in degree s, where σBcy(R; gR)• denotes the degeneracy subspectrum.
It follows that E1

∗,α is isomorphic to the normalized chain complex of Eα(Bcy(R; gR)•).

Theorem 4.2.7. Let G ⊂ S1 be a finite subgroup and g = e2πi/|G| a generator of G. Let R be a G-ring 
spectrum and E a commutative G-ring spectrum such that g acts trivially on E. If E�(R) is flat over E�, 
then there is an equivariant Bökstedt spectral sequence of the following form:

E2
s,� = HHE�,G

s (E�(R)) ⇒ Es+�(i∗G THHG(R)).
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Proof. Since E1
∗,α is isomorphic to the normalized chain complex of Eα(Bcy(R; gR)•), it suffices to compute 

the homology of this chain complex.
Since E�(R) is flat over E�, in degree s the chain complex E�(Bcy(R; gR)•) is isomorphic to

Bcy
E�

(E�(R);E�(gR)
)
s
,

the E�-module of s-simplices of the cyclic bar construction in the category of E�-modules of E�(R) with 
coefficients in E�(gR). By Lemma 4.2.5, it is also isomorphic as an E�-module to

Bcy
E�

(E�(R); gE�(R)
)
s
.

Formal diagram chasing shows that the d1 differential of the spectral sequence under this isomorphism can 
be identified with the differential of the complex computing HHE�,G

∗ (E�R). Therefore, we can identify the 
E2-term of the spectral sequence above with the Hochschild homology HHE�,G

∗ (E�(R)). This completes 
the proof. �

As in the classical case, when the input ring spectrum is actually commutative, the resulting spectral 
sequence inherits a multiplicative structure.

Proposition 4.2.8. Let g ∈ G, E, and R be as in Theorem 4.2.7. If R is endowed with the structure of a 
commutative G-ring spectrum, then the equivariant Bökstedt spectral sequence inherits the structure of a 
spectral sequence of RO(G)-graded algebras over E�.

Proof. It is easy to check that if R is a commutative G-ring spectrum, then the cyclic nerve Bcy(R; gR)• is 
a simplicial object in commutative ring G-spectra, where the levelwise multiplication is defined as usual for 
a tensor product of algebras. Commutativity of R is not required for the degeneracies to be algebra maps, 
but is necessary for the face maps to be algebra maps. The particular case of dq in simplicial level q relies 
on the fact that g acts on R as an algebra map.

Since E is also a commutative ring G-spectrum, E ∧ Bcy(R; gR)• is a simplicial object in commutative 
ring G-spectra. Proposition 4.1.6 implies that E�

(
Bcy(R; gR)•) is then a simplicial object in RO(G)-graded 

commutative Green functors over E�. Normalizing, we obtain a differential graded object in RO(G)-graded 
commutative Green functors over E�; this is the E1-page of the spectral sequence. Since the simplicial 
filtration of Bcy(R; gR)• respects its algebra structure, all the differentials in the spectral sequence respect 
the multiplicative structure as well. �
4.3. Twisted THH of the real bordism spectrum

In this section we consider MUR, the C2-equivariant real bordism spectrum of Landweber [27] and 
Fujii [17], for which it is natural to compute C2-relative topological Hochschild homology. We compute the 
equivariant homology of THHC2(MUR) using the equivariant Bökstedt spectral sequence constructed in 
Section 4, converging to

HC2
� (i∗C2

THHC2(MUR);F2).

It follows from the calculations of π�(HF2) in [24] that the Weyl action on π�(HF2) is trivial. In other 
words, the generator g of C2 induces the identity map after passing to RO(C2)-graded Mackey functors. 
In particular, it induces the identity map on RO(C2)-graded homotopy groups. Work by Hu–Kriz [24] also 
calculates the C2-equivariant Steenrod algebra. The only element inducing the identity map in the C2-
equivariant Steenrod algebra is the unit 1. Therefore lg is homotopic to the identity map, allowing us to use 
the spectral sequence of Theorem 4.2.7 to make this computation.
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As discussed in Section 4, in order to identify the E2-term of the equivariant Bökstedt spectral sequence 
with Hochschild homology for Green functors, we need to verify a flatness condition, which turns out to 
hold in the RO(C2)-graded case. In particular we prove that πC2

� (MUR ∧ HF2) is flat (indeed, free) as a 
π�(HF2)-module. For ease of notation, we let HF2� denote π�(HF2).

Proposition 4.3.1. The RO(C2)-graded Mackey functor πC2
� (MUR ∧ HF2) is free as an HF2�-module. In 

particular

πC2
� (MUR ∧HF2) ∼= HF2�[b1, b2, . . .].

Here the degree of bi is iρ, where ρ denotes the regular representation of C2.

Proof. Let V be a representation of C2. As in [20], we use the notation

S0[SV ] =
∨
j≥0

(SV )∧j

for the free associative algebra on the V -sphere. As shown in Corollary 5.18 of Hill-Hopkins-Ravenel [20], 
building off of work of Araki [4], there is a weak equivalence

MUR ∧HF2 � HF2 ∧
∧
i≥1

S0[Siρ].

This gives an isomorphism of RO(C2)-graded Green functors

πC2
� (MUR ∧HF2) ∼= HF2�[b1, b2, . . .],

where the degree of bi is iρ. �
As the appropriate flatness condition holds, the equivariant Bökstedt spectral sequence for MUR has the 

form

E2
s,� = HHHF2�,C2

s (HC2
� (MUR;F2)) ⇒ HC2

s+�(i∗C2
THHC2(MUR);F2),

where we are considering HC2
� (MUR; F2) as an HF2�-algebra. From Proposition 4.3.1, it follows that the 

E2-term is

E2
∗,� = HHHF2�,C2

∗ (HF2�[b1, b2, . . .]).

The next proposition is the key to computing this E2-term.

Proposition 4.3.2. Let G ⊂ S1 be a finite subgroup, and let g ∈ G be the generator e2πi/|G|. Let R� be an 
RO(G)-graded commutative Green functor for G, and M� an associative R�-algebra. If M� is flat as an 
R�-module, there is a natural isomorphism

HHR�,G
∗ (M�) ∼= TorM��R�Mop

�
∗,� (M�,

gM�),

where Tori,� is the ith derived functor of the box product over R�.
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Proof. Note that HHR�,G
∗ (M�) = HHR�∗ (M�, 

gM�), where the latter is the homology of the ordinary 
Hochschild complex with bimodule coefficients. By [30] and [29], since G is a finite group, the homological 
behavior of graded G-Mackey functors is standard, so that the usual homological algebra argument implies 
that

HHR�∗ (M�,
gM�) ∼= TorM��R�Mop

�
∗,� (M�,

gM�). �
We now apply the proposition to computing HHHF2�,C2

∗ (HC2
� (MUR; F2)).

Proposition 4.3.3. The C2-twisted Hochschild homology of the HF2�-algebra HC2
� (MUR; F2) is

HHHF2�,C2
∗ (HC2

� (MUR;F2)) ∼= HF2�[b1, b2, . . .] �HF2� ΛHF2�(z1, z2, . . .),

where |bi| = (0, iρ) and |zi| = (1, iρ).

Proof. For ease of notation, let M� denote HC2
� (MUR; F2) ∼= HF2�[b1, b2, . . .], |bi| = iρ, and let Me

� denote 
M��HF2�M

op
� . By Proposition 4.3.2 above,

HHHF2�,C2
∗ (M�) ∼= TorM

e
�

∗,� (M�,
gM�),

where g denotes a generator of C2.
We first consider the C2-action on M�. As noted earlier, the C2-action on HF2� is trivial. The C2-action 

on the generator bi is induced by the action on Siρ, whence g · bi = bi. We conclude that the C2-action on 
M� is trivial, so that

HHHF2�,C2
∗ (M�) ∼= TorM

e
�

∗,� (M�,M�).

Using the homological algebra foundations for RO(C2)-graded Mackey functors laid out in [30], the 
standard argument of Cartan and Eilenberg [12, Thm X.6.1] shows that

TorM
e
�

∗,� (M�,M�) ∼= M��HF2� TorM�
∗,� (HF2�, HF2�).

Using the Koszul complex as in the classical case, one can compute that

TorHF2�[b1,b2,...]
∗,� (HF2�, HF2�) ∼= ΛHF2�(z1, z2, . . .),

where |zi| = (1, |bi|). Thus we conclude that

TorM
e
�

∗,� (M�,M�) ∼= HF2�[b1, b2, . . .] �HF2� ΛHF2�(z1, z2, . . .),

where |bi| = (0, iρ) and |zi| = (1, iρ). �
We now compute the equivariant homology of THHC2(MUR).

Theorem 4.3.4. The RO(C2)-graded equivariant homology of THHC2(MUR) is

HC2
� (i∗C2

THHC2(MUR);F2) ∼= HF2�[b1, b2, . . .] ⊗F2 ΛF2(z1, z2, . . .)

as an HF2�-module. Here |bi| = iρ and |zi| = 1 + iρ.
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Proof. We use the equivariant Bökstedt spectral sequence of Theorem 4.2.7:

E2
s,� = HHHF2�,C2

s (HC2
� (MUR;F2)) ⇒ HC2

s+�(i∗C2
THHC2(MUR);F2).

By Proposition 4.3.3, the E2-term of this spectral sequence is:

E2
∗,� = HF2�[b1, b2, . . .] �HF2� ΛHF2�(z1, z2, . . .),

where |bi| = (0, iρ) and |zi| = (1, iρ). Note that an element of RO(C2) has the form a + bσ, where σ denotes 
the sign representation. Thus we can view the RO(C2)-graded equivariant Bökstedt spectral sequence for 
MUR as a trigraded spectral sequence with integer gradings, and differentials:

dr : E2
s,a,b → E2

s−r,a+r−1,b.

The C2-ring spectrum MUR is commutative, so by Proposition 4.2.8, this equivariant Bökstedt spectral 
sequence is a spectral sequence of HF2�-algebras. We observe that all of the HF2�-algebra generators of 
the E2-term are in filtration less than or equal to 1. Therefore the differentials on the generators are all 
zero, and hence the spectral sequence collapses. To complete the proof we observe that as HF2�-modules,

HF2�[b1, b2, . . .] �HF2� ΛHF2�(z1, z2, . . .) ∼= HF2�[b1, b2, . . .] ⊗F2 ΛF2(z1, z2, . . .). �
Since HF2� was computed in Proposition 6.2 of [24], Theorem 4.3.4 provides an explicit description of 

the homology of THHC2(MUR).

5. Twisted topological Hochschild homology of Thom spectra

Given any map f : X → BO, one can construct its Thom spectrum, whose nth space is the Thom 
space of the restriction of f to f−1(BO(n)). More generally, one can define the Thom spectrum Th(f)
of a map f : X → Pic(R), where R is a commutative ring spectrum. A point-set model for Th(f) was 
described in Chapter IX of [28], and an infinity-categorical model in [2]. For example, if f is nullhomotopic, 
Th(f) � R ∧X+. If f is an En-map between En-spaces, then Th(f) is an En-ring spectrum.

Mahowald showed that HF2 is the Thom spectrum of a 2-fold loop map Ω2S3 → BO; a similar descrip-
tion holds for the other Eilenberg–MacLane spectra HFp, and for HZ(p). In [6], Blumberg, Cohen, and 
Schlichtkrull studied the symmetric monoidal properties of the Thom spectrum functor, which they applied 
to give a simple description of the topological Hochschild homology of these Eilenberg–MacLane spectra.

In this section, we exploit the G-symmetric monoidal properties of the equivariant Thom spectrum functor 
[23], along with the description of HF2 and HZ(2) as equivariant Thom spectra in [5] and [18], to compute 
THHC2 of these C2-ring spectra.

The first step is to give a “conjugation action” description, as in [26], of the topological Hochschild 
homology of equivariant Thom spectra. The idea for this conjugation action comes from the description of 
the Hochschild homology of a group ring k[Γ] as group homology, H∗(Γ; k[Γ]ad), where k[Γ]ad indicates that 
Γ acts by conjugation. This description follows from the isomorphism

HH∗(k[Γ]) ∼= Tor
k[Γ]⊗k[Γ]op
∗ (k[Γ], k[Γ])

by performing a change of rings along the map k[Γ] → k[Γ] ⊗ k[Γ]op sending γ ∈ Γ to γ ⊗ γ−1. Similarly, 
one can describe THH(Σ∞

+ ΩX) as the left-derived smash product B((Σ∞
+ ΩX)ad, Σ∞

+ ΩX, S) by performing 
a change of rings along the map
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Σ∞
+ ΩX → (Σ∞

+ ΩX) ∧ (Σ∞
+ ΩX)op

sending a loop γ ∈ ΩX to (γ, γ−1) ∈ ΩX × (ΩX)op. Note that this is the map inducing the conjugation 
action of π1(X) on itself. In [26], this “conjugation action” description was generalized to encompass THH
of Thom spectra Th(f : ΩX → BGL1(R)), rather than just suspension spectra. Our first goal is to establish 
a similar description of THH (and twisted THH) of equivariant Thom spectra.

5.1. Description of THH

Construction Let X be a pointed G-space, and let A be the Thom spectrum Th(Ωf) of a loop map 
Ωf : ΩX → BOG (or Pic(R) for R a commutative G-ring spectrum). We construct an action of Σ∞

+ ΩX

on A induced by the conjugation action of ΩX on itself. More explicitly, this action arises from a map of 
G-ring spectra Δ∗ : Σ∞

+ ΩX → A ∧Aop, induced on Thom spectra by the following commutative diagram.

ΩX
Δ ΩX × (ΩX)op

(mult)◦(Ωf×(Ωf)op)

BOG

The map Δ sends γ ∈ ΩX to (γ, γ−1) ∈ ΩX × (ΩX)op. As proven in [23], A ∧Aop is the Thom spectrum 
of the vertical map. Its composite with the map Δ is null, because the concatenation of a loop with its 
inverse is trivial. Since the Thom spectrum of a null map is the suspension spectrum of the base space, Δ
induces a map of G-ring spectra Σ∞

+ ΩX → A ∧Aop. The usual left action of A ∧Aop on A then pulls back 
to a left action of Σ∞

+ ΩX on A.

Theorem 5.1.1. Under the action defined above of Σ∞
+ ΩX on A, there is an equivalence of G-spectra

THH(A) � B(A,Σ∞
+ ΩX,S).

Additionally, if G = Cn with generator g,

THHCn
(A) � B(Ag,Σ∞

+ ΩX,S).

Proof. We mimic the proof of Theorem 5.7 of [26]. Since THH(A) � B(A, A ∧ Aop, A) and THHCn
(A) �

B(Ag, A ∧Aop, A), by a change of rings, it suffices to show that as an A-bimodule,

A � B(A ∧Aop,Σ∞
+ ΩX,S).

The right action of Σ∞
+ ΩX on A ∧ Aop comes from the map of ring spectra, Δ∗ : Σ∞

+ ΩX → A ∧ Aop. 
Alternatively, Σ∞

+ ΩX is a Thom spectrum over ΩX, and A ∧Aop is a Thom spectrum over ΩX × (ΩX)op; 
we can describe the action on these spaces.

Let ΩX act on ΩX × (ΩX)op on the right as follows: γ ∈ ΩX takes (α, β) to (αγ, γ−1β). There is a 
homotopy fiber sequence

ΩX
Δ ΩX × (ΩX)op mult ΩX X,

where the last map evaluates at the midpoint of the interval. It follows that mult : ΩX × (ΩX)op → ΩX

descends to an equivalence of ΩX with the homotopy orbits of the ΩX-action above on ΩX× (ΩX)op. More 
explicitly, we can realize this as an equivalence of G-spaces endowed with an ΩX × (ΩX)op-action
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B(ΩX × (ΩX)op,ΩX, ∗) ∼ ΩX,

which sends a p-simplex ((α, β), (γ1, ..., γp), ∗) to α(γ1...γp)(γp)−1...(γ1)−1β. (One can use a strictly associa-
tive model for ΩX, such as Moore loops or the Kan loop group.) The loop space ΩX × (ΩX)op acts on the 
left on B(ΩX × (ΩX)op, ΩX, ∗) by multiplication on ΩX × (ΩX)op and on the target ΩX by conjugation.

Since the diagram

B(ΩX × (ΩX)op,ΩX, ∗) ∼

B(Ωf×(Ωf)op,∗,∗)

ΩX

Ωf

B(BOG × (BOG)op, BOG, ∗)
∼

BOG

commutes, the Thom spectrum of the top-to-right composite is equivalent to the Thom spectrum of the 
left-to-bottom composite. The Thom spectrum functor respects equivalences of G-spaces over BOG, respects 
colimits, and is G-symmetric monoidal (see [23]), so the Thom spectrum of the top-to-right composite is A
and that of the left-to-bottom composite is B(A ∧Aop, Σ∞

+ ΩX, S). We obtain

B(A ∧Aop,Σ∞
+ ΩX,S) � A,

as required. �
5.2. Computation

Lemma 5.2.1. As C2-spectra,

THHC2(HF2) � THH(HF2)

and

THHC2(HZ(2)) � THH(HZ(2))

Proof. We will prove this for HF2; the proof for HZ(2) is identical.
In [14], dos Santos constructs a model for HF2 in which the V th space is given by F2[SV ]. After forgetting 

to naive C2-spectra, the action of the generator of C2 is trivial, thus the twisting in the twisted cyclic bar 
construction is trivial, and the result follows. �

In [5], Behrens and Wilson showed that HF2 is the Thom spectrum of a ρ-fold loop map ΩρSρ+1 → BOC2 , 
and Hahn and Wilson showed in [18] that HZ(2) is the Thom spectrum of a (2σ + 1)-fold loop map 
Ω2σ(S2σ+1〈2σ + 1〉) → Pic(S(2)). Here σ denotes the sign representation of C2, ρ = 1 + σ denotes the 
regular representation, and S(2) denotes the C2-equivariant 2-local sphere spectrum. Hahn and Wilson 
proved that S2σ+1 is the loop space of HP∞, whence S2σ+1〈2σ + 1〉 � Ω(HP∞〈2σ + 2〉). Both HF2 and 
HZ(2) are thus equivariant Thom spectra of loop maps, so we can use Theorem 5.1.1 to compute the 
topological Hochschild homology of these C2-ring spectra. By Lemma 5.2.1, this also computes THHC2 .

Theorem 5.2.2. As C2-spectra,

THH(HF2) � HF2 ∧ ΩσSρ+1
+

and
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THH(HZ(2)) � HZ(2) ∧ Ω2σ(HP∞〈2σ + 2〉)+

Proof. We show this for HF2; the proof for HZ(2) is identical. To compute THH, we use Theorem 5.1.1. 
As in Section 5 of [26], we show that the Σ∞

+ ΩρSρ+1-action on HF2 is trivial, i.e., the map Σ∞
+ ΩρSρ+1 →

End(HF2) factors as Σ∞
+ ΩρSρ+1 → S → End(HF2), where the first map is the augmentation, and the 

second is adjoint to idHF2
. The desired equivalence follows immediately, as B(S, Σ∞

+ ΩX, S) � Σ∞
+ X.

The action of Σ∞
+ ΩρSρ+1 on HF2 is given by the composite

Σ∞
+ ΩρSρ+1 ∧HF2

Δ∗∧id
(HF2 ∧HFop

2 ) ∧HF2
act

HF2.

Since HF2 is C2-commutative, the action

(HF2 ∧HFop
2 ) ∧HF2

act
HF2

is equal to

(HF2 ∧HFop
2 ) ∧HF2

mult∧id
HF2 ∧HF2

act
HF2.

Since the composite

Σ∞
+ ΩρSρ+1 Δ∗ (HF2 ∧HFop

2 ) mult
HF2

is induced on Thom spectra by the null map Σ∞
+ ΩρSρ+1 → Σ∞

+ ΩρSρ+1, the action of Σ∞
+ ΩρSρ+1 on HF2

is trivial, as required. �
Combining this theorem with Lemma 5.2.1, we complete the desired computations of C2-relative THH.

Corollary 5.2.3. As C2-spectra,

THHC2(HF2) � HF2 ∧ ΩσSρ+1
+

and

THHC2(HZ(2)) � HZ(2) ∧ Ω2σ(HP∞〈2σ + 2〉)+.

Theorem 4.3 of [21] gives an equivariant version of the James splitting, which allows us to explicitly 
describe THHC2(HF2).

Corollary 5.2.4. THHC2(HF2) � HF2 ∧ (
∨

k≥0 S
2kρ ∨

∨
k≥0 S

2kρ+2).
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