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1. Introduction

Functor calculi are important tools in algebraic topology that have been used to produce significant 
results in a wide range of fields. For example, the homotopy functor calculus of Goodwillie [14] has had 
applications in algebraic K-theory [24] and vn-periodic homotopy theory [1], [17]. The orthogonal calculus 
of Goodwillie and Weiss [15], [38] and manifold calculus of Weiss [37] have been used to study embeddings 
and immersions of manifolds, characteristic classes, and spaces of knots; for example, see [22], [27], and [33].

Each functor calculus provides a means of approximating a functor F between particular types of cate-
gories with a tower of functors under F

F

P0F P1F . . . PnF Pn+1F . . .

that is analogous to a Taylor series for a function, with each PnF being in some sense a degree n approxi-
mation to F . Such towers are referred to as Taylor towers. The functor calculi also provide means to classify 
“homogeneous degree n” functors (degree n functors with trivial degree n − 1 approximations), which arise 
as the layers of the towers (homotopy fibers between consecutive terms) in terms of more tractable objects. 
Because of these classification results, it is often easier to identify the layers in a Taylor tower than it is to 
identify the PnF ’s. By building appropriate model structures on functor categories, these polynomial ap-
proximations can be interpreted as fibrant replacements for functors. This point of view has been developed 
by Barnes and Oman [5] in the case of the orthogonal calculus, and by Biedermann, Chorny, and Röndigs 
[7], [8] and by Barnes and Eldred [3] in the case of the homotopy functor calculus. This perspective makes 
it possible to upgrade the classifications of homogeneous degree n functors from equivalences of homotopy 
categories to Quillen equivalences between model categories. This perspective has also led to means by 
which different functor calculi can be extended to new contexts [34] and compared to one another [4], [35]; 
see also [23] and [25].

This paper grew from a desire to apply this model category-theoretic approach to the discrete functor 
calculus of Bauer, McCarthy, and the fourth-named author [6]. Such model structures have been identified 
for abelian versions of this type of calculus by Renaudin [28] and Richter [29]. Using similar techniques, it 
is straightforward to establish the existence of such model structures for the discrete calculus, but we are 
interested in developing these structures in a simplicially enriched context.

Our motivation for doing so is inspired by the work of Biedermann and Röndigs [8]. They develop 
a simplicially enriched version of Goodwillie’s homotopy functor calculus in such a way that their model 
structure for n-excisive functors is cofibrantly generated. Because this additional structure is quite powerful, 
as we develop a “degree n” model structure for discrete functor calculus, we want to employ a similar strategy.

However, following this strategy requires a good understanding of enriched functor categories, and many 
of the proofs of the results we need can be difficult to find explicitly in the literature. In this paper, we 
aim to bring together these results in a relatively self-contained treatment, with an eye toward recognizing 
the common features between these two kinds of functor calculus. This paper can thus be regarded as the 
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preparatory work to developing the cofibrantly generated model structures that will be the main results of 
the sequel [2].

As an application of these ideas, and as further preparation for that work, we show that one of the basic 
building blocks for discrete functor calculus, the comonad ⊥n, has an isomorphic simplicial representable 
version ⊥R

n , and that the existence of this version and a corresponding construction for the Goodwillie 
calculus developed in [8] are both consequences of a more general result concerning a construction we 
refer to as the evaluated cotensor. We show, that although V-enriched functor categories Fun(C, D) are 
not generally enriched in Fun(C, V), the evaluated cotensor behaves quite like an ordinary cotensor. The 
category Fun(C, D) therefore enjoys much of the structure of a category enriched, tensored, and contensored 
in Fun(C, V).

For each flavor of functor calculus, both the original definition and its variant in terms of representables 
have distinct advantages; however, the latter is more amenable to working in an enriched setting, as is our 
goal here. For the functor Tn from homotopy functor calculus and the functor ⊥n from discrete functor 
calculus, we show that the two definitions agree and, as the main result of the last section of this paper, 
prove that the representable variants of the functors Tn and ⊥n are both simplicial functors. With this 
structure in place, we are well-positioned to recover the cofibrantly generated n-excisive model structure 
on Goodwillie’s functor calculus from [8], and establish similar cofibrantly generated model structures for 
degree n functors in the context of a broader class of functor calculi, including discrete calculus in [2].

Organization of the paper

In Section 2 we provide fundamental background material on enriched categories. We recall the definition 
of a V-category, or category enriched in V, and describe the additional structures of a V-category being 
tensored or cotensored in V.

In Section 3 we provide an enriched version of the classical Yoneda Lemma and its dual. This section 
includes the definitions of representable functors and ends and coends of certain bifunctors in the context 
of enriched categories. Aside from being necessary for the Yoneda Lemma, these constructions are used 
repeatedly throughout this paper and its sequel. We also generalize the definition of an end to construct 
the “evaluated cotensor,” which is a bifunctor Fun(C, V)op × Fun(C, D) → D described by Biedermann and 
Röndigs in [8].

Motivated by applications to functor calculus, we specialize to enriched functor categories in Section 4. 
We show that, given V-categories C and D with C small, the category Fun(C, D) of V-functors from C to D
can be viewed as a category enriched in V. We also give sufficient conditions for when Fun(C, D) is tensored 
or cotensored over V and establish some properties of the evaluated cotensor.

In Section 5, we consider V-categories with the additional structure of a V-model category. In particular, 
we give conditions on V-categories C and D under which Fun(C, D) with the projective model structure is 
a V-model category.

Starting in Section 6, we restrict to the case where V = S, the category of simplicial sets, and so work 
in the simplicial context. We recall the formal definitions of homotopy limits and colimits in a simplicial 
model category, and use them to show how the evaluated cotensor interacts with these constructions.

We conclude in Section 7 with an application of these enriched category techniques to functor calculus. 
We begin by revisiting the construction of a version of Goodwillie’s functor Tn in terms of representable 
functors, as developed by Biedermann and Röndigs in [8], in Section 7.1. In Section 7.2, we then develop the 
analogous construction for the functor ⊥n that plays a similar role for discrete functor calculus. Building 
on the similarities of the two constructions, in Section 7.3 we prove that both Tn and ⊥n define simplicial 
functors.
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2. Enriched categories

In this section, we give some background results on categories enriched in a suitable monoidal category. 
These definitions are standard and can be found in [21], [30] and [19].

Definition 2.1. [21, §1.1] A monoidal category (V, ⊗, I) is a category V equipped with a bifunctor − ⊗− : V×
V → V sending a pair of objects (V, W ) to an object V ⊗ W , and a unit object I, satisfying appropriate 
associativity and unit axioms.

Given monoidal categories V and W, one can consider monoidal functors that preserve the monoidal 
structure [19, 4.1.2], and likewise monoidal natural transformations [19, 4.1.3].

Definition 2.2. [21, §1.4] A monoidal category V is symmetric if, for any objects V and W of V, there is an 
isomorphism t : V ⊗W → W ⊗ V such that t2 = id and various compatibility axioms are satisfied.

Definition 2.3. [21, §1.5] A symmetric monoidal category V is closed if it is equipped with a bifunctor 
(−)(−) : V × Vop → V sending a pair of objects (W, V ) to WV , such that given objects U , V , and W , there 
is a natural isomorphism

HomV(U,WV ) ∼= HomV(U ⊗ V,W ).

The object WV is sometimes referred to as an internal hom object, since we think of it as a mapping 
object which itself lives in the category V.

Example 2.4. The category Ab of abelian groups with the usual tensor product is a closed symmetric 
monoidal category in which the internal hom object BA between two abelian groups A and B is taken to 
be the abelian group of homomorphisms between A and B.

A primary example in this paper is the category of simplicial sets.

Example 2.5. Let Δ denote the standard simplex category, whose objects are finite ordered sets [n] = {0 ≤
· · · ≤ n} and whose morphisms are given by order-preserving maps of sets. The category S of simplicial sets, 
or functors Δop → Sets, with the usual cartesian product is a closed symmetric monoidal category, where 
the internal hom object between two simplicial sets U and V is the simplicial set V U whose n-simplices are 
given by

(V U )n := HomS(U × Δ[n], V ).

Here, recall that Δ[n] is the standard n-simplex, given by the representable functor HomΔ(−, [n]).

The following definition is a generalization of a closed monoidal category, in that we consider other 
categories D with hom objects in V.
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Definition 2.6. [21, §1.2] Let (V, ⊗, I) be a monoidal category. A category D enriched in V, or a V-category, 
consists of a collection ob(D) of objects of D, together with an object MapD(X, Y ) of V for every pair 
X, Y ∈ ob(D), such that for each X ∈ ob(D) there is an identity morphism

iX : I → MapD(X,X)

in V, and for each triple X, Y, Z ∈ ob(D) there is a composition morphism

◦XY Z : MapD(X,Y ) ⊗ MapD(Y,Z) → MapD(X,Z)

in V satisfying appropriate associativity and unit axioms.

We sometimes denote the mapping object MapD(X, Y ) by Map(X, Y ) when there is no ambiguity about 
the ambient category D.

It is often helpful to distinguish between a V-enriched category and its underlying ordinary category, 
which we now define.

Definition 2.7. The underlying category of a V-category D is the category D0 with the same objects as D, 
HomD0(X, Y ) = HomV (I,MapD(X,Y )) and composition and identities induced by the composition and 
identity morphisms in D.

In particular, when we say that an ordinary category C is a V-category, we mean that there exists a 
V-category for which the underlying category is C.

When V is a closed monoidal category, the category V is itself enriched in V, via the internal hom object. 
Given any objects V, W of V, we define

MapV(V,W ) = WV .

In other words, a closed monoidal category is a category enriched in itself.

Remark 2.8. Observe that given a closed monoidal category V and an object V in V, the identity map 
V → V corresponds to a unique map i : I → V V via the isomorphisms

MapV(V, V ) ∼= MapV(I ⊗ V, V ) ∼= MapV(I, V V ).

Given two V-categories, we are typically interested in functors between them that behave nicely with 
respect to their enrichments.

Definition 2.9. [21, §1.2] Let C and D be V-categories. A V-functor F : C → D is a function assigning each 
object A of C to an object FA of D, together with a morphism

FAB : MapC(A,B) → MapD(FA,FB)

in V for each pair of objects A and B of C, such that the collection of all such morphisms preserves 
composition and identity morphisms.

We can analogously define a V-natural transformation between V-functors.

Definition 2.10. [21, §1.2] Let C and D be V-categories and F, G : C → D be two V-functors. A V-natural 
transformation η : F ⇒ G is a collection
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{ηA : I → MapD(FA,GA)}

of morphisms in V where A ranges over all objects in C, such that the following diagram commutes for any 
objects A and B of C:

MapC(A,B) I ⊗ MapC(A,B) MapD(FA,GA) ⊗ MapD(GA,GB)

MapC(A,B) ⊗ I MapD(FA,FB) ⊗ MapD(FB,GB) MapD(FA,GB).

ηA ⊗GAB

FAB ⊗ ηB ◦

◦

In particularly nice cases, a V-enriched category interacts nicely with the monoidal category V via tensor 
and cotensor functors, generalizing features of the closed monoidal structure on V. We begin with the notion 
of a tensor functor, which associates to an object of D and an object of V another object of D.

Definition 2.11. [30, 3.7.2] A V-category D is tensored over V if there exists a V-functor

D × V D

(D,V ) D ⊗ V

(E,W ) E ⊗W

−⊗−

MapD(D,E) ⊗WV MapD(D ⊗ V,E ⊗W )

together with a V-natural isomorphism MapD(D ⊗ V, E) ∼= MapD(D, E)V in V.

Analogously, a cotensor functor also associates to an object of D and an object of V an object of D, but 
in a manner more closely related to the internal hom object of V.

Definition 2.12. [30, 3.7.3] A V-category D is cotensored over V if there exists a V-functor

D × Vop D

(D,V ) DV

(E,W ) EW

(−)(−)

MapD(D,E) ⊗ V W MapD(DV , EW )

together with a V-natural isomorphism MapD(D, EV ) ∼= MapD(D, E)V .

We can use the precise formulations of these definitions to show that tensors and cotensors are adjoint 
to one another, and to establish other important adjunctions relating a tensored and cotensored V-category 
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D to the enriching category V. Before presenting these adjunctions in Proposition 2.14 below, we define the 
notion of V-adjunction that we use there.

Definition 2.13. A V-adjunction (or V-enriched adjunction) between V-categories A and B is a pair F : A →
B and G : B → A of V-functors together with a V-natural isomorphism

MapB (F,−) ∼= MapA (−, G) .

Proposition 2.14. Let D be a V-category that is both tensored and cotensored over V.

(1) For any object D of D there is a V-adjunction

V D.

D ⊗−

MapD(D,−)

⊥

(2) For any object E of D there is a V-adjunction

D Vop.

MapD(−, E)

E(−)

⊥

(3) For any object V of V there is a V-adjunction

D D.

−⊗ V

(−)V

⊥

Proof. The first two adjunctions follow directly from the definitions of tensor and cotensor (Definitions 2.11
and 2.12, respectively). The third adjunction follows from both definitions, in particular for each pair of 
objects D and E in D we have

MapD(D ⊗ V,E) ∼= MapD(D,E)V ∼= MapD(D,EV ). �
We conclude with a standard example of a V-category that is both tensored and cotensored over V.

Example 2.15. The category T op is enriched, tensored and cotensored in the category of simplicial sets S. 
For topological spaces X and Y , we define MapT op(X, Y ) to be the simplicial set for which

MapT op(X,Y )n = HomT op(X × Δn, Y ),

where Δn denotes the standard topological n-simplex. For a simplicial set K, let |K| denote its geometric 
realization. There is an S-functor
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T op× S T op

(X,K) X × |K|

(Y, L) Y × |L|

MapTop(X,Y ) × LK MapT op(X × |K|, Y × |L|)

which is defined in degree n by the function

HomT op (X × Δn, Y ) × HomS (K × Δ[n], L) −→ HomT op (X × |K| × Δn, Y × |L|)

which, using the fact that geometric realizations preserve finite products, is induced by the canonical function

HomT op (X × Δn, Y ) × HomT op (|K| × Δn, |L|) −→ HomT op (X × |K| × Δn, Y × |L|) .

Furthermore, for any topological spaces X and Y and simplicial set K there is an isomorphism

MapT op(X × |K|, Y ) ∼= MapT op(X,Y )K ,

so T op is tensored over S. It can be shown analogously that T op is also cotensored over S.

3. The enriched Yoneda Lemma

In this section, we consider representable functors in the setting of enriched categories, and establish an 
enriched version of the Yoneda Lemma and its dual. We begin with enriched representable functors.

Definition 3.1. Let C be a V-category. For each object C of C, the V-functor represented by C is given by

C V

A MapC(C,A)

B MapC(C,B)

RC

MapC(A,B) MapC(C,B)MapC(C,A)

where the morphism

MapC(A,B) → MapC(C,B)MapC(C,A),

which we sometimes call the Yoneda embedding, is the one adjoint to the composition morphism in C

MapC(C,A) ⊗ MapC(A,B) → MapC(C,B)

via part (3) of Proposition 2.14.
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Before stating the Yoneda Lemma, we need the definition of an end, for which we make some observations. 
Suppose that C is a V-category and that X : Cop × C → V is a V-bifunctor. Given two objects A and B of 
C, there is an induced morphism

X(A,−) : MapC(A,B) → X(A,B)X(A,A)

in V. Using the adjunction between the tensor and cotensor in V, such a morphism corresponds to a 
morphism

X(A,A) ⊗ MapC(A,B) → X(A,B),

which in turn corresponds to a morphism

X(A,A) → X(A,B)MapC(A,B).

One can analogously produce a morphism

X(B,B) → X(A,B)MapC(A,B)

from the natural map

X(−, B) : MapC(A,B) → X(A,B)X(B,B).

Definition 3.2. Assume that V is complete, and let X : Cop × C → V be a V-bifunctor. The end of X is the 
equalizer

∫
A

X(A,A) →
∏
A

X(A,A) ⇒
∏
A,B

X(A,B)MapC(A,B)

in V whose parallel morphisms are induced by the ones described above.

We want to make a similar construction from a pair of V-functors F : C → D and X : C → V. Assuming 
that D is complete and tensored and contensored over V, we want to construct parallel morphisms

∏
A

FAXA ⇒
∏
A,B

(FBXA)MapC(A,B)

in D. We can take the first morphism on each factor to be given by the map

FAXA → (FBXA)MapC(A,B)

which corresponds under adjunction to the composite

MapC(A,B) ⊗XA⊗ FAXA → MapD(FA,FB) ⊗ FA → FB

where the first arrow uses the counit of adjunction (3) of Proposition 2.14 and the V-functor structure of 
F , and the second arrow uses the counit of adjunction (1) of Proposition 2.14. We can obtain the second 
parallel morphism

FBXB → (FBXA)MapC(A,B)
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similarly, namely as the one corresponding via adjunction to the composite

MapC(A,B) ⊗XA⊗ FBXB → XBXA ⊗XA⊗ FBXB → XB ⊗ FBXB → FB.

Definition 3.3. Assume that D is complete and tensored and cotensored over V, and let F : C → D and 
X : C → V be V-functors. The evaluated cotensor of the pair (F, X) is the equalizer

FX :=
∫
A

FAXA →
∏
A

FAXA ⇒
∏
A,B

(FBXA)MapC(A,B)

in D whose parallel morphisms are the ones described above.

Remarks 3.4. Let us make a few comments about the notation and terminology we have chosen here.

(i) Observe that, as suggested by the notation

FX =
∫
A

FAXA,

the evaluated cotensor can be thought of as a generalization of an ordinary end. In the special case 
when D = V, the assignment FX(A, B) = FBXA defines a V-bifunctor Cop × C → V whose end is 
precisely FX .

(ii) However, we have chosen to use the word “cotensor” to describe this construction. We justify this 
terminology in the next section by proving that it behaves much like a cotensor. In particular, in 
Propositions 4.4 and 4.5, we show that the assignment

(F,X) 
→ FX

defines a V-bifunctor Fun(C, V)op × Fun(C, D) → D.
(iii) In [8, 2.5], Biedermann and Röndigs use the notation hom(X, F ) for the evaluated cotensor FX .

Setting X = RC in the evaluated cotensor yields the following enriched version of the Yoneda lemma.

Lemma 3.5. Let C and D be V-categories with D complete and both tensored and cotensored over V, and let 
F : C → D be a V-functor. For each object C of C there is a natural isomorphism

FC ∼= FRC

=
∫
A

FARC(A) =
∫
A

FAMapC(C,A).

Proof. The proof follows an argument similar to the one outlined for the case where D = V in [21, §2.4]. 
The key step is noting that for each object A in C there is a morphism

FC → FAMapC(C,A)

corresponding under adjunction to

FCA : MapC(C,A) → MapD(FC,FA)

and then proving that the collection of all such morphisms exhibits FC as the equalizer of the parallel pair
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∏
A

FAMapC(C,A) ⇒
∏
A,B

(FBMapC(C,A))
MapC(A,B)

.

The result then follows by an application of Definition 3.3. �
For future use, we include the following result showing that cotensors commute with evaluated contensors.

Proposition 3.6. Suppose that D is complete and tensored and cotensored over V. For any V-functors F : C →
D and X : C → V and any object V of V, there are natural isomorphisms in V

∫
C

FCXC⊗V ∼=
∫
C

(
FCXC

)V ∼=

⎛
⎝∫

C

FCXC

⎞
⎠

V

.

Proof. The first isomorphism follows from the adjunction in part (3) of Proposition 2.14. That same propo-
sition also shows that the cotensor defines a right adjoint, and since ends are limits and right adjoints 
preserve limits, the second isomorphism follows. �

To finish this section, we give some dual constructions and results, leading to the co-Yoneda Lemma.
First, we can consider the co-Yoneda embedding, which is the assignment

MapC(B,A) → MapC(B,C)MapC(A,C),

that is adjoint to the composition morphism

MapC(B,A) ⊗ MapC(A,C) → MapC(B,C).

It gives rise to the V-functor

Cop V

A MapC(A,C)

B MapC(B,C).

RC

MapC(B,A) MapC(B,C)MapC(A,C)

We can also define the notion of a coend of a V-bifunctor Cop × C → V.

Definition 3.7. Assume that V is cocomplete. The coend of a V-bifunctor X : Cop ×C → V is the coequalizer

∐
A,B

X(A,B) ⊗ MapC(B,A) ⇒
∐
A

X(A,A) →
A∫
X(A,A)

in V whose morphisms can be obtained similarly to the ones used in the definition of end.

We can make a similar definition for a pair of V-functors F : C → D and X : C → Vop, but we do not 
distinguish it with another name and simply refer to it as a coend. In contrast to the discussion in Remark 3.4, 
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while this construction is formally dual to that of the evaluated cotensor, it does not seem to have properties 
that would justify calling it an “evaluated tensor”. In particular, the assignment Fun(C, D) ×Fun(C, Vop) → D
constructed in Definition 3.8 does not appear to be V-functorial.

Definition 3.8. Assume that D is cocomplete and tensored and cotensored over V, and let F : C → D and 
X : C → Vop be V-functors. The coend of (F, X) is the coequalizer in D of the parallel morphisms

∐
A,B

FB ⊗XA⊗ MapC(B,A) ⇒
∐
A

FA⊗XA →
A∫
FA⊗XA

analogous to those in Definition 3.3.

The following result, which we call the co-Yoneda Lemma, can be proved analogously to the Yoneda 
Lemma.

Lemma 3.9. Let C and D be V-categories with D cocomplete and both tensored and cotensored in V, and let 
F : C → D be a V-functor. For each object C in C, there is a natural isomorphism

FC ∼=
A∫
FA⊗RC(A) =

A∫
FA⊗ MapC(A,C).

4. Enriched functor categories

Because our motivation arises from functor calculus, we are primarily interested in categories whose 
objects are themselves given by functors between categories. Thus, let V be a complete closed monoidal 
category, and let C and D be V-categories with C small. We consider the category Fun(C, D) whose objects 
are V-functors C → D and whose morphisms are V-natural transformations.

We emphasize that, although the notation Fun(C, D) is often used to denote the category of all functors 
C → D with no additional structure, in this paper we always use it to denote the category of V-functors 
and V-natural transformations.

Proposition 4.1. [10, Section 5] The category Fun(C, D) is a V-category. For V-functors F, G : C → D, the 
mapping object is given by

MapFun(C,D)(F,G) :=
∫
A

MapD(FA,GA)

where A ranges over all objects of C.

Proof. To see the mapping object indeed defines the structure of a V-category, first observe that for any 
V-functors F, G, H : C → D, we can define composition morphisms

∫
A

MapD(FA,GA) ⊗
∫
A

MapD(GA,HA) →
∫
A

MapD(FA,HA)

using the composition morphisms

MapD(FA,GA) ⊗ MapD(GA,HA) → MapD(FA,HA)
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in D for any object A of C. The identity morphism at a V-functor F is the morphism

I →
∫
A

MapD(FA,FA)

induced by the collection of identity morphisms

i : I → MapD(FA,FA)

in D for each object A of C.
To complete the proof, we need to show that the ordinary category underlying this V-category is the 

category of V-functors Fun(C, D); see Definition 2.7. Observe that a morphism

I →
∫
A

MapD(FA,GA)

in V is equivalently a morphism

I →
∏
A

MapD(FA,GA)

such that the morphisms obtained from composing with the parallel pair

∏
A

MapD(FA,GA) ⇒
∏
A,B

MapD(FA,GB)MapC(A,B)

are equal. By unpacking the definitions of this parallel pair, we see that such a map is given by a collection 
of morphisms

αA : I → MapD(FA,GA),

where A ranges over all objects of C, such that the following diagram commutes for all objects A and B of 
C:

I ⊗ MapC(A,B) MapD(FA,GA) ⊗ MapC(A,B) MapD(FA,GA) ⊗ MapD(GA,GB)

MapC(A,B) ⊗ I

MapC(A,B) ⊗ MapD(FB,GB) MapD(FA,GB) ⊗ MapD(FB,GB) MapD(FA,GB).

αA ⊗ 1 1 ⊗GAB

FAB ⊗ 1 ◦

1 ⊗ αB

◦

Comparing with Definition 2.10, we that there is a natural isomorphism of sets

HomV

⎛
⎝I,

∫
A

MapD(FA,GA)

⎞
⎠ ∼= HomFun(C,D)(F,G).

Thus Fun(C, D) is a V-category with the indicated mapping objects. �
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We now prove that, if D is either tensored or cotensored over V, then that same structure is transferred 
to Fun(C, D).

Proposition 4.2. If D is tensored over V, then Fun(C, D) is also tensored over V, with tensor structure 
defined by (F ⊗ V )(A) = FA ⊗ V for each object A in C.

Proof. More specifically, we define the V-functor

Fun(C,D) × V Fun(C,D)

(F, V ) F ⊗ V

(G,W ) G⊗W

−⊗−

MapFun(C,D)(F,G) ⊗WV MapFun(C,D) (F ⊗ V,G⊗W )

where (F ⊗ V )(A) = FA ⊗ V for each object A in C.
To show that F ⊗ V is a V-functor C → D we have to define, for any objects A and B of C, compatible 

morphisms

MapC(A,B) → MapD(FA⊗ V, FB ⊗ V )

in V. Such morphisms are given by composites

MapC(A,B) ∼= MapC(A,B) ⊗ I
FAB⊗i

MapD(FA,FB) ⊗ V V

MapD(FA⊗ V, FB ⊗ V ),

where the map i was described in Remark 2.8 and the downward morphism comes from applying Defini-
tion 2.11 in D.

Given an object A of C, we can apply Definition 2.11 to D = FA and E = GA to obtain a morphism in 
V

MapD(FA,GA) ⊗WV → MapD(FA⊗ V,GA⊗W ).

As A varies, we obtain an assignment

MapFun(C,D)(F,G) ⊗WV → MapFun(C,D) (F ⊗ V,G⊗W )

so − ⊗− : Fun(C, D) ⊗ V → Fun(C, D) is itself a V-functor.
Finally, the isomorphisms

MapD(FA⊗ V,GA) ∼= MapD(FA,GA)V

in D induce the necessary corresponding isomorphisms

MapFun(C,D)(F ⊗ V,G) ∼= MapFun(C,D)(F,G)V
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in Fun(C, D). �
We now prove the analogous result when D is cotensored in V.

Proposition 4.3. If D is cotensored over V, then so is Fun(C, D), via (FV )(A) = FAV for each object A in 
C.

Proof. We claim that the definition of the cotensor we have given for objects defines a bifunctor

Fun(C,D) × Vop → Fun(C,D).

Setting D = FA and E = GA for each object A of C in Definition 2.12, we get a morphism

MapD(FA,GA) ⊗ V W → MapD(FAV , GAW )

in V. As we take ends over all objects A we obtain the following assignment.

Fun(C,D) × Vop Fun(C,D)

(F, V ) FV

(G,W ) GW

(−)(−)

MapFun(C,D)(F,G) ⊗ V W MapFun(C,D)
(
FV , GW

)

To see that FV is a V-functor C → D note that for objects A and B of C, the map

MapC(A,B) → MapD
(
FAV , FBV

)
is given by the composite

MapC(A,B) ∼= MapC(A,B) ⊗ I
FAB⊗i

MapD(FA,FB) ⊗ V V

MapD(FAV , FBV ),

where the downward morphism is another instance of the one in Definition 2.12.
Finally, we obtain an isomorphism

MapFun(C,D)(F,GV ) ∼= MapFun(C,D)(F,G)V

from the isomorphisms

MapD(FA,GAV ) ∼= MapD(FA,GA)V

in V for every object A of C. �
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One might also wonder if Fun(C, D) is enriched, tensored, and cotensored in Fun(C, V), and in particular, 
if the evaluated cotensor of Definition 3.3 serves as a cotensor in this context. Having such an enrichment 
would require Fun(C, V) to be a closed monoidal category. While Day [9] shows that Fun(C, V) has this 
additional structure for certain V-categories C satisfying some further restrictive conditions, it is not true 
in general.

For our work, we do not need this further enrichment, and we prefer to avoid imposing extra conditions 
on C to obtain it. We do, however, want to make use of adjunctions similar to those of parts (2) and (3) 
of Proposition 2.14 for the evaluated cotensor. We thus establish the existence of such adjunctions via the 
next two propositions. While we do not need it for our purposes, for the curious reader we also include a 
third result establishing the analogue of part (1) of Proposition 2.14.

The proofs of these three results are very similar in structure, so we only include a full argument for the 
first of them. For the remaining two we simply state the result and leave the details to the reader.

We begin with the adjunction analogous to part (3) of Proposition 2.14, in which the evaluated cotensor 
is used to define the right adjoint.

Proposition 4.4. For each V-functor X : C → V there is a V-adjunction

D Fun(C,D)

X ⊗−

(−)X

⊥

where (X ⊗D)(C) := XC ⊗D for each object C of C.

Proof. First we show that X ⊗− is well defined on objects, i.e., that X ⊗D is a V-functor C → D for each 
object D of D. In order to do so, we need to construct a morphism

MapC(A,B) → MapD(XA⊗D,XB ⊗D)

in V for each pair of objects A and B in C. Such a morphism is given by the composite

MapC(A,B) → XBXA → MapD(D,XB ⊗D)XA ∼= MapD(XA⊗D,XB ⊗D)

where the second morphism is induced by the unit of the adjunction in part (1) of Proposition 2.14, applied 
to the component at XB.

To see that X ⊗ − defines a V-functor D → Fun(C, D), note that for any pair of objects D and E in D
and object C in C we have a morphism

MapD(D,E) → MapD
(
D, (XC ⊗ E)XC

) ∼= MapD(XC ⊗D,XC ⊗E),

in V given by the unit of the adjunction in part (3) of Proposition 2.14. The collection of all such morphisms 
induces a map

MapD(D,E) → MapFun(C,D)(X ⊗D,X ⊗ E).
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Next, we show that (−)X defines a V-functor Fun(C, D) → D, for which we must construct a morphism

MapFun(C,D)(F,G) → MapD(FX , GX) = MapD

⎛
⎝∫

C

FCXC ,

∫
C

GCXC

⎞
⎠

in V for each pair of V-functors F, G : C → D. Observe that for each object C in C there is a composite

MapD(FC,GC) → MapD(XC ⊗ FCXC , GC) ∼= MapD(FCXC , GCXC) → MapD

⎛
⎝∫

C

FCXC , GCXC

⎞
⎠

where the first map given by the counit of the adjunction in part (3) of Proposition 2.14 and the second 

map is induced by the projection 
∫
C

FCXC → FCXC . The collection of these morphisms induces

MapFun(C,D)(F,G) =
∫
C

MapD(FC,GC) →
∫
C

MapD

⎛
⎝∫

C

FCXC , GCXC

⎞
⎠ ,

and since MapD(D, −) is a right adjoint for all D and therefore preserves limits, we have

∫
C

MapD

⎛
⎝∫

C

FCXC , GCXC

⎞
⎠ ∼= MapD

⎛
⎝∫

C

FCXC ,

∫
C

GCXC

⎞
⎠ .

Finally, we show that the V-functors in the Proposition form an adjoint pair by constructing a unit and 
a counit satisfying the triangle identities. The unit of the adjunction at an object D of D is the morphism

D →
∫
C

(XA⊗D)XA = (X ⊗D)X

induced by the collection of morphisms

D → (XA⊗D)XA

given by unit of the adjunction of part (3) of Proposition 2.14.
The counit of the adjunction at a V-functor F : C → D is the natural transformation

X ⊗
∫
C

FCXC → F

induced by the composites

XA⊗
∫
C

FCXC → XA⊗
∏
C

FCXC → XA⊗ FAXA → FA

for each object A of C, where the rightmost arrow is the counit of the adjunction in part (3) of Proposi-
tion 2.14. It is now straightforward to show that the triangle identities are satisfied. �

The next result provides a similar analogue to part (2) of Proposition 2.14.



18 L. Bandklayder et al. / Topology and its Applications 316 (2022) 108099
Proposition 4.5. For each V-functor F : C → D there is a V-adjunction

D Fun(C,V)op,

MapD(−, F )

F (−)

⊥

where MapD(D, F )(A) = MapD(D, FA).

To end this section, we provide an adjunction in which tensoring with an object in V in part (1) of 
Proposition 2.14 is replaced by tensoring with an object in Fun(C, V).

Recall the definitions of (X ⊗D) and MapD(D, F ) from Propositions 4.4 and 4.5, respectively.

Proposition 4.6. For each object D of D there is a V-adjunction

Fun(C,V) Fun(C,D).

−⊗D

MapD(D,−)

⊥

5. Enriched model categories

We now turn to V-categories that are equipped with the additional structure of a model category. Recall 
that a model category is a category C with three distinguished classes of morphisms called cofibrations, 
fibrations, and weak equivalences, satisfying five axioms [18, 7.1.3]. An acyclic fibration is a fibration which 
is also a weak equivalence, and similarly an acyclic cofibration is both a cofibration and a weak equivalence.

For example, the category S of simplicial sets has a model structure with weak equivalences given by 
the maps whose geometric realizations are weak homotopy equivalences, fibrations the Kan fibrations, and 
cofibrations the monomorphisms [26].

An object A in a model category C is cofibrant if the unique morphism from the initial object in C to A
is a cofibration. Dually, an object X is fibrant if the unique morphism from X to the final object in C is a 
fibration. Given a model structure on a category C we often have a good understanding of the fibrant or 
the cofibrant objects, and sometimes both. The model structure on a category C is usually set up so that 
the cofibrant or the fibrant objects are the primary objects of interest. For instance, in the standard model 
structure on the category of simplicial sets S all objects are cofibrant and Kan complexes are the fibrant 
objects.

In nice examples, a model category has the additional structure of being cofibrantly generated [18, §11.1], 
in that there are sets I and J of maps such that a map is an acyclic fibration if and only if it has the right 
lifting property with respect to the maps in I, and a fibration if and only if it has the right lifting property 
with respect to J , with both sets satisfying the small object argument [18, 10.5.16]. In the example S the 
set I can be taken to be the set of boundary inclusions, and the set J can be taken to be the set of horn 
inclusions.

As before, let (V, ⊗, I) be a closed symmetric monoidal category but now we require it to also have the 
structure of a model category. In particular, we want these two structures on V to be compatible, in the 
following sense.
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Definition 5.1. A symmetric monoidal model category V is a symmetric monoidal category (V, ⊗, I) together 
with a model category structure on V satisfying the following conditions.

• If i : K → L and j : V → W are cofibrations in V, then

K ⊗W ∪K⊗V L⊗ V → L⊗W

is a cofibration and a weak equivalence if i or j is.
• If QI is a cofibrant replacement of I, then for any object V of V the induced map QI ⊗ V → I ⊗ V is 

a weak equivalence.

Example 5.2. We have seen in Example 2.5 that the category S of simplicial sets is a closed symmetric 
monoidal category with the monoidal structure given by the usual product. This structure is compatible 
with the model structure described above [19, 4.2.8].

Next, we consider what it means for the model structure on D and the V-enrichment of D to be compatible 
with one another. We label the axioms below according to the usual convention when V is the category of 
simplicial sets, i.e., in the definition of a simplicial model category.

Definition 5.3. Let V be a closed symmetric monoidal model category. A V-model category is a V-category 
D that is equipped with a model structure on its underlying category such that

(MC6) the category D is tensored and cotensored over V; and
(MC7) for any fibration p : D → E in D and cofibration i : V → W in V, the pullback corner map

DV ×EV EW DV

EW EV

DW

is a fibration, and is a weak equivalence if either i or p is.

Remark 5.4. Assuming that D is a model category and (MC6) holds, (MC7) is equivalent to the condition

(MC7’) for any cofibration i : D → E in D and cofibration j : V → W in V, the pushout corner map

D ⊗ V D ⊗W

E ⊗ V (D ⊗W ) �D⊗V (E ⊗ V )

E ⊗W
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is a cofibration, and is a weak equivalence if either i or j is.

This statement is proved in [18, 9.3.7] when V is the category of simplicial sets. The proof is analogous 
for more general V.

Convention 5.5. From now on we assume that C is a small V-category and that D is a V-model category.

The following result tells us that given any cofibrantly generated V-model category D, there exists a model 
structure on Fun(C, D) induced by the model structure on D. We omit some of the technical assumptions, 
since we do not need them here, but refer the reader to [16, 4.32] for the precise statement. See also [12], 
[11], and [32] for the special case when D = V, using slightly different model category assumptions.

Theorem 5.6. Let C be a small V-category and D be a cofibrantly generated V-model category satisfying some 
mild conditions on the sets of generating cofibrations and acyclic cofibrations. Then the category Fun(C, D)
has a model structure in which a morphism F → G in Fun(C, D) is:

• a weak equivalence if FA → GA is a weak equivalence in D for all objects A of C;
• a fibration if FA → GA is a fibration in D for all objects A of C; and
• a cofibration if it has the left lifting property with respect to all acyclic fibrations in Fun(C, D).

This model structure on Fun(C, D) is called the projective model structure.

Remark 5.7. We often refer to the weak equivalences in this model structure as levelwise weak equivalences, 
and similarly for the fibrations. Observe that the fibrant objects in this model structure are those functors 
F : C → D such that FA is fibrant in D for every object A of C.

Lemma 5.8. When it exists, the projective model structure on Fun(C, D) has the structure of a V-model 
category.

Proof. We have proved axiom (MC6) in Propositions 4.2 and 4.3, so it remains to show that axiom (MC7) 
is satisfied. The fibrations and weak equivalences in Fun(C, D) are the levelwise fibrations and weak equiv-
alences, respectively, and (MC7) holds in D by assumption. It follows that for any fibration p : F → G in 
Fun(C, D) and cofibration i : V → W in V, the pullback corner map

FV ×GV GW FV

GW GV

FW

is a fibration, and is a weak equivalence if either i or p is. �
6. Homotopy limits, homotopy colimits, and the evaluated cotensor in simplicial model categories

With this section, we begin our transition to functor calculus applications. A key step in the process 
of defining functor calculus model structures as in [8] is the redefinition of polynomial approximations in 
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terms of the evaluated cotensor of Definition 3.4. We use this section to prove a result showing how this 
evaluated cotensor interacts with homotopy limits and colimits in simplicial model categories. This result 
will be used in the next section to show that these redefined polynomial approximations are equivalent to 
those obtained via the original definitions.

We begin this section by first looking at limits and colimits.

Lemma 6.1. Let D be a complete V-category that is tensored and cotensored over V, and let V be cocomplete. 
For any object D of D, small category I, and functor I → V, there is a natural isomorphism

D
colim

i
Vi ∼= lim

i
(DVi).

Proof. Since all colimits can be built from coproducts and coequalizers [31, 3.4.11], it is enough to prove 
the lemma for these two kinds of colimits. For coproducts, we have to show that given objects V and W in 
V, there is a natural isomorphism DV�W ∼= DV ×DW . We do so by showing that for each object E of D
there is a natural isomorphism of sets

HomD(E,DV�W ) ∼= HomD(E,DV ×DW ).

A morphism E → DV�W is equivalently given by its adjoint morphism E⊗(V �W ) → D. Since the functor 
E⊗− is a left adjoint (Proposition 2.14), it preserves colimits, so E⊗ (V �W ) ∼= (E⊗V ) � (E⊗W ). Thus 
any morphism E → DV�W is equivalently given by a pair of morphisms

(E ⊗ V → D,E ⊗W → D)

or, via adjunction (3) from Proposition 2.14, a pair

(E → DV , E → DW ).

By the universal property of products, this pair is equivalent to a morphism E → DV ×DW .
For coequalizers, we want to show that for any object E of D and parallel pair U ⇒ V of morphisms in 

V there is a natural isomorphism

HomD(E,DW ) ∼= HomD(E,Z),

where W is the coequalizer

U ⇒ V → W

in V, and Z is the equalizer

Z → DV ⇒ DU .

A morphism E → DW is equivalently given by a morphism E ⊗ W → D, and since E ⊗ − preserves 
coequalizers, it is equivalent to a morphism E ⊗ V → D such that the diagram

E ⊗ U ⇒ E ⊗ V → D

commutes. Applying adjunction (3) of Proposition 2.14 gives the diagram

E → DV ⇒ DU
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which, by the universal property of equalizers, is equivalent to a morphism E → Z. �
We next consider how the evaluated cotensor of Definition 3.4 interacts with limits and colimits.

Lemma 6.2. Let D be a complete V-category that is tensored and cotensored over V, and let V be cocomplete. 
Let I be a small category and let X be a functor X : I → Fun(C, V). Then for any V-functor F : C → D, 
there is a natural isomorphism

F
colim

i
Xi ∼= lim

i
FXi.

Proof. Using the definition of the evaluated cotensor, we compute

F
colim

i
Xi :=

∫
C

FC
colim

i
XiC

∼=
∫
C

lim
i

FCXiC

∼= lim
i

∫
C

FCXiC

:= lim
i

FXi.

The first isomorphism holds by Lemma 6.1, and the second isomorphism holds because limits commute [31, 
3.8.1]. �

For the remainder of this section, we let V = S, the category of simplicial sets, and hence work exclusively 
with functors between simplicial model categories.

Since we are working in a homotopy-theoretic setting, we want to work with homotopy limits and colimits, 
so that our constructions are homotopy invariant. We start by recalling the standard constructions of 
homotopy limits and colimits in simplicial model categories as found in [18, 18.1.2, 18.1.8]. We note that 
these constructions include an implicit assumption that the diagrams are objectwise fibrant in the case of 
homotopy limits and cofibrant for homotopy colimits.

Definition 6.3. Let M be a simplicial model category and I a small category. If X is an I-diagram in M, 
then the homotopy colimit of X, denoted by hocolim

i
Xi, is the coequalizer of the maps

∐
σ : a→a′

Xa ⊗B(a′ ↓ I)op
φ

⇒
ψ

∐
a

Xa ⊗B(a ↓ I)op,

where φ is defined on the summand corresponding to σ : a → a′ to be the composite of the map

σ∗ ⊗ idB(a′↓I) : Xa ⊗B(a′ ↓ I)op → Xa′ ⊗B(a′ ↓ I)op

with the natural injection into the coproduct, and ψ is given by the composite of the map

idXa
⊗B(σ∗) : Xa ⊗B(a ↓ I)op → Xa′ ⊗B(a′ ↓ C)op

with the natural injection into the coproduct. Here, σ∗ denotes the functor induced by precomposition with 
σ, B denotes the nerve of a category, and a ↓ I denotes the category of objects of I under a; see [18, 11.8.3, 
14.1.1] for details.
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Definition 6.4. Let M be a simplicial model category and let I be a small category. If X is an I-diagram 
in M, then the homotopy limit of X, denoted by holim

i
Xi, is defined as the equalizer of the maps

∏
a

XB(I↓a)
a

φ

⇒
ψ

∏
(σ : a→a′)

XB(I↓a)
a′ ,

where the projection of the map φ on the factor σ : a → a′ is the composite of a natural projection from the 
product with the map

σ
idB(I↓a)
∗ : XB(I↓a)

a → XB(I↓a)
a′ ,

and the projection of the map ψ is given by the composite of a natural projection from the product with 
the map

(idXa′ )B(σ∗) : XB(I↓a)
a′ → XB(I↓a)

a′ .

Here, σ∗ denotes the functor induced by postcomposition with σ, and I ↓ a denotes the category of objects 
in I over a.

Using these models for homotopy limits and colimits, we establish the desired result for the evaluated 
cotensor.

Proposition 6.5. Let I be a small category and X an I-diagram in Fun(C, S). Let D be a cofibrantly generated 
simplicial model category satisfying the conditions of Theorem 5.6, so that Fun(C, D) has the structure of a 
simplicial model category. Then for any F in Fun(C, D),

F
hocolim

i
Xi ∼= holim

i
FXi .

Proof. By the definition of homotopy colimit and Lemma 6.2, we have

F
hocolim

i
Xi = F colim

(∐
i→i′ Xi⊗B(i′↓I)op⇒∐

i Xi⊗B(i↓I)op
)

∼= lim
(∏

i

FXi⊗B(i↓I)op ⇒
∏
i→i′

FXi⊗B(i′↓I)op
)
.

The definition of the evaluated cotensor, the associativity of tensoring and cotensoring [18, 9.1.11], and 
Proposition 3.6 yield

FXi⊗B(i′↓I)op =
∫
C

FCXiC⊗B(i′↓I)op

∼=
∫
C

(
FCXiC

)B(i′↓I)op

∼=

⎛
⎝∫

C

FCXiC

⎞
⎠

B(i′↓I)op

=
(
FXi

)B(i′↓I)op
.

Combining this computation with the previous equivalence, we obtain
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F
hocolim

i
Xi = lim

(∏
i

FXi⊗B(i↓I)op ⇒
∏
i→i′

FXi⊗B(i′↓I)op
)

∼= lim
(∏

i

(
FXi

)B(Iop↓i) ⇒
∏
i→i′

(
FXi

)B(Iop↓i′)
)

= holimi F
Xi ,

where the middle isomorphism follows from [18, 11.8.7]. �
7. An application to functor calculus

In this section, we establish results that allow one to replace the standard constructions of some functor 
calculi, particularly those of [14] and [6], with enriched constructions that can be used to produce cofibrantly 
generated model structures for these functor calculi. In the case of the Goodwillie calculus, Biedermann and 
Röndigs have shown in [8] how to use these enriched constructions to build cofibrantly generated n-excisive 
model structures. In the sequel to this paper [2], we will provide a general result that recovers this structure 
and produces similar structures for other functor calculi.

After stating a corollary to Proposition 6.5, we divide the remainder of this section into three parts. In 
the first subsection, we apply Corollary 7.1 to redefine the building blocks Tn of Goodwillie’s n-excisive 
approximations to functors in terms of the evaluated cotensor of Definition 3.3 and representable functors 
of Definition 3.1. In the second subsection, we make a similar redefinition of the discrete degree n approxi-
mations ⊥n of Bauer, Johnson, and McCarthy. Finally, in the third subsection, we show that these redefined 
building blocks define simplicial endofunctors on Fun(C, D).

Throughout this section, we work with simplicial enrichments. The categories C and D are assumed to 
be simplicial categories, with D a simplicial model category. While we would like to ask that C also be a 
simplicial model category, we need some smallness conditions so that the category Fun(C, D) of simplicial 
functors can be given the projective model structure as above. Yet, we also want to be able to apply certain 
model category techniques, such as homotopy pushouts, in C.

Thus, we ask that C be a small simplicial subcategory of a simplicial model category that has a final 
object ∗C. In addition, we want C to be tensored in finite simplicial sets; to satisfy this condition we may 
allow C to be essentially small, namely, equivalent to a small simplicial category. Each of our two situations 
requires some further assumptions, but we defer mention of them to the appropriate subsections below.

The main results of the following two subsections are consequences of the following corollary to Propo-
sition 6.5.

Corollary 7.1. Let I be a small category and X be an I-diagram in C. Then for a simplicial functor F , there 
is a natural isomorphism

holim
i

FXi
∼= F

hocolim
i

RXi

.

Proof. By Proposition 6.5, followed by the enriched Yoneda Lemma (Lemma 3.5), we have

F
hocolim

i
RXi ∼= holim

i
FRXi

= holim
i

∫
C

FCRXiC

∼= holimFXi. �

i
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We apply this result to two examples in the next two subsections.

7.1. A simplicial representable replacement for Goodwillie calculus

In the Goodwillie calculus, the n-excisive approximation to a functor F is a functor PnF , which is defined 
as the homotopy colimit of a sequence of functors:

PnF := hocolimk

(
F → TnF → T 2

nF → · · · → T k
nF → . . .

)
.

In this section, we are interested in the functor Tn, and in particular we want to show how, for simplicial 
functors, it can be defined in terms of certain representable functors, using Corollary 7.1.

Throughout this subsection, we assume the conditions on the categories C and D described in the intro-
duction to the section; we additionally assume that C is closed under finite homotopy pushouts.

To define TnF as Goodwillie did, we start with some notation. For any n ≥ 1, let n = {1, . . . , n}. We 
think of the power set P(n) as a poset whose elements are subsets of n and whose ordering is given by set 
inclusion. We can thus regard P(n) as a category and will make use of two of its subcategories. Let P≤1(n)
be the full subcategory whose objects are the subsets of n of cardinality 0 and 1 and P0(n) be the full 
subcategory of P(n) whose objects are the nonempty subsets. For instance, the diagrams below represent 
P(3), P0(3) and P≤1(3), respectively:

∅ {1}

{2} {1, 2}

{3} {1, 3}

{2, 3} {1, 2, 3}

{1}

{2} {1, 2}

{3} {1, 3}

{2, 3} {1, 2, 3}

∅ {1}.

{2}

{3}

For an object A in C and a finite set U , we define the fiberwise join A ∗U in C to be the homotopy colimit 
of the P≤1(n)-diagram in C that assigns to ∅ the object A and assigns to each one-element set {i} the final 
object ∗C. So, for n = 1, the fiberwise join is just the simplicial cone on A, and in general, A ∗U is n copies 
of the simplicial cone on A glued along A. As an example, for |U | = 4, A ∗U is the homotopy colimit of the 
diagram below:

A ∗C .∗C

∗C∗C

The following definition is due to Goodwillie in the case where C and D are each either the category of 
spaces or the category of spectra.

Definition 7.2. [14] Given a functor F : C → D, we define the functor TnF : C → D by

TnF (A) = holim
U∈P0(n+1)

F (A ∗ U).

Following Biedermann and Röndigs [8], we have the following version of TnF for a simplicial functor F .
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Definition 7.3. Given a simplicial functor F : C → D, we define the functor TR
n F : C → D by

TR
n F (A) = F

hocolim
U

RA∗U

=
∫
C

FC
hocolim

U
RA∗UC =

∫
C

FC
hocolim

U
MapC(A∗U,C)

,

where the homotopy colimits are taken over all objects U of P0(n + 1).

The next proposition is an immediate consequence of Corollary 7.1.

Proposition 7.4. If F : C → D is a simplicial functor, then the functors TnF and TR
n F are isomorphic.

Proof. For an object A in C, applying Corollary 7.1 to TnF (A) gives us

TnF (A) = holim
U

F (A ∗ U)

∼= F
hocolim

U
RA∗U

= TR
n F (A). �

Remark 7.5. To define their n-excisive model structures, Biedermann and Röndigs define TR
n F (A) as FAn

where An is simplicially homotopy equivalent to hocolim
U

RA∗U in Fun(C, S). Since simplicial homotopy 

equivalences are preserved by simplicial functors, it follows that FAn � TR
n F (A) ∼= TnF (A).

7.2. A simplicial representable replacement for discrete calculus

The discrete functor calculus of Bauer, Johnson, and McCarthy [6] is an adaptation of the abelian functor 
calculus of Johnson and McCarthy [20] to simplicial model categories. Like Goodwillie calculus, it associates 
a “degree n” polynomial approximation ΓnF to a functor F . The notion of “degree n” in this case is weaker 
than that of Goodwillie, and closer in spirit to the notion of degree n for polynomial functions.

In this subsection, we make two assumptions on the categories C and D, in addition to those specified 
at the beginning of the section. We assume that C is closed under finite coproducts, and that D is pointed
with initial and terminal object �. (To build polynomial approximations in [6], we also require that D be 
stable, but for the results in this paper the stability condition is not necessary.)

Recall that a comonad (⊥, Δ, ε) acting on a category A consists of an endofunctor ⊥ : A → A together 
with natural transformations Δ: ⊥ → ⊥⊥ and ε : ⊥ → idA satisfying certain identities. For an object A in 
A, there is an associated simplicial object

[k] 
→ ⊥k+1A

whose face and degeneracy maps are defined using the natural transformations ε and Δ. (See [36, §8.6] for 
more details, noting that the author uses the term “cotriple” for what we are calling a “comonad” here.)

The functor ΓnF is defined in terms of a comonad ⊥n+1 that acts on the category of functors from C to 
D. More explicitly, it is the homotopy cofiber given by

ΓnF := hocofiber(|⊥∗+1
n+1F | → F )

where |⊥∗+1
n+1F | is the realization of the standard simplicial object associated to the comonad ⊥n+1 acting 

on F .
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We first review the definition of ⊥n. We again make use of the power set P(n) of the set n = {1, . . . , n}, 
regarded as a category, and the category P0(2), the full subcategory of P(2) whose objects are the nonempty 
subsets of {1, 2}.

For an object A in C and a functor F : C → D, let Fn(A, −) be the P(n)-diagram that assigns to U ⊆ n
the object

Fn(A,U) := F

(∐
i∈n

Ai(U)
)
,

where

Ai(U) :=
{
A i /∈ U,

∗C i ∈ U.
(7.6)

The value of the functor ⊥nF : C → D at the object A is defined as an iterated homotopy fiber of the 
diagram Fn(A, −), as we now explain.

For any F : C → D as above and any object A of C, let FP0(2)
n : C × P0(2)×n → D be given by

FP0(2)
n (A; (S1, . . . , Sn)) :=

{
Fn(A,ϕ(S1, . . . , Sn)) Si �= {2} for all i,
� otherwise,

where

ϕ(S1, . . . , Sn) = {i | Si = {1, 2}}. (7.7)

Example 7.8. To help make sense of this definition, we consider the example of n = 2. Then P0(2) ×P0(2)
can be depicted as

({1}, {1}) ({1}, {1, 2}) ({1}, {2})

({1, 2}, {1}) ({1, 2}, {1, 2}) ({1, 2}, {2})

({2}, {1}) ({2}, {1, 2}) ({2}, {2}).

The relevant values of ϕ in this case are

ϕ({1}, {1}) = ∅

ϕ({1}, {1, 2}) = {2}
ϕ({1, 2}, {1}) = {1}

ϕ({1, 2}, {1, 2}) = {1, 2}.
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Then FP0(2)
2 (A, −) is given by the diagram

F 2(A,∅) F 2(A, {2}) �

F 2(A, {1}) F 2(A, {1, 2}) �

� � �,

which can be rewritten as

F (A�A) F (A� ∗C) �

F (∗C �A) F (∗C � ∗C) �

� � �.

Definition 7.9. For any functor F : C → D and any object A of C, define

⊥nF (A) := holim(S1,...,Sn) F
P0(2)
n (A; (S1, . . . , Sn)) ,

where the homotopy limit is taken over the category P0(2)×n.

Observe that ⊥nF (A) is equivalent to the iterated homotopy fiber of the P(n)-diagram that assigns to 
the set U ⊆ n the object Fn(A, U). For example, ⊥2F (A) is equivalent to the object obtained by taking 
the homotopy fibers of the vertical morphisms in

F (A
∐

A) F (A
∐

∗C)

F (∗C
∐

A) F (∗C
∐

∗C)

and then taking the homotopy fiber of the induced map between the two vertical homotopy fibers. See [6, 
§3.1] for details.

Our next step is to define a representable version of ⊥nF in a manner similar to that used for TnF

in Definition 7.3 and Proposition 7.4. To do so, we rewrite FP0(2)
n (−; (S1, . . . , Sn)) as a functor applied to 

objects in a single category C⊥, obtained from C by adjoining an initial object ⊥. In other words, C⊥ is the 
category whose objects are the objects of C together with one additional object ⊥, and whose morphisms 
are the morphisms of C together with the identity morphism on ⊥ and a unique morphism ⊥ → A for each 
object A in C.

Given a functor F : C → D, we can extend it to a functor F : C⊥ → D defined on objects by

F (A) :=
{
F (A) A ∈ ob(C)
� A = ⊥

and on morphisms by
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F (f : A → B) =

⎧⎪⎪⎨
⎪⎪⎩
F (f) f is a morphism in C
id� f = id⊥

� → F (B) A = ⊥,

where in the last case the arrow is the unique one from the zero object � of D. It is straightforward to 
confirm that Fun(C⊥, D) is also a simplicial model category

For an object A in C and an object S = (S1, . . . , Sn) of P0(2)×n, using (7.6) and (7.7), we define

A � S :=

⎧⎨
⎩
⊥ Si = {2} for some i,∐
i∈n

Ai(ϕ(S)) otherwise. (7.10)

Note that

FP0(2)
n (A;S) = F (A � S),

so we can rewrite ⊥nF (A) as

⊥nF (A) = holim
S

F (A � S).

Applying Corollary 7.1, we see that

⊥nF (A) ∼= F
hocolim

S
RA�S

=
∫
C

FC
hocolim

S
RA�S(C)

.

We summarize these ideas in the definition of the representable version of ⊥nF and subsequent proposition.

Definition 7.11. Let F : C → D be a simplicial functor. We define, for an object A in C,

⊥R
nF (A) := F

hocolim
S

RA�S

=
∫
C

FC
hocolim

S
RA�S(C)

, (7.12)

where each homotopy colimit is taken over the category P0(2)×n.

Proposition 7.13. Let F : C → D be a simplicial functor. Then ⊥nF is isomorphic to ⊥R
nF .

7.3. Simplicial functors

Finally, in this subsection we prove that ⊥R
n and TR

n define simplicial functors.

Proposition 7.14. Let C be a small simplicial subcategory of a simplicial model category that is closed under 
finite homotopy pushouts and tensored in finite simplicial sets, and let D be a simplicial model category. If 
F : C → D is a simplicial functor, then so is TR

n F .

Lemma 7.15. For a fixed finite set U , the join functor − ∗ U : C → C is a simplicial functor.

Proof. Since C is tensored in finite simplicial sets, we have, for any n ≥ 0 and any objects A and B in C, a 
map

HomC(A⊗ Δ[n], B) → HomC ((A⊗ Δ[n]) ∗ U,B ∗ U) .
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As a left adjoint, tensoring with Δ[n] commutes with the join construction to yield a map

HomC(A⊗ Δ[n], B) → HomC ((A ∗ U) ⊗ Δ[n], B ∗ U) .

By a basic property of mapping spaces in simplicial categories [13, II.2.2], we can consider this map instead 
as

MapC(A,B)n → MapC(A ∗ U,B ∗ U)n.

As a result, we have a map of simplicial sets

MapC(A,B) → MapC(A ∗ U,B ∗ U)

and can conclude that − ∗ U is a simplicial functor. �
Proof of Proposition 7.14. We want to show that TR

n F : C → D is a simplicial functor, so for any objects A
and B of C, we need to define compatible maps of simplicial sets

MapC(A,B) → MapD(TR
n FA, TR

n FB),

namely, applying the definition of TR
n , maps

MapC(A,B) → MapD

⎛
⎝∫

C

FC
hocolim

U
MapC(A∗U,C)

,

∫
C

FC
hocolim

U
MapC(B∗U,C)

⎞
⎠ .

We apply the co-Yoneda embedding defined following Proposition 3.6 to obtain maps

MapC(A,B) → MapC(A ∗ U,B ∗ U) → MapC(A ∗ U,C)MapC(B∗U,C),

where C is any other object of C. Note here we have also used the fact that − ∗ U is simplicial from 
Lemma 7.15. Using the isomorphism MapC(A, B) ∼= I⊗MapC(A, B) and the unit map I → MapD(FC, FC), 
we obtain a map

MapC(A,B) → MapD(FC,FC) ⊗ MapC(A ∗ U,C)MapC(B∗U,C).

Now, applying the assignment in Definition 2.12 to D = E = FC, V = MapC(A ∗ U, C), and W =
MapC(B ∗ U, C), produces a map

MapD(FC,FC) ⊗ MapC(A ∗ U,C)MapC(B∗U,C) → MapD(FCMapC(A∗U,C), FCMapC(B∗U,C)).

Precomposing with the previous map, we thus have a map

MapC(A,B) → MapD(FCMapC(A∗U,C), FCMapC(B∗U,C)).

We can now apply a homotopy colimit over all U in the cotensors to get a map

MapC(A,B) → MapD

(
FC

hocolim
U

MapC(A∗U,C)
, FC

hocolim
U

MapC(B∗U,C))
,

and then taking an end over all objects C of C gives the desired map. �
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Proposition 7.16. The functor

TR
n : Fun(C,D) → Fun(C,D)

given by

F 
→ TR
n F

is a simplicial functor.

Proof. We need to define compatible morphisms of simplicial sets

MapFun(C,D)(F,G) → MapFun(C,D)(TR
n F, TR

n G)

for any simplicial functors F, G : C → D. Applying the definition of TR
n , we need to define a map

MapFun(C,D)(F,G) → MapFun(C,D)

⎛
⎝∫

C

FC
hocolim

U
MapC(−∗U,C)

,

∫
C

GC
hocolim

U
MapC(−∗U,C)

⎞
⎠ ,

where the homotopy colimits are taken over all objects U of P0(n + 1).
To ease some notation in this proof, let us simply denote MapFun(C,D) by Map, and let

Z(A,C) := hocolim
U

MapC(A ∗ U,C).

Thus, we can rewrite our desired map as

Map(F,G) → Map

⎛
⎝∫

C

FCZ(−,C),

∫
C

GCZ(−,C)

⎞
⎠ .

To obtain such a map, first observe that the identity morphism F → F induces a map

FZ(−,C) → FZ(−,C),

which has a corresponding adjoint morphism

Z(−, C) ⊗ FZ(−,C) → F.

Applying the mapping space into G, we obtain a map of simplicial sets

Map(F,G) → Map(Z(−, C) ⊗ FZ(−,C), G),

from which we can apply the adjunctions of Definitions 2.11 and 2.12 to get

Map(F,G) → Map(FZ(−,C), GZ(−,C)).

We can then apply ends over C to get the map we wanted to define. �
It is a straightforward exercise to show that the analogous results hold for ⊥R

n , using the exact same 
arguments but replacing the fiberwise join A ∗ U with the construction A � S of (7.10) and reindexing the 
homotopy colimits by P0(2)×n rather than P0(n + 1).
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Proposition 7.17. Let C be a small simplicial category that is tensored in finite simplicial sets and closed 
under finite coproducts and D be a pointed simplicial model category. If F : C → D is a simplicial functor, 
then so is ⊥R

nF . Furthermore, the functor

⊥R
n : Fun(C,D) → Fun(C,D)

given by

F 
→ ⊥R
nF

is a simplicial functor.
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