
Topology and its Applications 316 (2022) 108107
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

An infinity operad of normalized cacti

Luciana Basualdo Bonatto a, Safia Chettih b, Abigail Linton c, Sophie Raynor d, 
Marcy Robertson e,∗, Nathalie Wahl f

a Mathematical Institute, University of Oxford, Oxford, UK
b Department of Mathematics, Southwestern University, Georgetown, TX, USA
c School of Mathematical Sciences, University of Southampton, UK
d Department of Mathematics and Statistics, Macquarie University, NSW, Australia
e School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
f Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 July 2020
Received in revised form 27 October 
2020
Available online 9 April 2022

MSC:
18
55P
55P48

Keywords:
Operads
Infinity operads
Cactus operad

We endow the normalized cacti with the structure of an ∞-operad by showing that 
its existing composition laws are associative up to all higher homotopies. The higher 
homotopies are encoded by a new topological operad of bracketed trees which we 
relate both to an enrichment of the dendroidal category Ω and to the Boardman-
Vogt W -construction on the operad of operads.

© 2022 Elsevier B.V. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Preliminaries on operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1. Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. The dendroidal category Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. The operad of operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4. The relationship between operads and dendroidal spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. The operad of brackets BO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1. Bracketings of trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2. An operad of bracketings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

* Corresponding author.
E-mail addresses: luciana.bonatto@maths.ox.ac.uk (L. Basualdo Bonatto), chettihs@southwestern.edu (S. Chettih), 

a.linton@soton.ac.uk (A. Linton), sophie.raynor@mq.edu.au (S. Raynor), marcy.robertson@unimelb.edu.au (M. Robertson), 
wahl@math.ku.dk (N. Wahl).
https://doi.org/10.1016/j.topol.2022.108107
0166-8641/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.topol.2022.108107
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2022.108107&domain=pdf
mailto:luciana.bonatto@maths.ox.ac.uk
mailto:chettihs@southwestern.edu
mailto:a.linton@soton.ac.uk
mailto:sophie.raynor@mq.edu.au
mailto:marcy.robertson@unimelb.edu.au
mailto:wahl@math.ku.dk
https://doi.org/10.1016/j.topol.2022.108107


2 L. Basualdo Bonatto et al. / Topology and its Applications 316 (2022) 108107
3.3. BO-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4. Thickening the category Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1. Bracketing Ω and the category Ω̃0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2. Homotopy dendroidal spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3. Rectifying homotopy dendroidal spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5. Normalized Cacti as an infinity operad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1. An operad MS+ that contains Cact1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2. Cact1 is a BO–algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6. Relation between the operads BO and WO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1. The W -construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2. A variant on the W -construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3. BO-algebras are strictly symmetric lax operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4. Proof of Theorem 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Appendix A. The explosion category of Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.1. The explosion of Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.2. The relationship between Ω̃ and Ω̃0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.3. WO–algebras as Ω̃–diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1. Introduction

Gluing surfaces along their boundary allows us to define composition laws that have been used to define 
cobordism categories, as well as operads and props associated to surfaces. These have played an important 
role in recent years, for example in constructing topological field theory or computing the homology of the 
moduli space of Riemann surfaces. Of particular interest is the cobordism category whose morphism spaces 
are moduli spaces of Riemann surfaces. It has long been known that such moduli spaces admit a graph 
model: they have the homotopy type of spaces of metric fat graphs [7,21,34]. The composition of moduli 
spaces induced by the gluing of surfaces was modeled using graphs in [17, Construction 3.29]. Though 
the resulting composition is associative on the associated cellular chain complex, it is not associative on 
the space level, and, at present, it is not known how to make it associative, or even coherently homotopy 
associative [17, Remark 3.31]. In genus 0, this graph model of the cobordism category includes normalized 
cacti (e.g. [41, Remark 2.8]), whose composition was also known not to be associative [24, Remark 2.3.19]. 
The goal of our paper is to show that the composition of normalized cacti is associative up to all higher 
homotopies, and hence normalized cacti form an ∞-operad in the way detailed below. We expect that the 
technique presented here can be extended to likewise show that the composition in the graph model of the 
cobordism category is also associative up to all higher homotopies.

A cactus is a treelike configuration of circles (Fig. 1). The cactus operad, originally introduced by Voronov 
[39, Section 2.7], and its spineless version, introduced by Kaufmann [24, Section 2.3], are models for the 
framed and unframed little disc operads respectively [24, Section 3.2.1]. Operadic composition is by insertion: 
identifying the outside contour of one cactus with the lobe of another cactus and scaling the inserted cactus 
appropriately. Here we work with the spineless version for simplicity.

A cactus is normalized if each circle in the cactus has circumference of length one. The space of all 
normalized cacti with k-lobes is denoted by Cact1(k) and these spaces assemble into the symmetric sequence 
Cact1 = {Cact1(k)}k≥0, with each Cact1(k) ⊂ Cact(k) a homotopy equivalent subspace, for Cact(k) the space 
of all cacti with k lobes. (See [24, Section 2.3].) Composition of normalized cacti is defined by insertion as 
for the cactus operad, but instead of scaling the inserted cactus to the size of the lobe it is inserted in, one 
scales the lobe to the size of the inserted cactus. Surprisingly, as illustrated in Fig. 16, this new composition 
is not associative ([24, Remark 2.3.19]). So, normalized cacti do not form an operad. This non-associative 
composition is, however, the one relevant to the graph model of the cobordism category, as we explain in 
Remark 5.1.
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Fig. 1. Spineless cactus with 7 lobes, with its outside the dotted line.

Operads can be described as algebras over the operad of operads O, an operad whose elements can be 
represented by certain trees (Definition 2.8). In Section 3, we define a bracketing of a tree and use it to 
construct a new topological operad BO (Definition 3.9) whose algebras are homotopy associative versions 
of operads: Any BO–algebra has an underlying symmetric sequence and a preferred composition, but the 
composition is only associative up to coherent homotopy. The operad BO is the realization of an operad 
whose operations lie in the poset of bracketings of the trees in O.

Given a composition on a symmetric sequence, an action of the operad BO gives a hands-on way to keep 
track of the homotopies required to show that it is coherently homotopy associative. We illustrate how to 
construct a BO–algebra in practice by showing:

Theorem A (Theorem 5.12). The symmetric sequence {Cact1(k)}k≥0 of normalized cacti, together with the 
Cact1 composition described above, extends to a BO–algebra structure.

In this paper, we show that this hands-on notion of an operad up to homotopy is related to more 
well-known notions of ∞-operads. There exist several models of ∞-operads in the literature: lax operads, 
obtained by resolving the operad of operads [8], dendroidal sets or spaces satisfying an inner Kan or Segal 
condition [11, Proposition 6.3, Theorem 8.15] and [11, Definition 8.1], Lurie’s ∞-operads [22, Section 2.5], 
[10, Corollary 1.2] and Barwick’s complete Segal operads [10, Theorem 1.1]. These models are all Quillen 
equivalent, and also Quillen equivalent to topological operads themselves [12, Theorem 8.15]. We compare 
our construction with two of these notions of ∞-operads. In Section 4, we show that any BO–algebra defines 
a dendroidal space satisfying a weak Segal condition, and in Section 6, we show that any BO-algebra is also 
a lax operad in the sense of [8].

To associate a dendroidal space to a BO-algebra, we first construct a topological enrichment Ω̃0 of the 
dendroidal category Ω. The objects of Ω̃0 are trees, as for Ω, but morphisms are the realization of certain 
posets of bracketings in trees, defined in a similar fashion to the operad BO. Diagrams over this thickened 
dendroidal category Ω̃0 are types of homotopy coherent dendroidal spaces. By defining a nerve functor that 
takes a BO-algebra to the category of reduced Ω̃0-diagrams that satisfy a strict Segal condition, we prove 
the following:

Theorem B (Theorem 4.8). There is an isomorphism of categories between BO-algebras and the category of 
reduced Ω̃0-diagrams that satisfy a strict Segal condition.

In Proposition 4.10, we show that a Ω̃0–diagram can be rectified to an equivalent Ω–diagram, i.e. an 
actual dendroidal space. Moreover, we show that this rectified dendroidal space satisfies a weak version 
of the Segal condition if, and only if, the original Ω̃0–diagram satisfies such a condition. We describe this 
rectification explicitly in the case of normalized cacti in Corollary 5.13.
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The other notion of ∞-operads we consider are a more classical notion of an operad up to homotopy 
obtained by resolving the operad of operads O via the Boardman-Vogt W -construction. A WO–algebra 
is an operad up to homotopy, where the symmetric group action, the unit and associativity relation are 
all assumed to hold only up to coherent homotopy. For this reason, WO-algebras are called lax operads 
in the Ph.D. thesis [8]. Algebras over the operad WO are a model for ∞-operads: there exists a zig-zag 
of Quillen equivalences between the category of WO-algebras and reduced dendroidal Segal spaces. (For 
example this can be seen by combining Theorem 4.1 of [1] with either Theorem 1.1 of [3] or Theorem 8.15 
of [12].) However, the operad WO is not easy to work with directly. Indeed, its elements are trees (from 
the W–construction) whose vertices are themselves decorated by trees (from the operad O), where the first 
trees compose by grafting and the second trees compose by vertex substitution. In Section 6, we show that 
the operad BO is actually isomorphic to a quotient W0O of WO:

Theorem C. [Theorem 6.4] There exists an isomorphism of topological operads W0O ∼= BO, for W0O an 
explicit quotient of the operad WO. In particular, any BO–algebra is also a WO-algebra.

A W0O–algebra (or equivalently BO–algebra) is a homotopy operad where the composition is still only 
homotopy associative, but where the symmetric group action and unit are strict. We show in Corollary 6.5
that every BO-algebra is homotopy equivalent to a strict operad.

The relationship between the operad BO ∼= W0O and the dendroidal category Ω is detailed in Theorem B, 
in which we show a “bracketed version” of the equivalence between O–algebras and appropriate Ω–diagrams. 
As the operad WO is a more complete resolution of O, it is natural to ask if an even larger resolution of 
the dendroidal category Ω extends this relationship. For a category K, there exists a resolution similar 
to the W–construction, namely the “explosion” K̃ of the category, as studied by Segal [37, Appendix B]
and Leitch [25]. This “explosion” has the property that K̃–diagrams are coherently homotopy K–diagrams. 
Applying this construction to the category Ω, one could expect that WO–algebras are related to Ω̃–diagrams 
in the same way that BO = W0O–algebras are related to Ω̃0–diagrams. We show in Theorem A.6 that this 
does not quite hold, proving instead that there is an embedding of the category of WO-algebras as a full 
subcategory of the category of Ω̃–diagrams satisfying a strict Segal condition.

By combining Theorem A and Theorem B or Theorem C, normalized cacti are a rare example of an ∞-
operad that does not arise via the application of a nerve construction to a known (discrete or topological) 
operad. Indeed, to our knowledge, only a few such examples exist in the literature; see the weak operad of 
configuration spaces [20, Corollary 5], the configuration categories of [6] or examples that arise as a result 
of completion as in [4, Proposition 5.1].

The input of the construction of our explicit infinity operad structure on normalized cacti is a pre-
given composition that we show to be associative up to coherent homotopy by using the operad BO =
WO/ ∼. The homotopies are constructed using the contractible space of basepoint preserving monotone 
reparametrizations of the circle (see the proof of Theorem 5.12). To extend the results to the cobordism 
category of graphs described above, one would need to replace O by the operad PO, whose algebras are 
all symmetric properads [42, Section 14.1.2], define a resolution “BPO”, as the appropriate quotient of the 
W -construction applied to PO. Our expectation is that these same reparametrizations of the circle will 
likewise provide all the necessary homotopies to provide an infinity composition in the graph model of the 
cobordism category.
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2. Preliminaries on operads

A symmetric sequence in a symmetric monoidal category S is a collection P = {P(k)}k≥0 of objects 
in S in which each P(k) comes equipped with an action of the symmetric group Σk. In this paper, our 
symmetric monoidal category S will either be the discrete category of sets, the category of simplicial sets, 
or the category of topological spaces with their standard Cartesian products.

An operad in S is a symmetric sequence P = {P(k)}k≥0 together with a distinguished element ι ∈ P(1), 
called the unit, and a collection of composition maps

◦i : P(k) × P(j) P(k + j − 1),

1 ≤ i ≤ k, which are associative, unital, and equivariant. For more complete details see, for example, [27, 
Definition 11]. Given an operad P, a symmetric sequence Q = {Q(k) ⊆ P(k)}k≥0 is a suboperad of P if 
the restriction of the composition maps in P induce an operad structure on Q. A morphism of operads
f : P → Q is a family of equivariant maps

{f(k) : P(k) → Q(k)}k≥0

that are compatible with composition and units.

Remark 2.1. It is equivalent to work with individual compositions

◦i : P(k) × P(ji) → P(k + ji − 1)

or with all ◦i-compositions simultaneously. In the latter case, the simultaneous compositions are denoted 
by a map

γP : P(k) × P(j1) × . . .× P(jk) → P(Σk
i=1ji).

(e.g.: [27, Proposition 13]).

More generally, we will use colored operads. For any non-empty set C, a C-colored symmetric sequence is 
a family of objects P := {P(c; c1, . . . , ck)}k≥0 in S, where (c; c1, . . . , ck) ranges over every list of colors in C
together with a map σ� : P(c; c1, . . . , ck) → P(c; cσ(1), . . . , cσ(k)) for each σ ∈ Σk. A C-colored operad is a 
C-colored symmetric sequence P together with a family of partial composition maps

◦i : P(c; c1, . . . , ck) × P(d; d1, . . . , dj) → P(c; c1, . . . , ci−1, d1, . . . , dj , ci+1 . . . , ck)

defined only when ci = d, together with an element ιc ∈ P(c; c) for each c ∈ C, which satisfies unit, 
equivariance and associativity conditions. For more details see, for example, [1, Definition 1.1]. When the 
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color set is C = {∗}, a C–colored operad is a one-colored operad. In this paper we will refer to both operads 
and colored operads as “operads”, only mentioning the color set when necessary.

An algebra over a (C–colored) operad P is a collection of objects {X(c)}c∈C in S together with evaluation 
maps

α : P(c; c1, . . . , ck) ×X(c1) × · · · ×X(ck) −→ X(c)

satisfying appropriate associativity, unit and equivariance conditions, see e.g. [1, Definition 1.2]. The category 
of P-algebras in S is denoted P−AlgS .

Our main example of a colored operad will be the N-colored operad O, whose algebras are the (non-
colored) operads, see Definition 2.8. In Section 5, we will also make use of the following operad:

Example 2.2. Let X be a fixed space in S. The coendomorphism operad of X, CoEnd(X), has an underlying 
symmetric sequence with arity k spaces

CoEnd(n)(X) := Map(X,X×k).

The symmetric groups act by permuting the factors of f = (f1, . . . , fk) ∈ CoEnd(k). If f = (f1, . . . , fk) ∈
CoEnd(k)(X) and g = (g1, . . . , gj) ∈ CoEnd(j)(X) the partial compositions

◦i : CoEnd(k)(X) × CoEnd(j)(X) CoEnd(k + j − 1)(X)

are given by

f ◦i g = (f1 , . . . , fi−1 , g1 ◦ fi , . . . , gj ◦ fi , fi+1 , . . . , fk).

2.1. Trees

Throughout this paper, we use trees to model operad compositions and as the basis of our main con-
structions. A graph G is a tuple (V (G), H(G), s, i) where V (G) is a set of vertices, H(G) a set of half-edges, 
s : H(G) → V (G) is the source map and i : H(G) → H(G) is an involution. Orbits of the involution i are 
called edges of G and the set of edges is denoted by E(G). An edge represented by a pair {h, i(h)} with 
i(h) �= h is called an internal edge, and the set of internal edges is denoted iE(G). Edges corresponding to 
orbits of fixed points of the involution are external.

A tree is a simply connected graph. All our trees will be rooted, i.e. they come with a distinguished 
“outgoing” external edge called the root. All other external edges are “incoming” and called leaves. The set 
of leaves is denoted L(T ). The arity of T is the number of leaves |L(T )|. The root of the tree is denoted 
R(T ).

Note that a rooted tree can be canonically made into a directed graph by setting all the edges to point 
towards the root. Then note that the set of edges incident to a vertex always has a unique outgoing edge, 
the one closest to the root, and all other edges are incoming edges. The number of incoming edges of a 
vertex v is called the arity of the vertex and denoted by |v|, with |v| ≥ 0 any natural number.

We allow the special tree η = |, with no vertices and a single edge. The trees with a single vertex and n
leaves are called n-corollas and denoted Cn. A rooted tree S is a subtree of T if V (S) ⊆ V (T ) preserving 
the arity, H(S) ⊆ H(T ), and the structure maps for S are restrictions of the structure maps for T , defining 
i(h) = h in S if i(h) = h′ in T with h′ /∈ H(S). A planar tree is a rooted tree together with a preferred 
isotopy class of embedding into the plane. Note that this is equivalent to defining a planar tree as a tree 
with a canonical ordering of the incoming edges at each vertex.
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Fig. 2. Grafting of trees.

We use planar trees to model operad compositions via an operation called grafting. Given trees T and T ′, 
of arity n and m respectively, and a leaf i ∈ L(T ), the grafting of T ′ onto T along the leaf i is defined to be 
the tree T ◦i T ′ obtained by attaching the root of T ′ to the leaf i of T so that they form a new internal edge 
in the grafted tree (Fig. 2). Grafting of trees is also used to model the free operad generated by a symmetric 
sequence, as we will explain now. To avoid confusion later, when we will have to decorate vertices of trees 
by other trees, we will use blackboard fonts for the trees in the free operad construction (and later the 
associated W -construction in Section 6.1), as we will soon apply this construction to a symmetric sequence 
of trees, which will give (blackboard) trees of (plain) trees.

Definition 2.3. Let P = {P(c; c1, . . . , ck)}ci,c∈C be a C-colored symmetric sequence in S. A planar tree T is 
C-colored if it is equipped with a map f : E(T ) → C, we refer to f(e) as the color of the edge e. A C-colored 
planar tree T is decorated by P if each vertex v ∈ V (T ) is labeled by an operation in pv ∈ P(out(v); in(v)), 
where out(v) is the color of the outgoing edge of v, and in(v) is the list of colors of the incoming edges 
of v, ordered by the planar structure. The free operad F (P) on P is the C-colored operad whose k-ary 
operations are the C-colored, P decorated, planar trees T of arity k with leaves labeled by a bijection 
λ : {1, . . . , k} → L(T ).

Explicitly, for each c, c1, . . . , ck ∈ C,

F (P)(c; c1, . . . , ck) :=
( ∐

(T ,f,λ)

∏
v∈V (T)

P(out(v); in(v))
)
/ ∼,

where (T , f, λ) runs over all isomorphism classes of leaf-labeled C-colored planar trees with k leaves such 
that f(λ(i)) = ci, f(R(T )) = c, and where the equivalence relation is generated by the following:

(∗) two labeled trees (T , f, λ, (pv)v∈V (T)) and (T ′, f ′, λ′, (p′w)w∈V (T ′)) are equivalent if there exists a non-
planar isomorphism α : T → T ′ such that f ◦ α = f ′, α ◦ λ = λ′, and σv(α)pv = pα(v), for σv(α) the 
permutation on in(v) induced by α.

The symmetric group acts on F (P) by permuting the labels of the leaves, acting on λ, and composition 
in F (P) is given by grafting of trees, with ◦i grafting at the leaf λ(i). For full details see, for example, the 
construction under Corollary 3.3 [1].

We now employ the free operad construction to define a class of free operads Ω(T ) generated by a planar 
tree T . This will play a fundamental role in the definition of the dendroidal category (Section 2.2), which 
describes a model for ∞-operads.

Example 2.4. A planar tree T generates a free colored operad Ω(T ) as follows. The set of colors of Ω(T ) is 
the set of edges C = E(T ). We define a discrete E(T )-colored symmetric sequence X(T ) by
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X(T )(e; eσ(1), . . . , eσ(n)) =
{
{σv} if (e; e1, . . . , en) = (out(v); in(v)), for v ∈ V (T ),
∅ otherwise,

with its built in free symmetric group action. Then Ω(T ) := FX(T ) is the free operad on the collection 
X(T ). Explicitly, Ω(T ) is an E(T )-colored operad with

Ω(T )(e; eσ(1), . . . , eσ(n)) =
{
σS if (e; e1, . . . , en) = (R(S);L(S)), S ⊂ T ,

∅ otherwise.

for S ⊂ T a subtree of T . Composition, as in the free operad, is given by grafting of subtrees. For further 
details, see Section 2.2 and just above Definition 2.3.1 in [31].

2.2. The dendroidal category Ω

The model we use for ∞-operads is that of dendroidal Segal spaces that satisfy the weak Segal condition. 
Dendroidal spaces are diagrams of the dendroidal category.

The dendroidal category Ω is the full subcategory of colored operads whose objects are the free operads 
Ω(T ) generated by trees (as in Example 2.4). In other words, objects of Ω are planar isomorphism classes 
of planar rooted trees and morphisms in Ω are defined to be operad maps

HomΩ(S, T ) = HomOp(Ω(S),Ω(T )).

Morphisms in Ω can be described as a composition of four types of elementary morphisms: isomorphisms, 
degeneracies, inner and outer face maps. In terms of trees, isomorphisms are non-planar tree isomorphisms, 
inner face maps are of the form ∂e : T/e → T , where T/e is the tree obtained from T by contracting an inner 
edge e ∈ iE(T ). If v is a vertex of T with only one inner edge attached to it then T/v is the tree obtained 
from T by chopping off the vertex v and the inclusion ∂v : T/v → T is an outer face map. A degeneracy is 
a map sv : T/v → T where T/v is obtained from T by deleting a vertex v, with |v| = 1, in T .

In the opposite category Ωop, outer face maps correspond to restriction to certain allowed subtrees, while 
inner face maps correspond to edge collapses. For more details and plenty of examples see [32,31].

Remark 2.5. Our definition of Ω differs slightly from the usual definition in that we have chosen our objects 
to be planar trees. Technically, what we have described here is the equivalent category Ω′ from [31, 2.3.2].

Definition 2.6. A dendroidal space X is an Ω-diagram X : Ωop → S, where S is either the category of 
simplicial sets or topological spaces.

The evaluation of X at a tree T is denoted X(T ). A dendroidal space is called reduced if X(η) = ∗, where 
η = |. We will write SΩop for the category of dendroidal spaces.

For any vertex v in a tree T ∈ Ω, we have an associated outer face map in Ω

Cv −→ T

taking the unique vertex of the corolla to v ∈ V (T ), where Cv is the corolla with |v| leaves. Likewise, for 
any internal edge between vertices u and v in T , there is a commuting diagram in Ω

η Cu

Cv T.
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Fig. 3. Tree substitution (Compare with grafting in Fig. 2).

Let Sk1(T ) be the category whose objects are the edges and vertices of T , thought of copies of η and 
corollas Cv, and whose morphisms are associated to edge inclusions in T , as in the top left corner of the 
above diagram.

For a dendroidal space X, the Segal map is the unique map from X(T ) to the limit limSk1(T )op X induced 
by the corolla inclusions. When X(η) = ∗, this limit becomes a product over the value of X at the corollas, 
and the Segal map becomes the map

χ : X(T )
∏

v∈V (T ) X(Cv)

with components the restriction to the value of X at each corolla.
The category of Ω-diagrams admits two Quillen model category structures: the Reedy model structure 

and the projective model structure which are Quillen equivalent (see e.g. [5, Remark 2.5]). Throughout, we 
take the projective model structure in which a morphism of Ω-diagrams is a weak equivalence or fibration if 
it is entrywise a weak equivalence or fibration.

Definition 2.7. A dendroidal space X ∈ SΩop satisfies a strict Segal condition if the Segal map is an isomor-
phism for each η �= T ∈ Ω.

2.3. The operad of operads

One of the main constructions in this paper is the operad BO. This operad builds on an N-colored operad 
O called the operad of operads, whose algebras are one-colored operads.

Let T be a planar tree. For a vertex v ∈ V (T ) with arity |v| = m and a planar tree T ′ with m leaves, the 
substitution T •v T ′ is obtained by removing the vertex v from T and identifying the incoming and outgoing 
edges of v with the leaves and root of T ′, respectively. An example is shown in Fig. 3.

A labeled planar tree is a triple (T, σ, τ), consisting of a planar tree T equipped with bijections σ :
|V (T )| → V (T ) and τ : |L(T )| → L(T ). Two such triples (T, σ, τ) and (T ′, σ′, τ ′) are isomorphic if there is a 
planar tree isomorphism T → T ′ that respects the labeling σ, τ . We represent a labeled planar tree (T, σ, τ)
by writing above each leaf � ∈ L(T ) the number τ−1(�), and writing by each vertex v ∈ V (T ) the number 
σ−1(v), as depicted in Fig. 4.

We also define a tree substitution that is compatible with the labellings of the leaves. Let (T, σ, τ) and 
(T ′, σ′, τ ′) be two planar labeled trees with |V (T )| = k, |V (T ′)| = l and |L(T ′)| = |σ(i)| = mi. The map τ ′

encodes a permutation in the symmetric group with mi elements. We obtain a new planar tree (τ ′σ(i))T by 
applying the permutation τ ′ on the mi incoming edges of the vertex σ(i) ∈ V (T ). We then define

T •σ(i),τ ′ T ′ = (τ ′σi)T •σ(i) T
′. (2.1)

In particular, V (T •σ(i),τ ′ T ′) = {V (T ) − σ(i)} � V (T ′). The labeling on the vertices of T •σ(i),τ ′ T ′ is 
given by the map σ ◦i σ′, which is the induced bijection {1, . . . , k + l − 1} → V (T •σ(i),τ ′ T ′)
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Fig. 4. Example of a labeled planar tree in O(11; 5, 3, 4, 2).

Fig. 5. Example of composition in O where τ ′ is different to the planar order of in(σ(2)).

j �→

⎧⎪⎨⎪⎩
σ(j) 1 ≤ j < i

σ′(j − i + 1) i ≤ j ≤ i + l

σ(j − l + 1) i + l < j ≤ k + l − 1.

An example is shown in Fig. 5. In the case where the order induced by τ ′ on the mi incoming edges of σ(i)
is the same as the order induced by the planar structure, then T •σ(i),τ ′ T ′ = T •σ(i) T

′.

Definition 2.8. The operad of operads O is the N–colored operad, for which

O(n;m1, . . . ,mk)

is the discrete space whose elements are isomorphism classes of labeled planar rooted trees (T, σ, τ) where 
T is a planar tree with k vertices and n leaves, with bijections σ : |V (T )| → V (T ), τ : |L(T )| → L(T ), such 
that the vertex σ(i) has arity mi for each 1 ≤ i ≤ k. The composition operation

O(n;m1, . . . ,mk) ×O(mi; b1, . . . , bl) O(n;m1, . . . , b1, . . . , bl, . . . ,mk)

((T, σ, τ), (T ′, σ′, τ ′)) (T, σ, τ) ◦i (T ′, σ′, τ ′)

◦i

is induced by tree substitution that is compatible with the labeling as in (2.1), where

(T, σ, τ) ◦i (T ′, σ′, τ ′) = (T •σ(i),τ ′ T ′, σ ◦i σ′, τ).

The unit for this composition, for the color n, is the element of O(n; n) represented by the corolla Cn

equipped with the canonical left-right labeling. The symmetric group Σk acts on (T, σ, τ) ∈ O(n; m1, . . . , mk)
by precomposition on the labeling σ of the vertices V (T ).
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We further observe that, for each m, n ∈ N,

O(m;n) ∼=
{

Σn for m = n,

∅ when m �= n.

The isomorphism O(n; n) ∼= Σn corresponds to labeling the leaves of a corolla Cn in all possible ways. The 
unique arity 0 operation in O is represented by the special tree η ∈ O(1; ∅). An O-algebra, P, is precisely a 
one-colored operad. That is to say, P has an underlying N-graded object P = {P(n)}n∈N in S. Moreover, 
P admits actions O(n; n) × P(n) → P(n) for all n and thus P has an underlying symmetric sequence. By 
definition, we have

O(n;m1, . . . ,mk) × P(m1) × . . .× P(mk) ⊂ FP(n),

where FP is the free operad on the symmetric sequence P, and

FP(n) =
∐
k∈N

⎛⎝ ∐
(m1,...,mk)∈Nk

O(n;m1, . . . ,mk) × P(m1) × . . .× P(mk)

⎞⎠
Σk

so the action maps

α : O(n;m1, . . . ,mk) × P(m1) × . . .× P(mk) → P(n)

induce maps FP(n) → P(n) for all n, and by the algebra axioms, this is precisely the data of a symmetric 
operad in S (See [1, Example 1.5.6]). Note that, in particular, the ◦i-compositions of an operad P are 
governed by the trees with one internal edge in O(n; m1, m2), where n = m1 + m2 − 1.

2.4. The relationship between operads and dendroidal spaces

Dendroidal spaces with X(η) = ∗ that satisfy a strict Segal condition are closely related to one-colored 
operads. Explicitly, every operad P can be viewed as a dendroidal space via the dendroidal nerve construction 
that defines a functor

Nd(P)(T ) = HomOp(Ω(T ),P)

as T ranges over Ω. The nerve of the free operad Ω(T ) is just the representable dendroidal space Ω[T ] :=
HomΩ(−, T ). A dendroidal space X is the nerve of an operad if, and only if, the Segal map of Definition 2.7
is an isomorphism for all T [12, Lemma 6.4; Proposition 6.5]. To put this altogether, there is an isomorphism 
of categories

O−AlgS ∼= (SΩop

)strict

where O is the colored operad whose algebras are one-colored operads (Definition 2.8, below) and (SΩop)strict
denotes the category of reduced dendroidal spaces satisfying the strict Segal condition. We will prove similar 
statements for “thickened” versions of Ω in Theorem 4.8 and Theorem A.6.

3. The operad of brackets BO

In this section we introduce a new topological operad called the operad of bracketed trees. In short, the 
operad BO captures a weak notion of an operad in the sense that a BO-algebra is a symmetric sequence 
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Fig. 6. Example of a tree bracketing with 3 nested subtrees.

with ◦i-operations that are only associative up to higher homotopy. The construction of the operad BO
allows one to check with relative ease whether a symmetric sequence with compositions assembles into an 
∞-operad. In Theorem 5.12, we use this to show that normalized cacti admit such a structure. Moreover, 
we expect that this construction provides a general method that one can use to construct other examples 
of ∞-operads.

One could instead use the classical Boardman-Vogt W -construction on the operad O to obtain an operad 
WO whose algebras are homotopy operads (lax operads in the language of [8]). It is known to experts 
that bracketings in trees are related to this operad WO, but the precise details are difficult to find in the 
literature. (However, see [33, Section 2.3], in particular Theorem 4, together with Remark 3.8 below, for an 
algebraic version of this in the case of non-symmetric operads.) In Section 6 we will show that BO identifies 
with a quotient of the operad WO. Bracketings in trees have also appeared elsewhere, see e.g. [13,14], and 
the parenthesizations of [38, 2.6].

3.1. Bracketings of trees

We define in this section the poset of bracketings of a tree, starting with the definition of a bracketing:

Definition 3.1. A tree is called large if it has at least two vertices (or equivalently, at least one internal edge). 
A set {Sj}j∈J of subtrees of a tree T is nested if, for any i, j ∈ J , the set of common vertices V (Si) ∩V (Sj)
is either V (Si), V (Sj) or empty. A bracketing B of a tree T is a (possibly empty) collection B = {Sj}j∈J

of nested large proper subtrees of T .

Recall from Section 2.1 that a subtree of T is a tree S whose vertices are a subset of the vertices of T , 
and whose half-edges are all the half-edges in T attached to such vertices. Therefore, a subtree is completely 
determined by its vertices. With this in mind, we will represent bracketings as in Fig. 6.

Definition 3.2. Bracketings of a tree T form a poset of bracketings B(T ) with the relation B′ ≤ B if B′ ⊆ B.

We denote the geometric realization of the nerve of the poset B(T ) by |B(T )|. A point in

|B(T )| =
∐
r≥0

NrB(T ) × Δr/ ∼

is a pair (B, t) with B = B0 ⊂ · · · ⊂ Br a sequence of bracketings and t ∈ Δr. Such a pair (B, t) can be 
interpreted as a weighted bracketing with underlying set of brackets Br = ∪r

i=0Bi and weights given by

t = (1, t1, . . . , tr) ∈ Δr = {1 = t0 ≥ t1 ≥ · · · ≥ tr ≥ 0}

where we assign the weight t0 = 1 to all brackets in B0, and for each 1 ≤ i ≤ r, the weight ti to all brackets 
in Bi\Bi−1. In particular, a weighted bracketing with all brackets having weight 1 corresponds to a vertex 
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Fig. 7. Geometric realization of the poset B(T ) of Examples 3.4 and 3.5.

B = B0 in the nerve of the poset. Also, the equivalence relation on the realization implies that a bracket of 
weight 0 can be discarded. (See also Section 6 and in particular the proof of Lemma 6.8 where this point of 
view is used to relate BO to the operad WO.)

Example 3.3. If T = Cn then T does not admit any large subtree, therefore B(T ) = {∅} only has the empty 
(or trivial) bracketing.

Example 3.4. Let T be the tree , then the space |B(T )| is depicted in Fig. 7 (left). Note that the initial 
object in the poset is the empty bracket, in the center of the pentagon (the 4th associahedron).

More generally, let Tn be a tree with n vertices such that no vertex is connected to more than two inner 
edges. For such trees, the set of vertices can always be given a total ordering, for instance by constructing a 
list starting with a vertex v connected to only one internal edge, and defining the next element of the list to 
be the vertex sharing an edge with v that has not yet been listed. Then a bracket of Tn can be immediately 
identified with a meaningful placement of parentheses on a word with n letters where the word is represented 
by the ordered set of vertices. Therefore, |B(Tn)| can always be identified with the n-th associahedron (see 
also Remark 3.8 for another approach to this statement).

Example 3.5. Consider a tree T with three inner edges all meeting at a single vertex. Note that the poset 
of bracketings depends only on the relative positions of the vertices (or analogously, the inner edges) of 
the tree T , and is independent of the number of leaves at each vertex. Therefore, the realization poset of 
bracketings of T is the hexagon (two-dimensional permutahedron) depicted in the Fig. 7 (right), using as 
an example the tree T = .

Example 3.6. Fig. 8 depicts the realization of the poset of bracketings of a tree T with four inner edges 
meeting at a single vertex. Note that by fixing a large subtree S of T , the realization of the subposet of 
bracketings of T containing S will correspond to a subspace of the boundary of |B(T )|. Each boundary face 
of top dimension is then associated to a subtree S of T , and two such faces S1, S2 share a subface if {S1, S2}
is nested. In this case, |B(T )| is the three-dimensional permutahedron.

Lemma 3.7. For any tree T , the space |B(T )|, is contractible.
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Fig. 8. Tree satisfying the conditions of Example 3.6 together with the geometric realization of its poset of bracketings.

Proof. The contractibility of the space |B(T )| follows directly from the fact that the poset B(T ) has a 
minimal element, namely the empty bracketing. �
Remark 3.8. The spaces |B(T )| are related to the family of nestohedra that were first described by Feichtner 
and Sturmfels [18] and Postnikov [35]. Examples of nestohedra include simplices, permutahedra, Stasheff’s 
associahedra and more generally Carr and Devadoss’ graph associahedra [9]. Hypergraph polytopes are an 
interpretation of nestohedra by Došen and Petrić [15], with the advantage that they have a convenient tree 
notation (called constructs) to label the faces of the polytope and that encode the face inclusions. The 
space |B(T )| can be identified with a hypergraph polytope as follows. Using the definition and notation by 
Obradović [33, Section 2.2.1], the edge-graph HT of T is the graph whose vertices correspond to the inner 
edges of T , and two vertices of HT share an edge if the corresponding inner edges of T have a common 
vertex. A subgraph S of HT uniquely defines a subforest 〈S〉 of T whose internal edges correspond precisely 
with the vertices of S, and each tree in this forest is necessarily large because it has an inner edge (see [33, 
Section 2.2.1, Lemma 3]). Then we have an order reversing bijection b between the hypergraph polytope 
of the edge-graph HT and B(T ) that can be recursively defined as follows: we take the construct V (HT )
given by the vertex set of HT to the empty bracketing, and if HT \ Y for Y ⊂ V (HT ) decomposes into n
connected components HT1 , . . . , HTn

, then for constructs Ci of HTi
we take the construct Y {C1, . . . , Cn}

to the bracketing {〈HT1〉, . . . , 〈HTn
〉, b(C1), . . . , b(Cn)}. The definition of constructs guarantees that these 

sets are nested and therefore defines a bracketing, and it is simple to check that this is an order reversing 
bijection.

3.2. An operad of bracketings

We’ll use the bracketings B(T ) to construct a topological operad. Let the collection

BO(n;m1, . . . ,mk) =
∐

(T,σ,τ)∈O(n;m1,...,mk)

|B(T )|

define the N-colored symmetric sequence BO. So, elements of BO(n; m1, . . . , mk) are tuples (T, σ, τ, B, t)
where (T, σ, τ) is an element of O(n; m1, . . . , mk) (Definition 2.8) and (B, t) is a weighted bracketing of T
(i.e. a point in |B(T )|).

To define operadic composition in BO, we use the composition of trees in O and induce a bracketing of 
the resulting tree. Let (T, σ, τ, B) and (T ′, σ′, τ ′, B′) be labeled trees with bracketings. The composition in 
O (Definition 2.8) is given by the substitution of T ′ into the vertex σ(i) ∈ V (T ),

(T, σ, τ) ◦i (T ′, σ′, τ ′) = (T •σ(i),τ ′ T ′, σ ◦i σ′, τ).
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Fig. 9. Example of composition in BO with labeling of the vertices omitted for simplicity.

Since T ′ is canonically a subtree of T •σ(i),τ ′ T ′, the bracketing B′ on T ′ defines a nested collection of 
subtrees of T •σ(i),τ ′ T ′. We also construct a nested collection of subtrees B̃ = {S̃j}j∈J on T •σ(i),τ ′ T ′ that 
is induced by the bracketing B = {Sj}j∈J on T . If T ′ �= η, then B̃ ∼= B is given by

S̃j =
{

Sj if σ(i) /∈ V (Sj),
Sj •σ(i),τ ′ T ′ if σ(i) ∈ V (Sj).

(3.1)

If T ′ = η, then B̃ = {S̃j}j∈J is defined in the same way, unless σ(i) ∈ V (Sj) and Sj has two vertices, in 
which case Sj •σ(i),τ ′ η is a corolla and is discarded as it is not large. That is, we replace J with another 
indexing set J ′ ⊂ J , which is the subset of indices j such that Sj is large.

We define a bracketing of the tree T •σ(i),τ ′ T ′ by

B′′ =
{

B̃ ∪B′ ∪ {T ′} if T ′ is large
B̃ else.

(3.2)

See Fig. 9. This defines a composition of bracketings of trees. This composition is associative as follows. 
Suppose Sj ⊂ T is a bracket with only two vertices v and w, and T ′ is a tree with at least two vertices. If 
we first compose η in v and then T ′ in w, the bracket Sj is discarded during the first composition, and then 
replaced by a new bracket T ′. Reversing the order of these two compositions yields the same result because 
first composing T ′ in w will create a new bracket T ′, and Sj will not be discarded, but composing further 
η in v will equate Sj and T ′. Otherwise, the associativity of the composition follows from the associativity 
on the composition in O.

The composition also respects inclusions and thus is a poset map

B(T ) × B(T ′) B(T •σ(i),τ ′ T ′). (3.3)

The realization of the poset map (3.3) induces a map between the geometric realizations of the nerve of the 
posets.

Also recall that the unary elements of O, i.e. the elements of O(n; n) for some n, are given by la-
beled corollas. Since there are no non-trivial bracketings of corollas, unary elements of BO have the form 
(Cn, σ, ∗, ∅, ∅) ∈ BO(n; n) with σ ∈ Σn. In particular, the n-colored identity for the composition ◦ in BO is 
given by (Cn, idn, ∗, ∅, ∅) ∈ BO(n; n). Therefore BO is an operad.

Definition 3.9. The operad of bracketed trees BO is the N-colored topological operad with underlying sym-
metric sequence

BO(n;m1, . . . ,mk) =
∐

|B(T )|

(T,σ,τ)∈O(n;m1,...,mk)
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and composition given by combining the composition in O with the map (3.3) described above.

Remark 3.10.

(1) Note that there is an isomorphism of operads O ∼= π0BO and, by Lemma 3.7, the projection BO → O
is a homotopy equivalence of operads.

(2) The topological operad BO is the realization of an operad in posets. Indeed, the space BO(n; m1, . . . , mk)
is the realization of the poset of elements (T, σ, τ) of O(n; m1, . . . , mk) together with a bracketing of T , 
where two elements are comparable only if they have the same underlying element of O. Likewise, the 
operad structure is defined as the realization of a map on the level of posets.

3.3. BO-algebras

A BO-algebra is an operad whose ◦i-compositions are associative up to all higher homotopies. In partic-
ular, a BO-algebra P = {P(n)}n∈N has an underlying symmetric sequence. To see this, we note that the 
labeling of the leaves of a corolla (Cn, τ, ∗, ∅, ∅) ∈ BO(n; n) identifies with elements of the symmetric group 
and we have isomorphisms

BO(n;n) ∼= O(n;n) ∼= Σn.

The action

BO(n;n) × P(n) P(n)

makes P = {P(n)}n∈N into a symmetric sequence.
BO-algebras also have a notion of operadic ◦i composition. To see this, recall that such compositions are 

encoded in the operad O by the trees with exactly two vertices, one attached to the ith incoming edge of 
the other. As such trees admit no large, proper subtrees, they admit no non-trivial bracketing and we have 
isomorphisms for any n, m ≥ 0

BO(m + n− 1;m,n)|V (T )≤2 ∼= O(m + n− 1;m,n)|V (T )≤2

between the components of the tuples (T, σ, τ, ∅, 0) (resp. (T, σ, τ)) with T having at most two vertices. It 
follows then that P is equipped with operadic ◦i-compositions.

A BO-algebra is not in general an operad, however. The brackets that arise in trees with more than 
two vertices capture the different choices one has in iterated compositions of ◦i operations. More explicitly, 
if {P(n)}n∈N is a BO–algebra, then for any collection of elements xi ∈ P(mi) that decorate the vertices 
of a tree (T, σ, τ) ∈ O(n; m1, . . . , mk), we have a chosen composition of those elements, namely the one 
determined by (T, σ, τ, ∅, ∅) ∈ BO(n; m1, . . . , mk). This “unbracketed” tree sits in the middle of a polytope of 
all possible elements (T, σ, τ, B, s) for any bracketing B, as in Fig. 7. The corners of this polytope correspond 
to the possible maximal bracketings of T (the maximal elements of B(T )). Just like the corners of the Stasheff 
polytopes give all the possible ways to bracket a k–fold multiplication, these maximal bracketings correspond 
precisely to the possible ways to bracket the composition of ◦i operations, which are those defined using 
trees with exactly two vertices. The polytopes arising from the posets of bracketing in trees can be thought 
of as an operadic analogue of the Stasheff polytopes.

Remark 3.11. In [24, Definition 1.1.1], a quasi-operad is a symmetric sequence P = {P(n)}n∈N together 
with operadic ◦i-compositions and no further structure. In this way, a BO-algebra is an extension of a 
quasi-operad. The operad BO is closely related to the W -construction of O, whose algebras go under the 
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name lax operads, see Section 6, where we show that BO-algebras can be described as strictly symmetric 
lax operads.

4. Thickening the category Ω

We have seen that operads are O-algebras. Also recall from Section 2.4 that operads can be described 
as strict Segal dendroidal spaces. The dendroidal category Ω is defined as a full subcategory of the colored
operads generated by trees. To obtain a similar description of BO–algebras as certain “homotopy dendroidal 
Segal spaces,” we construct a topological category Ω̃0 that is a category with the same objects as Ω but its 
spaces of morphisms are built using posets similar to the posets used to define BO. Theorem 4.8 establishes 
that this category, Ω̃0, has the desired property that reduced Segal Ω̃op

0 –spaces are precisely BO-algebras. In 
Section 4.3, we then show how rectification of diagrams can be used to produce an actual Segal dendroidal 
space from such a homotopy version of a dendroidal space.

Given any category K with a discrete set of objects, Leitch [25] constructed a new category K̃ with 
the property that K̃–diagrams are homotopy coherent K–diagrams. A similar enrichment (the explosion 
category) was also used by Segal [37, Appendix B] to relate his Γ–space approach to infinite loop spaces to the 
operadic approach of Boardman-Vogt and May. Because Ω̃0–diagrams are homotopy coherent Ω0–diagrams, 
one can expect that the category Ω̃0 is related to this construction of Leitch applied to Ω. In Section A, 
we construct an equivalence between these two categories, and show that strict Segal Ω̃–spaces are closely 
related to WO–algebras.

4.1. Bracketing Ω and the category Ω̃0

Recall from Section 2.2 that the objects of Ω are planar isomorphism classes of planar rooted trees. 
Morphisms in Ω are compositions of inner and outer face maps, degeneracies and isomorphisms of trees. 
Inner face maps ∂e : T/e → T create inner edges and correspond to operadic composition, while outer face 
maps are subtree inclusions and are associated to projection maps. A degeneracy creates a vertex that is 
adjacent to exactly two edges. The category Ω̃0 is a version of Ω with the same set of objects, but with the 
realization of a poset of bracketings over each composition of inner face maps.

We define the morphism spaces of Ω̃0 as follows. Let g : S → T be a morphism in Ω. For each vertex 
v ∈ V (S), let Cv ⊂ S denote the corolla of the vertex v that is, Cv = iv(C|in(v)|) where iv : C|in(v)| → S is 
the composition of outer faces in Ω sending the vertex of the corolla C|in(v)| to v. Since g is alternatively 
considered as a map of operads between Ω(S) and Ω(T ), the image in S of Cv under g is a subtree in T , 
which we denote

g(Cv) ⊂ T.

Note that the trees g(Cv) are precisely the subtrees of T that correspond to expansion of vertices into 
subtrees, going from S to T , or collapsed by gop : T → S in the opposite category Ωop. These subtrees 
correspond to the part of g made out of inner face maps.

For a vertex v ∈ V (S), let Bg
v be a bracketing of g(Cv) as defined in Definition 3.1. We define a poset Lg

whose objects are tuples (Bg
v)v∈V (S) of bracketings of the trees g(Cv). The poset relation is componentwise 

inclusion. Taking the realization of these posets, for each morphism g we associate the space

Lg :=
∏

v∈V (S)

|B(g(Cv))|

where B(g(Cv)) is the poset of bracketings of the tree g(Cv) as defined in Definition 3.2. Note also that 
|B(g(Cv))| = ∗ if g(Cv) admits only the trivial bracketing.
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Fig. 10. Example of map f in Ω and the subtrees f(Cv).

Fig. 11. A map s in Ω and its corresponding space Ls.

Example 4.1. Consider the morphism f ∈ HomΩ(R, S) of Fig. 10. Since the image of each corolla under f
only admits a trivial bracketing,

Lf =
∣∣B ( )∣∣× ∣∣B ( )∣∣× ∣∣B ( )∣∣× ∣∣B ( )∣∣ = ∗.

Example 4.2. Let s be the morphism in Fig. 11(a). By Example 3.4, if s(Cv) has 3 vertices such that no 
vertex is connected to more than two inner edges, then |B(s(Cv))| is the 3rd associahedron, which is an 
interval. As in Example 3.5, when s(Cv) is a tree whose three internal edges meet at a single vertex, the 
realization poset |B(s(Cv))| corresponds to a hexagon. Thus Ls is identified with the hexagonal prism of 
Fig. 11(b).

The space of morphisms between any two objects in Ω̃0 is

HomΩ̃0
(S, T ) =

∐
g∈HomΩ(S,T )

Lg.

It remains to define composition in Ω̃0. To do this, we first define a map of posets

Lg × Lf Lg◦f (4.1)

for any two morphisms f : R → S and g : S → T in Ω, then we take the realization of this composition 
map to get a composition of spaces Lg. Let (Bg

v )v∈V (S) ∈ Lg and (Bf
w)w∈V (R) ∈ Lf be two collections 

of bracketings. So for each v ∈ V (S), Bg
v is a bracketing of g(Cv) ⊂ T and for each w ∈ V (R), Bf

w is 
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a bracketing of the tree f(Cw) ⊂ S. To define the image of (4.1), we construct a bracketing of the tree 
(g ◦ f)(Cw) from the bracketings of f and g.

Fix a vertex w ∈ V (R). For each v ∈ f(Cw) ⊂ S, there is the subtree g(Cv) ⊂ (g ◦ f)(Cw), as well as 
a bracketing Bg

v of g(Cv). Also, for each bracket in Si ∈ Bf
w, the image g(Si) is a subtree of (g ◦ f)(Cw). 

Therefore we have the following collections of subtrees in (g ◦ f)(Cw):

B̃g
f(w) =

⋃
v∈f(Cw)

Bg
v = {Sj : Sj ∈ Bg

v and v ∈ f(Cw)}

B̃g◦f
w = {g(Cv) : v ∈ f(Cw) and g(Cv) � (g ◦ f)(Cw) is large}

B̃f
w = {g(Si) : Si ∈ Bf

w and g(Sy) � (g ◦ f)(Cw) is large}.

All of these are collections of proper large subtrees of (g◦f)(Cw). We set the bracketing B̃w of (g◦f)(Cw)
to be the union

B̃w := B̃g
f(w) ∪ B̃g◦f

w ∪ B̃f
w.

To see that B̃w is a bracketing of (g ◦ f)(Cw), it remains to verify that this collection is comprised of 
nested subtrees. First, each Bg

v ⊂ B̃g
f(w) is a bracketing of g(Cv) ⊂ (g ◦f)(Cw), so it is nested. Moreover, the 

subtrees g(Cv) are all disjoint and each tree of B̃g
f(w) is contained in a tree of B̃g◦f

w , so the union B̃g
f(w)∪B̃g◦f

w

is nested too. The B̃g◦f
w ∪ B̃f

w is also nested, since each bracket g(Cv) in the first set is included in each 
g(Sy) of the second set whenever v ∈ Sy and otherwise is disjoint from it. Hence B̃g

f(w) ∪ B̃f
w is also nested, 

and thus B̃w is nested.
Define the composition (Bf

v )v∈V (S) ◦ (Bg
w)w∈V (R) to be the collection

(B̃w)w∈V (R) ∈ Lg◦f .

Associativity of this composition is analogous to the associativity of the BO composition in Section 3.2. 
In most cases, the composition is associative because vertex substitution is associative. In a composition 
with a degeneracy, a vertex is removed and so a bracket may be discarded if it is no longer large. Any 
discarded bracket is recreated in a subsequent composition if it should not have been discarded in the total 
composition.

Furthermore, this composition definition respects componentwise inclusion and thus defines the poset 
map (4.1). The realization of this poset map induces a map

Lg × Lf Lg◦f . (4.2)

This defines a composition on the morphism spaces of Ω̃0.

Example 4.3. Let f : R → S and g : S → T be the morphisms in Fig. 12. Then R is a corolla Cw = C9, and 
f(Cw) ⊂ S is the proper subtree of S whose vertices are v1, v2, v3. The images g(Cv1), g(Cv3), g(Cv4) ⊂ T

are the corollas Cu1 , Cu5 , Cu6 respectively and g(Cv2) is the subtree with vertices u2, u3, u4. The only images 
of corollas that admit a non-trivial bracketing are f(Cw) and g(Cv2). If the bracketing of f(Cw) consists of 
the bracket B1 in Fig. 13(a) and the bracketing of g(Cv2) consists of B2 in Fig. 13(b), then

B̃g
f(w) = {B2}, B̃g◦f

w = {g(Cv2)}, B̃f
w = {g(B1)}.

The bracketing B̃w ∈ B((g ◦ f)(Cw)) is illustrated in Fig. 13(c).
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Fig. 12. Morphisms f and g in Ω.

Fig. 13. Example of a bracketing induced by f and g in Fig. 12.

By Example 3.4, if Tn is a tree with n vertices such that no vertex is connected to more than two inner 
edges, then |B(Tn)| is the nth associahedron. The 3rd associahedron is an interval. Thus,

Lf = |B(f(Cw))| =
∣∣B ( )∣∣ ∼= [0, 1]

Lg = |B (g(Cv1))| ×
∣∣B ( )∣∣× |B (g(Cv3))| ∼= [0, 1].

Again by Example 3.4 and since (g ◦ f)(Cw) is a tree on five vertices, Lg◦f = |B((g ◦ f)(Cw))| is the 5th 
associahedron, which is a three dimensional polytope called an enneahedron.

Definition 4.4. The category Ω̃0 has the same objects as Ω. Morphism spaces in Ω̃0 are

HomΩ̃0
(S, T ) =

∐
g∈HomΩ(S,T )

Lg =
∐

g∈HomΩ(S,T )

∏
v∈V (S)

|B(g(Cv))|

with composition (4.2) as described above.

Example 4.5. Suppose Tn is a planar tree with (n + 1) leaves and n vertices, each of which is connected to 
at most two inner edges. Let the inner edges of Tn be named e1, . . . , en−1. Morphisms g ∈ HomΩ(Cn+1, Tn)
are compositions of inner face maps ∂e1 , . . . , ∂en−1 but since the order of the composition does not affect 
the total composition, there is only one such morphism g. Hence HomΩ̃0

(Cn+1, Tn) = Lg = |B(Tn)|. Thus 
HomΩ̃0

(Cn+1, Tn) is the nth associahedron by Example 3.4; the center point of the polytope is defined by 
the empty bracket, which is the initial object in the poset B(Tn).

Lemma 3.7 tells us that each bracketing space |B(g(Cv))| is contractible, which implies that each Lg is 
contractible. Let p : Ω̃0 → Ω be the functor that is the identity on objects and projects each morphism 
space Lg to g. By considering Ω as a discrete topological category, we have the following proposition.
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Proposition 4.6. The functor p : Ω̃0 → Ω induces a homotopy equivalence on morphism spaces. �
This proposition will allow us to associate an actual dendroidal space to any homotopy dendroidal space 

in Section 4.3.

4.2. Homotopy dendroidal spaces

In Section 2.2, we defined a Segal condition for dendroidal spaces X : Ωop → S using the Segal map

χ : X(T ) limSk1(T )op X.

We recall that the category Sk1(T ) has the vertices and edges of T as objects, with morphisms given by 
edge inclusions ιe : η → Cv into the corollas of adjacent vertices. The Segal map χ is the unique map to the 
limit induced by the edge and corolla inclusions

ιe : η → T and ιv : C|v| → T.

Note that the spaces Lιe and Lιv in Ω̃op
0 which lie above the morphisms ιe and ιv are always just a single 

point, so the Segal map exists unchanged for functors X : Ω̃op
0 → S. This allows us to make the following 

definition:

Definition 4.7. A homotopy dendroidal space X is a diagram X : Ω̃op
0 → S. A homotopy dendroidal space 

is reduced if X(η) = ∗ and satisfies the strict Segal condition if the Segal map is an isomorphism for each 
η �= T ∈ Ω.

Recall from Section 2.4 that one-colored operads are identified with reduced dendroidal Segal spaces via 
the dendroidal nerve

Nd : O-Alg → SΩop

.

The following theorem is a version of this nerve theorem for homotopy dendroidal spaces. We construct a 
functor

Φ : BO−AlgS −→ SΩ̃op
0

and show that a reduced homotopy dendroidal space X ∈ SΩ̃op
0 is strictly Segal if, and only if, X ∼= Φ(P)

for some BO-algebra P.
Write (SΩ̃op

0 )strict for the full subcategory of Ω̃0-diagrams whose objects are reduced homotopy dendroidal 
spaces satisfying the strict Segal condition. Then we have the following result:

Theorem 4.8. There exists an isomorphism of categories

Φ : BO−AlgS (SΩ̃op
0 )strict.

∼=

Proof. Given a BO–algebra P = {P(n)}n≥0 with structure maps

αP : BO(n;m1, . . . ,mk) × P(m1) × · · · × P(mk) −→ P(n)

we will define
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Φ(P) = Φ(P, αP) : Ω̃op
0 −→ S

as follows. We set Φ(P)(η) = ∗. On objects T �= η of Ω̃0, we set

Φ(P)(T ) =
∏

w∈V (T )

P(|w|).

Given a morphism g : S → T in Ω, we need to define maps

Φ(P)(g) : Lg ×
∏

w∈V (T )

P(|w|) −→
∏

v∈V (S)

P(|v|).

We proceed one vertex v at a time. As Lg =
∏

v∈V (S) |B(g(Cv))|, at each v ∈ V (S) we have projection maps

πv : Lg ×
∏

w∈V (T )

P(|w|) −→ |B(g(Cv))| ×
∏

w∈V (g(Cv))

P(|w|).

An application of the structure map αP defines a map

αv : |B(g(Cv))| ×
∏

w∈V (g(Cv))

P(|w|) −→ P(|v|). (∗)

Indeed, an element of |B(g(Cv))| is a weighted bracketing (B, t) of the subtree g(Cv) ⊂ T . Because T is a 
planar tree, g(Cv) inherits a planar structure. We consider g(Cv) as an element of O by picking an ordering 
σ of its vertices {w1, . . . , wk}, and labeling its leaves via the map τ ordering them according to its planar 
structure. This way ((g(Cv), σ, τ), B, t) is an element of BO(|v|; |w1|, . . . , |wk|). To define the map (∗), we 
first order the factors P(|w|) for w ∈ V (g(Cv)), in accordance with our chosen σ, and then apply αP noting 
that our choice of ordering does not affect the result by the equivariance of αP . Finally we act on the 
resulting element of P(|v|) by the permutation induced by g that identifies the inputs of v with the leaves 
of g(Cv), comparing the labeling τ from the planar structure of T to the planar ordering of in(v) (which 
comes from the planar structure of S). We now set

Φ(P)(g) := (αv ◦ πv)v∈V (S).

The fact that Φ(P) commutes with composition follows from the fact that composition in Ω̃0 is defined 
exactly as the operadic composition of BO by taking the union of the brackets from the first morphism 
which remain large after applying the second morphisms, the brackets from the second morphism, and new 
“middle brackets”, the images of the middle corollas, if they are large. It follows then that Φ(P) : Ω̃0 → S
is a functor. Since Φ(P)(η) = ∗, the Segal map is the map

Φ(P)(T ) −→
∏

v∈V (T )

Φ(P)(Cv)

induced by the inclusions of the corollas. It is an isomorphism by definition of Φ(P).
The data required in the definition of the homotopy dendroidal space Φ(P) is the underlying symmetric 

sequence P = {P(m)}, the BO-algebra structure maps αP and the projection maps πv, all of which are 
natural under maps of BO-algebras. Thus, the assignment P �→ Φ(P) defines a functor

Φ : BO−AlgS −→ (SΩ̃op
0 )strict.

It remains to show that the functor Φ is an isomorphism of categories. Given two BO-algebras P and Q
with Φ(P) = Φ(Q), the underlying symmetric sequences {P(n)}n≥0 and {Q(n)}n≥0 are necessarily equal, 
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being the value at the corollas Cn and the corolla isomorphisms HomΩ̃0
(Cn, Cn) ∼= HomΩ(Cn, Cn) ∼= Σn. 

Moreover, the structure maps αP and αQ likewise must agree as they agree with the evaluation of Φ(P) =
Φ(Q) at corresponding morphisms in Ω̃op

0 . It follows that Φ is injective.
On the other hand, given any X ∈ (SΩ̃op

0 )strict, we can construct a BO-algebra PX by setting PX(n) =
X(Cn) with a symmetric group action induced by the image under X of the isomorphisms of Cn in Ω̃0. The 
BO-algebra structure maps of PX are defined using the above identification of the spaces BO(n; m1, . . . , mk)
with morphism spaces in Ω̃0. The fact that X is a functor will then give that PX is a BO–algebra. Thus 
the functor Φ is surjective. �
4.3. Rectifying homotopy dendroidal spaces

We have just seen that BO-algebras correspond to homotopy dendroidal spaces satisfying the strict 
Segal condition. In this section we will show how to produce, from a BO-algebra, an actual dendroidal 
space satisfying a weak version of the Segal condition.

A commutative diagram in a topological category S is a functor from a discrete category K to S. A homo-
topy commutative diagram can be similarly described as a functor from a topological category K̃ to S, with 
the homotopies encoded as paths in the spaces of morphisms. In this language, a homotopy commutative 
diagram X : K̃ → S can be rectified, or strictified, to a functor X ′ : K → S precisely when there is an 
equivalence p : K̃ → K. We briefly recall this rectification of diagrams, which was used by Segal in [37], and 
treated in great generality by Dwyer and Kan [16]; see also [40, Sec 2] for a detailed account of what we 
will use here. Our examples will be K = Ω with K̃ = Ω̃0.

Let p : K̃ → K be a functor between categories enriched over topological spaces. There is an induced 
functor

p∗ : SK −→ SK̃

defined by precomposition with p. The homotopy left Kan extension defines also a functor

p! : SK̃ −→ SK

that can be explicitly given as follows: given a diagram Y ∈ SK̃, its evaluation at an object d of K is the 
realization of a simplicial space with space of k–simplices

(p!Y (d))k =
∐

c0,...,ck∈ob(K̃)

Y (c0) × HomK̃(c0, c1) × · · · × HomK̃(ck−1, ck) × HomK(ck, d).

Lemma 4.9. [40, Proposition 2.1] Let p : K̃ → K be a functor inducing a homotopy equivalence of morphism 
spaces, and let Y : K̃ → S be a diagram, with p!Y : K → S its rectification as defined above. Then there 
exists a zig-zag of natural transformations p∗p!Y ← p∗p!Y → Y , which induces a homotopy equivalence on 
objects: p∗p!Y (d) � p∗p!Y (d) � Y (d).

In the statement, p∗p!Y is an explicit functor from K̃ to S associated to Y given by a two-sided bar 
construction (details in the proof of [40, Proposition 2.1]).

Proposition 4.6 states that the functor p : Ω̃0 → Ω induces a homotopy equivalence of morphism spaces. 
Below, we apply Lemma 4.9 to describe weak Segal dendroidal spaces that arise as the rectification of a 
homotopy dendroidal Segal space Y ∈ SΩ̃op

0 in the following sense:
Consider the functors

SΩ̃op
0 SΩop

.
p!

∗
p
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For any small category K, the category of diagrams SKop admits a projective model structure in which 
weak equivalences and fibrations are defined entrywise [23, 11.6.1]. In particular, when S is the category of 
topological spaces, every object is fibrant in this model structure. An application of [26, Proposition A.3.3.7]
implies that p! and p∗ are the left and right Quillen functor of a Quillen equivalence.

Proposition 4.10. Let S be the category of topological spaces, and let Y ∈ SΩ̃op
0 be a homotopy dendroidal 

space. Then the rectification p!Y ∈ SΩop is a dendroidal space such that p!Y (η) � ∗, and such that the weak 
Segal map

χ̃ : p!Y (T ) 	−→ holimSk1(T )op p!Y (Cv)

is a homotopy equivalence for each η �= T ∈ Ω if, and only if, the same two properties hold for the homotopy 
dendroidal space Y .

Proof. Note first that, because p is the identity on objects, we have p∗X(T ) = X(T ) for any X : Ωop → S
and any T ∈ Obj(Ω) ≡ Obj(Ω̃0). It follows that p!Y (η) � ∗ if and only if Y (η) � ∗ as p!Y (η) = p∗p!Y (η) �
Y (η) � ∗.

We are left to show that the weak Segal map χ̃ is a weak equivalence for every T �= η for p!Y : Ωop → S
if and only if it is the case for the original functor Y : Ω̃op

0 → S. Recall that the Segal map χ and its weak 
version χ̃ for both Ωop–spaces and Ω̃op

0 –spaces are induced by corolla and edge inclusions ιv and ιe in Ω̃0
and Ω, respectively. As p takes each map ιv and ιe in Ω̃0, to the corresponding map in Ω, and p is the 
identity on objects, for any X : Ωop → S, we have

X(T )
χ̃

holimSk1(T )op X(Cv)

p∗X(T )
χ̃

holimSk1(T )op p
∗X(Cv)

in which the two horizontal maps describe the exact same map in S.
The natural equivalences of functors p∗p!Y ← p∗p!Y → Y of Lemma 4.9 give us the vertical homotopy 

equivalences in the following commuting diagram in S

p∗p!Y (T ) holimSk1(T )op p
∗p!Y (Cv)

p∗p!Y (T ) holimSk1(T )op p∗p!Y (Cv)

Y (T ) holimSk1(T )op Y (Cv),

χ̃

χ̃

	

	 	

	

χ̃

which gives the result using the previous remark in the case X = p!Y . �
Remark 4.11. We used in the proof of Proposition 4.10 that every topological Ω̃0 diagram is projectively 
fibrant to obtain that the homotopy limits preserve homotopy equivalences.

As the dendroidal category is a generalized Reedy category [2, Example 1.6], there is a Reedy model 
structure on the category of reduced dendroidal spaces. We do not currently have an enriched generalized 
Reedy model structure on Ω̃0-spaces. An advantage of the Reedy model structure is that homotopy limits 
of fibrant objects are weakly equivalent to the limit. One expects that, using such Reedy model structures, 
one could prove a version of Proposition 4.10 with the actual Segal map χ replacing the weak Segal map χ̃.
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Fig. 14. Cactus with 8 lobes, its outside circle indicated by the dotted line.

5. Normalized Cacti as an infinity operad

The first goal of this section is to define an operad MS+ and show that, despite not being an operad 
itself, normalized cacti and their composition can be described as elements and compositions inside MS+. 
In Section 5.2, we will use MS+ to show that normalized cacti and the normalized composition extends to 
define a BO-algebra structure. Using the results of Sections 3 and 4, this implies that we have an explicit 
construction of an ∞-operad with underlying sequence the spaces Cact1(n).

A cactus is a configuration of circles of various lengths attached to each other in a treelike fashion. In the 
original definition by Voronov [39, Section 2.7], there is a global basepoint associated to the “outside circle” 
of the cactus, as well as a basepoint for each circle (or lobe). A spineless cactus is a variant introduced by 
Kaufmann [24, Section 2.3], where the basepoint of each lobe is its closest point to the global basepoint 
along the outside circle. See Fig. 14 for an example. The space of all spineless cacti with k lobes is denoted 
Cact(k). The symmetric group acts on this space by permuting the labels of the lobes. The symmetric 
sequence Cact = {Cact(k)}k≥0 is given a composition

◦i : Cact(k) × Cact(j) → Cact(k + j − 1)

that is defined by inserting the second cactus into the ith lobe of the first cactus and aligning its global 
basepoint with the basepoint of the ith lobe. The insertion is done by rescaling the second cactus so that its 
total length is equal to the length of the ith lobe of the first cactus, then identifying the outside circle of the 
second cactus with the ith lobe of the first cactus. This composition makes Cact into an operad, which is 
equivalent to the little 2-discs operad [24, Section 3.2.1]. A rigorous definition of this composition requires 
close attention to subtleties and we refer to [24, Section 2] for precise definitions.

The space of normalized cacti Cact1(k) ⊂ Cact(k) is the subspace of spineless cacti whose lobes all 
have length equal to 1 ([24, Definition 2.3.1]). They form a symmetric sequence Cact1 = {Cact1(k)}k≥0. 
Composition of normalized cacti

◦i : Cact1(k) × Cact1(j) → Cact1(k + j − 1), (5.1)

is defined by reparameterizing the ith lobe of a cactus x ∈ Cact1(k) to have length j, then identifying this 
lobe with the outer circle of the second cactus y ∈ Cact1(j) and aligning their basepoints. In contrast to 
Cact, the ith lobe of the first cactus is scaled instead of scaling the second cactus to the length of the ith 
lobe. See Fig. 15 for an example. This composition is not associative [24, Remark 2.3.19], as illustrated in 
Fig. 16. Thus Cact1 is not an operad.
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Fig. 15. A composition of normalized cacti.

Fig. 16. Non-associativity in Cact1.

Remark 5.1 (Composition in the graph cobordism category). This composition of normalized cacti is highly 
relevant to the graph model of the cobordism category of Riemann surfaces mentioned in the introduction 
of the paper. To model the gluing of cobordisms, we use graphs to represent surfaces with potentially many 
incoming and outgoing boundary components. Normalized cacti are a simple case of this model, representing 
surfaces of genus zero with potentially many inputs but always just one output. Two surfaces are glued by 
attaching the incoming boundaries of the first surface to the outgoing boundaries of the second. According 
to [19] (see also [17, Theorem A]), we may assume that all incoming boundaries of a surface are disjoint 
embedded circles in the corresponding graph (like the lobes of the cactus, if they were pulled apart a little 
bit). Since these boundary circles are disjoint in the graph, they can be scaled independently to each match 
the length of an outgoing boundary in the graph of the second surface, just like scaling the ith lobe of 
the first cactus in Cact1 composition. There is no obvious way to define a “Cact-like” composition for such 
more general graphs, because the outgoing circles of the second surface cannot be assumed to be disjoint, 
and hence cannot be scaled independently to the appropriate length. (See [17, Section 3.3] for more details 
about this gluing of fat graphs.)

5.1. An operad MS+ that contains Cact1

In their proof of the Deligne conjecture, McClure and Smith [29,30] introduced an operad MS equivalent 
the little 2-discs operad.1 Later, Salvatore [36, Section 4] used similar methods to show directly that the 
operad MS is equivalent to the non-normalized cactus operad Cact. Here we will define a variant of MS called 
MS+, and, following [36], start by showing that it is an operad by proving that it embeds in CoEnd(S1). 
We then show that normalized cacti are a subspace of the underlying symmetric sequence of MS+ and that 
their composition can be written in terms of compositions in MS+.

The space of operations MS+(k) is built from a space F(k), which we will show is homeomorphic to 
Cact1(k). In fact, we can think of an element of F(k) as the outer circle of a cactus.

1 The operad MS is denoted C′ in [29, Section 5].
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Fig. 17. Element of x ∈ F(3) and associated projections.

Definition 5.2. [36, Definition 4.1] Let S1 = [0, 1]/0 ∼1 be the circle of circumference equal to 1. Define F(k)
as the space of partitions x = (I1(x), . . . , Ik(x)) of S1 into closed 1-manifolds Ij(x) ⊂ S1, each of which 
have total length 1

k , with pairwise disjoint interiors, and such that

(∗) there does not exist a cyclically ordered 4-tuple (z1; z2; z3; z4) ∈ S1 with z1, z3 ∈ I̊j(x) and z2, z4 ∈ I̊i(x), 
for j �= i.

For an example, see Fig. 17(a). The topology of F(k) is induced by the metric measuring the size of the 
overlap between partitions: for x, y ∈ F(k), d(x, y) = 1 −

∑k
j=1 �(Ij(x) ∩ Ij(y)) for � the length function on 

submanifolds of S1.
The symmetric group Σk acts on F(k) by reindexing the labels of the 1-manifolds.

Definition 5.3. Given an element x ∈ F(k), we associate to each Ij(x) a projection map cjx : S1 → S1 that 
takes the quotient of S1 under the identification of all the points in the same path component of S1 \ I̊j
and then scales this circle by a factor of k. See Fig. 17(b) for an example. The cactus map cx : S1 → (S1)k
is the collection of maps cx := (c1x, . . . , ckx). Then there is a map

c : F(k) Map(S1, (S1)k)

x cx = (c1x, . . . , ckx) : S1 → (S1)k.

For any x ∈ F(k), we also use x to denote the configuration of circles in the image of the cactus map 
cx : S1 → (S1)k. Condition (∗) in Definition 5.2 guarantees that this configuration is treelike, as it forces 
the submanifolds Ij(x) to be nested. The global basepoint of x is the image of the basepoint of S1 and a 
planar structure is induced by the orientation of the source S1 (see [36, Definition 4.2]). Since each part of 
a partition x ∈ F(k) has equal length, x is a normalized cactus as shown in Fig. 18. This is the sketch of 
the proof for the next lemma.

Lemma 5.4. [36, Section 4] For each k ≥ 1, the space F(k) is homeomorphic to Cact1(k).

Recall the coendomorphism operad CoEnd(S1) from Example 2.2, whose underlying symmetric sequence 
is a collection of CoEnd(k)(S1) := Map(S1, (S1)k). We use the map

c : Cact1(k) ∼= F(k) ↪→ Map(S1, (S1)k) = CoEnd(S1)(k)

to define an embedding of symmetric sequences.

Lemma 5.5. The map c : F(k) → Map(S1, (S1)k) is a topological embedding.
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Fig. 18. An element x of F(3) and the corresponding normalized cactus cx.

Proof. We first check injectivity. Given a map cx = (c1x, . . . , ckx) in the image of c, we can completely 
determine x ∈ F(k). We know that each cjx is a “step-map” with linear of slope k over its non-constant 
parts, by the definition of c. (See Fig. 17(b).) Then Ij(x) is precisely the subset of points of S1 where the 
derivative (cjx)′ equals k. Continuity of c follows from the fact that the topology in the mapping space can 
be defined using the convergence metric, using likewise the metric on S1. �

This embedding of symmetric sequences does not extend to an embedding of operads. As already men-
tioned, Cact1 is not an operad and one can check that the image of c is not a suboperad of CoEnd(S1). 
Indeed, if we compose two elements in CoEnd(S1) that came from elements of F , their composition will 
not be in the image of any F(k) because all elements in the image of F(k) are piecewise linear graphs of 
slope 0 or k, and this property is not preserved by the composition in CoEnd(S1).

Here we define the symmetric sequence MS+ = {MS+(k)}k≥0, which is built from F(k) and a collection 
Mon+(I, ∂I) of scaling maps on the interval I. It has the important property that Cact1(k) ⊂ MS+(k) for 
each k ≥ 0.

Definition 5.6 (MS+ as a symmetric sequence). For each k ≥ 0, we define the space MS+(k) as

MS+(0) = ∗
MS+(k) = F(k) ×Mon+(I, ∂I)

where Mon+(I, ∂I) is the space of strictly monotone self-maps of I that restrict to the identity on ∂I. We 
consider Mon+(I, ∂I) as a subspace of the space of self-maps of S1 = I/∂I. For each k, there is an action 
of the symmetric group Σk on MS+(k) by the reindexing of the labels of the 1-manifolds in F(k).

Remark 5.7. The operad MS that appears in [29,30,36] has an underlying symmetric sequence obtained by 
replacing Mon+(I, ∂I) by the larger space Mon(I, ∂I) of weakly monotone maps. The inclusion MS+ ↪→
MS is a homotopy equivalence as both Mon(I, ∂I) and Mon+(I, ∂I) are contractible (in fact, they are 
both convex).

In order to show that MS+ is an operad, we start by showing that each space of operations MS+(k)
embeds in CoEnd(S1)(k). We also check that the operad composition of CoEnd(S1) preserves the image of 
MS+, and hence is a suitable composition for MS+, thus making MS+ a suboperad of CoEnd(S1).

Proposition 5.8. There is a topological embedding φ : MS+(k) → CoEnd(S1)(k) that sends (x, f) ∈ MS+(k)
to the composite

S1 f−→ S1 cx−→ (S1)k

where cx is the cactus map as in Definition 5.3.
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A version of Proposition 5.8 is stated for the operad MS in [36, Section 4]. As we rely heavily on this 
result we give more complete details here.

Proof. The fact that φ is continuous follows from Lemma 5.5, so we are left to check that φ is injective. 
Let x ∈ F(k). Recall that the map cx = (c1x, . . . , ckx) : S1 → (S1)k is a collection of “step-maps” of linear of 
slope k over its non-constant parts. Each map cjx : S1 → S1 identifies points in the same path component of 
S1 \ I̊j(x) and linearly takes Ij(x) (of length 1/k) to a circle of circumference 1. So, these maps satisfy that

1
k

k∑
j=1

cjx = IdS1 .

In particular, this means that if cx ◦ f = cy ◦ g, then

f = (1
k

k∑
j=1

cjx) ◦ f = 1
k

k∑
j=1

(cjx ◦ f) = 1
k

k∑
j=1

(cjx ◦ g) = (1
k

k∑
j=1

cjy) ◦ g = g.

Moreover, as f, g are strictly monotone and hence invertible, for each j = 1, . . . , k,

cjx = (cjx ◦ f) ◦ f−1 = (cjy ◦ g) ◦ f−1 = (cjy ◦ g) ◦ g−1 = cjy.

This shows that cx = cy and therefore the map is injective. �
Proposition 5.8 shows that MS+ is a symmetric subsequence of CoEnd and this next lemma shows that 

the operad structure maps of CoEnd preserve this structure.

Lemma 5.9. The operad structure maps of CoEnd preserve the symmetric subsequence MS+.

Proof. It suffices to consider the composition operations ◦i in CoEnd as defined in Example 2.2. Given 
(x, f) and (y, g) in MS+, we need to check that the composition

S1 f−→ S1 cx−→ (S1)k 1×g×1−−−−→ (S1)k 1×cy×1−−−−−→ (S1)j+k−1 (5.2)

is in the image of MS+, where 1 × g × 1 denotes the map where g acts only on the ith circle. For this, we 
will show two things:

(i) (1 × g × 1) ◦ cx = cx̃ ◦ g̃, for some g̃ ∈ Mon+(I, ∂I) and x̃ ∈ F(k),
(ii) (1 × cy × 1) ◦ cx = cz ◦ hx,y for some hx,y ∈ Mon+(I, ∂I) and z ∈ F(j + k − 1).

For statement (i), the map (1 × g × 1) acts only on the ith circle, so in the composition with cx it only 
affects points in Ii(x). Recall that we identify S1 with I/∂I. Suppose Ii(x) = J1 � · · · � Jr with each Js a 
subinterval of [0, 1] and Ii(x) of total length 1

k . We obtain x̃ ∈ F(k) from x by replacing each subinterval 
Js by an interval J̃s of length 1

k �(g(c
i
x(Js)))) and shifting each path component of [0, 1] \ I̊i(x) accordingly. 

Then Ii(x̃) = J̃1 � · · · � J̃r. This makes sense as, by construction, the total length of Ii(x̃) is again 1
k . The 

map g̃ is defined as the canonical identification of x with x̃ that maps Ii(x) to Ii(x̃) for all i ∈ {1, . . . , k}. 
See Fig. 19 for an example.

For statement (ii), we consider a composition (1 × cy × 1) ◦ cx : S1 → (S1)j+k−1 with cy on the ith 
position. Such a composition maps the rth partition Ir(x), for r �= i, to the rth (if r < i) or (r+ k− 1)st (if 
r > i) component in the target by a slope k map, while Ii(x) is mapped by slope jk maps to the remaining 
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Fig. 19. An example of the commutative diagram g ◦ cix = cix̃ ◦ g̃.

components. Let hx,y : S1 → S1 be the rescaling map that scales each Ir(x) by a factor k
j+k−1 for r �= i, and 

Ii(x) by a factor jk
j+k−1 . Then the image under hx,y of each Ir(x) will be of size 1

j+k−1 for r �= i, while Ii(x)
will have image of total size j

j+k−1 . Note that this gives a well-defined map in Mon+(I, ∂I) as the sum of 
the length of the images hx,y(Ir(x)) is (k−1) 1

j+k−1 + j
j+k−1 = 1. Subdividing the image under hx,y of Ii(x)

into j parts as prescribed by y, together with the images of the other Ir(x)’s, then defines z ∈ F(j + k− 1). 
The relation (1 × cy × 1) ◦ cx = cz ◦ hx,y holds by construction.

By putting (i) and (ii) together, the composition in (5.2) is given by (hx̃,y ◦ g̃ ◦ f, z) ∈ MS+. �
Therefore we have shown that MS+ is a suboperad of CoEnd(S1) via the embedding φ in Proposition 5.8.

Definition 5.10 (MS+ as an operad). The symmetric sequence MS+ = {MS+(k)}k∈N becomes an operad 
with composition

(x, f) •i (y, g) := φ−1(φ(x, f) ◦i φ(y, g)) (5.3)

where ◦i is the composition in CoEnd(S1) defined in (5.2), and the pre-image exists as a consequence of 
Lemma 5.9.

We will often use scaling maps in Mon+(I, ∂I) to encode the scaling of lobes in the composition of normal-
ized cacti. Given a partition x = (I1(x), . . . , Ik(x)) ∈ F(k) ∼= Cact1(k), and natural numbers m1, . . . , mk ≥ 0, 
we let

g = g(x;m1, . . . ,mk) : S1 −→ S1 (5.4)

be the element of Mon+(I, ∂I) that scales Ij(x) by the factor kmj

m1+···+mk
, 1 ≤ j ≤ k. Each Ij(x) has total 

length 1
k , so the image of Ij(x) will have length mj

m1+···+mk
for each 1 ≤ j ≤ k. (See Fig. 20 for an example.) 

Note that g(x; 1, . . . , 1) = id is just the identity map on S1.
We will now show that the ◦i-compositions of normalized cacti from (5.1),

◦i : Cact1(k) × Cact1(j) Cact1(k + j − 1),

and, more generally, the Cact1–composition maps

γCact1 : Cact1(k) × Cact1(m1) × · · · × Cact1(mk) −→ Cact1(Σk
i=1mi),

are restrictions of the corresponding compositions of appropriately chosen elements of MS+.
For a collection of cacti x ∈ Cact1(k) and yj ∈ Cact1(mj), 1 ≤ j ≤ k, the quasi-operad composition 

γCact1(x; y1, . . . , yk) scales each lobe of x so that the ith lobe now has length mi, and then inserts (without 
any further scaling) each yi in place of the ith scaled lobe.
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Fig. 20. Map g(x; 2, 1, 1), for x from Fig. 18.

Under the homeomorphism Cact1(k) ∼= F(k) in Lemma 5.4, a normalized cactus x ∈ Cact1(k) precisely 
corresponds to a partition x ∈ F(k) of [0, 1] into k submanifolds Ij(x) of equal lengths 1

k , satisfying the 
conditions of Definition 5.2. Since the ith lobe of x corresponds to the submanifold Ii(x), there is a scaling 
by 1k in the identification Cact1(k) to take a lobe of length 1 to Ii(x). In the next lemma we will use x ∈ F(k)
and yj ∈ F(mj) for 1 ≤ j ≤ k to represent a sequence of cacti in Cact1(k) and Cact1(mj) respectively. We 
will still denote the composition by ◦i or γCact1 .

Lemma 5.11. Let γMS+ and γCact1 denote the (quasi-)operad compositions in MS+ and Cact1, respectively. 
Then for x ∈ F(k) and yj ∈ F(mj), with 1 ≤ j ≤ k, we have

γMS+((x, g−1(x;m1, . . . ,mk)); (y1, id), . . . , (yk, id)) = (γCact1(x; y1, . . . , yk), id)

in MS+(
∑

mj). In particular,

(x, g−1(x; 1, . . . ,mi, . . . , 1)) •i (yi, id) = (x ◦i yi, id)

where •i denotes the composition (5.3) of MS+ and ◦i represents the composition (5.1) of Cact1.

Proof. Let F(m1,...,mk)(k) denote the scaled version of F(k) where the ith partition, Ii, now has length 
mi instead of 1

k . In particular, we have that F(k) = F( 1
k ,..., 1k

)(k) and Cact1(k) = F(1,...,1)(k). Thus the 

homeomorphism Cact1(k) ∼= F(k) implies that the composition γCact1 on Cact1 can be interpreted as a map 
in F , written as

F(k)× (F(m1) × · · · × F(mk))
S−−→ F(m1,...,mk)(k) ×

(
F(1,...,1)(m1) × · · · × F(1,...,1)(mk)

)
γ−−→ F(1,...,1)(

∑
i

mi)

N−−→ F 1∑
mi

,..., 1∑
mi

(
∑
i

mi) = F(
∑
i

mi)

where S and N are scaling and normalizing maps and the map labeled γ is the insertion map.
Our task is to write the composition γCact1 in terms of the operad MS+. To do this, we will use scaling 

maps inside Mon+(I, ∂I). More precisely, define a map

F(k) × (F(m1) × · · · × F(mk))
G−−−−→ MS+(k) × (MS+(m1) × · · · ×MS+(mk))
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that takes (x; y1, . . . , yk) to ((x, g−1); (y1, id), . . . , (yk, id)) where g = g(x; m1, . . . , mk) ∈ Mon+(I, ∂I) is the 
map in equation (5.4). The statement we want to prove is that (γCact1 , id) can be written as the composition

F(k) × (F(m1) × · · · × F(mk))
G−−−−→ MS+(k) × (MS+(m1) × · · · ×MS+(mk))

γMS+−−−−→ MS+(
∑
i

mi).

In particular, we claim that the resulting element of MS+(
∑

i mi) is in the image of Cact1, that is, of the 
form (z, id).

To prove this, we start by expressing G as a composition G′ ◦ S, where S is the scaling map in the 
description γCact1 = N ◦ γ ◦ S given above and

G′ : F(m1,...,mk)(k) × (F(1,...,1)(m1) × · · · × F(1,...,1)(mk)) −→ MS+(k) × (MS+(m1) × · · · ×MS+(mk))

is the map that takes a tuple (x; y1, . . . , yk) to the tuple ((N(x), g−1); (N(y1), id), . . . , (N(yk), id)), with N
the normalization also as above. In order to compare γCact1 = N ◦γ ◦S with γMS+ ◦G′ ◦S, we have to show 
that the diagram

F(m1,...,mk)(k) × (F(1,...,1)(m1) × · · · × F(1,...,1)(mk))

G′

γ
F(1,...,1)(

∑
i mi)

(N,id)

MS+(k) × (MS+(m1) × · · · ×MS+(mk))
γMS+

MS+(
∑

i mi)

commutes, where the right vertical map takes z to (N(z), id). To see this, let (x; y1, . . . , yk) be an element 
in the top left corner of the square. Its image γMS+ ◦G′(x; y1, . . . , yk) along the bottom composition is the 
element of MS+(m1 + · · · + mk) given by the following composition:

S1 g−1

−−→ S1 cx−→ (S1)k
cy1×···×cyk−−−−−−−−→ (S1)m1+···+mk

since we consider MS+(m1 + · · ·+mk) as a subspace of CoEnd(m1 + · · ·+mk) and use the composition in 
(5.3). The jth factor S1 in the above (S1)k is subdivided into submanifolds Is(yj) according to cyj

.
Their inverse image g ◦ (cx)−1

j (Is(yj)) in the source S1 of the composition is thus taken to the (m1 +
· · · + mj−1 + s)th factor S1 in (S1)m1+···+mk , being first scaled by a factor 

∑
mi

kmj
(using g−1), then by a 

factor k (via the jth component of cx) and finally by a factor mj (via the sth component of cyj
). So in 

total the composition takes g ◦ (cx)−1
j (Is(yj)) to S1 = I/∂I linearly by a factor 

∑
mi, and is constant 

on the connected components of the complement of g ◦ (cx)−1
j (Is(yj)). In particular, g ◦ (cx)−1

j (Is(yj)) has 
length 1∑

mi
, which is independent of j and s. Thus we see that the resulting element does indeed live in the 

image of Cact1. As the scaling is always independent of s and j, the proportion of each g ◦ (cx)−1
j (Is(yj))

inside the source S1 is always as dictated by cyj
, with each g−1(Ij(x)) having total length mj∑

i mi
. Hence the 

composition is the same as following the other side of the square, which inserts Is(yj) inside Ij(x), scaling 
each Ij(x) to length mj , then scales it by 1∑

mi
to be inside MS+. �

Therefore up to scaling in accordance with the homeomorphism Cact1 ∼= F in Lemma 5.4, we have shown 
that both Cact1 and its composition are contained within the operad MS+, but not as a suboperad.
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5.2. Cact1 is a BO–algebra

Here we will construct an action of BO on normalized cacti using the fact that Cact1 ⊂ MS+, and 
that its composition can also be described in terms of the composition in MS+. In Theorem 5.12, we 
show that the quasi-operad structure on normalized cacti Cact1 = {Cact1(k)}k≥0 is part of a BO-algebra 
structure. In Corollary 5.13, we conclude that Cact1 determines a dendroidal Segal space X ∈ SΩop with 
X(Cv) = Cact1(|v|).

Recall from Section 3.3 that a BO–algebra is a symmetric sequence with ◦i–operations that are homotopy 
associative up to all higher homotopies. Elements from BO are (T, σ, τ, B, t) where T is a planar tree 
equipped with bijections σ : |V (T )| → V (T ) and τ : |L(T )| → L(T ), and (B, t) is a weighted bracketing 
of T .

Let

R : MS+ −→ F (5.5)

denote the projection map that forgets the Mon+(I, ∂I) component, R(x, f) = x. This is a map of symmetric 
sequences. If we think of elements of MS+ as cacti, the map R has the effect of renormalizing, that is, 
rescaling the lobes so that they all have the same length. Since MS+ is an operad, it is an O-algebra. The 
O-action

λMS+ : O(k;m1, . . . ,mk) ×MS+(m1) × . . .×MS+(mk) −→ MS+(
∑
i

mi)

takes a sequence of elements

((T, σ, τ), (x1, f1), . . . , (xk, fk)) ∈ O(k;m1, . . . ,mk) ×MS+(m1) × . . .×MS+(mk)

to the composition of the elements (x1, f1), . . . , (xk, fk) according to γMS+ , in the order prescribed by the 
labeled tree (T, σ), acting by the permutation τ on the resulting element of MS+(

∑
i mi). This composition 

can be depicted by labeling the ith vertex of (T, σ, τ) by (xi, fi) ∈ MS+(mi). This action is compatible with 
the composition in O because MS+ is an operad. We will use this existing O-algebra structure to define 
the BO-algebra structure of Cact1 by representing the Cact1-composition by R ◦ λMS+ .

Theorem 5.12. The Cact1-composition (5.1) is part of a BO–algebra structure.

Proof. In order to construct a BO–algebra structure on the sequence {Cact1(n)}n≥0, we want to define a 
map

BO(k;m1, . . . ,mk) × Cact1(m1) × . . .× Cact1(mk) −→ Cact1(
∑
i

mi)

that restricts to the Σn–action on Cact1(n), which permutes the labels on the lobes, and its already defined 
◦i–compositions. Using the homeomorphism Cact1 ∼= F from Lemma 5.4, we will equivalently construct a 
map

λ : BO(k;m1, . . . ,mk) ×F(m1) × . . .×F(mk) −→ F(
∑
i

mi).

Firstly, the Σn-action on the n–space of a BO–algebra is encoded by the labeled corollas

(Cn, 1, τ, ∅, ∅) ∈ BO(n;n) ∼= O(n;n) ∼= Σn,
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Fig. 21. Example of the BO-action on Cact1.

where τ labels the leaves of the corollas Cn, which are thought of as elements of the symmetric group Σn, 
and the identity corresponds to the planar ordering. This fixes the action of such elements of BO as we 
have already fixed the Σn–action on Cact1(n).

The Cact1 ◦i-composition is encoded in BO by the trees with exactly two vertices, one attached to the 
ith incoming edge of the other. These trees admit no non-trivial bracketings so such elements of BO have 
the form

(T, σ, τ, ∅, ∅) ∈ BO(m + n− 1;m,n)

where σ labels the two vertices of T and τ labels its n + m − 1 leaves. The compatibility with the pre-
chosen operadic composition of Cact1 dictates the action of such elements of BO: (T, σ, τ, ∅, ∅) acts on 
x1 ∈ Cact1(m) and x2 ∈ Cact1(n) by taking their ◦i-composition, as dictated by the tree, and then acting 
by τ on the lobes of the resulting element of Cact1(m +n − 1). Fig. 21 illustrates an example of this action.

By Lemma 5.11, this Cact1-composition can be defined in terms of the MS+ composition:

R ◦ λMS+
(
(T, σ, τ); (x1, g1), (x2, g2)

)
where R is the projection map (5.5), and g1 = g(x1, 1, . . . , ki, . . . , 1) and g2 = g(x2, 1, . . . , lj , . . . , 1) are the 
rescaling maps of (5.4), with ki = n and lj = 1 if first vertex is the bottom vertex and the second is attached 
to its ith input, or ki = 1 and lj = m if the second vertex is the bottom vertex with the first attached to 
its jth input. Let (yT , fT ) ∈ MS+ denote the element λMS+

(
(T, σ, τ); (x1, g1), (x2, g2)

)
.

We will now extend this definition of the BO–action of trees with at most two vertices to an action of the 
whole operad. We start by defining an explicit expression for the action of bracketings of trees (T, σ, τ, B, 1)
with brackets of weight 1, and afterwards extend this definition to the remaining elements of BO, whose 
brackets have weight strictly between 0 and 1.

Let T = (T, σ, τ, B, 1) be an element of BO(n; m1, . . . , mk) with all brackets of weight 1, and let xi ∈
F(mi) ∼= Cact1(mi) for each 1 ≤ i ≤ k. We first construct scaling maps g ∈ Mon+(I, ∂I) as in (5.4). Recall 
from Definition 3.1 that a bracketing B = {Sj}j∈J consists of large, nested proper subtrees of T . Here we 
allow B to be empty. Recall that σ orders the vertices of T . For a fixed i ∈ {1, . . . , k}, let S ∈ B be the 
smallest bracket that contains the vertex σ(i), allowing S = T if there are no such bracket. Recall that 
in(σ(i)) is the set of incoming edges of σ(i), and L(S) is the set of leaves of the bracket S. We define a map

ξ : in(σ(i)) −→ N (5.6)

by setting

(i) ξ(e) = 1 if e ∈ L(S);
(ii) ξ(e) = |L(S′)| if e is the root of a bracket S′ ⊂ S in B, with S′ ⊂ S the largest such bracket;
(iii) ξ(e) = |w| if e ∈ iE(S) is not the root of any S′ ∈ B, where |w| denotes the arity of the vertex w ∈ V (S)

for which e is the outgoing edge.
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Fig. 22. An example of ξ.

Fig. 23. An example of T ′ for the bracketing of T in Fig. 22.

Fig. 22 shows an example of the map ξ. We then set

gi := g(xi; ξ(e1), . . . , ξ(emi
)) (5.7)

for e1, . . . , em the incoming edges of σ(i) ordered by the planar ordering of T .
We define the action of BO inductively on the size of the bracketing B.
If B is empty, then we define

λ(T;x1, . . . , xk) := R ◦ λMS+((T, σ, τ); (x1, g1), . . . , (xk, gk))

and use (yT , fT ) ∈ MS+ to denote the image of λMS+ . Note that when k = 1 or 2, this is the same as the 
BO-structure already defined above.

If B is not empty, then we define additional scaling maps for each bracket, using the inductive hypothesis 
that the action has already been defined action on subtrees with fewer brackets.

Let T ′ be the tree obtained from T by adding a binary vertex at the root of each bracket Sj ∈ B. Extend 
the order σ of the vertices of T to an order σ′ of vertices of T ′ by setting the |J | = |B| new vertices last. 
An example of T ′ is shown in Fig. 23. We will use each additional vertex of T ′ to assign a scaling map to 
the associated bracket.

Let wj ∈ V (T ′) \ V (T ) be the jth vertex of T ′ not in T , according to the chosen order σ′. Let Sj ∈ B be 
the bracket associated to wj. Since the number of brackets of B that lie inside Sj is less than |B|, we have 
an element

(ySj
, fSj

) ∈ MS+
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defined by the inductive assumption by restricting T = (T, σ, τ, B, 1) to the subtree Sj . Consider the tree 
T/Sj in which all vertices in Sj are identified and internal edges between them are collapsed. The tree T/Sj

has a vertex [Sj ] associated to the collapsed tree Sj . We have an induced bracketing B̃ of T/Sj from the 
bracketing B of T , and thus can define a map ξj : in([Sj ]) → N as in (5.6) by replacing (T, B) by (T/Sj , B̃). 
Then define

hj := g(ySj
; ξj(e1), . . . , ξj(el)) ◦ f−1

Sj
(5.8)

for e1, . . . , el the incoming edges of [Sj ] in T/Sj . We define the action of BO by setting

λ(T;x1, . . . , xk) := R ◦ λMS+
(
(T ′, σ′, τ); (x1, g1), . . . , (xk, gk), (1, h1), . . . , (1, h|B|)

)
(5.9)

for the rescaling maps gi and hj defined above.
We claim that the formula for the action (5.9) is indeed compatible with composition of bracketings of 

trees of weight 1. It is enough to check this for a ◦i-composition in BO, so consider T1 = (T1, σ1, τ1, B1, 1)
and T2 = (T2, σ2, τ2, B2, 1) in BO. We need to check that

λ(T1;x1, . . . , xi−1, λ(T2;xi, . . . , xi+l−1), xi+1, . . . , xk+l−1) = λ(T1 ◦i T2;x1, . . . , xk+l−1). (5.10)

From the above definition, we have λ(T1; x1, . . . , xi−1, λ(T2; xi, . . . , xi+l−1), xi+1, . . . , xk+l−1) =

R ◦ λMS+
(
(T ′

1, σ
′
1, τ1); (x1, g1), . . . , (xi−1, gi−1), (yT2 , gi), (xi+l, gi+l), . . . , (xk, gk), (1, h1), . . . , (1, h|B1|)

)
for

yT2 = R ◦ λMS+
(
(T ′

2, σ
′
2, τ2); (xi, g

′
1), . . . , (xi+l−1, g

′
l), (1, h′

1), . . . , (1, h′
|B2|)

)
where the maps gi and hi are those associated to (T1, B1) and the maps g′i and h′

i associated to (T2, B2). 
In the above notation, we also have

(yT2 , fT2) = λMS+
(
(T ′

2, σ
′
2, τ2); (xi, g

′
i), . . . , (xi+l−1, g

′
i+l−1), (1, h′

1), . . . , (1, h′
|B2|)

)
.

Note that one can change the Mon+(I, ∂I) component of an element of MS+ by doing a ◦1–composition 
in the operad. In particular,

(yT2 , gi) = (1, gi ◦ f−1
T2

) ◦1 (yT2 , fT2)

in MS+ ane we can rewrite the left hand side of (5.10) as the first component of the MS+–composition

λMS+
(
(T ′

1, σ
′
1, τ1) ◦i (T̄ ′

2, σ̄
′
2, τ2); (x1, g1), . . . , (xi−1, gi−1),

(xi, g
′
i), . . . , (xi+l−1, g

′
i+l−1), (1, h′

1), . . . , (1, h′
|B2|), (1, gi ◦ f

−1
T2

),

(xi+l, gi+l), . . . , (xk, gk), (1, h1), . . . , (1, h|B1|)
)

where T̄ ′
2 has an extra vertex at the bottom of the tree to encode the change of Mon+(I, ∂I)–component 

for the T2 composition. If T2 is large, this extra vertex corresponds exactly to the extra bracket T2 arising 
in the BO–composition, and one checks that the corresponding scaling map h defined by the formula (5.8)
is precisely the map gi ◦ f−1

T2
. As the other labels of the vertices of the composed tree agree with those of 

the right hand side, we see that we recover the right hand side of (5.10). If T2 is not large, then there is no 
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such additional bracket in the BO–composition, but in this case fT2 = id and the left and right hand side 
agree directly.

Recall from Remark 3.10 that we may consider BO as the geometric realization of the simplicial operad 
of bracket trees. Then the above definition of λ on bracketings of weight 1 defines the action of the vertices 
of BO. We finally extend this action to all bracketings of a tree T by linear interpolation on the rescaling 
maps gi. For a fixed tree T and a point ((B0 ⊂ · · · ⊂ Br), t) in the realization of the poset B(T ), let gi(T, Bj)
denote the definition of the rescaling map gi with respect to the bracketing Bj on T in (5.7), and likewise 
for the maps fj in (5.8). We set

gi = t0gi(T,B0) + ... + trgi(T,Br).

This is well-defined as Mon+(I, ∂I) is convex. Also note that this is continuous in BO as going to the lth 
face of the simplex (B0 ⊂ · · · ⊂ Br) corresponds to tl going to 0, that is, dropping the bracket Bl. Then we 
define (yT , fT ) and λ(T, σ, τ, B, t) := R(yT , fT ) as in (5.9) but with this definition of gi instead.

This defines the action of BO on Cact1. It is compatible under composition because the composition in 
BO is the realization of the composition in the poset operad, and we have already checked the compatibility 
under composition there. �

Given that normalized cacti, together with the cactus composition (5.1), forms a BO-algebra we can now 
use the rectification results from Proposition 4.10 to define an ∞-operad.

Corollary 5.13. Normalized cacti define dendroidal spaces of the following two flavors:

(i) There exists a reduced homotopy dendroidal space X ∈ SΩ̃op
0 , satisfying the strict Segal condition, such 

that X(Cn) = Cact1(n) and with value on the inner face maps ∂e given by the Cact1–composition.
(ii) There exists a weakly reduced dendroidal space Y ∈ SΩop , satisfying the weak Segal condition (in the 

sense of Proposition 4.10), such that Y (Cn) � Cact1(n) and with value on the inner face maps ∂e
homotopic to the Cact1–composition.

Proof. Theorem 5.12 shows that Cact1 is a BO-algebra. Applying the construction from Theorem 4.8, we 
define a homotopy dendroidal space X := Φ(Cact1) ∈ SΩ̃op

0 . By construction, Φ(Cact1)(Cn) = Cact1(n), 
and by the theorem it is a reduced homotopy dendroidal space satisfying the strict Segal condition. The 
evaluation of Φ(Cact1) on an inner edge is the ◦i composition, as encoded by the BO-structure, which in 
the present case is the Cact1–composition by Theorem 5.12. This proves (i) in the statement.

For (ii), we set Y := p!X = p!Φ(Cact1) ∈ SΩop to be the rectification of X, as constructed in Proposi-
tion 4.10. By Lemma 4.9, Y (Cw) = p!Φ(Cact1)(Cw) � Φ(Cact1)(Cw) = Cact1(|w|) and the value of Y on 
inner face maps identifies under these homotopy equivalences with the value of X on inner face maps, and 
hence identifies with the Cact1–composition. By the proposition, Y is weakly reduced and satisfies the weak 
Segal condition. �
6. Relation between the operads BO and WO

The Boardman-Vogt W -construction is a construction on operads with the property that, for any topo-
logical operad P, algebras over WP are “up-to-homotopy” or “weak” P-algebras. A lax operad [8] is an 
algebra over the operad WO, the Boardman-Vogt W–construction applied to the operad of operads O
(Definition 2.8), and is a notion of a “weak” or “infinity” operad. It is known that there exists a zig-zag of 
Quillen equivalences between the category of WO-algebras and the category of reduced dendroidal spaces 
by, for example, combining Theorem 4.1 of [1] with either Theorem 1.1 of [3] or a restriction of Theorem 
8.15 of [12].
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Here we show how the operad BO can be identified with a variant W0 of the W -construction of the 
operad O of operads (see Theorem 6.4). From this, it will follow that BO–algebras are lax operads that are 
strictly symmetric and with a strict identity (see Example 6.2). We start by recalling the W–construction.

6.1. The W -construction

The Boardman-Vogt W -construction is an enlargement of the free operad construction. Given an operad 
P, there are canonical morphisms of topological operads

FP ↪→ WP ∼−→ P,

where the map p : WP → P is a surjective homotopy equivalence. Algebras for WP are up-to-homotopy 
P-algebras. We briefly recall the construction here and refer the reader to [8, Section 17] or [1, Section 3]
for full details.

Definition 6.1. Let P be a C–colored (discrete or topological) operad. The operad WP is a topological 
operad with the same set of colors C, built from the free operad F (P) (Definition 2.3) by adding length 
in [0, 1] to the internal edges of the trees that define the elements of F (P). More precisely, for each list of 
colors c; c1, . . . , ck in C, we have

WP(c; c1, . . . , ck) =
( ∐

(T ,f,λ)

(
[0, 1]|iE(T)| ×

∏
v∈V (T)

P(out(v); in(v))
))

/ ∼

where the disjoint union, as for the free operad, runs over the isomorphim classes of leaf-labeled C–colored 
planar trees

(T , f : E(T ) → C, λ : {1, . . . , k} → L(T ))

with k leaves such that f(λ(i)) = ci, f(R(T )) = c. The equivalence relation is generated by the relation (∗) 
in Definition 2.3 in addition to the following additional relations that capture “weak” operadic composition 
and units:

(1) any tree with an internal edge of length of zero is identified with the tree where that edge has been 
collapsed and the operations labeling its end vertices composed;

(2) any tree that has a vertex with only one input and one output, both colored by c ∈ C, labeled by the 
identity in ιc ∈ P(c; c), is identified with the tree where that vertex is deleted. The resulting new edge, 
if internal, has length the maximum length of the two original internal edges connected to the deleted 
vertex.

See [8, p 75] for a pictorial version of these relations. The symmetric group acts on WP by relabeling the 
leaves, as for the free operad. Composition is by grafting, giving length 1 to the newly created internal edge.

We will denote elements of WP by (T , f, λ, s, p), where T is a planar tree, f : E(T ) → C is the map 
coloring its edges, λ : {1, . . . , k} → L(T ) is the bijection labeling its leaves, s ∈ [0, 1]|iE(T)| is a collection 
of weights, and p = (pv)v∈V (T) is a labeling of the vertices by operations in P. An example is shown in 
Fig. 24. There is a canonical projection map π : WP → P defined by sending all the edge lengths to 0 and 
composing the operations of P as dictated by the trees.
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Fig. 24. Example of an element of WP(p; a, b, c, d, g, i, k, �,m, o).

Fig. 25. Local representation of the relation (2′) on a tree.

6.2. A variant on the W -construction

Given a (discrete or topological) C-colored operad P, the topological operad W0P is defined as the 
quotient of WP by replacing relation (2) in Definition 6.1 by the following stronger relations for arity one 
vertices, as well as a version for arity zero vertices:

(2′) any tree that has a vertex v with only one input and one output both colored by c, adjacent to at least 
one other vertex w, with v labeled by any element P(c; c), is identified with the tree where the vertex 
v is deleted, and the label of v and w are composed in P (Fig. 25).
If the resulting new edge is internal, then its length is the maximum length of the two original (then 
necessarily internal) edges adjacent to v.

(3’) any tree that has a vertex v with no input, adjacent to another vertex w, with v labeled by any element 
of P(c; ∅), is identified with the tree where the vertex v and the edge between v and w are deleted, and 
the labels of v and w are composed in P (Fig. 26).

So a W0P–algebra is a weak P–algebra (WP–algebra) for which the nullary and unary operation are strict. 
And in particular, one has that W0P(c; c) = P(c; c) and W0P(c; ∅) = P(c; ∅) for any color c. Also, one can 
always choose representatives of elements of W0P using trees with no valence 0 or 1 vertices (unless it only 
has 0 or 1 vertex). In a tree that defines an element of W0P, an arity one vertex lying in between two other 
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Fig. 26. Local representation of the relation (3’) on a tree.

vertices can be slid up or down to either of its neighboring vertices, composing its label with that of the 
chosen vertex, while an arity zero vertex can be “pushed down” to the vertex it is attached to.

Example 6.2. The example relevant to us here is when we set P = O is the operad of operads. In this 
case, C = N is the natural numbers and an O-algebra is a (monochrome) operad. The nullary operations in 
O(1; ∅) encode the identity operation in the O–algebra, while the unary operations in O(n; n) encode the 
action of the symmetric groups. It follows that a W0O–algebra is a strictly symmetric weak operad with a 
strict identity.

By construction, the canonical projection p : WP → P factors through the quotient map q : WP → W0P. 
Moreover, both WP and W0P are homotopy equivalent to P:

Proposition 6.3. There are operad maps WP → W0P → P, inducing homotopy equivalences

WP(c; c1, . . . , cn) W0P(c; c1, . . . , cn) P(c; c1, . . . , cn)q

∼
p0
∼

for each n ≥ 0 and each c; c1, . . . , cn in C.

Proof. For each n ≥ 0 and c; c1, . . . , cn the map

q : WP(c; c1, . . . , cn) → W0P(c; c1, . . . , cn)

is the projection on to the quotient. It is an operad map because if elements of WP are equivalent in 
W0P before being composed, they are necessarily also equivalent in W0P after composition. The map 
p0 : W0P → P contracts the remaining edges in the trees of W0P by sending the lengths to 0 (and 
composing the operations in P). This map is well-defined, as it is compatible with the relations (2’) and 
(3’), and respects the operad structure. These maps induce homotopy equivalences, with homotopy inverses 
given by including P(c1, . . . , cn; c) as labeled corollas in W0P(c; c1, . . . , cn) or WP(c; c1, . . . , cn). �
6.3. BO-algebras are strictly symmetric lax operads

In this section we prove that there is an isomorphism of topological operads BO ∼= W0O.

Theorem 6.4. The operads W0O and BO are isomorphic.

The combination of Theorem 6.4 with Example 6.2, describes BO–algebras as strictly symmetric lax op-
erads with strict identity. Moreover, the isomorphism BO ∼= W0O allows us to observe that any BO–algebra 
will receive a canonical WO–structure via the quotient map q : WO −→ W0O. In fact, Theorem 6.4 together 
with Proposition 6.3 gives homotopy equivalences

WO 	−→ BO 	−→ O,
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where O ∼= π0WO ∼= π0BO and the latter equivalence is the one already considered in Remark 3.10. Each 
of the topological operads WO, BO and O are admissible in the sense of [1, Theorem 2.1] and thus the 
natural projection maps induce Quillen adjunctions

WO−Alg BO−Alg O−Alg.

We expect that these adjunctions induce Quillen equivalences, though the operad BO is not Σ-cofibrant so 
we can not immediately apply [1, Theorem 4.1]. We nonetheless have the following:

Corollary 6.5. Every BO-algebra is homotopy equivalent to a strict operad.

Proof. Every BO-algebra is canonically a WO-algebra via the quotient map q : WO → BO, and every 
WO-algebra is homotopic to a strict operad, i.e. an O-algebra, using e.g. Theorem 4.1 of [1] that gives a 
Quillen equivalence between the categories WO−Alg and O−Alg (using that the operads WO and O are 
well-pointed, Σ-cofibrant admissible operads).

Given a BO-algebra P, one can alternatively directly construct such a strict operad P ′ homotopic to P
using the following double bar construction:

P 	←− B(BO, BO,P) 	−→ B(O, BO,P) =: P ′,

where P ′ is an O-algebra and hence a strict operad. In the above zig-zag, we use the notation of e.g. [28, 
Const 9.6 and Thm 9.10], identifying an operad with its associated monad. The leftmost map is an equiv-
alence by properties of the bar construction and the rightmost because of the equivalence BO 	−→ O of 
Remark 3.10. �

Combining Theorem 4.8 with Theorem 6.4, we can also relate BO-algebras with reduced, strictly Segal 
Ω̃op

0 -diagrams.

Corollary 6.6. There exist isomorphisms of categories

W0O−AlgS ∼= (SΩ̃op
0 )strict.

The proof of Theorem 6.4 will be given in Section 6.4. Though not saying this explicitly, the proof uses 
the natural association of a bracketing to a clustering tree, which is described for instance in [38, Definition 
2.7].

Since the W -construction is built out of cubes, to prepare for the proof, we start by giving an alternative 
description of BO in terms of cubes as well.

Definition 6.7. We can define a weighted bracketing of a tree T to be a pair (B, t) with bracketing B =
{Sj}j∈J of T and t ∈ [0, 1]J . The jth coordinate tj ∈ t is the weight of Sj . The addition of weights 
associates to each bracketing a cube [0, 1]|B|. These cubes fit together to form a space:

B(T ) =
∐

B∈B(T )

[0, 1]|B|/∼

where the equivalence relation is by identifying any bracketings with weights that only differ by a bracket 
of weight 0 (see Fig. 27(b)).

Recall from Definition 3.2 the poset B(T ) of bracketings of a tree T under the inclusion relation.
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Fig. 27. A tree T and its corresponding space of bracketings B(T ).

Lemma 6.8. Let T be a tree. There is a homeomorphism |B(T )| ∼= B(T ), between the realization of the nerve 
of the poset B(T ) and the cubical space B(T ).

Proof. We consider the topological k–simplex as the space

Δk = {(s1, . . . , sk) ∈ Rk : 1 = s0 ≥ s1 ≥ · · · ≥ sk ≥ 0}.

Fix a tree T and let σ denote a k–simplex B0 ⊆ · · · ⊆ Bk of the nerve of the poset B(T ). To each σ we 
associate a map

χσ : Δk −→ B(T )

where χσ(s1, . . . , sk) is the weighted bracketing of T in which all trees of B0 have weight 1 = s0 and all 
trees of Bi\Bi−1 have weight si for i ≥ 1.

The maps χσ assemble into a continuous map

χ : |B(T )| =
( ∐

k≥0

B(T )k × Δk
)
/∼ −→ B(T ) =

∐
B∈B(T )

[0, 1]|B|/∼.

This map is a homeomorphism with inverse defined by mapping a cube [0, 1]|B| in B(T ) to the realization 
of the sub-poset B≤B, which is a cube whose dimension is the cardinality |B| of the bracketing. Explicitly, 
given an element (B, t) ∈ B(T ) with B = (B0, . . . , Bk), we order the coordinates of t = (t1, . . . , tk) so that 
they are in decreasing order

1 = tσ(1) = · · · = tσ(r1) > tσ(r1+1) = · · · = tσ(r1+r2) > · · · > tσ(r1+···+rl+1+1) = · · · = tσ(r1+···+rl+2) = 0.

This defines an l–simplex B̄0 ⊂ B̄1 ⊂ · · · ⊂ B̄l by setting

B̄i = Bσ(1) ∪ · · · ∪Bσ(r1+···+ri+1). �
6.4. Proof of Theorem 6.4

In order to prove BO ∼= W0O, we first recall some definitions. Recall that elements (T , f, λ, s, p) ∈
W0O(n; m1, . . . , mk) are represented by a planar tree T with k leaves ordered by the bijection λ :
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Fig. 28. Element of W0O and corresponding element of BO(16; 2, 3, 4, 3, 4, 3, 3).

{1, . . . , k} → L(T ) and with an edge coloring f : E(T ) → N that, in particular, colors the leaves by 
m1, . . . , mk. In addition, T is equipped with a collection of lengths s ∈ [0, 1]|iE(T)|, and a decoration of the 
vertices p = (pv)v∈V (T) by operations by pv in O(out(v); in(v)).

We call a representative (T , f, λ, s, p) reduced if the tree T has no vertices of arity zero or one, unless 
such a vertex cannot be removed using the equivalence relation in W0O, i.e. if T is the corolla C0 or C1. In 
particular, every element of W0O has a reduced representative, which in general is not unique. It greatly 
simplifies the proof of Lemma 6.9 to work with reduced representative.

For a given tree T , and vertices v, w ∈ V (T ), we say that w is above v if the unique shortest path between 
w and the root of the tree goes through v. In this case v is below w. Every other vertex of T is above the 
root vertex v0 whose outgoing edge is the root of T .

Lemma 6.9. There is a map of topological operads Ψ : W0O → BO.

The map Ψ is illustrated in Fig. 28.

Proof. Given a reduced element (T , f, λ, s, p) ∈ W0O(n; m1, . . . , mk), we construct

Ψ(T , f, λ, s, p) = (T, σ, τ, B, t) ∈ BO(n;m1, . . . ,mk),

where (B, t) is a weighted bracketing on the labeled tree

(T, σ, τ) = p0(T , f, λ, s, p) ∈ O(n;m1, . . . ,mk)

that is the image of (T , f, λ, s, p) under the canonical projection p0 : W0O → O.
The bracketing B is constructed from the set of vertices of T . If T has at most one vertex, then set 

B = ∅ to be the trivial bracketing, in which case there are no weights to choose so t is the empty map.
Otherwise, since (T , f, λ, s, p) is reduced, and T is not a corolla, all its vertices have arity ≥ 2. Let v0 be 

the root vertex of T . For each v ∈ V (T )\{v0}, let

(Sv, σv, τv) = p0(Tv, f |Tv
, λ|Tv

, p|Tv
),

where Tv is the subtree of T with v as its root vertex, and containing all the vertices above v. Observe, in 
particular, that, since v �= v0, the outgoing edge ev of v – that is the root of Sv – is internal in T . Since the 
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vertices of T have arity at least 2, each Sv is a large proper subtree of T , and because composition in O is 
by substitution,

B = {Sv : v ∈ V (T )\{v0}}

is a collection of nested subtrees, and hence a bracketing.
To define the weight function t of B, we associate, to each Sv the weight tv = s(ev), the length of 

ev ∈ iE(T ). This completes the definition of Ψ(T , f, λ, s, p).
We need to check that the defined bracketing is independent of our choice of (reduced) representative 

(T , f, λ, s, p) ∈ W0O(n; m1, . . . , mk), and continuous. In particular, we must check that it is compatible 
with the relations (1), (2’) and (3’) in Definition 6.1 and Section 6.2.

To prove that Ψ is well defined with respect to relation (1), and hence also continuous, let sj be the 
length of an internal edge of T with end vertices v, w, where v is above w. Then if sj goes to 0 in W0O, 
the vertices v, w are identified and their labels are composed in O. Applying Ψ, this will precisely have the 
effect of taking the weight of the bracketing Sv to 0, which is equivalent to simply forgetting the bracketing 
Sv in BO.

Relation (2’) allows that a vertex v with only 1 input in T , labeled by a permutation α ∈ O(n; n) ∼= Σn, 
to be composed to either of the vertices it shares an edge with. So suppose T is the reduction of a tree T̃
with an arity one vertex v attached to two vertices w and w′, with w′ below w. We may assume that w and 
w′ both have arity at least two. We let T be the tree obtained from T̃ by collapsing the edge between w
and v and let T ′ be the tree obtained from T̃ by collapsing the edge between v and w′. We need to check 
that the brackets Sw and Sw′ are the same if computed using the representative (T , f, λ, s, p) associated 
to T or (T ′, f ′, λ, s′, p′) associated to T ′. This is immediate for the bracket Sw′ because w′ is below v and 
thus p0(Tw′ , f |Tw′ , λ|Tw′ , p|Tw′ ) = p0(T ′

w′ , f ′|T ′
w′ , λ|T ′

w′ , p
′|T ′

w′ ). For the vertex w, the two representatives in 
general do not have the same image under p0, but if p0(T ′

w, f
′|T ′

w
, λ|T ′

w
, p′|T ′

w
) = (S′

w, σ
′
w, τ

′
w), we still have 

that S′
w = Sw. In fact, only τ ′w might differ from τw as the vertex v is a permutation α ∈ O(n; n) = Σn that 

acts on a labeling p ∈ O(n; k1, . . . , kl) by permuting the leaves of the labeled tree representing p.
For relation (3’) in the definition of W0, the relation gives a unique way to reduce a tree if an arity zero 

vertex is attached to another vertex, so the representative with no arity 0 vertices is unique and nothing 
needs to be checked.

Finally, we check that Ψ is a map of operads. Consider a composition (T1, f1, λ1, s1, p1) ◦i(T2, f2, λ2, s2, p2)
of reduced representatives in W0O, and let Ψ(Tj , fj , λj , sj , pj) = (Tj , σj , τj , Bj , tj) for j = 1, 2. Composition 
in W0O is induced by grafting a tree T2 onto the ith leaf of T1, creating a new internal edge of length 1. 
If T2 has at least one vertex of arity 2, this corresponds exactly under Ψ to adding a new bracket T2

of weight 1 in the composed tree T1 •σ1(i),τ2 T2 where the composition here is by insertion. If not, then, 
since (T2, f2, λ2, s2, p2) is reduced, T2 has either no vertices or a single arity 1 vertex, so T2 is either the 
exceptional tree η or a corolla Cn. In each case, the newly added edge in the composed tree T1 ◦i T2 will 
be collapsed when going to a reduced tree, corresponding under Ψ to a composition in BO where no extra 
bracket is added. This finishes the proof. �
Lemma 6.10. For every (n; m1, . . . , mk) the map Ψ : W0O(n; m1, . . . , mk) −→ BO(n; m1, . . . , mk) is a 
bijection.

Proof. We start by checking that Ψ is surjective. So let (T, σ, τ, B, t) of BO(n; m1, . . . , mk) with B = {Sj}j∈J

and t ∈ [0, 1]J . We may always choose a representative where all brackets have non-zero weight, so we assume 
that tj �= 0 for any j ∈ J . We will construct an element (T , f, λ, s, p) ∈ W0O(n; m1, . . . , mk) in the preimage 
of (T, σ, τ, B, t).
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If B = ∅ is the empty bracketing then define T to be the corolla with k leaves, with f coloring its leaves 
m1, . . . , mk in the ordering given by λ, and the root by n and p labeling the unique vertex by (T, σ, τ). The 
weights s are trivial in this case. By definition, Ψ takes this element to (T, σ, τ, ∅, 0) as required.

We now assume that B = {Sj}j∈J is non-empty. To encode the leaf labeling τ on T , it is convenient 
to choose a non-reduced representative of its preimage, using a tree T with one valence 1 vertex at its 
root. We define T as follows: we set V (T ) = {vτ , vT } ∪ {vj}j∈J , where the vertex vj corresponds to the 
bracket Sj ∈ B, vT corresponds to an additional “trivial bracket” ST := T , and vτ will be associated to 
the permutation τ . To construct the tree, we set vi above vj if Si ⊂ Sj , connecting the two vertices by an 
edge ei if there is no k ∈ J such that Si � Sk � Sj , where we allow Sj = ST . This edge ei is colored by 
the number |L(Si)| of leaves of the smaller tree Si and we define its length by setting si = ti is the weight 
of the corresponding bracket. The nesting condition on the brackets implies that no cycles are formed this 
way. We also connect vT and vτ by an edge of length 1, colored by n = |L(T )|, which is also the color of 
the root of the tree.

Finally for each vertex v of T , we attach a leaf lv to the vertex vi ∈ V (T ) if Si is the smallest tree of the 
bracketing containing v, attaching it to vT if v is contained in no bracket. This leaf is colored by the arity 
of v in T . This defines the tree T , with edge lengths s and edge coloring f .

We pick some planar structure for T . (Recall that elements of W0O are only defined up to non-planar 
isomorphism, which is why there is some freedom here.) Note that the leaves of T correspond exactly to the 
vertices of T . The ordering λ : {1, . . . , k} → L(T ) is determined by σ and this identification. This defines 
the tuple (T , f, λ, s).

All that remains is to define the decoration p of the vertices of T by elements of O. We need to have that 
(T, σ, τ) is given by the composition of the elements of the vertices of T so to determine the decorations in 
T , what we need is to “undo” the compositions in T marked by the bracketings.

Let vj ∈ V (T ). We define p(vj) to be the element (Sj/ ∼, σj , τj) ∈ O(out(vj); in(vj)) where Sj/ ∼ is 
the planar tree Sj with each subtree Si � Sj collapsed to a corolla with the same set of leaves, σj orders 
the vertices according to the above chosen planar ordering of T , where we note that the incoming edges 
of vj correspond precisely to the vertices of Sj/ ∼, and τj labels the leaves of Sj/ ∼, which are also the 
leaves of Sj , in the order given by the planar embedding of T . (Here it is important that the chosen planar 
structure of T is compatible with the chosen order σj of V (Sj/ ∼). On the other hand, the chosen order τj
of L(Sj/ ∼) is not important, as we will fix it below using the vertex vτ .) This determines p uniquely on 
all vertices {vj}j∈J ∪ {vT }. Finally, the vertex vτ is labeled by the permutation τ ∈ Σn, considered as an 
element of O(n; n).

This finishes the construction of (T , f, λ, s, p). To compute its image under Ψ, we have to pass to a 
reduced representative, which means collapsing the edge between vτ and vT and composing their labeling. 
(The length of that edge is forgotten.) We have that Ψ(T , f, λ, s, p) = (T, σ, τ, B, t), by our choice of p for 
the tree T and its leaf-labeling τ , our choice of λ for the ordering σ of the vertices, our choice of vertices of 
T for B, and with a direct correspondence between the length si of the edge ei and the weight ti of Bi.

To finish the proof, we check that Ψ is injective. We will check that, up to the equivalence relations 
defining W0O, there is a unique reduced (T ′, f ′, λ′, s′, p′) in the preimage of (T, σ, τ, B, t). Note that the 
number of vertices of such a reduced representative is determined by the tree T and the cardinality of B. 
We consider first the cases where T ′ has 0 or 1 vertex.

If T ′ has no vertices, then T ′ = η representing the identity element in O(1; 1), B = ∅, and, up to the 
equivalence relations of W0O, there is only one possibility for (T ′, f ′, λ′, s′, p′).

Suppose now that T ′ = Ck has exactly one vertex of arity k. The leaves of T ′ are in one-to-on correspon-
dence with the vertices of T , with λ′ ordering its leaves, and f ′ coloring them m1, . . . , mk, n, with mi the 
color of λ′(i). We can choose a representative of (T ′, f ′, λ′, s′, p′) so that the planar structure of T ′ = Ck

is given by the ordering σ of the vertices of T . Then the labeling p of the vertex is necessarily precisely 
(T, σ, τ). So there is only one possibility for (T ′, f ′, λ′, s′, p′).
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Finally, if T ′ has at least two vertices, then it must have precisely |B| + 1 vertices arranged in a tree 
according to the nested structure of the bracket, and k leaves, with each leaf attached to the vertex corre-
sponding to the appropriate bracket. The root vertex of T corresponds to the whole tree T . The coloring 
of the edges is determined by the arity of the vertices and brackets in T , and the labeling of the leaves λ
is determined by the ordering σ. The vertices are decorated by tuples (Tj, σj , τj), with Tj determined by 
the bracketing B, σj determined by the nesting of the bracketing once a planar structure for T ′ is chosen. 
Choosing a different planar structure will give an equivalent element of W0O (in fact also of WO). The 
ordering τj is likewise not uniquely determined by the situation, but a different choice that does yield the 
same tuple (T, σ, τ, B, s) under Ψ will be equivalent in W0O, using relation (2′). This finishes the proof of 
injectivity. �

We are now ready to prove our main result in this section, namely that W0O and BO are isomorphic as 
topological operads.

Proof of Theorem 6.4. In Lemma 6.9 we constructed a map of topological operads

Ψ : W0O −→ BO.

Combining this with Lemma 6.10 we know that, for each tuple (n; m1, . . . , mk), the map

Ψ : W0O(n;m1, . . . ,mk) −→ BO(n;m1, . . . ,mk)

is a continuous bijection. As the source of this map is a compact space (π0W0O(n; m1, . . . , mk) =
O(n; m1, . . . , mk) is finite and there are finitely many reduced representatives (T , f, λ, s, p) defining a cube 
in each component), and the target is a Hausdorff space, Ψ is therefore a local homeomorphism and hence 
an isomorphism of topological operads. �
Remark 6.11. A corollary of the result we just proved is that W0O is the realization of an operad in posets, 
namely the operad BO. The operad WO can likewise be seen as the realization of an operad in posets, 
namely the poset of elements of the free operad FO, with poset structure generated by edge collapses. The 
map of operads q : WO → W0O is the realization of a map of posets. Indeed, the map q : WO → W0O ∼= BO
respects the poset structure because collapsing an edge in T , which defines the poset structure underlying 
WO, corresponds under the map q to forgetting a bracket, which defines the poset structure underlying 
W0O = BO.

Appendix A. The explosion category of Ω

In Section 4.1 we introduced an enriched version of the dendroidal category Ω̃0 which is closely related 
to the category of BO-algebras. As mentioned in the introduction of Section 4, the idea of the category Ω̃0
is to encode homotopy coherent Ω–diagram, and hence Ω̃0 should be connected to the explosion category of 
Ω, as defined by Leitch [25] and Segal [37, Appendix B].

In this appendix we describe the explosion category of Ω, denoted Ω̃, and show that our topological 
category Ω̃0 sits between Ω̃ and Ω in the sense that there exist equivalences of topological categories

Ω̃ Ω̃0 Ωq

p̃

p .

The explosion construction and the W–construction are very closely related in spirit. One might thus 
expect a relationship between Segal Ω̃–diagrams and WO–algebras, similar to the relationship between 
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Segal dendroidal spaces (Ω–diagrams) and O–algebras, and between Segal homotopy dendroidal spaces 
(Ω̃0–diagrams) and W0O– or BO–algebras. Theorem A.6 below will show that such a relationship exists, 
but without being as close as in the other cases: WO–algebras identify with a full subcategory of the 
category of reduced strict Segal Ω̃–diagrams.

A.1. The explosion of Ω

For each morphism g : S → T in Ω, we define a poset of paths PathΩ(S, T )g whose objects are the 
factorizations of g : S → T in Ω

S T1 . . . Tn−1 T,

g

g1 g2 gn

where we identify two factorizations if they differ only by identity morphisms. In particular, each such 
factorization (g1, . . . , gn) has a unique reduced representative containing no identity morphisms unless n = 1
and g is the identity on S. (Such a factorization can be thought of as a path in the nerve of Ω.) The poset 
structure is by refinement of factorization: (g1, . . . , gn) ≤ (g′1, . . . , g′m) if n ≤ m and there is a monotone 
map α : {0, . . . , n} → {0, . . . , m} such that α(0) = 0, α(n) = (m), and gi = g′α(i) ◦ · · · ◦ g′α(i−1)+1 for each 
1 ≤ i ≤ n.

We denote the geometric realization of this poset by

Kg := |PathΩ(S, T )g|.

Definition A.1. The topological category Ω̃ has the same objects as Ω. Morphism spaces in Ω̃ are defined as

HomΩ̃(S, T ) =
∐

g∈HomΩ(S,T )

Kg =
∐

g∈HomΩ(S,T )

|PathΩ(S, T )g|.

Composition of morphisms of Ω̃ is given by concatenation of factorizations.

Example A.2. Fix a tree T with |L(T )| = n leaves and three inner edges: e1, e2, e3. Recall that Cn denotes 
the corolla with n leaves. Let ∂e1 , ∂e2 , ∂e3 denote the inner face maps in Ω associated to each inner edge, 
and let g = ∂e1∂e2∂e3 : Cn → T be their composition. Then g admits a factorization

Cn T1 T2 T ,

g

as a composition of three inner face maps for each permutation of {1, 2, 3}. The elements of PathΩ(Cn, T )g
that involve only these three inner face maps form a subposet with ([1], g−→) as minimum, and for each 
permutation σ ∈ Σ3 the elements

([3],
∂σ(1)−−−→

∂σ(2)−−−→
∂σ(3)−−−→) ([2],

∂σ(1)−−−→
∂σ(2)∂σ(3)−−−−−−→) ([2],

∂σ(1)∂σ(2)−−−−−−→
∂σ(3)−−−→).
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Each permutation σ this way contributes to a square

(
∂σ(1)∂σ(2)−−−−−−→

∂σ(3)−−−→) (
∂σ(1)−−−→

∂σ(2)−−−→
∂σ(3)−−−→)

( g−→) (
∂σ(1)−−−→

∂σ(2)∂σ(3)−−−−−−→)

in this subposet, and the dendroidal identities tell us that these squares together form the following hexagon 
inside |PathΩ(Cn, T )g|:

Additional elements of PathΩ(Cn, T )g can be obtained by inserting tree isomorphisms. This example 
should be compared to Examples 3.4 and 3.5 which can be interpreted as computing morphism spaces in 
the category Ω̃0 likewise associated to trees with three internal edges, where in one case a pentagon occurs, 
and in the other it is a hexagon.

Lemma A.3. For each g ∈ HomΩ(S, T ) the space Kg = |PathΩ(S, T )g| is contractible.

Proof. The poset PathΩ(S, T )g has the trivial factorization S
g−→ T as a minimal element. �

Let p̃ : Ω̃ → Ω be the functor that is the identity on objects and projects each morphism space Kg to g. 
Considering Ω as a discrete topological category, the lemma immediately gives the following proposition.

Proposition A.4. The functor p̃ : Ω̃ → Ω induces a homotopy equivalence on morphism spaces.

Note that the proposition identifies Ω with the “path component category” π0Ω̃, which has the same 
objects as Ω̃ and Hom ˜ (S, T ) := π0(Hom˜ (S, T )).
π0Ω Ω
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A.2. The relationship between Ω̃ and Ω̃0

The category Ω̃0 sits between Ω̃ and Ω in the sense of the following proposition.

Proposition A.5. There is a functor q : Ω̃ → Ω̃0, which is the identity on objects and induces a homotopy 
equivalence on each morphism space. Moreover, the composition p ◦ q = p̃ : Ω̃ → Ω is the projection functor 
of Proposition A.4.

Proof. Fix two objects S, T ∈ Ω̃. Recall from Definition A.1 that

HomΩ̃(S, T ) =
∐

g∈HomΩ(S,T )

Kg

for Kg = |PathΩ(S, T )g| is the realization of the poset of factorizations of g, and Kg is contractible. Likewise 
by Definition 4.4

HomΩ̃0
(S, T ) =

∐
g∈HomΩ(S,T )

Lg

and Lg =
∏

v∈V (S)
|B(g(Cv))| is the realization of the poset Lg of bracketings of the trees g(Cv), with Lg

likewise contractible. So to prove the proposition, it is enough to produce a functor q which is the identity 
on objects and takes Kg to Lg for each g. We will define the functor by defining a poset map

qg : PathΩ(S, T )g → Lg

and show that it is compatible with composition.
Fix a map g : S → T in Ω. An object of PathΩ(S, T )g is a factorization (g1, . . . , gn) of g and to such a 

factorization of g, for each v ∈ V (S), we associate a bracketing of g(Cv) as follows: set

Bv = {Sw = gn ◦ · · · ◦ gi+1(Cw)}1≤i≤n−1, w∈V (gi◦···◦g1(Cv)), Sw�g(Cv) large

This is a (possibly empty) bracketing as these sets are by definition nested. We then define qg(g1, . . . , gn) =
(Bv)v∈V (S). Note that this association is a map of posets as refining a factorization will correspond under 
qg to an inclusion of bracketings.

We are left to check that the maps qg assemble to define a functor, i.e. that they are compatible with 
composition in Ω̃ and Ω̃0. Let f : R → S be another morphism in Ω. We need to check that

PathΩ(S, T )g × PathΩ(R,S)f

qg×qf

PathΩ(R, T )g◦f

qg◦f

Lop
g × Lop

f Lop
g◦f

commutes. Because the target is a poset, it is enough to check that it commutes on objects. Let 
(g1, . . . , gn) and (f1, . . . , fm) be objects of PathΩ(S, T )g and PathΩ(R, S)f . By definition, their composition 
is (f1, . . . , fm, g1, . . . , gn) ∈ PathΩ(R, T )g◦f . We have qf (f1, . . . , fm) = (Bf

x)x∈V (R) and qg(g1, . . . , gn) =
(Bg

v)v∈V (S) with

Bf
x = {Sy = fm ◦ · · · ◦ fi+1(Cy)}1≤i≤m−1, y∈fi◦···◦f1(Cx), Sy�f(Cx) large
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and bracketing of f(Cx) ⊂ S, and

Bg
v = {Sw = gn ◦ · · · ◦ gi+1(Cw)}1≤i≤n−1, w∈gi◦···◦g1(Cv), Sw�g(Cv) large

a bracketing of g(Cv) ⊂ T . By definition, qg(g1, . . . , gn) ◦ qf (f1, . . . , fm) is the collection (B̄x)x∈V (R) of 
bracketings of each tree g ◦ f(Cx) ⊂ T defined by

B̄x =

⎛⎝ ⋃
v∈f(Cx)

Bg
v

⎞⎠ ∪

⎛⎜⎜⎝ ⋃
v∈f(Cx)

g(Cv)�g◦f(Cx) large

{g(Cv)}

⎞⎟⎟⎠ ∪

⎛⎜⎜⎜⎝ ⋃
Sy∈Bf

x
g(Sy) large

{g(Sy)}

⎞⎟⎟⎟⎠ ,

where Bg
v is considered as a bracketing of g ◦ f(Cx) via the inclusion g(Cv) ⊂ g ◦ f(Cx). Now we see that 

this is exactly the bracketing of g ◦ f(Cx) defined by the factorization (f1, . . . , fm, g1, . . . , gm), which indeed 
is the union of the sets

{g(Sy) = g ◦ fm ◦ · · · ◦ fi+1(Cy)}1≤i≤m−1
y∈fi◦···◦f1(Cx)
g(Sy)�g◦f(Cx) large

∪ {Sv = g(Cv)}v∈f(Cx)
Sv�g◦f(Cx) large

∪ {Sw = gn ◦ · · · ◦ gi+1(Cw)}1≤i≤n−1
w∈gi◦···◦g1◦f(Cx)
Sw�g◦f(Cx) large

.

Hence the poset maps qg assemble to define a functor q : Ω̃ → Ω̃0 as claimed. Moreover, one readily checks 
that the composition with the projection p : Ω̃0 → Ω is the canonical projection p̃ : Ω̃ → Ω. �
A.3. WO–algebras as Ω̃–diagrams

In Section 4.2 we showed that BO-algebras describe dendroidal Segal spaces. For completeness, we now 
show how homotopy dendroidal spaces SΩ̃op are related to WO-algebras.

We will only need to consider Ω̃–diagrams X : Ω̃op → S that are reduced, i.e. such that X(η) = ∗. Recall 
that in this case, for X : Ω → S, the Segal map becomes the map

X(T ) χ−→
∏

v∈V (T )

X(Cv)

induced by the restriction maps T → Cv in Ωop. Considering these morphisms as morphisms of Ω̃, we 
likewise have a Segal map for X : Ω̃ → S in the reduced case.

In analogy to the case of dendroidal and homotopy dendroidal spaces, let (SΩ̃op)strict denote the full 
subcategory of SΩ̃op of Ω̃–diagrams X : Ω̃op → S such that X(η) = ∗ and such that the Segal map χ as 
above is an isomorphism for every T �= η. We have the following:

Theorem A.6. There exists a functor

Ψ : WO−Alg → (SΩ̃op)strict

that embeds the category of WO-algebras as a full subcategory of the category of reduced Ω̃–diagrams satis-
fying the strict Segal condition.
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As we will see in the proof, Ω̃–diagrams are governed by a version of WO where the trees T have an 
additional level structure, and WO–algebras identify them as the subcategory of diagrams where this level 
structure does not matter. If one wished to describe a category of homotopy dendroidal spaces which is 
isomorphic to WO-algebras, one could use this observation to take an appropriate quotient of Ω̃. As this is 
particularly messy, and not the main focus of this article, we have elected not to include such a construction.

Proof. The proof is similar to that of Theorem 4.8 treating the case of BO–algebras. We start with the 
definition of the functor Ψ. Let P = {P(n)}n≥0 be a WO–algebra with structure maps

αP : WO(n;m1, . . . ,mk) × P(m1) × · · · × P(mk) −→ P(n).

We associate to this data an Ω̃–diagram

Ψ(P) = Ψ(P, αP) : Ω̃op → S

as follows. Set Ψ(P)(η) = ∗ and, for T �= η in Ω̃, set

Ψ(P)(T ) =
∏

w∈V (T )

P(|w|).

For every morphism g : S → T in Ω, we need to define maps

Ψ(P)(g) : Kg ×
∏

w∈V (T )

P(|w|) −→
∏

v∈V (S)

P(|v|).

As in Theorem 4.8, we do this one vertex of S at a time.
Recall that Kg is the realization of the poset PathΩ(S, T )g of factorizations

S
g1−→ T1

g2−→ . . .
gn−1−−−→ Tn−1

gn−→ T

of g in Ω. For each v ∈ V (S), we consider the restriction of these maps to Cv ∈ S:

Cv
g1−→ g1(Cv)

g2−→ . . .
gn−1−−−→ gn−1 ◦ · · · ◦ g1(Cv)

gn−→ g(Cv) ⊂ T. (∗)

Recall from Remark 6.11 that WO is the realization of an operad in posets, whose elements are those of 
the free operad FO (identifying elements of FO with elements of WO in which all weights of internal edges 
are 1). We will now use the restriction (∗) of (g1, . . . , gn) to Cv to construct a labeled planar tree

(T , f, λ, p) ∈ FO(|v|; (|w|)w∈V (g(Cv)))

by induction on the height of the tree:
Starting at the root, we attach a vertex v̄ of valence |V (g1(Cv))|. The incoming edges of v̄ are labeled

in accordance with (g1(Cv), σv, τv), where σv is a chosen ordering of the vertices of the tree g1(Cv), and τv
is induced by the planar structure of g1(Cv) ⊂ T1. Specifically, the incoming edges of v̄ are labeled by the 
vertices of g1(Cv) and ordered via the map σv.

For each vertex w ∈ g1(Cv), which is now an incoming edge of v̄, we can attach a vertex w̄ of valence 
|V (g2(Cw))|. These incoming edges are labeled with the tuple (g2(Cw), σw, τw), as in the previous case.

More generally, for vertices with height 2 ≤ i ≤ n, the tree T has a vertex ȳ for every vertex y in (gi−1 ◦
· · ·◦g1)(Cv), attached to the previously constructed vertex x̄ associated to the vertex x ∈ (gi−2◦· · ·◦g1)(Cv)
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satisfying that y ∈ gi−1(Cx). We label ȳ by the tuple (gi(ȳ), σy, τy) with τy induced by the planar structure 
of Ti, giving Cȳ the planar structure dictated by the chosen σy.

We now set f : E(T ) → N to be the unique meaningful coloring which makes T an element of 
FO(|v|; |w1|, . . . , |wk|). We set the ordering σ of the vertices w1, . . . , wk of g(Cv) in accordance to the 
resulting planar structure on T . As the set of vertices of g(Cv) is also the set of leaves of the tree T , this 
also defines λ. We note that the tree constructed this way is in no way reduced and will, a priori, have many 
arity one vertices labeled by identities. We can use relations defining FO, however, to remove such vertices 
and give an equivalent element in FO.

This assignment of the restriction of a factorization (∗) to a labeled tree T respects the poset structure 
of PathΩ(S, T )g and WO as refining the factorization corresponds to undoing the collapse of edges, namely 
if (g1, . . . , gn) ≤ (g′1, . . . , g′m), then the image (T , f, λ, p) of the first factorization can be obtained from the 
image (T ′, f ′, λ′, p′) of the second by collapsing the edges corresponding to the added levels, as collapsing 
level in the tree correspond in this construction to composing consecutive maps gi.

In this way we can apply the structure map αP one vertex at a time and define a map

αv : |PathΩ(S, T )g| ×
∏

wi∈V (g(Cv))

P(|wi|) −→ P(|v|) (A.1)

and we can define

Ψ(P)(g) = (αv)v∈V (S).

By construction, the action of Ψ(P ) on morphisms commutes with composition in Ω̃, and thus Ψ(P) : Ω̃op →
S defines a functor. That the Segal map for Ψ(P) is an isomorphism for every T �= η follows immediately 
from our definition of Ψ(P).

The assignment P �→ Ψ(P) requires only the data of underlying symmetric sequence of P and the algebra 
structure maps αP . This data is natural under maps of WO-algebras and thus

Ψ : WO−AlgS −→ SΩ̃op

is a functor.
It remains to check that Ψ is an embedding of a full subcategory. Injectivity on objects follows from the 

fact that if P and Q satisfy that Ψ(P) = Ψ(Q), then we necessarily have that P(n) = Q(n) for each n, 
as given by the value at the corolla, with agreeing symmetric group actions as given by the isomorphisms 
of corollas, and the structure maps αP and αQ likewise must agree as the value of the structure map on 
every element of WO is the value of the functor Ψ(P) = Ψ(Q) on an associated morphism of Ω̃ obtained by 
choosing a level structure on the tree and interpreting the collapse of each level of the tree as a morphism in 
Ω. As morphisms of WO–algebras are determined by what they do on spaces P(n), we see that the functor 
is faithful. It is also full as natural transformations between diagrams originating from WO–algebras, will 
necessarily respect the WO-algebra structure of their values at the corollas. �
Remark A.7. The reader might be tempted to compare the functor Ψ(−) from Theorem A.6 with the 
homotopy coherent nerve of a topological operad P. This is a functor

w∗ : O−Alg → SetΩ
op

defined by

(w∗P)(T ) = HomOp(WΩ(T ),P),
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where WΩ(T ) denotes the Boardman-Vogt W -construction applied to the free operad generated by a tree 
T (Example 2.4). The functors Ψ and w∗ are not equivalent on operads, though if one has a WO-algebra 
P which happens to be an operad then one can define a dendroidal space XP ∈ SΩop

/w∗P, where the later 
denotes the slice category. For more on this point of view, see [32, Remark 6.2] or [5, Corollary 1.7].
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