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1. Introduction

Gluing surfaces along their boundary allows us to define composition laws that have been used to define
cobordism categories, as well as operads and props associated to surfaces. These have played an important
role in recent years, for example in constructing topological field theory or computing the homology of the
moduli space of Riemann surfaces. Of particular interest is the cobordism category whose morphism spaces
are moduli spaces of Riemann surfaces. It has long been known that such moduli spaces admit a graph
model: they have the homotopy type of spaces of metric fat graphs [7,21,34]. The composition of moduli
spaces induced by the gluing of surfaces was modeled using graphs in [17, Construction 3.29]. Though
the resulting composition is associative on the associated cellular chain complex, it is not associative on
the space level, and, at present, it is not known how to make it associative, or even coherently homotopy
associative [17, Remark 3.31]. In genus 0, this graph model of the cobordism category includes normalized
cacti (e.g. [41, Remark 2.8]), whose composition was also known not to be associative [24, Remark 2.3.19].
The goal of our paper is to show that the composition of normalized cacti is associative up to all higher
homotopies, and hence normalized cacti form an co-operad in the way detailed below. We expect that the
technique presented here can be extended to likewise show that the composition in the graph model of the
cobordism category is also associative up to all higher homotopies.

A cactus is a treelike configuration of circles (Fig. 1). The cactus operad, originally introduced by Voronov
[39, Section 2.7], and its spineless version, introduced by Kaufmann [24, Section 2.3], are models for the
framed and unframed little disc operads respectively [24, Section 3.2.1]. Operadic composition is by insertion:
identifying the outside contour of one cactus with the lobe of another cactus and scaling the inserted cactus
appropriately. Here we work with the spineless version for simplicity.

A cactus is normalized if each circle in the cactus has circumference of length one. The space of all
normalized cacti with k-lobes is denoted by Cact' (k) and these spaces assemble into the symmetric sequence
Cact! = {Cact' (k) }1>0, with each Cact' (k) C Cact(k) a homotopy equivalent subspace, for Cact(k) the space
of all cacti with &k lobes. (See [24, Section 2.3].) Composition of normalized cacti is defined by insertion as
for the cactus operad, but instead of scaling the inserted cactus to the size of the lobe it is inserted in, one
scales the lobe to the size of the inserted cactus. Surprisingly, as illustrated in Fig. 16, this new composition
is not associative ([24, Remark 2.3.19]). So, normalized cacti do not form an operad. This non-associative
composition is, however, the one relevant to the graph model of the cobordism category, as we explain in
Remark 5.1.
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Fig. 1. Spineless cactus with 7 lobes, with its outside the dotted line.

Operads can be described as algebras over the operad of operads O, an operad whose elements can be
represented by certain trees (Definition 2.8). In Section 3, we define a bracketing of a tree and use it to
construct a new topological operad BO (Definition 3.9) whose algebras are homotopy associative versions
of operads: Any BO-algebra has an underlying symmetric sequence and a preferred composition, but the
composition is only associative up to coherent homotopy. The operad BQO is the realization of an operad
whose operations lie in the poset of bracketings of the trees in O.

Given a composition on a symmetric sequence, an action of the operad BO gives a hands-on way to keep
track of the homotopies required to show that it is coherently homotopy associative. We illustrate how to
construct a BO-algebra in practice by showing;:

Theorem A (Theorem 5.12). The symmetric sequence {Cact®(k)}r>0 of normalized cacti, together with the
Cact! composition described above, extends to a BO-algebra structure.

In this paper, we show that this hands-on notion of an operad up to homotopy is related to more
well-known notions of oc-operads. There exist several models of co-operads in the literature: lax operads,
obtained by resolving the operad of operads [8], dendroidal sets or spaces satisfying an inner Kan or Segal
condition [11, Proposition 6.3, Theorem 8.15] and [11, Definition 8.1], Lurie’s co-operads [22, Section 2.5],
[10, Corollary 1.2] and Barwick’s complete Segal operads [10, Theorem 1.1]. These models are all Quillen
equivalent, and also Quillen equivalent to topological operads themselves [12, Theorem 8.15]. We compare
our construction with two of these notions of co-operads. In Section 4, we show that any BO-algebra defines
a dendroidal space satisfying a weak Segal condition, and in Section 6, we show that any BO-algebra is also
a lax operad in the sense of [8].

To associate a dendroidal space to a BO-algebra, we first construct a topological enrichment flo of the
dendroidal category 2. The objects of S~20 are trees, as for {2, but morphisms are the realization of certain
posets of bracketings in trees, defined in a similar fashion to the operad BO. Diagrams over this thickened
dendroidal category §~20 are types of homotopy coherent dendroidal spaces. By defining a nerve functor that
takes a BO-algebra to the category of reduced ﬁo—diagrams that satisfy a strict Segal condition, we prove
the following:

Theorem B (Theorem 4.8). There is an isomorphism of categories between BO-algebras and the category of
reduced Qqg-diagrams that satisfy a strict Segal condition.

In Proposition 4.10, we show that a f)ofdiagram can be rectified to an equivalent {2-diagram, i.e. an
actual dendroidal space. Moreover, we show that this rectified dendroidal space satisfies a weak version
of the Segal condition if, and only if, the original ﬁofdiagram satisfies such a condition. We describe this
rectification explicitly in the case of normalized cacti in Corollary 5.13.
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The other notion of co-operads we consider are a more classical notion of an operad up to homotopy
obtained by resolving the operad of operads O via the Boardman-Vogt W-construction. A W (O-algebra
is an operad up to homotopy, where the symmetric group action, the unit and associativity relation are
all assumed to hold only up to coherent homotopy. For this reason, W (O-algebras are called lax operads
in the Ph.D. thesis [8]. Algebras over the operad WO are a model for co-operads: there exists a zig-zag
of Quillen equivalences between the category of W(0-algebras and reduced dendroidal Segal spaces. (For
example this can be seen by combining Theorem 4.1 of [1] with either Theorem 1.1 of [3] or Theorem 8.15
of [12].) However, the operad WO is not easy to work with directly. Indeed, its elements are trees (from
the W—construction) whose vertices are themselves decorated by trees (from the operad O), where the first
trees compose by grafting and the second trees compose by vertex substitution. In Section 6, we show that
the operad BO is actually isomorphic to a quotient WyO of WO:

Theorem C. [Theorem 6./] There exists an isomorphism of topological operads WoO = BO, for WO an
explicit quotient of the operad WO. In particular, any BO-algebra is also a WO-algebra.

A WyO-algebra (or equivalently BO-algebra) is a homotopy operad where the composition is still only
homotopy associative, but where the symmetric group action and unit are strict. We show in Corollary 6.5
that every BO-algebra is homotopy equivalent to a strict operad.

The relationship between the operad BO = WO and the dendroidal category €2 is detailed in Theorem B,
in which we show a “bracketed version” of the equivalence between O—algebras and appropriate {2-diagrams.
As the operad WO is a more complete resolution of O, it is natural to ask if an even larger resolution of
the dendroidal category 2 extends this relationship. For a category KC, there exists a resolution similar
to the W-construction, namely the “explosion” K of the category, as studied by Segal [37, Appendix B]
and Leitch [25]. This “explosion” has the property that szdiagrams are coherently homotopy K-diagrams.
Applying this construction to the category €2, one could expect that W O-algebras are related to ﬁfdiagrams
in the same way that BO = WyO-algebras are related to ﬁofdiagrams. We show in Theorem A.G that this
does not quite hold, proving instead that there is an embedding of the category of W (O-algebras as a full
subcategory of the category of ﬁfdiagrams satisfying a strict Segal condition.

By combining Theorem A and Theorem B or Theorem C, normalized cacti are a rare example of an co-
operad that does not arise via the application of a nerve construction to a known (discrete or topological)
operad. Indeed, to our knowledge, only a few such examples exist in the literature; see the weak operad of
configuration spaces [20, Corollary 5], the configuration categories of [6] or examples that arise as a result
of completion as in [4, Proposition 5.1].

The input of the construction of our explicit infinity operad structure on normalized cacti is a pre-
given composition that we show to be associative up to coherent homotopy by using the operad BO =
WO/ ~. The homotopies are constructed using the contractible space of basepoint preserving monotone
reparametrizations of the circle (see the proof of Theorem 5.12). To extend the results to the cobordism
category of graphs described above, one would need to replace O by the operad PO, whose algebras are
all symmetric properads [42, Section 14.1.2], define a resolution “BPQO”, as the appropriate quotient of the
W -construction applied to PO. Our expectation is that these same reparametrizations of the circle will
likewise provide all the necessary homotopies to provide an infinity composition in the graph model of the
cobordism category.
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2. Preliminaries on operads

A symmetric sequence in a symmetric monoidal category S is a collection P = {P(k)}r>0 of objects
in § in which each P(k) comes equipped with an action of the symmetric group Xx. In this paper, our
symmetric monoidal category S will either be the discrete category of sets, the category of simplicial sets,
or the category of topological spaces with their standard Cartesian products.

An operad in S is a symmetric sequence P = {P(k)}r>0 together with a distinguished element ¢ € P(1),
called the unit, and a collection of composition maps

oi : P(k) x P(j) — P(k+j —1),

1 < i < k, which are associative, unital, and equivariant. For more complete details see, for example, [27,
Definition 11]. Given an operad P, a symmetric sequence Q = {Q(k) C P(k)}r>0 is a suboperad of P if
the restriction of the composition maps in P induce an operad structure on Q. A morphism of operads
f:P — Qis a family of equivariant maps

{f(k) : P(k) = Q(k)}r>o
that are compatible with composition and units.
Remark 2.1. It is equivalent to work with individual compositions
ot P(k) x P(ji) = P(k +ji — 1)

or with all o;,-compositions simultaneously. In the latter case, the simultaneous compositions are denoted
by a map

vp: P(k) x P(j1) X ... x P(jx) — P(Sr_14;).
(e.g.: [27, Proposition 13]).

More generally, we will use colored operads. For any non-empty set €, a €-colored symmetric sequence is
a family of objects P := {P(c;c1,...,cx) }e>0 in S, where (¢; ¢, ..., i) ranges over every list of colors in €
together with a map o* : P(c;ct,...,cx) = P(CCo1)s - - -5 Co(ry) for each o € Xy A €-colored operad is a
¢-colored symmetric sequence P together with a family of partial composition maps

0;: P(c;cl,...,ck) Xp(d;dl,...,dj) —>P(C;Cl,...7C¢,17d17...7dj7ci+1...,Ck)

defined only when ¢; = d, together with an element ¢, € P(c;¢) for each ¢ € €, which satisfies unit,
equivariance and associativity conditions. For more details see, for example, [1, Definition 1.1]. When the
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color set is € = {x}, a €—colored operad is a one-colored operad. In this paper we will refer to both operads
and colored operads as “operads”, only mentioning the color set when necessary.

An algebra over a (€—colored) operad P is a collection of objects {X (¢)}cce in S together with evaluation
maps

a: Pleer,. .. ex) X X(ep) x -+ x X(ex) — X(e)

satisfying appropriate associativity, unit and equivariance conditions, see e.g. [1, Definition 1.2]. The category
of P-algebras in S is denoted P—Algg.

Our main example of a colored operad will be the N-colored operad O, whose algebras are the (non-
colored) operads, see Definition 2.8. In Section 5, we will also make use of the following operad:

Example 2.2. Let X be a fixed space in §. The coendomorphism operad of X, CoEnd(X ), has an underlying
symmetric sequence with arity k spaces

CoEnd(n)(X) := Map(X, X **).

The symmetric groups act by permuting the factors of f = (f1,..., fx) € CoEnd(k). If f = (f1,...,fx) €
CoEnd(k)(X) and g = (g1,...,9;) € CoEnd(j)(X) the partial compositions

0; : CoEnd(k)(X) x CoEnd(j)(X) —— CoEnd(k + j — 1)(X)
are given by
foig=(fi, .., ficx,qiofis ooy 950 fis fixrs ooy fi)
2.1. Trees

Throughout this paper, we use trees to model operad compositions and as the basis of our main con-
structions. A graph G is a tuple (V(G), H(G), s,1) where V(G) is a set of vertices, H(G) a set of half-edges,
s: H(G) — V(G) is the source map and i : H(G) — H(G) is an involution. Orbits of the involution 7 are
called edges of G and the set of edges is denoted by E(G). An edge represented by a pair {h,i(h)} with
i(h) # h is called an internal edge, and the set of internal edges is denoted iE(G). Edges corresponding to
orbits of fixed points of the involution are external.

A tree is a simply connected graph. All our trees will be rooted, i.e. they come with a distinguished
“outgoing” external edge called the root. All other external edges are “incoming” and called leaves. The set
of leaves is denoted L(T). The arity of T is the number of leaves |L(T')|. The root of the tree is denoted
R(T).

Note that a rooted tree can be canonically made into a directed graph by setting all the edges to point
towards the root. Then note that the set of edges incident to a vertex always has a unique outgoing edge,
the one closest to the root, and all other edges are incoming edges. The number of incoming edges of a
vertex v is called the arity of the vertex and denoted by |v|, with |v| > 0 any natural number.

We allow the special tree n = |, with no vertices and a single edge. The trees with a single vertex and n
leaves are called n-corollas and denoted C,. A rooted tree S is a subtree of T if V/(S) C V(T') preserving
the arity, H(S) C H(T), and the structure maps for S are restrictions of the structure maps for 7', defining
i(h) = hin Sifi(h) =R in T with b’ ¢ H(S). A planar tree is a rooted tree together with a preferred
isotopy class of embedding into the plane. Note that this is equivalent to defining a planar tree as a tree
with a canonical ordering of the incoming edges at each vertex.
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T/
(a) Example trees T and T" (b) The grafting T o; T”

Fig. 2. Grafting of trees.

We use planar trees to model operad compositions via an operation called grafting. Given trees T and T,
of arity n and m respectively, and a leaf i € L(T), the grafting of T onto T along the leaf i is defined to be
the tree T o; T” obtained by attaching the root of T” to the leaf i of T' so that they form a new internal edge
in the grafted tree (Fig. 2). Grafting of trees is also used to model the free operad generated by a symmetric
sequence, as we will explain now. To avoid confusion later, when we will have to decorate vertices of trees
by other trees, we will use blackboard fonts for the trees in the free operad construction (and later the
associated W-construction in Section 6.1), as we will soon apply this construction to a symmetric sequence
of trees, which will give (blackboard) trees of (plain) trees.

Definition 2.3. Let P = {P(c;c1, ..., ¢k) }e,.cee be a €-colored symmetric sequence in S. A planar tree T is
¢-colored if it is equipped with a map f : E(T) — €, we refer to f(e) as the color of the edge e. A €-colored
planar tree T is decorated by P if each vertex v € V(T) is labeled by an operation in p, € P(out(v); in(v)),
where out(v) is the color of the outgoing edge of v, and in(v) is the list of colors of the incoming edges
of v, ordered by the planar structure. The free operad F(P) on P is the €-colored operad whose k-ary
operations are the €-colored, P decorated, planar trees T of arity k with leaves labeled by a bijection
A:{l,...,k} = L(T).
Explicitly, for each ¢, cq,...,c, € €,

F(P)(c;ery. . ycp) i= ( H H P(out(v);in(v)))/ ~,

(T, f,X) veV(T)

where (T, f,A) runs over all isomorphism classes of leaf-labeled €-colored planar trees with k leaves such
that f(A(2)) = ¢, f(R(T)) = ¢, and where the equivalence relation is generated by the following:

(¥) two labeled trees (T, f, A, (po)vev(t)) and (T, f', N, (9}, )wev(T7)) are equivalent if there exists a non-
planar isomorphism « : T — T’ such that foa = f', aoX = X, and 0,()py = Pa(v), for o,(a) the
permutation on in(v) induced by «.

The symmetric group acts on F'(P) by permuting the labels of the leaves, acting on A, and composition
in F(P) is given by grafting of trees, with o; grafting at the leaf \(¢). For full details see, for example, the
construction under Corollary 3.3 [1].

We now employ the free operad construction to define a class of free operads Q(7") generated by a planar
tree T. This will play a fundamental role in the definition of the dendroidal category (Section 2.2), which
describes a model for co-operads.

Example 2.4. A planar tree T generates a free colored operad Q(T) as follows. The set of colors of Q(T) is
the set of edges € = E(T'). We define a discrete E(T')-colored symmetric sequence X (T') by
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{ov} if (e;eq,...,e,) = (out(v);in(v)), for v e V(T),

X(T € €5(1)s-++r€a(n)) =
(T)( (1) ( )) {(Z) otherwise,

with its built in free symmetric group action. Then Q(T) := FX(T) is the free operad on the collection
X(T). Explicitly, Q(T) is an E(T')-colored operad with

oS if (ejer,...,en) = (R(S); L(S)), SCT,

] otherwise.

Q(T)(e; 60(1), ey ea(n)) = {

for S C T a subtree of T. Composition, as in the free operad, is given by grafting of subtrees. For further
details, see Section 2.2 and just above Definition 2.3.1 in [31].

2.2. The dendroidal category )

The model we use for co-operads is that of dendroidal Segal spaces that satisfy the weak Segal condition.
Dendroidal spaces are diagrams of the dendroidal category.

The dendroidal category €2 is the full subcategory of colored operads whose objects are the free operads
Q(T) generated by trees (as in Example 2.4). In other words, objects of € are planar isomorphism classes
of planar rooted trees and morphisms in € are defined to be operad maps

Homg,(S, T) = Homoy(Q(S), (T)).

Morphisms in 2 can be described as a composition of four types of elementary morphisms: isomorphisms,
degeneracies, inner and outer face maps. In terms of trees, isomorphisms are non-planar tree isomorphisms,
inner face maps are of the form 9, : T/e — T, where T'/e is the tree obtained from T by contracting an inner
edge e € iE(T). If v is a vertex of T with only one inner edge attached to it then T'/v is the tree obtained
from T by chopping off the vertex v and the inclusion 9, : T/v — T is an outer face map. A degeneracy is
amap S, : I'/v — T where T'/v is obtained from T by deleting a vertex v, with |v| =1, in T

In the opposite category 2°P, outer face maps correspond to restriction to certain allowed subtrees, while
inner face maps correspond to edge collapses. For more details and plenty of examples see [32,31].

Remark 2.5. Our definition of € differs slightly from the usual definition in that we have chosen our objects
to be planar trees. Technically, what we have described here is the equivalent category Q' from [31, 2.3.2].

Definition 2.6. A dendroidal space X is an Q-diagram X : Q°° — S, where S is either the category of
simplicial sets or topological spaces.

The evaluation of X at a tree T is denoted X (T"). A dendroidal space is called reduced if X (n) = *, where
n = |. We will write S** for the category of dendroidal spaces.
For any vertex v in a tree T' € 2, we have an associated outer face map in

C, —T

taking the unique vertex of the corolla to v € V(T'), where C, is the corolla with |v| leaves. Likewise, for
any internal edge between vertices u and v in T, there is a commuting diagram in 2

- C,

L

c, ——T.
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T/
(a) Example trees T and T” (b) The substitution T" e, T”

Fig. 3. Tree substitution (Compare with grafting in Fig. 2).

Let Sky(T) be the category whose objects are the edges and vertices of T, thought of copies of n and
corollas C,, and whose morphisms are associated to edge inclusions in 7', as in the top left corner of the
above diagram.

For a dendroidal space X, the Segal map is the unique map from X(7') to the limit limgy, (7yo» X induced
by the corolla inclusions. When X () = *, this limit becomes a product over the value of X at the corollas,
and the Segal map becomes the map

x: X(T) — Iloev(r) X(Cv)

with components the restriction to the value of X at each corolla.

The category of (2-diagrams admits two Quillen model category structures: the Reedy model structure
and the projective model structure which are Quillen equivalent (see e.g. [5, Remark 2.5]). Throughout, we
take the projective model structure in which a morphism of 2-diagrams is a weak equivalence or fibration if
it is entrywise a weak equivalence or fibration.

Definition 2.7. A dendroidal space X € S satisfies a strict Segal condition if the Segal map is an isomor-
phism for each n # T € Q.

2.3. The operad of operads

One of the main constructions in this paper is the operad BO. This operad builds on an N-colored operad
O called the operad of operads, whose algebras are one-colored operads.

Let T be a planar tree. For a vertex v € V(T) with arity |v| = m and a planar tree T” with m leaves, the
substitution T e, T" is obtained by removing the vertex v from T' and identifying the incoming and outgoing
edges of v with the leaves and root of T”, respectively. An example is shown in Fig. 3.

A labeled planar tree is a triple (T, 0,7), consisting of a planar tree T equipped with bijections o :
[V(T)| = V(T) and 7 : |L(T)| — L(T). Two such triples (T, 0, 7) and (T”,0’,7") are isomorphic if there is a
planar tree isomorphism T' — T” that respects the labeling o, 7. We represent a labeled planar tree (T, 0, 7)
by writing above each leaf ¢ € L(T) the number 7—1(¢), and writing by each vertex v € V(T') the number
o~ 1(v), as depicted in Fig. 4.

We also define a tree substitution that is compatible with the labellings of the leaves. Let (T, o, 7) and
(T',0',7") be two planar labeled trees with |V (T)| =k, |V(T")] =l and |L(T")| = |o(¢)| = m;. The map 7'
encodes a permutation in the symmetric group with m,; elements. We obtain a new planar tree (T;(i))T by
applying the permutation 7/ on the m,; incoming edges of the vertex o (i) € V(T'). We then define

T eggiy - T' = (15,)T 051 T". (2.1)

In particular, V(T e, T") = {V(T) — o(i)} L V(T"). The labeling on the vertices of T e, ;y - T" is
given by the map o o; 0/, which is the induced bijection {1,...,k+1—1} = V(T o,(;) - T")
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Fig. 4. Example of a labeled planar tree in O(11;5, 3,4, 2).

Fig. 5. Example of composition in O where 7’ is different to the planar order of in(c(2)).

o(j) 1<j<i
Jje e d(G—i+l) i<j<i+l
o(j—1+1) i+l<j<k+1-1.

An example is shown in Fig. 5. In the case where the order induced by 7' on the m; incoming edges of o ()
is the same as the order induced by the planar structure, then T" e, - T =T e, ¢;y T".

Definition 2.8. The operad of operads O is the N—colored operad, for which
O(n;my,...,myg)
is the discrete space whose elements are isomorphism classes of labeled planar rooted trees (T, 0,7) where

T is a planar tree with k vertices and n leaves, with bijections o: |V(T')| — V(T), 7: |L(T)| — L(T), such
that the vertex o (i) has arity m; for each 1 <4 < k. The composition operation

O(n;my,...,mz) X O(mg; by, ... b)) —— O(n;ma,...,b1,....by,...,my)

((Tv a, T)a (TlvalaT/)) f (Ta a, 7—) O (T/70'/,7'/)

is induced by tree substitution that is compatible with the labeling as in (2.1), where
(Ta a, 7—) Oj (Tlv J/a T/) = (T (i), Tlv 0 9 0/7 T)'
The unit for this composition, for the color n, is the element of O(n;n) represented by the corolla C,,

equipped with the canonical left-right labeling. The symmetric group Xy acts on (T, 0,7) € O(n;my, ..., myg)
by precomposition on the labeling o of the vertices V(7).
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We further observe that, for each m,n € N,

¥, form=mn,

O(min) = { ) when m # n.

The isomorphism O(n;n) = %, corresponds to labeling the leaves of a corolla C,, in all possible ways. The
unique arity 0 operation in O is represented by the special tree n € O(1;0). An O-algebra, P, is precisely a
one-colored operad. That is to say, P has an underlying N-graded object P = {P(n)},en in S. Moreover,
P admits actions O(n;n) x P(n) — P(n) for all n and thus P has an underlying symmetric sequence. By
definition, we have

O(n;my,...,mg) X P(my) X ... x P(my) C FP(n),
where F'P is the free operad on the symmetric sequence P, and

FP(n) = H H O(nyma,...,mg) X P(my) X ... x P(mg)

keN \ (mq,...,my)ENF T

so the action maps
a O(n;mh‘ .. 7mk) X P(ml) X ... X P(mk) — P(n)

induce maps FP(n) — P(n) for all n, and by the algebra axioms, this is precisely the data of a symmetric
operad in § (See [1, Example 1.5.6]). Note that, in particular, the o;-compositions of an operad P are
governed by the trees with one internal edge in O(n;mq,ms), where n = my + my — 1.

2.4. The relationship between operads and dendroidal spaces

Dendroidal spaces with X (n) =  that satisfy a strict Segal condition are closely related to one-colored
operads. Explicitly, every operad P can be viewed as a dendroidal space via the dendroidal nerve construction
that defines a functor

N4P)(T) = Homo,(QT), P)

as T ranges over ). The nerve of the free operad (7)) is just the representable dendroidal space Q[T] :=
Homg(—,T). A dendroidal space X is the nerve of an operad if, and only if, the Segal map of Definition 2.7
is an isomorphism for all T' [12, Lemma 6.4; Proposition 6.5]. To put this altogether, there is an isomorphism
of categories

O_Algs = (SQUp)strict

where O is the colored operad whose algebras are one-colored operads (Definition 2.8, below) and (SQOP)Sm-Ct
denotes the category of reduced dendroidal spaces satisfying the strict Segal condition. We will prove similar
statements for “thickened” versions of € in Theorem 4.8 and Theorem A.G.

3. The operad of brackets BO

In this section we introduce a new topological operad called the operad of bracketed trees. In short, the
operad BO captures a weak notion of an operad in the sense that a BQO-algebra is a symmetric sequence
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Fig. 6. Example of a tree bracketing with 3 nested subtrees.

with o;-operations that are only associative up to higher homotopy. The construction of the operad BO
allows one to check with relative ease whether a symmetric sequence with compositions assembles into an
oo-operad. In Theorem 5.12, we use this to show that normalized cacti admit such a structure. Moreover,
we expect that this construction provides a general method that one can use to construct other examples
of oo-operads.

One could instead use the classical Boardman-Vogt W-construction on the operad O to obtain an operad
WO whose algebras are homotopy operads (laxz operads in the language of [8]). It is known to experts
that bracketings in trees are related to this operad WO, but the precise details are difficult to find in the
literature. (However, see [33, Section 2.3], in particular Theorem 4, together with Remark 3.8 below, for an
algebraic version of this in the case of non-symmetric operads.) In Section 6 we will show that BQO identifies
with a quotient of the operad W . Bracketings in trees have also appeared elsewhere, see e.g. [13,14], and
the parenthesizations of [38, 2.6].

8.1. Bracketings of trees
We define in this section the poset of bracketings of a tree, starting with the definition of a bracketing:

Definition 3.1. A tree is called large if it has at least two vertices (or equivalently, at least one internal edge).
A set {S}};es of subtrees of a tree T' is nested if, for any ¢, j € J, the set of common vertices V(S;) NV (S;)
is either V(S;), V(S;) or empty. A bracketing B of a tree T is a (possibly empty) collection B = {S;};cs
of nested large proper subtrees of T

Recall from Section 2.1 that a subtree of T is a tree S whose vertices are a subset of the vertices of T,
and whose half-edges are all the half-edges in T attached to such vertices. Therefore, a subtree is completely
determined by its vertices. With this in mind, we will represent bracketings as in Fig. 6.

Definition 3.2. Bracketings of a tree T form a poset of bracketings B(T") with the relation B’ < B if B’ C B.
We denote the geometric realization of the nerve of the poset B(T') by |B(T)|. A point in

BD)| = [T NB(T) x A/ ~

r>0

is a pair (B,t) with B = By C --- C B, a sequence of bracketings and ¢t € A". Such a pair (B,t) can be
interpreted as a weighted bracketing with underlying set of brackets B, = U]_,B; and weights given by

t:(Ltla"'atr)GAT:{lztOZtlZ"'Ztrzo}

where we assign the weight ¢ty = 1 to all brackets in By, and for each 1 < ¢ < r, the weight ¢; to all brackets
in B;\B;_1. In particular, a weighted bracketing with all brackets having weight 1 corresponds to a vertex
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Fig. 7. Geometric realization of the poset B(T') of Examples 3.4 and 3.5.

B = By in the nerve of the poset. Also, the equivalence relation on the realization implies that a bracket of
weight 0 can be discarded. (See also Section 6 and in particular the proof of Lemma 6.8 where this point of
view is used to relate BO to the operad WO.)

Example 3.3. If T' = C,, then T does not admit any large subtree, therefore B(T) = {(} only has the empty
(or trivial) bracketing.

Example 3.4. Let T be the tree %, then the space |B(T)| is depicted in Fig. 7 (left). Note that the initial
object in the poset is the empty bracket, in the center of the pentagon (the 4th associahedron).

More generally, let T,, be a tree with n vertices such that no vertex is connected to more than two inner
edges. For such trees, the set of vertices can always be given a total ordering, for instance by constructing a
list starting with a vertex v connected to only one internal edge, and defining the next element of the list to
be the vertex sharing an edge with v that has not yet been listed. Then a bracket of T,, can be immediately
identified with a meaningful placement of parentheses on a word with n letters where the word is represented
by the ordered set of vertices. Therefore, |B(T;,)| can always be identified with the n-th associahedron (see
also Remark 3.8 for another approach to this statement).

Example 3.5. Consider a tree T with three inner edges all meeting at a single vertex. Note that the poset
of bracketings depends only on the relative positions of the vertices (or analogously, the inner edges) of
the tree T, and is independent of the number of leaves at each vertex. Therefore, the realization poset of
bracketings of T is the hexagon (two-dimensional permutahedron) depicted in the Fig. 7 (right), using as
an example the tree T' = .

Example 3.6. Fig. 8 depicts the realization of the poset of bracketings of a tree T" with four inner edges
meeting at a single vertex. Note that by fixing a large subtree S of T'| the realization of the subposet of
bracketings of T' containing S will correspond to a subspace of the boundary of |B(7)|. Each boundary face
of top dimension is then associated to a subtree S of T, and two such faces S, Sy share a subface if {57, Sa}
is nested. In this case, |B(T)| is the three-dimensional permutahedron.

Lemma 3.7. For any tree T, the space |B(T)|, is contractible.
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Fig. 8. Tree satisfying the conditions of Example 3.6 together with the geometric realization of its poset of bracketings.

Proof. The contractibility of the space |B(T)| follows directly from the fact that the poset B(T) has a
minimal element, namely the empty bracketing. O

Remark 3.8. The spaces |B(T')| are related to the family of nestohedra that were first described by Feichtner
and Sturmfels [18] and Postnikov [35]. Examples of nestohedra include simplices, permutahedra, Stasheff’s
associahedra and more generally Carr and Devadoss’ graph associahedra [9]. Hypergraph polytopes are an
interpretation of nestohedra by Dosen and Petrié¢ [15], with the advantage that they have a convenient tree
notation (called constructs) to label the faces of the polytope and that encode the face inclusions. The
space |B(T')| can be identified with a hypergraph polytope as follows. Using the definition and notation by
Obradovié [33, Section 2.2.1], the edge-graph Hy of T is the graph whose vertices correspond to the inner
edges of T, and two vertices of Hp share an edge if the corresponding inner edges of T" have a common
vertex. A subgraph S of Hp uniquely defines a subforest (S) of T' whose internal edges correspond precisely
with the vertices of S, and each tree in this forest is necessarily large because it has an inner edge (see [33,
Section 2.2.1, Lemma 3]). Then we have an order reversing bijection b between the hypergraph polytope
of the edge-graph Hy and B(T) that can be recursively defined as follows: we take the construct V(Hr)
given by the vertex set of Hr to the empty bracketing, and if Hy \ Y for Y C V(Hyr) decomposes into n
connected components Hr, ..., Hr, , then for constructs C; of Hy, we take the construct Y{C,...,Cy}
to the bracketing {(Hr,), ..., (Hr, ),b(C1),...,b(Cy)}. The definition of constructs guarantees that these
sets are nested and therefore defines a bracketing, and it is simple to check that this is an order reversing
bijection.

8.2. An operad of bracketings

We’ll use the bracketings B(T') to construct a topological operad. Let the collection

BO(n;my,...,my) = 11 |B(T)|

(T,0,7)€O(n;mA,... ;M)

define the N-colored symmetric sequence BO. So, elements of BO(n;my,...,my) are tuples (T, 0,7, B,t)
where (T, 0,7) is an element of O(n;mq,...,my) (Definition 2.8) and (B,t) is a weighted bracketing of T’
(i.e. a point in |B(T)|).

To define operadic composition in BO, we use the composition of trees in O and induce a bracketing of
the resulting tree. Let (T, 0,7, B) and (T7,0’,7', B") be labeled trees with bracketings. The composition in
O (Definition 2.8) is given by the substitution of 7" into the vertex o (i) € V(T),

(T7 g, T) 04 (T/7 Ula T/) = (T (i), Tlv 0 9; Ulv 7—)'
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Fig. 9. Example of composition in BO with labeling of the vertices omitted for simplicity.

Since 7" is canonically a subtree of T" e,(; . T", the bracketing B’ on T" defines a nested collection of
subtrees of T" e, ;) .+ T". We also construct a nested collection of subtrees B= {Sj}jeJ on T e, - T that
is induced by the bracketing B = {S;};es on T. If T’ # n, then B = B is given by

5 _ )5 if o(i) & V(5;),
55 = { S]‘ .U(i),‘r’ T if O'(Z) € V(SJ) (31)

If T" = 5, then B = {S;};es is defined in the same way, unless o (i) € V(S;) and S; has two vertices, in
which case S; e5(;) /1 is a corolla and is discarded as it is not large. That is, we replace J with another
indexing set J' C J, which is the subset of indices j such that S; is large.

We define a bracketing of the tree T" e, (;) . T' by

2
B else. (3.2)

B { B;UB’ U{T'} if T’ is large
See Fig. 9. This defines a composition of bracketings of trees. This composition is associative as follows.
Suppose S; C T is a bracket with only two vertices v and w, and 7" is a tree with at least two vertices. If
we first compose 7 in v and then 7" in w, the bracket S; is discarded during the first composition, and then
replaced by a new bracket T”. Reversing the order of these two compositions yields the same result because
first composing 7" in w will create a new bracket 7", and S; will not be discarded, but composing further
n in v will equate S; and T". Otherwise, the associativity of the composition follows from the associativity
on the composition in O.

The composition also respects inclusions and thus is a poset map

B(T) x B(T'") —— B(T o, T'). (3.3)

The realization of the poset map (3.3) induces a map between the geometric realizations of the nerve of the
posets.

Also recall that the unary elements of O, i.e. the elements of O(n;n) for some n, are given by la-
beled corollas. Since there are no non-trivial bracketings of corollas, unary elements of BO have the form
(Ch,0,%,0,0) € BO(n;n) with o € ¥,,. In particular, the n-colored identity for the composition o in BO is
given by (Cy,id,,*,0,0) € BO(n;n). Therefore BO is an operad.

Definition 3.9. The operad of bracketed trees BO is the N-colored topological operad with underlying sym-
metric sequence

BO(n;my,...,my) = 11 |B(T)|

(T,o,7)EO(N;M1,... ;M)
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and composition given by combining the composition in O with the map (3.3) described above.

Remark 3.10.

(1) Note that there is an isomorphism of operads O = 1o BO and, by Lemma 3.7, the projection BO — O
is a homotopy equivalence of operads.

(2) The topological operad BQO is the realization of an operad in posets. Indeed, the space BO(n;my, ..., my)
is the realization of the poset of elements (7', 0,7) of O(n;mq,...,my) together with a bracketing of T,
where two elements are comparable only if they have the same underlying element of O. Likewise, the
operad structure is defined as the realization of a map on the level of posets.

3.3. BO-algebras

A BQO-algebra is an operad whose o;-compositions are associative up to all higher homotopies. In partic-
ular, a BO-algebra P = {P(n)},en has an underlying symmetric sequence. To see this, we note that the
labeling of the leaves of a corolla (C,,, T, *,0,0) € BO(n;n) identifies with elements of the symmetric group
and we have isomorphisms

BO(n;n) 2 O(n;n) 2 %,.
The action
BO(n;n) x P(n) —— P(n)

makes P = {P(n)},en into a symmetric sequence.

BQO-algebras also have a notion of operadic o; composition. To see this, recall that such compositions are
encoded in the operad O by the trees with exactly two vertices, one attached to the ith incoming edge of
the other. As such trees admit no large, proper subtrees, they admit no non-trivial bracketing and we have
isomorphisms for any n,m > 0

BO(m +n —1;m,n)|vry<e = O(m +n — 1;m,n)|v <2

between the components of the tuples (T, 0,7,0,0) (resp. (T,0,7)) with T having at most two vertices. It
follows then that P is equipped with operadic o;-compositions.

A BOQO-algebra is not in general an operad, however. The brackets that arise in trees with more than
two vertices capture the different choices one has in iterated compositions of o; operations. More explicitly,
if {P(n)}nen is a BO-algebra, then for any collection of elements x; € P(m;) that decorate the vertices
of a tree (T,o,7) € O(n;mq,...,my), we have a chosen composition of those elements, namely the one
determined by (T, o, 7,0,0) € BO(n;my,...,ms). This “unbracketed” tree sits in the middle of a polytope of
all possible elements (T, o, T, B, s) for any bracketing B, as in Fig. 7. The corners of this polytope correspond
to the possible maximal bracketings of T' (the maximal elements of B(T")). Just like the corners of the Stasheff
polytopes give all the possible ways to bracket a k—fold multiplication, these maximal bracketings correspond
precisely to the possible ways to bracket the composition of o; operations, which are those defined using
trees with exactly two vertices. The polytopes arising from the posets of bracketing in trees can be thought
of as an operadic analogue of the Stasheff polytopes.

Remark 3.11. In [24, Definition 1.1.1], a quasi-operad is a symmetric sequence P = {P(n)},en together
with operadic o;-compositions and no further structure. In this way, a BQO-algebra is an extension of a
quasi-operad. The operad BQ is closely related to the W-construction of O, whose algebras go under the
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name lax operads, see Section 6, where we show that BO-algebras can be described as strictly symmetric
lax operads.

4. Thickening the category 2

We have seen that operads are O-algebras. Also recall from Section 2.4 that operads can be described
as strict Segal dendroidal spaces. The dendroidal category €2 is defined as a full subcategory of the colored
operads generated by trees. To obtain a similar description of BO-algebras as certain “homotopy dendroidal
Segal spaces,” we construct a topological category (~20 that is a category with the same objects as € but its
spaces of morphisms are built using posets similar to the posets used to define BO. Theorem 4.8 establishes
that this category, S~20, has the desired property that reduced Segal S~28p —spaces are precisely BO-algebras. In
Section 4.3, we then show how rectification of diagrams can be used to produce an actual Segal dendroidal
space from such a homotopy version of a dendroidal space.

Given any category K with a discrete set of objects, Leitch [25] constructed a new category K with
the property that lzfdiagrams are homotopy coherent K-diagrams. A similar enrichment (the explosion
category) was also used by Segal [37, Appendix B] to relate his I'-space approach to infinite loop spaces to the
operadic approach of Boardman-Vogt and May. Because ﬁofdiagrams are homotopy coherent (2p—diagrams,
one can expect that the category (NZO is related to this construction of Leitch applied to 2. In Section A,
we construct an equivalence between these two categories, and show that strict Segal ﬁfspaces are closely
related to W O-algebras.

4.1. Bracketing 2 and the category Qo

Recall from Section 2.2 that the objects of {2 are planar isomorphism classes of planar rooted trees.
Morphisms in 2 are compositions of inner and outer face maps, degeneracies and isomorphisms of trees.
Inner face maps 0. : T'/e — T create inner edges and correspond to operadic composition, while outer face
maps are subtree inclusions and are associated to projection maps. A degeneracy creates a vertex that is
adjacent to exactly two edges. The category ﬁo is a version of 2 with the same set of objects, but with the
realization of a poset of bracketings over each composition of inner face maps.

We define the morphism spaces of (~20 as follows. Let g : S — T be a morphism in 2. For each vertex
v e V(S), let C, C S denote the corolla of the vertex v that is, Cy, = iy(Clin(vy) Where iy : Clin(y) — S is
the composition of outer faces in € sending the vertex of the corolla Cj;,(,) to v. Since g is alternatively
considered as a map of operads between Q(S) and Q(7T), the image in S of C, under g is a subtree in T
which we denote

9(Cy) C T.

Note that the trees g(C,) are precisely the subtrees of T that correspond to expansion of vertices into
subtrees, going from S to T, or collapsed by ¢°? : T — S in the opposite category Q°P. These subtrees
correspond to the part of g made out of inner face maps.

For a vertex v € V(5), let B be a bracketing of g(C,) as defined in Definition 3.1. We define a poset L,
whose objects are tuples (B),cy (s) of bracketings of the trees g(C,). The poset relation is componentwise
inclusion. Taking the realization of these posets, for each morphism g we associate the space

veV(S)

where B(g(C,)) is the poset of bracketings of the tree g(C,) as defined in Definition 3.2. Note also that
|B(g(Cy))| = * if g(C,) admits only the trivial bracketing.
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vy

Fig. 10. Example of map f in Q and the subtrees f(C.

A4

(a) Map s in Q and the subtrees s(Cy). (b) Space Ls for the map s of Figure 11(a)

Fig. 11. A map s in  and its corresponding space L.

Example 4.1. Consider the morphism f € Homgq(R,S) of Fig. 10. Since the image of each corolla under f
only admits a trivial bracketing,

Ly = B> [B{)] > [B(Y)]x [B(Y)] ==

Example 4.2. Let s be the morphism in Fig. 11(a). By Example 3.4, if s(C,) has 3 vertices such that no
vertex is connected to more than two inner edges, then |B(s(C,))| is the 3rd associahedron, which is an
interval. As in Example 3.5, when s(C,) is a tree whose three internal edges meet at a single vertex, the
realization poset |B(s(C,))| corresponds to a hexagon. Thus Ly is identified with the hexagonal prism of
Fig. 11(b).

The space of morphisms between any two objects in ﬁo is

Homg (5,7)= [[ L,

g€Homg (S,T)
It remains to define composition in Qo. To do this, we first define a map of posets
Lox Ly —— Lgof (4.1)

for any two morphisms f: R — S and g : S — T in (), then we take the realization of this composition
map to get a composition of spaces L,. Let (BY),ev(s) € L4 and (B, )weV(R) € L be two collections
of bracketings. So for each v € V(S), BY is a bracketing of g(Cv) C T and for each w € V(R), Bl is
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a bracketing of the tree f(Cy) C S. To define the image of (4.1), we construct a bracketing of the tree
(9o f)(Cy) from the bracketings of f and g.

Fix a vertex w € V(R). For each v € f(Cy) C S, there is the subtree g(C,) C (go f)(Cy), as well as
a bracketing BY of g(C,). Also, for each bracket in S; € B}, the image g(S;) is a subtree of (g o f)(Cy).
Therefore we have the following collections of subtrees in (g o f)(Cy):

B?(w) — U BY = {S;: S;eBJandve f(Cy)}
vEf(Cuw)

ByT = {g(Cy) : ve f(Cw) and g(Cy) C (g0 f)(Cl) is large}

Bl = {9(Si): Si € B, and g(S,) (g0 f)(Cy) is large}.

All of these are collections of proper large subtrees of (go f)(C,). We set the bracketing B,, of (go f)(C\)
to be the union

B, = B

Rof ) Bf
Sy UBZT U B,

To see that B, is a bracketing of (g o f)(Cy), it remains to verify that this collection is comprised of
nested subtrees. First, each BY C B?(w) is a bracketing of g(C,) C (go f)(Cy), so it is nested. Moreover, the
subtrees g(C,) are all disjoint and each tree of Bjﬂ(w) is contained in a tree of Bﬁff, so the union B?(w) UB;‘{J"f
is nested too. The B! U BJ is also nested, since each bracket g(C,) in the first set is included in each
g(Sy) of the second set whenever v € S, and otherwise is disjoint from it. Hence Bji(w) U B is also nested,
and thus B, is nested.

Define the composition (B{f)vev(S) o (Bf)wev(r) to be the collection

(Bw)weV(R) € LgOf-

Associativity of this composition is analogous to the associativity of the BO composition in Section 3.2.
In most cases, the composition is associative because vertex substitution is associative. In a composition
with a degeneracy, a vertex is removed and so a bracket may be discarded if it is no longer large. Any
discarded bracket is recreated in a subsequent composition if it should not have been discarded in the total
composition.

Furthermore, this composition definition respects componentwise inclusion and thus defines the poset
map (4.1). The realization of this poset map induces a map

Lg X Lf —_— Lgof- (42)
This defines a composition on the morphism spaces of .

Example 4.3. Let f: R — S and ¢g: S — T be the morphisms in Fig. 12. Then R is a corolla C\,, = Cy, and
f(Cy) C S is the proper subtree of S whose vertices are v1,vq,vs. The images g(Cy, ), 9(Cys),9(Cy,) C T
are the corollas C,,, , Cy,, Cy, respectively and g(C,, ) is the subtree with vertices ug, us, ug. The only images
of corollas that admit a non-trivial bracketing are f(C,,) and g(C,,). If the bracketing of f(C,,) consists of
the bracket By in Fig. 13(a) and the bracketing of g(C,,) consists of By in Fig. 13(b), then

2

B, = 1B}, BY ={g(C)}. B ={g(B))}.

The bracketing B,, € B((g o f)(Cy)) is illustrated in Fig. 13(c).
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V1 o

w

Fig. 12. Morphisms f and g in Q.

Uz

Us

(a) Bracketing By of f(Cuy). (b) Bracketing Bz of g(Ch,). (c) Bracketing B, of g o f(Cuw).

Fig. 13. Example of a bracketing induced by f and g in Fig. 12.

By Example 3.4, if T}, is a tree with n vertices such that no vertex is connected to more than two inner
edges, then |B(T,)| is the nth associahedron. The 3rd associahedron is an interval. Thus,

Ly =1B(f(C)l = |B(%)] =0,1]
Ly = |B(9(Coy)) x [B ()] x B (9(Cuy))] = 10,1].

Again by Example 3.4 and since (g o f)(Cy) is a tree on five vertices, Lgor = |B((g o f)(Cw))| is the 5th
associahedron, which is a three dimensional polytope called an enneahedron.

Definition 4.4. The category (~20 has the same objects as 2. Morphism spaces in §~20 are

Homg, (5,7T) = H L, = H H IB(9(Cy))|

g€Homq (S,T) g€Homg (S, T) veV (S)

with composition (4.2) as described above.

Example 4.5. Suppose T,, is a planar tree with (n + 1) leaves and n vertices, each of which is connected to
at most two inner edges. Let the inner edges of T}, be named e, ..., e,_1. Morphisms g € Homq (C)41,T)
are compositions of inner face maps Je,,..., 0, , but since the order of the composition does not affect
the total composition, there is only one such morphism g. Hence Homg (Cpt1,Tn) = Ly = |B(T5)[. Thus
Homﬁo(CnH, T,) is the nth associahedron by Example 3.4; the center point of the polytope is defined by

the empty bracket, which is the initial object in the poset B(T},).

Lemma 3.7 tells us that each bracketing space |B(g(C,))| is contractible, which implies that each L, is
contractible. Let p : Q9 —  be the functor that is the identity on objects and projects each morphism
space Lg to g. By considering () as a discrete topological category, we have the following proposition.
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Proposition 4.6. The functor p : §~20 — Q induces a homotopy equivalence on morphism spaces. O

This proposition will allow us to associate an actual dendroidal space to any homotopy dendroidal space
in Section 4.3.

4.2. Homotopy dendroidal spaces
In Section 2.2, we defined a Segal condition for dendroidal spaces X : 2°? — S using the Segal map
x: X(T) —— limgy, (7)or X.

We recall that the category Skq(7T) has the vertices and edges of T' as objects, with morphisms given by
edge inclusions ¢, : n — C,, into the corollas of adjacent vertices. The Segal map y is the unique map to the
limit induced by the edge and corolla inclusions

te:n—T and ¢, :Cjy —T.
Note that the spaces L,, and L,, in ﬁgp which lie above the morphisms ¢, and ¢, are always just a single
point, so the Segal map exists unchanged for functors X : Q¢” — S. This allows us to make the following

definition:

Definition 4.7. A homotopy dendroidal space X is a diagram X : SNISP — S. A homotopy dendroidal space
is reduced if X (n) = x and satisfies the strict Segal condition if the Segal map is an isomorphism for each
n#T €.

Recall from Section 2.4 that one-colored operads are identified with reduced dendroidal Segal spaces via
the dendroidal nerve

N%:0-Alg — 8.

The following theorem is a version of this nerve theorem for homotopy dendroidal spaces. We construct a
functor

®: BO-Algs — S
and show that a reduced homotopy dendroidal space X & S s strictly Segal if, and only if, X = ®(P)
for some BO-algebra P.
Write (SQSP)Sm»Ct for the full subcategory of Qy-diagrams whose objects are reduced homotopy dendroidal

spaces satisfying the strict Segal condition. Then we have the following result:

Theorem 4.8. There exists an isomorphism of categories
®: BO-Algs —— (8% )gtrict.
Proof. Given a BO-algebra P = {P(n)},>0 with structure maps
ap : BO(n;ma,...,mg) x P(mq) X -+ x P(my) — P(n)

we will define
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O(P) = ®(P,ap): OF — S
as follows. We set ®(P)(17) = *. On objects T # 1 of Qp, we set

e(P) )= [ P(wD.

weV (T)

Given a morphism g : S — T in €2, we need to define maps

©(P)9): Lyx [[ Pllw)— [ P(ol).

weV (T) vEV(S)

We proceed one vertex v at a time. As Ly = [[, ¢y (s [B(9(Cy))l, at each v € V/(S) we have projection maps

miLyx [] Plul) — 1Ba@) x  T[ Pl

weV (T) weV (g(Cy))

An application of the structure map ap defines a map

@ |BgC)l > JT  Pwl) — P(ll). (%)

weV (g(Cv))

Indeed, an element of |B(g(C,))| is a weighted bracketing (B, t) of the subtree g(C,) C T. Because T is a
planar tree, g(C,) inherits a planar structure. We consider g(C,) as an element of O by picking an ordering
o of its vertices {wq,...,wy}, and labeling its leaves via the map 7 ordering them according to its planar
structure. This way ((g(Cy),0,7), B,t) is an element of BO(|vl;|wi], ..., |wk|). To define the map (x), we
first order the factors P(|w|) for w € V(g(C,)), in accordance with our chosen o, and then apply ap noting
that our choice of ordering does not affect the result by the equivariance of ap. Finally we act on the
resulting element of P(|v|) by the permutation induced by g that identifies the inputs of v with the leaves
of g(C,), comparing the labeling 7 from the planar structure of T' to the planar ordering of in(v) (which
comes from the planar structure of S). We now set

O(P)(g) == (w0 Tp)vev(s)-

The fact that ®(P) commutes with composition follows from the fact that composition in Q is defined
exactly as the operadic composition of BO by taking the union of the brackets from the first morphism
which remain large after applying the second morphisms, the brackets from the second morphism, and new
“middle brackets”, the images of the middle corollas, if they are large. It follows then that ®(P) : Qo — S
is a functor. Since ®(P)(n) = *, the Segal map is the map

o(PIT) — [[ @P)(C)
veV(T)

induced by the inclusions of the corollas. It is an isomorphism by definition of ®(P).

The data required in the definition of the homotopy dendroidal space ®(P) is the underlying symmetric
sequence P = {P(m)}, the BO-algebra structure maps ap and the projection maps m,, all of which are
natural under maps of BO-algebras. Thus, the assignment P — ®(P) defines a functor

®: BO-Algg — (Sﬁgp)strict~

It remains to show that the functor ® is an isomorphism of categories. Given two BQO-algebras P and Q
with ®(P) = ®(Q), the underlying symmetric sequences {P(n)},>0 and {Q(n)},>0 are necessarily equal,



L. Basualdo Bonatto et al. / Topology and its Applications 316 (2022) 108107 23

being the value at the corollas C,, and the corolla isomorphisms Homg (Cn, Cr) = Homg(Cy, Cy) = 5,.
Moreover, the structure maps ap and ag likewise must agree as they agree with the evaluation of ®(P) =
®(Q) at corresponding morphisms in QSPN . It follows that ® is injective.

On the other hand, given any X € (SQgp)stTict, we can construct a BO-algebra Px by setting Px(n) =
X (C,,) with a symmetric group action induced by the image under X of the isomorphisms of C,, in Qo. The
BQO-algebra structure maps of Px are defined using the above identification of the spaces BO(n; my, ..., my)
with morphism spaces in Qo. The fact that X is a functor will then give that Px is a BO-algebra. Thus
the functor @ is surjective. O

4.8. Rectifying homotopy dendroidal spaces

We have just seen that BQO-algebras correspond to homotopy dendroidal spaces satisfying the strict
Segal condition. In this section we will show how to produce, from a BQO-algebra, an actual dendroidal
space satisfying a weak version of the Segal condition.

A commutative diagram in a topological category § is a functor from a discrete category K to S. A homo-
topy commutative diagram can be similarly described as a functor from a topological category KtoS , with
the homotopies encoded as paths in the spaces of morphisms. In this language, a homotopy commutative
diagram X : K — S can be rectified, or strictified, to a functor X’ : K — &S precisely when there is an
equivalence p : K — K. We briefly recall this rectification of diagrams, which was used by Segal in [37], and
treated in great generality by Dwyer and Kan [16]; see also [40, Sec 2] for a detailed account of what we
will use here. Our examples will be I = 2 with K = Q.

Let p : K — K be a functor between categories enriched over topological spaces. There is an induced
functor

p* S — Sk
defined by precomposition with p. The homotopy left Kan extension defines also a functor
D SIE — SK

that can be explicitly given as follows: given a diagram Y € S’E, its evaluation at an object d of IC is the
realization of a simplicial space with space of k—simplices

(pY(d)) = H Y (co) x Homg(co,c1) x -+ x Homg(cp—1,cx) x Homg (ck, d).
Cos-..,chEOL(K)

Lemma 4.9. [0, Proposition 2.1] Let p: K= K be a functor inducing a homotopy equivalence of morphism
spaces, and let Y : K — S bea diagram, with pY : I — S its rectification as defined above. Then there
exists a zig-zag of natural transformations p*pY +— p*pY — Y, which induces a homotopy equivalence on
objects: p*pY (d) ~ p*pY (d) ~ Y (d).

In the statement, p*pY is an explicit functor from K to S associated to YV given by a two-sided bar
construction (details in the proof of [40, Proposition 2.1]).

Proposition 4.6 states that the functor p : §~20 — Q induces a homotopy equivalence of morphism spaces.
Below, we apply Lemma 4.9 to describe weak Segal dendroidal spaces that arise as the rectification of a
homotopy dendroidal Segal space Y € 8% in the following sense:

Consider the functors

_ D
QSP — Qor
SH T 8

*

p
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For any small category K, the category of diagrams S&” admits a projective model structure in which
weak equivalences and fibrations are defined entrywise [23, 11.6.1]. In particular, when S is the category of
topological spaces, every object is fibrant in this model structure. An application of [26, Proposition A.3.3.7]
implies that py and p* are the left and right Quillen functor of a Quillen equivalence.

Proposition 4.10. Let S be the category of topological spaces, and let Y € S be a homotopy dendroidal
space. Then the rectification p)Y € S is a dendroidal space such that Y (n) =~ *, and such that the weak
Segal map

X:pY(T) = holim gy, (7yer pY (Cy)

is a homotopy equivalence for each n # T € Q if, and only if, the same two properties hold for the homotopy
dendroidal space Y .

Proof. Note first that, because p is the identity on objects, we have p* X (T) = X(T) for any X : Q°? — S
and any T € Obj(Q) = Obj(Q). It follows that pY (n) ~ * if and only if Y(n) ~ = as pY (1) = p*pY (1) ~
Y (n) ~ .

We are left to show that the weak Segal map Y is a weak equivalence for every T # n for pY : QP — S
if and only if it is the case for the orlglnal functor Y : QOp — S. Recall that the Segal map x and its weak
version X for both Q°P—spaces and Q oP—spaces are induced by corolla and edge inclusions ¢, and ¢, in Qo
and €, respectively. As p takes each map ¢, and ¢, in QO, to the corresponding map in 2, and p is the
identity on objects, for any X : Q°? — S, we have

X .
T) — hOthkl (T)ep X(OU)

X(

T') — holimgy, (1yer p* X (C,)

in which the two horizontal maps describe the exact same map in S.
The natural equivalences of functors p*pY < p*mY — Y of Lemma 4.9 give us the vertical homotopy
equivalences in the following commuting diagram in S

p* oY (T) —x holimgy, (7yer p*p1Y (Cl)

4 ) E

p*pY (T) —— holimgy, (7)o p*pY (Ch)

% E

Y(T) ————— holimgy, (1o Y(Cy),
which gives the result using the previous remark in the case X =pY. 0O

Remark 4.11. We used in the proof of Proposition 4.10 that every topological (NZO diagram is projectively
fibrant to obtain that the homotopy limits preserve homotopy equivalences.

As the dendroidal category is a generalized Reedy category [2, Example 1.6], there is a Reedy model
structure on the category of reduced dendroidal spaces. We do not currently have an enriched generalized
Reedy model structure on ﬁo—spaces. An advantage of the Reedy model structure is that homotopy limits
of fibrant objects are weakly equivalent to the limit. One expects that, using such Reedy model structures,
one could prove a version of Proposition 4.10 with the actual Segal map y replacing the weak Segal map ¥.
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Fig. 14. Cactus with 8 lobes, its outside circle indicated by the dotted line.

5. Normalized Cacti as an infinity operad

The first goal of this section is to define an operad M ST and show that, despite not being an operad
itself, normalized cacti and their composition can be described as elements and compositions inside M S™.
In Section 5.2, we will use M S™ to show that normalized cacti and the normalized composition extends to
define a BQO-algebra structure. Using the results of Sections 3 and 4, this implies that we have an explicit
construction of an oo-operad with underlying sequence the spaces Cact'(n).

A cactus is a configuration of circles of various lengths attached to each other in a treelike fashion. In the
original definition by Voronov [39, Section 2.7], there is a global basepoint associated to the “outside circle”
of the cactus, as well as a basepoint for each circle (or lobe). A spineless cactus is a variant introduced by
Kaufmann [24, Section 2.3], where the basepoint of each lobe is its closest point to the global basepoint
along the outside circle. See Fig. 14 for an example. The space of all spineless cacti with k lobes is denoted
Cact(k). The symmetric group acts on this space by permuting the labels of the lobes. The symmetric
sequence Cact = {Cact(k)}x>0 is given a composition

0;: Cact(k) x Cact(j) — Cact(k+j — 1)

that is defined by inserting the second cactus into the ith lobe of the first cactus and aligning its global
basepoint with the basepoint of the ¢th lobe. The insertion is done by rescaling the second cactus so that its
total length is equal to the length of the ith lobe of the first cactus, then identifying the outside circle of the
second cactus with the ith lobe of the first cactus. This composition makes Cact into an operad, which is
equivalent to the little 2-discs operad [24, Section 3.2.1]. A rigorous definition of this composition requires
close attention to subtleties and we refer to [24, Section 2] for precise definitions.

The space of normalized cacti Cact'(k) C Cact(k) is the subspace of spineless cacti whose lobes all
have length equal to 1 ([24, Definition 2.3.1]). They form a symmetric sequence Cact’ = {Cact’(k)}x>0.
Composition of normalized cacti

0;: Cact (k) x Cact'(j) — Cact' (k4 j — 1), (5.1)

is defined by reparameterizing the ith lobe of a cactus z € Cact’(k) to have length 7, then identifying this
lobe with the outer circle of the second cactus y € Cactl(j) and aligning their basepoints. In contrast to
Cact, the ith lobe of the first cactus is scaled instead of scaling the second cactus to the length of the ith
lobe. See Fig. 15 for an example. This composition is not associative [24, Remark 2.3.19], as illustrated in
Fig. 16. Thus Cact' is not an operad.
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Fig. 15. A composition of normalized cacti.
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Fig. 16. Non-associativity in Cact!.

Remark 5.1 (Composition in the graph cobordism category). This composition of normalized cacti is highly
relevant to the graph model of the cobordism category of Riemann surfaces mentioned in the introduction
of the paper. To model the gluing of cobordisms, we use graphs to represent surfaces with potentially many
incoming and outgoing boundary components. Normalized cacti are a simple case of this model, representing
surfaces of genus zero with potentially many inputs but always just one output. Two surfaces are glued by
attaching the incoming boundaries of the first surface to the outgoing boundaries of the second. According
to [19] (see also [17, Theorem A]), we may assume that all incoming boundaries of a surface are disjoint
embedded circles in the corresponding graph (like the lobes of the cactus, if they were pulled apart a little
bit). Since these boundary circles are disjoint in the graph, they can be scaled independently to each match
the length of an outgoing boundary in the graph of the second surface, just like scaling the ith lobe of
the first cactus in Cact! composition. There is no obvious way to define a “Cact-like” composition for such
more general graphs, because the outgoing circles of the second surface cannot be assumed to be disjoint,
and hence cannot be scaled independently to the appropriate length. (See [17, Section 3.3] for more details
about this gluing of fat graphs.)

5.1. An operad M St that contains Cact!

In their proof of the Deligne conjecture, McClure and Smith [29,30] introduced an operad M .S equivalent
the little 2-discs operad.! Later, Salvatore [36, Section 4] used similar methods to show directly that the
operad M S is equivalent to the non-normalized cactus operad Cact. Here we will define a variant of M S called
M St and, following [36], start by showing that it is an operad by proving that it embeds in CoEnd(S?!).
We then show that normalized cacti are a subspace of the underlying symmetric sequence of M ST and that
their composition can be written in terms of compositions in M S™.

The space of operations MS*(k) is built from a space F(k), which we will show is homeomorphic to
Cact' (k). In fact, we can think of an element of F(k) as the outer circle of a cactus.

! The operad MS is denoted C’ in [29, Section 5].
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Fig. 17. Element of € F(3) and associated projections.

Definition 5.2. [36, Definition 4.1] Let S = [0,1]/0~1 be the circle of circumference equal to 1. Define F (k)
as the space of partitions x = (I;(z),...,I;(z)) of S into closed 1-manifolds I;(z) C S!, each of which
have total length %, with pairwise disjoint interiors, and such that

(¥) there does not exist a cyclically ordered 4-tuple (z1; 29; 23; 24) € St with 21, 23 € Ij(x) and 20,24 € Il(x),
for j # i.

For an example, see Fig. 17(a). The topology of F(k) is induced by the metric measuring the size of the
overlap between partitions: for z,y € F(k), d(z,y) =1 — Zle ¢(I;(x) N 1;(y)) for £ the length function on
submanifolds of S1.

The symmetric group Xy, acts on F(k) by reindexing the labels of the 1-manifolds.

Definition 5.3. Given an element z € F(k), we associate to each I;(z) a projection map ¢/ : ST — S that

takes the quotient of S' under the identification of all the points in the same path component of S! \I j
and then scales this circle by a factor of k. See Fig. 17(b) for an example. The cactus map c,: S* — (S1)¥

is the collection of maps ¢, := (cl,...,c¥). Then there is a map

c: F(k) ——— Map(St, (S1))
x—— ¢y = (L, ... k) ST — (SHR.

T

For any = € F(k), we also use x to denote the configuration of circles in the image of the cactus map
eyt ST — (SHF. Condition () in Definition 5.2 guarantees that this configuration is treelike, as it forces
the submanifolds I;(x) to be nested. The global basepoint of x is the image of the basepoint of S and a
planar structure is induced by the orientation of the source S! (see [36, Definition 4.2]). Since each part of
a partition « € F(k) has equal length, z is a normalized cactus as shown in Fig. 18. This is the sketch of
the proof for the next lemma.

Lemma 5.4. [36, Section 4] For each k > 1, the space F (k) is homeomorphic to Cact' (k).

Recall the coendomorphism operad CoEnd(S?) from Example 2.2, whose underlying symmetric sequence
is a collection of CoEnd(k)(S!) := Map(S?, (S1)¥). We use the map

c: Cact' (k) = F(k) — Map(S*, (S1)*) = CoEnd(S")(k)
to define an embedding of symmetric sequences.

Lemma 5.5. The map c: F(k) — Map(S*, (S*)*) is a topological embedding.
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Fig. 18. An element x of F(3) and the corresponding normalized cactus c,;.

Proof. We first check injectivity. Given a map ¢, = (cl,...,ck) in the image of ¢, we can completely

determine z € F(k). We know that each ¢ is a “step-map” with linear of slope k over its non-constant
parts, by the definition of ¢. (See Fig. 17(b).) Then I;(x) is precisely the subset of points of S! where the
derivative (1)’ equals k. Continuity of ¢ follows from the fact that the topology in the mapping space can
be defined using the convergence metric, using likewise the metric on S'. O

This embedding of symmetric sequences does not extend to an embedding of operads. As already men-
tioned, Cact' is not an operad and one can check that the image of ¢ is not a suboperad of CoEnd(S").
Indeed, if we compose two elements in CoEnd(S*) that came from elements of F, their composition will
not be in the image of any F(k) because all elements in the image of F(k) are piecewise linear graphs of
slope 0 or k, and this property is not preserved by the composition in CoEnd(S?!).

Here we define the symmetric sequence M St = {MS*(k)}x>0, which is built from F (k) and a collection
Mon(I,81) of scaling maps on the interval I. It has the important property that Cact (k) ¢ M S* (k) for
each k > 0.

Definition 5.6 (MS™ as a symmetric sequence). For each k > 0, we define the space M ST (k) as

MSt(0) =
MS*(k) = F(k) x Mon™(I,0I)

where Mon™(I,01) is the space of strictly monotone self-maps of I that restrict to the identity on I. We
consider Mon™(I,0I) as a subspace of the space of self-maps of S* = I/0I. For each k, there is an action
of the symmetric group X, on M ST (k) by the reindexing of the labels of the 1-manifolds in F(k).

Remark 5.7. The operad M S that appears in [29,30,36] has an underlying symmetric sequence obtained by
replacing Mon™(I,0I) by the larger space Mon(I,dI) of weakly monotone maps. The inclusion M S+ —
MS is a homotopy equivalence as both Mon(I,0I) and Mon™(I,0I) are contractible (in fact, they are
both convex).

In order to show that M ST is an operad, we start by showing that each space of operations M ST (k)
embeds in CoEnd(S')(k). We also check that the operad composition of CoEnd(S!) preserves the image of
M ST, and hence is a suitable composition for M S™, thus making M S+ a suboperad of CoEnd(S%).

Proposition 5.8. There is a topological embedding ¢ : M ST (k) — CoEnd(St)(k) that sends (x, f) € MS* (k)

to the composite
st L gt Loy (g1

where ¢, is the cactus map as in Definition 5.3.
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A version of Proposition 5.8 is stated for the operad M S in [36, Section 4]. As we rely heavily on this
result we give more complete details here.

Proof. The fact that ¢ is continuous follows from Lemma 5.5, so we are left to check that ¢ is injective.
Let 2 € F(k). Recall that the map ¢, = (c}

TR

ck): 81 — (S1)¥ is a collection of “step-maps” of linear of
slope k over its non-constant parts. Each map ¢/ : S* — S identifies points in the same path component of

S1\ I;(x) and linearly takes I;(z) (of length 1/k) to a circle of circumference 1. So, these maps satisfy that

k
> ¢ =Tdgr.
j=1

In particular, this means that if ¢, o f = ¢, 0 g, then

x| =

1k 1t 1k 1k
= (b EZCJOfZEZC“’g (zD_c)og=g
j=1 j=1 j=1 j=1
Moreover, as f, g are strictly monotone and hence invertible, for each j =1,... k,

=(chof)of Tt =(cog)of T =(chjog)og ! =
This shows that ¢, = ¢, and therefore the map is injective. O

Proposition 5.8 shows that M ST is a symmetric subsequence of CoEnd and this next lemma shows that
the operad structure maps of CoEnd preserve this structure.

Lemma 5.9. The operad structure maps of CoEnd preserve the symmetric subsequence M S™T.

Proof. It suffices to consider the composition operations o; in CoEnd as defined in Example 2.2. Given
(x, f) and (y,g) in M ST, we need to check that the composition

k 1xeyx1

st L gt (s O (5 (51t (5.2)

is in the image of M ST, where 1 x g x 1 denotes the map where g acts only on the ith circle. For this, we
will show two things:

(i) (1xgx1)oc, =czo0g, for some g€ Mon™(I,0I) and & € F(k),
(ii) (1 x ¢y x 1)oey = ¢, 0 hy,y for some hy, € Mon™(I,0I) and z € F(j + k — 1).

For statement (i), the map (1 X g x 1) acts only on the ith circle, so in the composition with ¢, it only
affects points in I;(x). Recall that we identify St with I/01. Suppose I;(z) = Jy LI --- U J,. with each J, a
subinterval of [0, 1] and I;(z) of total length +. We obtain & € F(k) from z by replacing each subinterval
Js by an interval J; of length +£(g(c(J5)))) and shifting each path component of [0, 1]\ 1;(z) accordingly.
Then I;(Z) = Jy U---.J,. This makes sense as, by construction, the total length of I;(Z) is again % The
map ¢ is defined as the canonical identification of z with & that maps I;(z) to I;(Z) for all i € {1,...,k}.
See Fig. 19 for an example.

For statement (ii), we consider a composition (1 x ¢, x 1) o ¢, : St — (S1)7T*~1 with ¢, on the ith
position. Such a composition maps the rth partition I,.(z), for r # i, to the rth (if » < 4) or (r +k —1)st (if
r > 1) component in the target by a slope k map, while I;(z) is mapped by slope jk maps to the remaining
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v Ji J2 ch (1) & (J)
0o 1 0o 1
z J J o 9(ci(J1))  g(c(J2))
0 1 0 | 1

Fig. 19. An example of the commutative diagram g o c; = cfi 0g.
components. Let h, y : 81 — St be the rescaling map that scales each I,.(z) by a factor +k 7 for r # i, and
+k 7 for r # i, while I;(x)
m. Note that this gives a well-defined map in Mon™(I,dI) as the sum of
the length of the images hy ,(I.(x)) is (k— 1)% + Jﬁ? = 1. Subdividing the image under h, , of I;(z)
into j parts as prescribed by y, together with the images of the other I,.(z)’s, then defines z € F(j+k —1).

I;(x) by a factor

= k 7. Then the image under h, , of each I,.(z) will be of size

will have image of total size

The relation (1 x cy X 1)oe, =c,o0 hz,y holds by construction.
By putting (i) and (ii) together, the composition in (5.2) is given by (hz o0 go f,z) € MST. O

Therefore we have shown that M ST is a suboperad of CoEnd(S!) via the embedding ¢ in Proposition 5.8.

Definition 5.10 (M S™ as an operad). The symmetric sequence M ST = {MS™(k)}ren becomes an operad
with composition

(2, f) i (y,9) = ¢ (B(x, f) 01 d(y, 9)) (5.3)

where o; is the composition in CoEnd(S?) defined in (5.2), and the pre-image exists as a consequence of
Lemma 5.9.

We will often use scaling maps in Mon™ (I, ) to encode the scaling of lobes in the composition of normal-
ized cacti. Given a partition z = (I (x),..., Ix(z)) € F(k) = Cact'(k), and natural numbers my, . .., my > 0,
we let

g=glx;my,...,my): ST — S1 (5.4)

be the element of Mon™(I,dI) that scales I;(z) by the factor #{m, 1 < j < k. Each I;(z) has total
length %, so the image of I;(x) will have length ml+”+mk for each 1 < j < k. (See Fig. 20 for an example.)
Note that g(z;1,...,1) =id is just the identity map on S*.

We will now show that the o;-compositions of normalized cacti from (5.1),
0; : Cact!(k) x Cact!(j) —— Cact'(k+j —1),
and, more generally, the Cact'-composition maps
Yeactt : Cact' (k) x Cact! (my) x --- x Cact! (my) — Cact*(Z5_,my),
are restrictions of the corresponding compositions of appropriately chosen elements of MS™.
For a collection of cacti z € Cact'(k) and y; € Cactl(mj), 1 < j < k, the quasi-operad composition

Yeact (T3 Y1, - - -, Yk ) scales each lobe of x so that the ith lobe now has length m;, and then inserts (without
any further scaling) each y; in place of the ith scaled lobe.
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, Is(x) 5 g(I3(x))
18 12
9(I2(x)) 3
Ir(x) % g(x;2,1,1) 1 3
4 4
i 15
" g(I1(z))
Il (LE)
(I (2)=3 £(I2(2)=5% 2g(I(2))=3% £(g(I2(x))=%
L(I3(x))=1% 2(g(I3(x))=1%

Fig. 20. Map g(x;2,1,1), for = from Fig. 18.

Under the homeomorphism Cact'(k) 2 F(k) in Lemma 5.4, a normalized cactus z € Cact'(k) precisely
corresponds to a partition « € F(k) of [0,1] into k submanifolds I;(z) of equal lengths +, satisfying the
conditions of Definition 5.2. Since the ith lobe of = corresponds to the submanifold I;(x), there is a scaling
by + in the identification Cact' (k) to take a lobe of length 1 to I;(x). In the next lemma we will use z € F (k)
and y; € F(m;) for 1 < j < k to represent a sequence of cacti in Cact' (k) and Cact'(m;) respectively. We
will still denote the composition by o; or Yeactt-

Lemma 5.11. Let vars+ and Yeacer denote the (quasi-)operad compositions in M.S™ and Cact!, respectively.
Then for x € F(k) and y; € F(m;), with 1 < j <k, we have

Yars+ (2,97 @ma, - me))i (y1,4d), - (e, id) = (Yeacr (2391, - - -, Yp), id)
in MSt(>_m;). In particular,
(z, g  (z;1,...,my, ..., 1)) & (y;,id) = (2 0; v, id)
where o; denotes the composition (5.3) of MS™ and o; represents the composition (5.1) of Cact’.

Proof. Let F(,,, . m,)(k) denote the scaled version of F(k) where the ith partition, I;, now has length
m; instead of 1. In particular, we have that F(k) = ]-"(%W’%)(k;) and Cact'(k) = F,....1)(k). Thus the

~

homeomorphism Cact! (k) = F(k) implies that the composition yg,1 on Cact' can be interpreted as a map
in F, written as

Fk)x (F(my) x -+ x F(mg))
o Fmr ey (B) X (Fay(ma) < - x Foa oy (mi))

s 7(1,4..,1)(2 m;)

1
ETERRSD>

NooF L (Zmi):}"(Zmi)

where S and N are scaling and normalizing maps and the map labeled ~ is the insertion map.
Our task is to write the composition 7,41 in terms of the operad M S™. To do this, we will use scaling
maps inside Mon™ (I, dI). More precisely, define a map

F(k) x (F(my) x -+ x F(mg)) —— MST(k) x (MSt(mq) x -+ x MST(my,))
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that takes (z;y1,...,yk) to ((x,g71); (y1,id), ..., (yx,id)) where g = g(z;m1,...,mi) € Mon™(I,0I) is the
map in equation (5.4). The statement we want to prove is that (ycaee1,id) can be written as the composition

F(k) % (F(my) % -+ x F(myg)) —F—s MST(k) x (MS*(m1) x -+~ x MS*(my))
In particular, we claim that the resulting element of M.S*+(3". m;) is in the image of Cact', that is, of the
form (z,id).

To prove this, we start by expressing G as a composition G’ o S, where S is the scaling map in the
description o, = IV 0y 0 S given above and

G Fingoomp) (k) X (F1,. 1y (ma) X - x Fa,_qy(mg)) — MST (k) x (MST(my) x -+ x MST(my))
is the map that takes a tuple (z;y1,...,yx) to the tuple ((N(z),g71); (N(y1),id), ..., (N(yx),id)), with N

the normalization also as above. In order to compare Ve it = N oy0.S with vpr6+ 0G0 S, we have to show
that the diagram

,
Fimaoimi) (B) X (Faa,.py(ma) x - X Fu o y(me)) ——= Fa,...0 (O, ma)

G’l \L(N,id)

~
MS*(k) x (MS*(my) x -+ x MS*(my,)) ——="— MSH(S, my)

commutes, where the right vertical map takes z to (N(z),id). To see this, let (x;yi,...,yx) be an element

in the top left corner of the square. Its image 5+ © G'(x; 41, - - -, yr) along the bottom composition is the

element of M St (my + -+ + my) given by the following composition:

-1 Copy X oo X,
R (£ L LN

(51)m1+---+mk
since we consider M S (my +---+my) as a subspace of CoEnd(my + - - - +my) and use the composition in
(5.3). The jth factor S* in the above (S*)¥ is subdivided into submanifolds I,(y;) according to c,,.
Their inverse image g o (cz); '(Is(y;)) in the source S* of the composition is thus taken to the (m; +
-4 mj_1 + s)th factor S* in (S1)™1FFme being first scaled by a factor 27 (using ¢g~1), then by a
J

km

factor k (via the jth component of cm) and finally by a factor m; (via the sth component of ¢, ). So in
total the composition takes g o (c;); Y(I(y;)) to S* = I/OI linearly by a factor > m;, and is constant
on the connected components of the complement of g o (cx)fl(I (y;)). In particular, g o (cx)fl(I (y;)) has
length Z , which is independent of j and s. Thus we see that the resulting element does indeed live in the

image of Cact As the scaling is always independent of s and j, the proportion of each g o (cL) L1, (y;))

inside the source S is always as dictated by cy;, with each g ~1(I;(x)) having total lengt
composition is the same as following the other side of the square, which inserts I(y;) inside I ( ), scaling
each I;(x) to length m;, then scales it by E - to be inside MS*. o

Therefore up to scaling in accordance with the homeomorphism Cact' 2 F in Lemma 5.4, we have shown
that both Cact® and its composition are contained within the operad M ST, but not as a suboperad.
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5.2. Cact! is a BO-algebra

Here we will construct an action of BO on normalized cacti using the fact that Cact! ¢ MS*, and
that its composition can also be described in terms of the composition in MS*. In Theorem 5.12, we
show that the quasi-operad structure on normalized cacti Cact' = {Cact'(k)}r>0 is part of a BO-algebra
structure. In Corollary 5.13, we conclude that Cact' determines a dendroidal Segal space X € S with
X(C,) = Cact'(|v]).

Recall from Section 3.3 that a BO—-algebra is a symmetric sequence with o;—operations that are homotopy
associative up to all higher homotopies. Elements from BO are (T, 0,7, B,t) where T is a planar tree
equipped with bijections o : |[V(T)| — V(T) and 7 : |L(T)| — L(T), and (B,t) is a weighted bracketing
of T

Let

R: MST — F (5.5)

denote the projection map that forgets the Mon™ (I, 8I) component, R(z, f) = x. This is a map of symmetric
sequences. If we think of elements of MS™ as cacti, the map R has the effect of renormalizing, that is,
rescaling the lobes so that they all have the same length. Since M S is an operad, it is an O-algebra. The
O-action

Aus+ 1 O(ksma, ... omy) x MST(my) x ... x MST(mg) — MST(>_m;)

takes a sequence of elements
((Tv 0—77—)3 (xla fl)a tey (xka fk)) € O(k;mla s 7mk) X MS+(m1) XX MSJr(mk)

to the composition of the elements (z1, f1),..., (zk, fr) according to yass+, in the order prescribed by the
labeled tree (T, 0), acting by the permutation 7 on the resulting element of M S™ (3", m;). This composition
can be depicted by labeling the ith vertex of (T, o, 7) by (x;, f;) € M.S™(m;). This action is compatible with
the composition in @ because M S™ is an operad. We will use this existing O-algebra structure to define
the BO-algebra structure of Cact! by representing the Cact'-composition by R o Apsg+.

Theorem 5.12. The Cact'-composition (5.1) is part of a BO—-algebra structure.

Proof. In order to construct a BO-algebra structure on the sequence {Cact'(n)},>0, we want to define a
map

BO(k;my, ..., mx) x Cact'(my) x ... x Cact" (mg) — Cact" (D> m,)

K3

that restricts to the ¥, —action on Cact'(n), which permutes the labels on the lobes, and its already defined
o;—compositions. Using the homeomorphism Cact' = F from Lemma 5.4, we will equivalently construct a
map

A: BO(kymy, ... my) x F(my) x ... x F(mg) — FO_my).

Firstly, the X,,-action on the n—space of a BO-algebra is encoded by the labeled corollas

(C'ru LT,@,@) S BO(TL,T},) [ O(Tl,n) o Zna
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4 2
RENG Q
SO ()
Fig. 21. Example of the BO-action on Cact!.

where 7 labels the leaves of the corollas C,, which are thought of as elements of the symmetric group %,
and the identity corresponds to the planar ordering. This fixes the action of such elements of BO as we
have already fixed the X,,-action on Cact’(n).

The Cact! o;~composition is encoded in BO by the trees with exactly two vertices, one attached to the
1th incoming edge of the other. These trees admit no non-trivial bracketings so such elements of BO have
the form

(T,o,7,0,0) € BO(m +n—1;m,n)

where o labels the two vertices of T" and 7 labels its n + m — 1 leaves. The compatibility with the pre-

chosen operadic composition of Cact® dictates the action of such elements of BO: (T,0,7,0,0) acts on

x1 € Cact'(m) and x5 € Cact'(n) by taking their o;-composition, as dictated by the tree, and then acting

by 7 on the lobes of the resulting element of Cactl(m +n—1). Fig. 21 illustrates an example of this action.
By Lemma 5.11, this Cact'-composition can be defined in terms of the M S+ composition:

R o Ays+ ((T, o,7); (21, 91), (x2792))

where R is the projection map (5.5), and g1 = g(z1,1,...,ks,...,1) and g2 = g(z2,1,...,1;,...,1) are the
rescaling maps of (5.4), with k; = n and [; = 1 if first vertex is the bottom vertex and the second is attached
to its ¢th input, or k; = 1 and [; = m if the second vertex is the bottom vertex with the first attached to
its jth input. Let (yr, fr) € MS™ denote the element Aprg+ ((T, o,7);(z1,91), (1’2,92)).

We will now extend this definition of the BO—-action of trees with at most two vertices to an action of the
whole operad. We start by defining an explicit expression for the action of bracketings of trees (T, 0,7, B, 1)
with brackets of weight 1, and afterwards extend this definition to the remaining elements of BO, whose
brackets have weight strictly between 0 and 1.

Let T = (T,0,7,B,1) be an element of BO(n;my,...,my) with all brackets of weight 1, and let z; €
F(m;) = Cact' (m;) for each 1 < i < k. We first construct scaling maps g € Mon™(I,I) as in (5.4). Recall
from Definition 3.1 that a bracketing B = {S;};c consists of large, nested proper subtrees of T'. Here we
allow B to be empty. Recall that o orders the vertices of T. For a fixed i € {1,...,k}, let S € B be the
smallest bracket that contains the vertex o(i), allowing S = T if there are no such bracket. Recall that
in(o (7)) is the set of incoming edges of o (i), and L(S) is the set of leaves of the bracket S. We define a map

&:in(o(i)) — N (5.6)
by setting
(i) &(e) =1 if e € L(S);
(i) &(e) = |L(S")| if e is the root of a bracket S’ C S in B, with S C S the largest such bracket;

(iii) &(e) = |w|if e € iE(S) is not the root of any S’ € B, where |w| denotes the arity of the vertex w € V(5)
for which e is the outgoing edge.
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£ler) =1

. (ea) = |L(S)| = 5
§lez) =1
£(eq) =|o(7)| =
Eles) =1

Fig. 22. An example of &.

Fig. 23. An example of T” for the bracketing of T in Fig. 22.

Fig. 22 shows an example of the map £. We then set

gi = g(zi;€(er), ..., &(em,)) (5.7)

for ey,..., e the incoming edges of o(i) ordered by the planar ordering of 7.
We define the action of BO inductively on the size of the bracketing B.
If B is empty, then we define

A(T;xh s 7xk) =Ro AMS*((T7 037_); (xlagl)a ceey (xk?gk))

and use (yr, fr) € MS™ to denote the image of Aj;5+. Note that when k = 1 or 2, this is the same as the
BO-structure already defined above.

If B is not empty, then we define additional scaling maps for each bracket, using the inductive hypothesis
that the action has already been defined action on subtrees with fewer brackets.

Let T" be the tree obtained from T by adding a binary vertex at the root of each bracket S; € B. Extend
the order o of the vertices of T to an order o’ of vertices of T by setting the |J| = |B| new vertices last.
An example of T” is shown in Fig. 23. We will use each additional vertex of T to assign a scaling map to
the associated bracket.

Let w; € V(T")\ V(T) be the jth vertex of 7" not in T', according to the chosen order ¢’. Let S; € B be
the bracket associated to w;. Since the number of brackets of B that lie inside S; is less than |B|, we have
an element

(ys;, fs;) € MS™
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defined by the inductive assumption by restricting T = (T, 0,7, B,1) to the subtree S;. Consider the tree
T/S; in which all vertices in S; are identified and internal edges between them are collapsed. The tree T'/.S;
has a vertex [S;] associated to the collapsed tree S;. We have an induced bracketing B of T/S; from the
bracketing B of T, and thus can define a map &; : in([S;]) — N as in (5.6) by replacing (T, B) by (T/S;, B).
Then define

hj = g(ys;;&iler), - &(en) o fg)! (5.8)

for eq, ..., e the incoming edges of [S;] in T//S;. We define the action of BO by setting

)‘(T;xlv oo 7xk) =TRo AMSJr ((T/7J/a7-); (xlagl)a sy (:Ek,gk), (]-a hl), sy (]-a h|B|)) (59)

for the rescaling maps g; and h; defined above.

We claim that the formula for the action (5.9) is indeed compatible with composition of bracketings of
trees of weight 1. It is enough to check this for a o;-composition in BO, so consider Ty = (T, 01,71, B1,1)
and Tg = (Ty, 02,72, B2,1) in BO. We need to check that

MTy 2,021, MTo3 24,0, 1), Tigts - Thi—1) = M(T1 o Tos 2,00 Tppi—1). (5.10)

From the above definition, we have A(T1;21, ..., Ti—1, AM(T2; Ty o ooy Tigio1)s Tigly -+ o, Thpi—1) =

RoAus+ (11,01, 1) (x1,01), -5 (Tic1, Gim1)s (W1s 90) (@igts Givt) - -5 (@ho gi)s (L ha), oo, (L, gy )

for

Y1, = R o Aps+ ((TévaéaTQ); (xiagll)v R ('ri—&-l—lag;)’ (Lh/l)v R (17hTBQ|))

where the maps g; and h; are those associated to (T3, By) and the maps g; and h} associated to (Tz, Ba).
In the above notation, we also have

(yT27fT2) = )\MSJF ((Té,O’é,Tg); (1‘17.97{)’ Ty (xi-‘rl—lvg;-',-l—l)? (17 h‘ll)v R (17 h?Bﬂ))

Note that one can change the Mon™(I,0I) component of an element of M ST by doing a o;—composition
in the operad. In particular,

(yT2agi> = (Lgi o fj_“Ql) o1 (yT2>fT2)

in M ST ane we can rewrite the left hand side of (5.10) as the first component of the M ST—composition

)‘MS+ ((Tll70-i77-1) 04 (TQIa 6-/237-2); <$17gl)7 ey (mifhgifl)a
(ziagg)v R (l‘i-&-l—lag;-}-l—l)? (1’ h/1)7 DI} (1a hiBQ‘)a (1791 o f’;zl)a
(xi+lagi+l)a R (xkvgk), (]-a hl)a B (]-a h|Bl‘))

where T4 has an extra vertex at the bottom of the tree to encode the change of Mon™(I,dI)-component
for the T5 composition. If T5 is large, this extra vertex corresponds exactly to the extra bracket Ty arising
in the BO—composition, and one checks that the corresponding scaling map h defined by the formula (5.8)
is precisely the map g; o fr, !. As the other labels of the vertices of the composed tree agree with those of
the right hand side, we see that we recover the right hand side of (5.10). If 75 is not large, then there is no
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such additional bracket in the BO-composition, but in this case fr, = id and the left and right hand side
agree directly.

Recall from Remark 3.10 that we may consider BO as the geometric realization of the simplicial operad
of bracket trees. Then the above definition of A on bracketings of weight 1 defines the action of the vertices
of BO. We finally extend this action to all bracketings of a tree T by linear interpolation on the rescaling
maps g;. For a fixed tree T and a point ((By C --- C B,),t) in the realization of the poset B(T), let g;(T, B;)
denote the definition of the rescaling map g; with respect to the bracketing B; on T in (5.7), and likewise
for the maps f; in (5.8). We set

g9i = togi(T, Bo) —+ ...+ trgi(T, Br)

This is well-defined as Mon™ (I, 1) is convex. Also note that this is continuous in BO as going to the [th
face of the simplex (Bg C -+ C B,.) corresponds to t; going to 0, that is, dropping the bracket B;. Then we
define (yr, fr) and X(T, 0,7, B,t) := R(yr, fr) as in (5.9) but with this definition of g; instead.

This defines the action of BO on Cact'. It is compatible under composition because the composition in
BO is the realization of the composition in the poset operad, and we have already checked the compatibility
under composition there. O

Given that normalized cacti, together with the cactus composition (5.1), forms a BO-algebra we can now
use the rectification results from Proposition 4.10 to define an co-operad.

Corollary 5.13. Normalized cacti define dendroidal spaces of the following two flavors:

(i) There exists a reduced homotopy dendroidal space X € Sﬁgp, satisfying the strict Segal condition, such
that X (Cy,) = Cactl(n) and with value on the inner face maps d. given by the Cact! —composition.

(ii) There exists a weakly reduced dendroidal space Y € S satisfying the weak Segal condition (in the
sense of Proposition /.10), such that Y (Cy) ~ Cact'(n) and with value on the inner face maps O,
homotopic to the Cact' —composition.

Proof. Theorem 5.12 shows that Cact® is a BO-algebra. Applying the construction from Theorem 4.8, we
define a homotopy dendroidal space X := ®(Cact') € S%". By construction, ®(Cact')(C,,) = Cact(n),
and by the theorem it is a reduced homotopy dendroidal space satisfying the strict Segal condition. The
evaluation of ®(Cact') on an inner edge is the o; composition, as encoded by the BO-structure, which in
the present case is the Cact'composition by Theorem 5.12. This proves (i) in the statement.

For (ii), we set Y := p X = p®(Cact') € S to be the rectification of X, as constructed in Proposi-
tion 4.10. By Lemma 4.9, Y(C,,) = p®(Cact')(C,) ~ ®(Cact')(C,) = Cact'(Jw|) and the value of Y on
inner face maps identifies under these homotopy equivalences with the value of X on inner face maps, and
hence identifies with the Cact!—composition. By the proposition, Y is weakly reduced and satisfies the weak
Segal condition. O

6. Relation between the operads BO and WO

The Boardman-Vogt W-construction is a construction on operads with the property that, for any topo-
logical operad P, algebras over WP are “up-to-homotopy” or “weak” P-algebras. A lax operad [8] is an
algebra over the operad WO, the Boardman-Vogt W—construction applied to the operad of operads O
(Definition 2.8), and is a notion of a “weak” or “infinity” operad. It is known that there exists a zig-zag of
Quillen equivalences between the category of W (0-algebras and the category of reduced dendroidal spaces
by, for example, combining Theorem 4.1 of [1] with either Theorem 1.1 of [3] or a restriction of Theorem
8.15 of [12].
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Here we show how the operad BO can be identified with a variant Wy of the W-construction of the
operad O of operads (see Theorem 6.4). From this, it will follow that BO-algebras are lax operads that are
strictly symmetric and with a strict identity (see Example 6.2). We start by recalling the W—construction.

6.1. The W -construction

The Boardman-Vogt W-construction is an enlargement of the free operad construction. Given an operad
P, there are canonical morphisms of topological operads

FP— WP =P,

where the map p : WP — P is a surjective homotopy equivalence. Algebras for WP are up-to-homotopy
P-algebras. We briefly recall the construction here and refer the reader to [8, Section 17] or [1, Section 3]
for full details.

Definition 6.1. Let P be a €—colored (discrete or topological) operad. The operad WP is a topological
operad with the same set of colors €, built from the free operad F(P) (Definition 2.3) by adding length
in [0,1] to the internal edges of the trees that define the elements of F'(P). More precisely, for each list of
colors c;cy,...,ck in €, we have

WP(cer,. .. cr) = ( H ([O7 l}liE(T)l X H P(out(v);in(v))))/ ~

(T, f,2) veV(T)

where the disjoint union, as for the free operad, runs over the isomorphim classes of leaf-labeled €—colored
planar trees

(T, f: E(T) = &, \: {1,...,k} — L(T))

with k leaves such that f(A(¢)) = ¢;, f(R(T)) = ¢. The equivalence relation is generated by the relation (x)
in Definition 2.3 in addition to the following additional relations that capture “weak” operadic composition
and units:

(1) any tree with an internal edge of length of zero is identified with the tree where that edge has been
collapsed and the operations labeling its end vertices composed;

(2) any tree that has a vertex with only one input and one output, both colored by ¢ € €, labeled by the
identity in ¢, € P(c;c), is identified with the tree where that vertex is deleted. The resulting new edge,
if internal, has length the maximum length of the two original internal edges connected to the deleted
vertex.

See [8, p 75] for a pictorial version of these relations. The symmetric group acts on WP by relabeling the
leaves, as for the free operad. Composition is by grafting, giving length 1 to the newly created internal edge.

We will denote elements of WP by (T, f, A, s,p), where T is a planar tree, f : E(T) — € is the map
coloring its edges, A : {1,...,k} — L(T) is the bijection labeling its leaves, s € [0,1]*F(T) is a collection
of weights, and p = (pu)vev(T) is a labeling of the vertices by operations in P. An example is shown in
Fig. 24. There is a canonical projection map 7 : WP — P defined by sending all the edge lengths to 0 and
composing the operations of P as dictated by the trees.
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Pp; fr9,h,1,5) 2

P

Fig. 24. Example of an element of WP(p;a,b,c,d,g,i,k, £, m,o0).

Fig. 25. Local representation of the relation (2') on a tree.

6.2. A variant on the W -construction

Given a (discrete or topological) €-colored operad P, the topological operad WyP is defined as the
quotient of WP by replacing relation (2) in Definition 6.1 by the following stronger relations for arity one
vertices, as well as a version for arity zero vertices:

(2") any tree that has a vertex v with only one input and one output both colored by ¢, adjacent to at least
one other vertex w, with v labeled by any element P(c; ¢), is identified with the tree where the vertex
v is deleted, and the label of v and w are composed in P (Fig. 25).
If the resulting new edge is internal, then its length is the maximum length of the two original (then
necessarily internal) edges adjacent to v.

(3’) any tree that has a vertex v with no input, adjacent to another vertex w, with v labeled by any element
of P(c; D), is identified with the tree where the vertex v and the edge between v and w are deleted, and
the labels of v and w are composed in P (Fig. 26).

So a WyP-algebra is a weak P-algebra (W P—-algebra) for which the nullary and unary operation are strict.
And in particular, one has that WyP(c;c) = P(c; ¢) and WoP(c; 0) = P(c; 0) for any color ¢. Also, one can
always choose representatives of elements of WP using trees with no valence 0 or 1 vertices (unless it only
has 0 or 1 vertex). In a tree that defines an element of WP, an arity one vertex lying in between two other



40 L. Basualdo Bonatto et al. / Topology and its Applications 316 (2022) 108107

Pv
t

c
~ Pw© X
Pw

Fig. 26. Local representation of the relation (3’) on a tree.

vertices can be slid up or down to either of its neighboring vertices, composing its label with that of the
chosen vertex, while an arity zero vertex can be “pushed down” to the vertex it is attached to.

Example 6.2. The example relevant to us here is when we set P = O is the operad of operads. In this
case, € = N is the natural numbers and an O-algebra is a (monochrome) operad. The nullary operations in
O(1;0) encode the identity operation in the O-algebra, while the unary operations in O(n;n) encode the
action of the symmetric groups. It follows that a WyO-algebra is a strictly symmetric weak operad with a
strict identity.

By construction, the canonical projection p : WP — P factors through the quotient map ¢ : WP — WyP.
Moreover, both WP and WyP are homotopy equivalent to P:

Proposition 6.3. There are operad maps WP — WyP — P, inducing homotopy equivalences

q P

WP(C;Clv"'7cn) — WOP(C;Clv"'aCn) TO> P(C;cl,...,cn)
for each n > 0 and each c;cq,...,c, in €.
Proof. For each n > 0 and ¢;cq,...,c, the map

q:WP(ccr,...,en) = WoP(cier,. .. ¢n)

is the projection on to the quotient. It is an operad map because if elements of WP are equivalent in
WoP before being composed, they are necessarily also equivalent in WyP after composition. The map
po : WoP — P contracts the remaining edges in the trees of WyP by sending the lengths to 0 (and
composing the operations in P). This map is well-defined, as it is compatible with the relations (2’) and
(3’), and respects the operad structure. These maps induce homotopy equivalences, with homotopy inverses
given by including P(cy, ..., cpn;c) as labeled corollas in WoP(c;¢q,...,¢,) or WP(c;¢1,...,¢,). O

6.3. BO-algebras are strictly symmetric lax operads

In this section we prove that there is an isomorphism of topological operads BO = W,O.
Theorem 6.4. The operads WoO and BO are isomorphic.

The combination of Theorem 6.4 with Example 6.2, describes BO—-algebras as strictly symmetric lax op-
erads with strict identity. Moreover, the isomorphism BO = WO allows us to observe that any BO-algebra
will receive a canonical W O—structure via the quotient map ¢ : WO — Wy O. In fact, Theorem 6.4 together

with Proposition 6.3 gives homotopy equivalences

WO = BO = 0,
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where O = 1qWO = 1y BO and the latter equivalence is the one already considered in Remark 3.10. Each
of the topological operads WO, BO and O are admissible in the sense of [1, Theorem 2.1] and thus the
natural projection maps induce Quillen adjunctions

WO—-Alg —— BO—-Alg —— O—Alg.

We expect that these adjunctions induce Quillen equivalences, though the operad BO is not X-cofibrant so
we can not immediately apply [1, Theorem 4.1]. We nonetheless have the following;:

Corollary 6.5. Fvery BO-algebra is homotopy equivalent to a strict operad.

Proof. Every BO-algebra is canonically a W O-algebra via the quotient map ¢ : WO — BQO, and every
W O-algebra is homotopic to a strict operad, i.e. an O-algebra, using e.g. Theorem 4.1 of [1] that gives a
Quillen equivalence between the categories WO—Alg and O—Alg (using that the operads WO and O are
well-pointed, X-cofibrant admissible operads).

Given a BQO-algebra P, one can alternatively directly construct such a strict operad P’ homotopic to P
using the following double bar construction:

P < B(BO,BO,P) = B(O,BO,P)=:P,

where P’ is an O-algebra and hence a strict operad. In the above zig-zag, we use the notation of e.g. [28,
Const 9.6 and Thm 9.10], identifying an operad with its associated monad. The leftmost map is an equiv-
alence by properties of the bar construction and the rightmost because of the equivalence BO = O of
Remark 3.10. O

Combining Theorem 4.8 with Theorem 6.4, we can also relate BO-algebras with reduced, strictly Segal
Q¢P-diagrams.

Corollary 6.6. There exist isomorphisms of categories

Sop

WoO—Algg 2 (S0 ) sprict.

The proof of Theorem 6.4 will be given in Section 6.4. Though not saying this explicitly, the proof uses
the natural association of a bracketing to a clustering tree, which is described for instance in [38, Definition
2.7].

Since the W-construction is built out of cubes, to prepare for the proof, we start by giving an alternative
description of BQO in terms of cubes as well.

Definition 6.7. We can define a weighted bracketing of a tree T to be a pair (B,t) with bracketing B =
{S;}jes of T and ¢ € [0,1]7. The jth coordinate t; € t is the weight of S;. The addition of weights
associates to each bracketing a cube [0, 1]/P]. These cubes fit together to form a space:

B(r)= [[ [0.1]%/-

BeB(T)

where the equivalence relation is by identifying any bracketings with weights that only differ by a bracket
of weight 0 (see Fig. 27(b)).

Recall from Definition 3.2 the poset B(T') of bracketings of a tree T' under the inclusion relation.
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(a) A bracketing B of T with 2 brackets and its (b) All bracketings of 7" and their
associated cube [0, 1]‘3‘ in B(T). associated cubes assembled to make
B(T) a hexagon.

Fig. 27. A tree T and its corresponding space of bracketings B(T).

~

Lemma 6.8. Let T be a tree. There is a homeomorphism |B(T)| = B(T), between the realization of the nerve
of the poset B(T) and the cubical space B(T).

Proof. We consider the topological k—simplex as the space
Ak:{(sl,...,sk) ERF:1=5y>58 > > s > 0}.

Fix a tree T and let o denote a k—simplex By C --- C By of the nerve of the poset B(T). To each o we
associate a map

Xo : AF — B(T)

where xo(s1,...,8k) is the weighted bracketing of T' in which all trees of By have weight 1 = s¢ and all
trees of B;\B;—1 have weight s; for ¢ > 1.
The maps x, assemble into a continuous map

X |B(T)| = (H B(T) x Ak)/N — B(T) = H 0,1)/81/..

k>0 BeB(T)

This map is a homeomorphism with inverse defined by mapping a cube [0, 1]/5! in B(T) to the realization
of the sub-poset B<p, which is a cube whose dimension is the cardinality |B| of the bracketing. Explicitly,
given an element (B,t) € B(T) with B = (By,..., By), we order the coordinates of ¢t = (t1,...,%x) so that
they are in decreasing order

1= to’(l) — . = to(n) > tU(T1+1) — . = tU(T1+T2) > e > tU(T1+“‘+Tl+1+1) — . = t0(7'1+~~~+7"z+2) =0.

This defines an [-simplex By C By C --- C By by setting
Bi :Bo'(l) U'..UBJ(T1+-~+’I"1‘+1)' O
6.4. Proof of Theorem 6.4

In order to prove BO = WO, we first recall some definitions. Recall that elements (T, f, A, s,p) €
WoO(n;my,...,my) are represented by a planar tree T with k leaves ordered by the bijection A :
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3 10 12 13 2 16

Fig. 28. Element of WyO and corresponding element of BO(16;2, 3,4, 3,4, 3, 3).

{1,...,k} — L(T) and with an edge coloring f : E(T) — N that, in particular, colors the leaves by
mi,...,my. In addition, T is equipped with a collection of lengths s € [0, 1]PF(T)l and a decoration of the
vertices p = (py)vev(T) by operations by p, in O(out(v);in(v)).

We call a representative (T, f, A, s,p) reduced if the tree T has no vertices of arity zero or one, unless
such a vertex cannot be removed using the equivalence relation in WO, i.e. if T is the corolla Cy or Cj. In
particular, every element of WyO has a reduced representative, which in general is not unique. It greatly
simplifies the proof of Lemma 6.9 to work with reduced representative.

For a given tree T, and vertices v, w € V(T), we say that w is above v if the unique shortest path between
w and the root of the tree goes through v. In this case v is below w. Every other vertex of T is above the
root vertex vy whose outgoing edge is the root of T.

Lemma 6.9. There is a map of topological operads ¥ : WO — BO.

The map V is illustrated in Fig. 28.
Proof. Given a reduced element (T, f, A, s,p) € WoO(n;mq, ..., my), we construct

U(T, f,\,s,p) = (T,0,7,B,t) € BO(n;my,...,mg),
where (B, t) is a weighted bracketing on the labeled tree
(T,0,7) =po(T, f, A, 8,p) € O(n;my,...,my)

that is the image of (T, f, A, s, p) under the canonical projection py: WoO — O.

The bracketing B is constructed from the set of vertices of T. If T has at most one vertex, then set
B = () to be the trivial bracketing, in which case there are no weights to choose so t is the empty map.

Otherwise, since (T, f, A, s,p) is reduced, and T is not a corolla, all its vertices have arity > 2. Let v be
the root vertex of T. For each v € V(T )\{vo}, let

(SwUU,Tv) = pO(Tv» f|Tva A'Tvap|Tv)a

where T, is the subtree of T with v as its root vertex, and containing all the vertices above v. Observe, in
particular, that, since v # vg, the outgoing edge e, of v — that is the root of S, — is internal in T'. Since the
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vertices of T have arity at least 2, each 5, is a large proper subtree of T', and because composition in O is
by substitution,

B={S, : veV(T)\{vo}}

is a collection of nested subtrees, and hence a bracketing.

To define the weight function ¢t of B, we associate, to each S, the weight ¢, = s(e,), the length of
e, € ¢E(T). This completes the definition of ¥(T, f, A, s,p).

We need to check that the defined bracketing is independent of our choice of (reduced) representative
(T, f, A\, 8,p) € WoO(n;my,...,mg), and continuous. In particular, we must check that it is compatible
with the relations (1), (2’) and (3’) in Definition 6.1 and Section 6.2.

To prove that U is well defined with respect to relation (1), and hence also continuous, let s; be the
length of an internal edge of T with end vertices v, w, where v is above w. Then if s; goes to 0 in WO,
the vertices v, w are identified and their labels are composed in O. Applying V¥, this will precisely have the
effect of taking the weight of the bracketing S, to 0, which is equivalent to simply forgetting the bracketing
S, in BO.

Relation (2’) allows that a vertex v with only 1 input in T, labeled by a permutation o € O(n;n) £ %,,,
to be composed to either of the vertices it shares an edge with. So suppose T is the reduction of a tree T
with an arity one vertex v attached to two vertices w and w’, with w’ below w. We may assume that w and
w’ both have arity at least two. We let T be the tree obtained from T by collapsing the edge between w
and v and let T’ be the tree obtained from T by collapsing the edge between v and w’. We need to check
that the brackets S, and S, are the same if computed using the representative (T, f, A, s,p) associated
to T or (T’, f', X, s',p") associated to T’. This is immediate for the bracket S, because w’ is below v and
thus po(Twr, flT,,, AT, > PlT,,) = Po(T,, f’\T;, , /\IT;/ ,p'|T1ru/). For the vertex w, the two representatives in

general do not have the same image under po, but if po(T,,, f'|T; ; Al: ,2'|T/) = (S}, 00, T0y) We still have

that S;, = S,. In fact, only 7/, might differ from 7, as the vertex v is a permutation o € O(n;n) = %,, that
acts on a labeling p € O(n; k1, ..., ki) by permuting the leaves of the labeled tree representing p.

For relation (3’) in the definition of Wy, the relation gives a unique way to reduce a tree if an arity zero
vertex is attached to another vertex, so the representative with no arity 0 vertices is unique and nothing
needs to be checked.

Finally, we check that ¥ is a map of operads. Consider a composition (T1, f1, A1, s1,p1)0:(T2, fo, A2, s2,p2)
of reduced representatives in WoO, and let W (T}, f;, \;, s;,p;) = (T},0;, 7, B, t;) for j = 1,2. Composition
in WO is induced by grafting a tree Ty onto the ith leaf of Ty, creating a new internal edge of length 1.
If Ty has at least one vertex of arity 2, this corresponds exactly under ¥ to adding a new bracket 15
of weight 1 in the composed tree T1 e, (;),-, T2 where the composition here is by insertion. If not, then,
since (Tq, f2, A2, s2,p2) is reduced, Ts has either no vertices or a single arity 1 vertex, so 75 is either the
exceptional tree 7 or a corolla C),. In each case, the newly added edge in the composed tree Ty o; Ty will
be collapsed when going to a reduced tree, corresponding under ¥ to a composition in BO where no extra
bracket is added. This finishes the proof. O

Lemma 6.10. For every (n;mi,...,mg) the map ¥ : WoO(n;my,...,mg) — BO(n;my,...,my) is a
bijection.

Proof. We start by checking that W is surjective. So let (T, o, 7, B,t) of BO(n;my,...,my) with B = {S;};cs
and t € [0,1]7. We may always choose a representative where all brackets have non-zero weight, so we assume
that t; # 0 for any j € J. We will construct an element (T, f, A, s,p) € WoO(n;my,...,my) in the preimage
of (T,o,T,B,t).
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If B = () is the empty bracketing then define T to be the corolla with k leaves, with f coloring its leaves
mi, ..., my in the ordering given by A, and the root by n and p labeling the unique vertex by (T, o, 7). The
weights s are trivial in this case. By definition, ¥ takes this element to (T, o, 7, ,0) as required.

We now assume that B = {S;},cs is non-empty. To encode the leaf labeling 7 on T, it is convenient
to choose a non-reduced representative of its preimage, using a tree T with one valence 1 vertex at its
root. We define T as follows: we set V(T) = {v-,vr} U {v;}jes, where the vertex v; corresponds to the
bracket S; € B, vr corresponds to an additional “trivial bracket” S := T, and v, will be associated to
the permutation 7. To construct the tree, we set v; above v; if S; C §j, connecting the two vertices by an
edge e; if there is no k € J such that S; C S, € S;, where we allow S; = Sp. This edge e; is colored by
the number |L(S;)| of leaves of the smaller tree S; and we define its length by setting s; = ¢; is the weight
of the corresponding bracket. The nesting condition on the brackets implies that no cycles are formed this
way. We also connect vr and v, by an edge of length 1, colored by n = |L(T')|, which is also the color of
the root of the tree.

Finally for each vertex v of T', we attach a leaf [, to the vertex v; € V(T) if S; is the smallest tree of the
bracketing containing v, attaching it to vy if v is contained in no bracket. This leaf is colored by the arity
of v in T. This defines the tree T, with edge lengths s and edge coloring f.

We pick some planar structure for T. (Recall that elements of WO are only defined up to non-planar
isomorphism, which is why there is some freedom here.) Note that the leaves of T correspond exactly to the
vertices of T'. The ordering A : {1,...,k} — L(T) is determined by ¢ and this identification. This defines
the tuple (T, f, A, s).

All that remains is to define the decoration p of the vertices of T by elements of O. We need to have that
(T, 0,7) is given by the composition of the elements of the vertices of T so to determine the decorations in
T, what we need is to “undo” the compositions in 7" marked by the bracketings.

Let v; € V(T). We define p(v;) to be the element (S;/ ~,0;,7;) € Oout(v;);in(v;)) where S;/ ~ is
the planar tree S; with each subtree S; C S; collapsed to a corolla with the same set of leaves, o; orders
the vertices according to the above chosen planar ordering of T, where we note that the incoming edges
of v; correspond precisely to the vertices of S;/ ~, and 7; labels the leaves of S;/ ~, which are also the
leaves of S}, in the order given by the planar embedding of T'. (Here it is important that the chosen planar
structure of T is compatible with the chosen order o; of V(S;/ ~). On the other hand, the chosen order 7;
of L(S;/ ~) is not important, as we will fix it below using the vertex v..) This determines p uniquely on
all vertices {v;};cs U {vr}. Finally, the vertex v, is labeled by the permutation 7 € %,,, considered as an
element of O(n;n).

This finishes the construction of (T, f, A, s,p). To compute its image under ¥, we have to pass to a
reduced representative, which means collapsing the edge between v, and vy and composing their labeling.
(The length of that edge is forgotten.) We have that ¥ (T, f, A, s,p) = (T, 0,7, B, t), by our choice of p for
the tree T and its leaf-labeling 7, our choice of A for the ordering o of the vertices, our choice of vertices of
T for B, and with a direct correspondence between the length s; of the edge e; and the weight ¢; of B;.

To finish the proof, we check that WU is injective. We will check that, up to the equivalence relations
defining Wy O, there is a unique reduced (T’, f', N, s’,p’) in the preimage of (T,o, T, B,t). Note that the
number of vertices of such a reduced representative is determined by the tree T" and the cardinality of B.
We consider first the cases where T’ has 0 or 1 vertex.

If T’ has no vertices, then T’ = 7 representing the identity element in O(1;1), B = @, and, up to the
equivalence relations of WO, there is only one possibility for (T’, f', X', s’ p’).

Suppose now that T’ = C}, has exactly one vertex of arity k. The leaves of T’ are in one-to-on correspon-
dence with the vertices of T, with A\’ ordering its leaves, and f’ coloring them my, ..., my,n, with m; the
color of X (7). We can choose a representative of (T', f', N, s’,p') so that the planar structure of T = Cj
is given by the ordering o of the vertices of 7. Then the labeling p of the vertex is necessarily precisely
(T, o, 7). So there is only one possibility for (T’, f', X', s, p’).
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Finally, if T’ has at least two vertices, then it must have precisely |B| + 1 vertices arranged in a tree
according to the nested structure of the bracket, and k leaves, with each leaf attached to the vertex corre-
sponding to the appropriate bracket. The root vertex of T corresponds to the whole tree T'. The coloring
of the edges is determined by the arity of the vertices and brackets in T', and the labeling of the leaves A
is determined by the ordering o. The vertices are decorated by tuples (1},0,,7;), with T; determined by
the bracketing B, o; determined by the nesting of the bracketing once a planar structure for T’ is chosen.
Choosing a different planar structure will give an equivalent element of WO (in fact also of WO). The
ordering 7; is likewise not uniquely determined by the situation, but a different choice that does yield the
same tuple (T, 0,7, B,s) under ¥ will be equivalent in WO, using relation (2'). This finishes the proof of
injectivity. O

We are now ready to prove our main result in this section, namely that WyO and BQO are isomorphic as
topological operads.

Proof of Theorem 6.4. In Lemma 6.9 we constructed a map of topological operads
U : WO — BO.
Combining this with Lemma 6.10 we know that, for each tuple (n;my,...,mg), the map
U WoO(n;ma,...,mi) — BO(n;mq,...,myg)

is a continuous bijection. As the source of this map is a compact space (moWoO(n;ma,...,my) =
O(n;ma,...,my) is finite and there are finitely many reduced representatives (T, f, A, s, p) defining a cube
in each component), and the target is a Hausdorff space, W is therefore a local homeomorphism and hence
an isomorphism of topological operads. 0O

Remark 6.11. A corollary of the result we just proved is that WO is the realization of an operad in posets,
namely the operad BO. The operad WO can likewise be seen as the realization of an operad in posets,
namely the poset of elements of the free operad FO, with poset structure generated by edge collapses. The
map of operads ¢ : WO — WO is the realization of a map of posets. Indeed, the map ¢: WO — WyO = BO
respects the poset structure because collapsing an edge in T, which defines the poset structure underlying
WO, corresponds under the map ¢ to forgetting a bracket, which defines the poset structure underlying
WO = BO.

Appendix A. The explosion category of 2

In Section 4.1 we introduced an enriched version of the dendroidal category ﬁo which is closely related
to the category of BO-algebras. As mentioned in the introduction of Section 4, the idea of the category Qo
is to encode homotopy coherent ()-diagram, and hence Qo should be connected to the explosion category of
Q, as defined by Leitch [25] and Segal [37, Appendix B].

In this appendlx we describe the explosion category of €2, denoted Q and show that our topological
category Qo sits between € and © in the sense that there exist equivalences of topological categories

D
Qs Q) —3 Q.

The explosion construction and the W-—construction are very closely related in spirit. One might thus
expect a relationship between Segal (2-diagrams and W (O-algebras, similar to the relationship between



L. Basualdo Bonatto et al. / Topology and its Applications 316 (2022) 108107 47

Segal dendroidal spaces (Q—diagrams) and O-algebras, and between Segal homotopy dendroidal spaces
(Qofdiagrams) and WyO- or BO-algebras. Theorem A.6 below will show that such a relationship exists,
but without being as close as in the other cases: WO-algebras identify with a full subcategory of the
category of reduced strict Segal ﬁfdiagrams.

A.1. The explosion of §)

For each morphism g : S — T in Q, we define a poset of paths Patho(S,T), whose objects are the
factorizations of g : S — T in Q

Tn—l _ = Ta

In

s

g1

where we identify two factorizations if they differ only by identity morphisms. In particular, each such
factorization (g1, ..., g,) has a unique reduced representative containing no identity morphisms unless n = 1
and g is the identity on S. (Such a factorization can be thought of as a path in the nerve of €2.) The poset
structure is by refinement of factorization: (g1,...,9n) < (91,...,95,) if n < m and there is a monotone
map a : {0,...,n} = {0,...,m} such that a(0) = 0, a(n) = (m), and g; = g,;) © - ° g/ for each
1<i<n.

We denote the geometric realization of this poset by

i—1)+1

K, = [Pathq (S, T),|.

Definition A.1. The topological category Q has the same objects as 2. Morphism spaces in Q are defined as

Homg (S, T) = I &= [T  Patho(s, 7).
g€Homg (S,T) g€Homg (S,T)

Composition of morphisms of Q is given by concatenation of factorizations.

Example A.2. Fix a tree T' with |L(T)| = n leaves and three inner edges: ey, ez, es. Recall that C,, denotes
the corolla with n leaves. Let O,,, Oe,, O, denote the inner face maps in Q associated to each inner edge,
and let g = 0c, 0, 0e, : Cr, = T be their composition. Then g admits a factorization

C, T, T, — 4T

as a composition of three inner face maps for each permutation of {1,2,3}. The elements of Pathq(C,,,T),
that involve only these three inner face maps form a subposet with ([1], g%) as minimum, and for each
permutation o € X3 the elements

O5(1) Oo(z) Do Oo(1) Do(2)0s i1 Ouce B
(3], 220, 2, Fow (g Po), Belrey gy SemBoen, Sy
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Each permutation o this way contributes to a square

05(1)90(2) Oo(3) Os(1) Oo(2) Oo(3)
( ) ( )
(

(%) /a"m 05(2)00(3)

in this subposet, and the dendroidal identities tell us that these squares together form the following hexagon
inside [Patho(Cy,T),l:

)

By Oey ey
Bey Oey ey Dy DesDes
——> ——
/
Bey Doy Deg \ Doy Doy Doy
e —
A A
Oey Doy Oey < g o OeqBeg ey
— T = EN Dy
\ (
Bey ey Oy Oeg ey Dey
S e
ey Oy Doy ey ey Oey
—— ——
Bey Doy ey
———

Additional elements of Patho(C,,T), can be obtained by inserting tree isomorphisms. This example
should be compared to Examples 3.4 and 3.5 which can be interpreted as computing morphism spaces in
the category g likewise associated to trees with three internal edges, where in one case a pentagon occurs,

and in the other it is a hexagon.
Lemma A.3. For each g € Homq(S,T) the space K, = |Pathq(S,T),| is contractible.
Proof. The poset Pathq(S,T), has the trivial factorization S 95 T as a minimal element. O

Let p: Q — Q be the functor that is the identity on objects and projects each morphism space K, to g.
Considering €2 as a discrete topological category, the lemma immediately gives the following proposition.

Proposition A.4. The functor p : Q — Q induces a homotopy equivalence on morphism spaces.

Note that the proposition identifies €2 with the “path component category” 7r05~2, which has the same
objects as  and Hom_ (S, T) := mo(Homg (S, T)).
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A.2. The relationship between Q and ﬁo

The category (~20 sits between  and € in the sense of the following proposition.

Proposition A.5. There is a functor q : Q— §~20, which is the identity on objects and induces a homotopy
equivalence on each morphism space. Moreover, the composition poq = p: Q — § is the projection functor
of Proposition A.J.

Proof. Fix two objects S,T € Q. Recall from Definition A.1 that

Homg(S,T)= [ K,
g€Homq (S,T)

for K, = |Pathq(S,T),| is the realization of the poset of factorizations of g, and K, is contractible. Likewise
by Definition 4.4

Homg (S,7)= [ L,
QGHOmQ (S,T)

and Ly = [ |B(g(Cy))| is the realization of the poset L, of bracketings of the trees g(C,), with L,
veV(S)
likewise contractible. So to prove the proposition, it is enough to produce a functor ¢ which is the identity

on objects and takes K, to L, for each g. We will define the functor by defining a poset map
qq : Patho(S,T), — L,

and show that it is compatible with composition.
Fix a map ¢ : S — T in Q. An object of Pathq(S,T), is a factorization (gi,...,gn) of g and to such a
factorization of g, for each v € V(.5), we associate a bracketing of g(C,) as follows: set

Bv = {Sw =gn©O---0 gi+1(cw)}1§i§n—l, weV (gjo---091(Cv)), Swlg(Cy) large

This is a (possibly empty) bracketing as these sets are by definition nested. We then define g4(g1,...,9n) =
(By)vev(s)- Note that this association is a map of posets as refining a factorization will correspond under
gy to an inclusion of bracketings.

We are left to check that the maps g, assemble to define a functor, i.e. that they are compatible with
composition in Q and (20. Let f: R — S be another morphism in 2. We need to check that

Pathq(S,T), x Pathq(R,S); —— Pathq(R,T)g0r

qg Xqys l l dgof

op op
LP x L Loos

commutes. Because the target is a poset, it is enough to check that it commutes on objects. Let
(91,-.-,9n) and (f1,..., fm) be objects of Pathq(S,T'), and Pathq(R, S);. By definition, their composition

is (f1,-- s fm>91,---,9n) € Pathg(R,T)gor. We have g¢(f1,...,fm) = (Bg{)mev(R) and g4(g1,.-.,9n) =
(BY)vev (s) With

Bl = {8y = fm o0 fi1(Cy)}r<i<m—1, yefioofr(Ca), SyCFH(Cs) large
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and bracketing of f(C,) C S, and

Bg = {Sw =gn©---0 gi—&-l(cw)}lgignfl# weg;0---091(Cy), SwTg(Cy) large

a bracketing of ¢(C,) C T. By definition, ¢4(g1,---,9n) © ¢f(f1,.-., fm) is the collection (B,;)IGV(R) of
bracketings of each tree g o f(C,) C T defined by

Bm = U Bg U U {g(Cv)} U U {Q(Sy)} )
vEf(Ca) vEf(Ca) SyGBCJCc
9(Cy)Cgof(Cy) large g9(Sy) large

where BY is considered as a bracketing of g o f(C,,) via the inclusion g(C,) C g o f(C,). Now we see that
this is exactly the bracketing of go f(C,) defined by the factorization (fi,..., fm,91,-- -, 9m), which indeed
is the union of the sets

{9(Sy) =go fmo- o fiy1(Cy)ti<icm—1 U{Sy = 9(Cv) }ver(cy)
y€E fio---of1(Cy) S, Cgof(Cy) large
g(Sy)Cgof(Cyz) large

U{Sw =gno-0gi+1(Cw) hi<i<n—1 .
weg;o--0g10f(Cy)
SwCgof(Cy) large

Hence the poset maps ¢, assemble to define a functor g : Q— Qo as claimed. Moreover, one readily checks
that the composition with the projection p : g — €2 is the canonical projection p: Q2 — Q. O

A.3. WO-algebras as ﬁ—dz’agmms

In Section 4.2 we showed that BQO-algebras describe dendroidal Segal spaces. For completeness, we now
show how homotopy dendroidal spaces S are related to WO-algebras.

We will only need to consider ﬁfdiagrams X : QP — S that are reduced, i.e. such that X (n) = . Recall
that in this case, for X : ) — S, the Segal map becomes the map

x5 [ X

veV(T)

induced by the restriction maps T — C,, in Q°P. Considering these morphisms as morphisms of fl, we
likewise have a Segal map for X : Q — S in the reduced case. -

In analogy to the case of dendroidal and homotopy dendroidal spaces, let (SQOP)Sm-Ct denote the full
subcategory of S of ﬁ—diagrams X : Q% — S such that X (n) = * and such that the Segal map x as

above is an isomorphism for every T # 1. We have the following:

Theorem A.6. There exists a functor
v W(’)—Alg — (Sﬁop)strict

that embeds the category of W O-algebras as a full subcategory of the category of reduced (ledz'agmms satis-
fying the strict Segal condition.
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As we will see in the proof, ﬁfdiagrams are governed by a version of WO where the trees T have an
additional level structure, and W O-algebras identify them as the subcategory of diagrams where this level
structure does not matter. If one wished to describe a category of homotopy dendroidal spaces which is
isomorphic to W O-algebras, one could use this observation to take an appropriate quotient of Q. As this is
particularly messy, and not the main focus of this article, we have elected not to include such a construction.

Proof. The proof is similar to that of Theorem 4.8 treating the case of BO-algebras. We start with the
definition of the functor U. Let P = {P(n)},>0 be a WO-algebra with structure maps

ap : WO(n;ma,...,mg) X P(mq) X -+ X P(my) — P(n).
We associate to this data an Qfdiagram
U(P) = U(P,ap): Q% = S
as follows. Set W(P)(n) =  and, for T # n in ©, set

vPNT)= ] P(ul).

weV (T)

For every morphism g : S — T in €0, we need to define maps

V(P)9): Kyx I P(wl) — JI P(oh

weV (T) VeV (S)

As in Theorem 4.8, we do this one vertex of S at a time.
Recall that K| is the realization of the poset Pathqo(S,T'), of factorizations

g,
O A N ISR

of g in Q. For each v € V(S), we consider the restriction of these maps to C, € S:

n

Co L g1(C) 2 . 2 g 10 0g1(C) 25 g(C,) C T (%)

Recall from Remark 6.11 that WO is the realization of an operad in posets, whose elements are those of
the free operad F'O (identifying elements of FFO with elements of WO in which all weights of internal edges
are 1). We will now use the restriction (x) of (g1,...,9s) to C, to construct a labeled planar tree

(T, f,\,p) € FO(Jv[; ([w))wev (g(c.)))

by induction on the height of the tree:

Starting at the root, we attach a vertex v of valence |V (g1(C,))|. The incoming edges of v are labeled
in accordance with (¢1(C,), 04, 7y), where o, is a chosen ordering of the vertices of the tree g,(C,), and 7,
is induced by the planar structure of ¢;(C,) C T3. Specifically, the incoming edges of v are labeled by the
vertices of g1(C,) and ordered via the map o,.

For each vertex w € ¢1(C}), which is now an incoming edge of v, we can attach a vertex w of valence
|V (g2(Cy))]. These incoming edges are labeled with the tuple (92(Cuw), 0w, Tw), as in the previous case.

More generally, for vertices with height 2 < i < n, the tree T has a vertex y for every vertex y in (g;—1 o
-++0g1)(Cy), attached to the previously constructed vertex T associated to the vertex x € (g;—20---0g1)(Cy)
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satisfying that y € g;—1(Cy). We label y by the tuple (g;(y), oy, 7y) with 7, induced by the planar structure
of Tj, giving Cj the planar structure dictated by the chosen o.

We now set f : E(T) — N to be the unique meaningful coloring which makes T an element of
FO(|v|; |wi]y ..., |wg]). We set the ordering o of the vertices wy,...,wr of g(C,) in accordance to the
resulting planar structure on T. As the set of vertices of g(C,) is also the set of leaves of the tree T, this
also defines A\. We note that the tree constructed this way is in no way reduced and will, a priori, have many
arity one vertices labeled by identities. We can use relations defining F'O, however, to remove such vertices
and give an equivalent element in F'O.

This assignment of the restriction of a factorization (x) to a labeled tree T respects the poset structure
of Pathq(S,T), and WO as refining the factorization corresponds to undoing the collapse of edges, namely
if (g1,.--,9n) < (¢1,.--,9,,), then the image (T, f, A\, p) of the first factorization can be obtained from the
image (T, f, N, p’) of the second by collapsing the edges corresponding to the added levels, as collapsing
level in the tree correspond in this construction to composing consecutive maps g;.

In this way we can apply the structure map ap one vertex at a time and define a map

ay : [Patho(S,T)gl x  [[  P(lwil) — P(Jo]) (A1)
w; €V (9(Cv))

and we can define

U(P)(9) = (aw)vev(s)-

By construction, the action of ¥(P) on morphisms commutes with composition in Q, and thus U(P): Qo —
S defines a functor. That the Segal map for W(P) is an isomorphism for every T # 7 follows immediately
from our definition of ¥(P).

The assignment P — ¥(P) requires only the data of underlying symmetric sequence of P and the algebra
structure maps ap. This data is natural under maps of W O-algebras and thus

U WO-Algg — S

is a functor.

It remains to check that ¥ is an embedding of a full subcategory. Injectivity on objects follows from the
fact that if P and Q satisfy that U(P) = ¥(Q), then we necessarily have that P(n) = Q(n) for each n,
as given by the value at the corolla, with agreeing symmetric group actions as given by the isomorphisms
of corollas, and the structure maps ap and ag likewise must agree as the value of the structure map on
every element of WO is the value of the functor ¥(P) = ¥(Q) on an associated morphism of Q obtained by
choosing a level structure on the tree and interpreting the collapse of each level of the tree as a morphism in
Q. As morphisms of W(O-algebras are determined by what they do on spaces P(n), we see that the functor
is faithful. It is also full as natural transformations between diagrams originating from W O-algebras, will
necessarily respect the W (0-algebra structure of their values at the corollas. 0O

Remark A.7. The reader might be tempted to compare the functor ¥(—) from Theorem A.G with the
homotopy coherent nerve of a topological operad P. This is a functor

w* : O—Alg — Set?”
defined by

(w*P)(T) = Homop(W(T), P),
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where WQ(T') denotes the Boardman-Vogt W-construction applied to the free operad generated by a tree
T (Example 2.4). The functors ¥ and w* are not equivalent on operads, though if one has a WO-algebra
P which happens to be an operad then one can define a dendroidal space Xp € S /w*P, where the later
denotes the slice category. For more on this point of view, see [32, Remark 6.2] or [5, Corollary 1.7].
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