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Abstract

We provide efficient estimation methods for first- and second-price auctions under indepen-
dent (asymmetric) private values and partial observability. Given a finite set of observations,
each comprising the identity of the winner and the price they paid in a sequence of identi-
cal auctions, we provide algorithms for non-parametrically estimating the bid distribution of
each bidder, as well as their value distributions under equilibrium assumptions. We provide
finite-sample estimation bounds which are uniform in that their error rates do not depend on
the bid/value distributions being estimated. Our estimation guarantees advance a body of
work in Econometrics wherein only identification results have been obtained (e.g. Athey and
Haile [2002, 2007]), unless the setting is symmetric (e.g. Morganti [2011], Menzel and Morganti
[2013]), parametric (e.g. Athey et al. [2011]), or all bids are observable (e.g. Guerre et al. [2000]).
Our guarantees also provide computationally and statistically effective alternatives to classi-
cal techniques from reliability theory [Meilijson, 1981]. Finally, our results are immediately
applicable to Dutch and English auctions.

1 Introduction

Estimating value and/or bid distributions from an observed sequence of auctions is a fundamen-
tal challenge in Econometrics with direct practical applications. For example, these fundamentals
allow one to analyze the performance of an auction and make counterfactual predictions about
alternatives. The difficulty of this problem depends on the format of the auctions and the struc-
ture of the observed information from each one, as well as how the fundamentals of bidders are
interrelated and vary across the sequence of observations.

In this paper, we study a basic version of the afore-described estimation challenge, wherein the
auction format and the bidder distributions stay fixed across observations, and the bidders have
independent private values (which are independently resampled across different observations).
The auction formats that we consider are first- and second-price auctions, as well as Dutch and
English auctions. What will make our problem challenging is that (i) our bidders are ex ante
asymmetric, drawing their independent private values from different distributions; (ii) we will



make no parametric assumptions about these distributions; and (iii) we will only be observing the
identity of the winner and the price they paid but not the losing bids. Under this observational
model and our independent private values assumption above, we can focus our attention on first-
and second-price auctions, and our results automatically extend to Dutch and English auctions.

In the above settings, we give computationally and sample efficient methods for estimating all
agents’ bid distributions and (under equilibrium assumptions) value distributions:

» In the case of first-price auctions, we provide finite-sample estimation guarantees under
Lévy, Kolmogorov and Total Variation distance with minimal assumptions. Under (a condi-
tion weaker than) a lower bound on the density of the bid distributions (although we actu-
ally do not need existence of densities), Theorem 2.2 shows that the bid distributions can be
estimated to within ¢ in Lévy distance, using 1/ ¢0k) samples, where k is the number of bid-
ders. Theorem 2.6 shows that the exponential dependence on k is necessary, and Theorem 2.7
shows that Lévy distance cannot be strengthened to Kolmogorov distance. Sidestepping the
exponential sample dependence on k, strengthening the estimation distance, and removing
the density lower bound assumption, Theorem 2.3 shows that, assuming only continuity of
their cumulative functions, the bid distributions can be estimated to within ¢ in Kolmogorov
distance on their effective supports, i.e. the part of the support that is likely to be observed,
defined in Blum et al. [2015]. Finally, under Lipschitzness assumptions on the densities of
the bid distributions, Theorem 2.4 improves the latter to e-error in Total Variation distance.
Our sample requirements for estimation over the effective supports of the bid distributions
under either Kolmogorov or TV distance are dramatically improved to logarithmic in the
number of bidders and benign in 1/e. Finally, assuming that bidders use Bayesian Nash
equilibrium strategies, Theorems 2.20 and 2.15 show that bidders” value distributions can
be estimated over their full and, respectively, effective supports with similar sample sizes as
those needed for the estimation of bid distributions.

All of our estimation algorithms run in polynomial time in their sample sizes, and all our
estimation error bounds are uniform in that they do not depend on the bid/value distri-
butions being estimated, unlike the instance-dependent rates that commonly arise from the
use of kernel density estimation methods. It is also important to note that we estimate the
value distributions in Lévy distance (in fact, in the stronger notion of Wasserstein distance)
and this is sufficient for the purposes of performing counter-factual predictions about the
revenue that would result from running alternative auctions [Brustle et al., 2020].

» In the case of second-price auctions, Theorem 3.3 establishes that bid distributions can be
estimated to within e in Kolmogorov distance over their entire supports assuming upper
and lower bounds on their density functions. Again the sample complexity scales as 1/¢°%).
This result poses major technical challenges, requiring a computationally and statistically ef-
fective, fixed point computation alternative to Meilijson [1981]'s method. We again sidestep
the exponential dependence of the required sample size on k, by considering estimation over
the effective support of the distributions in a setting, similar to that proposed by Blum et al.
[2015] for first-price auctions, where we can insert bids to the auction or, equivalently, set a
reserve price (see discussion in Section 2.3). In this setting, Theorem 3.12 shows that bid dis-
tributions can be estimated to within ¢ in Kolmogorov distance over their effective supports,
using a sample size that is polynomial in both 1/¢ and k. Similar to Theorem 2.4 estimation



in Kolmogorov distance can be turned to estimation in Total Variation distance under Lips-
chitzness of the densities. Of course, assuming that the bidders bid according to the truthful
bidding equilibrium, our estimation results for bid distributions automatically translate to
estimation results for value distributions.

To the best of our knowledge, our results are the first finite-sample estimation guarantees for
the general problem we consider. In particular:

¢ There is an extensive line of work on identification of bid and value distributions from com-
plete or partial observations of bids; see Athey and Haile [2007] for a survey. In our setting
of independent private values, Athey and Haile [2002] show that with infinite samples, bid
distributions are identifiable from the distribution of the identity of the winner and the price
they paid.

Identification results for bid and value distributions have been established in the presence of
correlated values, alternative auction formats, and unobserved heterogeneity, or unknown
numbers of bidders [Paarsch, 1992, Laffont and Vuong, 1993, Laffont et al., 1995, Donald
and Paarsch, 1996, Baldwin et al., 1997, Donald et al., 2003, Bajari and Ye, 2003, Haile, 2001,
Luo and Xiao, 2020, Haile et al., 2003, Mbakop, 2017, Hu et al., 2013]. In contrast, here we
focus on the IPV framework (albeit, in its more challenging asymmetric case) and standard
auction mechanisms (first-price, second-price, Dutch, and English auctions), and provide
finite-sample estimation results in these settings.

* On the estimation front, Morganti [2011] and Menzel and Morganti [2013] both provide es-
timators of bid distributions in first- and second-price auctions (in fact they provide estima-
tion using any order statistics of the bid distributions) under the restrictive assumption that
the bidders are symmetric. They obtain rates for estimation of the bid distributions over the
full support, which degrade exponentially with the number of bidders. In comparison, we
get similar rates for the significantly more challenging asymmetric setting, and also provide
drastically better estimation rates (with logarithmic dependence on the number of bidders)
on the effective supports of the distributions.

¢ In terms of non-parametric estimation of value distributions from bid distributions in first-
price auctions, Guerre et al. [2000] provide estimation algorithms which operate under the
restrictive assumption that the bidders are symmetric. Their estimation makes use of the ex-
plicit formula for the Bayesian Nash equilibrium in the symmetric case. Later work [Campo
et al., 2003, Bajari and Ye, 2003, Krasnokutskaya, 2011, Haile et al., 2003] extends these re-
sults to the more general asymmetric setting, where the Bayesian Nash equilibrium has no
closed-form expression; as such, these analyses are typically limited to the setting with only
two unique bidder types. Our algorithms operate in the latter (significantly more challeng-
ing) setting, with the additional challenges of (a) allowing each bidder to have their own
unique value distribution (b) only observing the winning bid, rather than all agents” bids;
(c) not using higher-order differentiability assumptions used in prior work while also pro-
viding uniform convergence bounds (i.e., bounds not depending on the distributions being
estimated).

¢ In the computer science literature, there has been work on non-parametric estimation of bid
distributions in first-price auctions, under the stronger assumption that the econometrician
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can insert bids which do not influence the bidding behavior of the bidders Blum et al. [2015].
We compare to that setting and work in Section 2.3, explaining that our work obtains sub-
stantial improvements on their rates.

Besides the non-parametric identification work on auctions, discussed above, there has been
more extensive work on estimation and identification under parametric or semi-parametric as-
sumptions: see [Donald and Paarsch, 1996] and [Athey and Haile, 2006] for an overview. For
example, Athey et al. [2011] fit the parameters of Weibull distributions to observed maximum
bids in to estimate bid distributions in USFS timber auctions.

1.1 Preliminaries

The (asymmetric) independent private values model. In this work, we consider the asymmet-
ric independent private values (IPV) model, with the additional stipulation that not all bids are
observed. In this model, we observe a series of identical auctions between k agents (known k > 2):
in each auction, every agent i submits a bid X;, sampled independently from a (fixed) distribution
with cumulative distribution function F;. The sampled bids, together with the auction type, deter-
mine the winner Z of each auction (typically Z = arg max; X;) and a transaction price Y, i.e., what
the winner pays for the auctioned item. In this work, we will only observe Z and (sometimes) Y,
and rather than all bids X;.

Two key differences between our setting and the typical IPV setup are (a) the aforementioned
partial observability; and (b) asymmetry—in particular, a typical assumption is that all agents
bid according to the same fixed distribution F, which simplifies both bid and value estimation
significantly (e.g., we could estimate a first-price auction by learning the CDF of the largest bid,
and then estimate the individual bid distributions as the k-th root).

Statistical distances. Throughout our work, we provide finite-sample convergence bounds in
terms of the Wasserstein, Lévy, and Kolmogorov distances, depending on the setting. The Wasser-
stein distance WV between two distributions P, Q supported on [0, 1] is

W(P,Q) 2 igilf]]':'(x,y)NR [lx—=yl],

where the infimum is over all joint distributions R with support [0, 1]? such that the marginal of x
is equal to P and the marginal of y is equal to Q when (x,y) ~ R. The Kolmogorov distance dx
between two distributions P and Q over an interval [ is defined as

dk(P,Q) £ sup |[Fp(x) — Fo(x)],
xe

where Fp and Fg are the cumulative distribution functions of P and Q, respectively. Finally, the
Lévy distance D, between P and Q is given by
Di(P,Q) =min{e: Fp(x —€) —e < Fo(x) < Fp(x +€) +€}.

Note that Lévy distance is a strictly weaker notion than Wasserstein distance and Kolmogorov
distance, in the sense that both Dy (P, Q) < dk(P, Q) and D.(P, Q) < v/ W(P, Q). Thus, all of our
results in Wasserstein and Kolmogorov distance also effectively bound Lévy distance.




Finite-sample rates. We present our convergence results using order notation: in particular, the
constants omitted from all order notation in this paper are absolute constants that do not depend
on the distributions being estimated or any other parameters of the setting being considered. In
other words, our bounds are uniform. For example, whenever a bound in a theorem statement
reads as O(f(k,1/¢,L)), where f is some function and k, ¢, L are parameters of the setting, this
means that there is an absolute constant C such that for any setting conforming to the setting ex-
amined in this theorem we can replace O(f(k,1/¢,L)) in the theorem statement by C - f(k,1/¢,L).
Recall that O(f(+)) means that for some absolute constants C and k > 1, the bound can be replaced
by Cf(-)log" f(-). Finally, in this work we present most of our bounds in terms of the number of
samples necessary to attain a specific learning error e—these can be straightforwardly converted
to bounds on ¢ in terms of the number of samples 7, providing estimation rates as n — co.

2 Estimation from First-price Auction Data

In this section we show how to estimate the bid distributions from a finite number of first-price
auction observations. We consider two regimes:

» In the full-support regime, our goal is to provide an estimation of the bid distributions in their
whole support [0,1]. As shown in Theorem 2.2, in this regime we estimate the probability
distributions within ¢ in Wasserstein distance. The sample complexity here is & (1/¢) and
has exponential dependence on the number of the agents k. As we explain in Subsection 2.2,
this dependence on k is necessary for the full-support regime (due to the exponentially low
probability of observing winning bids near zero).

» In the effective-support regime, our goal is to provide an estimation of the bid distributions
only at the bid values that have probability at least A to be observed as an outcome of the
first-price auction. As we show in Theorem 2.3, in this regime we avoid the exponential
dependence on k and we are able to get an algorithm that depends only polynomially in
e and 7 and only logarithmically in k. This is a doubly exponential improvement over the
full-support regime and an exponential improvement on the best known effective-support
result from Blum et al. [2015]. This result also provides the first algorithm with sublinear
sample complexity for this problem.

Our first step is to formally define the procedure from which the first-price auction data are
generated. The observation access that we assume is minimal in the sense that we only observe
the outcome of the auction; who wins and how much they pay.

Definition 2.1 (First-Price Auction Data). Let {F;}¥_; be k cumulative distribution functions with
support [0,1],i.e. F;(x) =0Vx < 0and F;(1) = 1. A sample (Y, Z) from a first-price auction with
bid distributions {F;}¥_, is generated as follows:

1. first generate X; ~ F; independently for all i € [k],
2. observe the tuple (Y, Z) £ (max;c X;, arg max; e Xi)-

A different access model explored in Blum et al. [2015] gives the econometrician control over
an additional agent that has the ability to bid arbitrarily, but only allows them to observe the
identity of the winner of each auction (not the transaction price). Using our result we can also
improve the result of Blum et al. [2015] under this model (see Subsection 2.3).
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2.1 Estimation of Bid Distributions

We are now ready to state our main results for the estimation of the bid distributions given sample
access to first-price auction data as defined in Definition 2.1. We start with our result for the full-
support regime.

Theorem 2.2 (First-Price Auctions — Full Support). Let {(Y;, Z;) }_, be n i.i.d. samples from the first-
price auction as per Definition 2.1. Assume that the cumulative dzstrzbutzon functions F; are continuous
and satisfy |F;(x) — Fi(y)| = Alx —y| forall x,y € [0, 1]. Then, there is a polynomial-time algorithm that
computes functions F; for i € [k] such that

P (W(E,F)<e)=>1-96
forall i € [k] assuming that n = © (( T 8)4k k’gi71/5)>, where W is the Wasserstein distance.

As we show in Subsection 2.2, the sample complexity of Theorem 2.2 is almost optimal. Nev-
ertheless, as we already explained, the exponential dependence on the number of agents k can be
reduced to only logarithmic dependence if we only focus on the part of the support that is likely
to be observed. In this case, our estimation guarantee is also simpler: we estimate the cumulative
distribution functions with additive error e.

Theorem 2.3 (First-Price Auctions — Effective Support). Let {(Y;, Z;)}!; be n i.i.d. samples from
the same first-price auction as per Definition 2.1 and assume that the cumulatzve distribution functions F;
are continuous. Then, there exists a polynomial-time estimation algorithm, that computes the cumulative
distribution functions F; for i € [k], such that for every p,y € {p,7 = 0: Py zp, (Y < p) = 7}, and
every e € (0,7/2],

]P(max\P ) — Fi(x)] ge) >1-6
x€lp1]

foralli € [k] assuming that n = © (log(k/8)/(v*?)).
Finally, we establish estimation of the corresponding probability density functions { f;}:

Theorem 2.4. Let {(Y;, Z;)}!, be n i.i.d. samples from the same first-price auction as per Definition 2.1
and assume the densities f; of F are well-defined and Lipschitz continuous, i.e.,

|fi(x) = fi(y)| < L|x —y| forall x,y € [0,1].

Then, there exists a polynomial-time estimation algorithm, that computes functions f; for i € [k], with the
following guarantee; for every p,y > 0 such that P(Y < p) > vy, and for every € € (0, /2] it holds that

</ﬁ ~ilx ‘dx >/1—5

forall i € [k] assuming that n = © (L2 -log(k/6)/(v* - €*)).

Before explaining the formal proofs of the above theorems we give some intuition behind our
estimation algorithm. This intuition is given in a simplified setting where: (1) we assume the pop-
ulation model where we have access to infinitely many samples from the first-price auction data
defined in Definition 2.1, and (2) the distributions are smoothed enough so that all the probability
density functions that are involved are well defined. In this simplified setting we have access to
the following distributions:



> H; is the cumulative distribution function of Y conditioned on Z = i, for i € [k] and
> H is the cumulative distribution function of Y with no conditioning on Z.

If we assume that all the H;’s have well-defined densities #;, then
x) - HFj(x), H(x) = H Fi(x), and H(x)= Z H;(x).
j#i jElk] jelk]
Based on the above relations we can solve for the distribution F; as follows

d _ filx) - hi(x) _
%log(Fi(x)) ~E® ~ H = F(x exp< H )

This simple idea summarizes our approach in the population setting where infinite samples are
available. Moving to the finite sample case an important observation is that the aforementioned

Gt o)

The above expression allows the expectation involved to be estimated with an empirical expec-
tation instead of an integral, assuming that a good estimation of H(z) is computed. Towards
designing our actual estimation algorithm and proving its exact sample complexity we face the
following additional technical difficulties:

expression of F; can be also written as

Fi(x) = exp <_]E(y,z)~7>1

1. in the above outline we assume that all the distributions are smooth enough so that all the
densities are well defined—in our main theorem this assumption is not necessary,

2. the usual estimation of H has an additive error, whereas in the above expression a multi-
plicative error guarantee is needed,

3. the term 1/H(z) that is crucial in our estimation is not numerically stable for z close to 0
where H(z) can also be very close to 0 as well.
2.1.1 Proof of Theorem 2.3

We start by considering the effective-support setting. Our first result will be an information theo-
retic result enabling identification of F; with access to the function H and the measure H; (without
requiring a density function).

Lemma 2.5. Foralli € [k] and all x € (0,1) such that F;(x) > 0and H(x) > 0,

Fi(x —exp< /H dH)

Proof. Using Lemma 3.1 from Norvaisa [2002] we have that

IT; 7éz
log(F;(1 log( / / e /
g( l( )) g F H]G[k H
where the last equality follows from the continuity of F;’s and the properties of Riemann-Stieltjes
integration. The lemma follows by observing that F;(1) = 1. O
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We now focus our attention on obtaining good estimates of the quantity within the exponential
on the right hand side in Lemma 2.5. We introduce the following notation:

n
1< G2 g
j=1 " H

-

I:I(x)é% l{Y xand Z; =i}

Based on the above definitions we can define our estimate for F; as £;(x) = exp (—G;(x)) .
Our next goal is to prove that F; is close to F; for every value y € [0, 1] such that H(y) > 7.
Now we establish concentration of . By the DKW inequality Dvoretzky et al. [1956]:

max
x€[0,1]

5 1,
_ < .
H(x) — H(x)]| Sop e
with probability at least 1 — 6 /2 for our setting of n. Conditioning on the above event and observ-
ing that H(x) > y forallx > p,

A &
1/H(x)—1/H < —. 1
max [1/ MHE| < 15 g

To establish concentration of G;(x), we introduce another quantity G;, defined as follows:

>xand Zj = i}.

We have from (1) that |G;(x) — G;(x)| < & for all x € [p,1]. Thus, it suffices to establish concen-
tration of G around G. We first prove concentration on a discrete set of points and interpolate to
the rest of the interval. Define U; and V; as:

U = {’y—H S5 i€ [NJU{0}and 7 +i- <1}u{i}and V; = F (W),

10
and let V = UjcVi. We have for all x € V,i € [k], by Hoeffding’s inequality that:

1Gi(x) — Gi(x)] < 18—0 with probability at least 1 — §/2. (2)

We now condition on the above event as well. By combining Egs. (1) and (2), we get:

Vx € V, i€ [k] :|Gi(x) — Gi(x)| < e/5and so forall x € V,i € [k], we have:
exp {—¢/5} - Fi(x) < Fi(x) <exp{e/5} - F(x).

We now extend from V to the rest of [p, 1]. Note that G;(x) is a decreasing function of x. Hence, F;
is an increasing function of x. Now, let x € (p,1) \ V and i € [k]. We must have x;, x;, € V with
x; < x < xy satisfying F;(x,) — Fi(x;) < €/10. We now get:

Fi(x) < Fi(xp,) <exp{e/5} - F(xy,) <exp{e/5} F(x;) +¢/8 < exp {e/5} Fi(x) +¢/8,

i(x) > exp{—e/5} Fi(x;) > exp {—¢/5} Fi(xy,) +¢/10 > exp {—¢/5} Fi(x) + ¢/10.

The above two inequalities and our condition on € conclude the proof. O
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2.1.2 Proof of Theorem 2.2

We now leverage our effective-support recovery result to recover bid distributions on their full
support (in Wasserstein distance). Under the “lower bound on density” assumption,

1) = 1—{[}131‘(’7) > (A-p)~. (3)
j€lk

Now, setting v = (A - 7)* and using Theorem 2.3 we have that © (l)i’,:g;'f{/ ;]52) ) samples suffice to

find estimates F; such that the additive error between F; and F; is at most 7 in the interval [1,1].
For every i, the maximum possible mass in the interval [0, #] with respect to the measure F; is 1.
Therefore, any two measures with support [0, 7] mass at most 1 have a Wasserstein distance of
at most 7. Also, in the subset [1, 1] of the support we have that since the longest distance in the
support is at most 1 and max,¢(, 1 |Fi(x) — F(x)| < 17 we have that the Wasserstein distance of the

measures F; and F; conditioned on the support [17,1] is at most ¢ - 1. Thus,
W(ﬁi, Fl') < 2. 1.
Setting # = €/2 the theorem follows. O

2.1.3 Proof of Theorem 2.4

We are going to use the estimation F; from Theorem 2.3 together with the Lipschitzness of f; to
prove this theorem. Let h > 0 and €y > 0 be parameters that we will determine later. We define,
for every x € [p, 1], an density estimate

Fix) £ L (BGx ) = Bi(),

where due to Theorem 2.3 we have |F;(x + h) — Fi(x + h)| < e and |E(x) — Fi(x)| < g forn =
©) (10g(k/ 5)) samples. Then,

b1 .
fi) = i = [ B ) = £i0) = fit)] d
11
<./p S(Fi(x+ 1) = F(x)) = fi(x)| dx+2e
x+h
:/:K/j f,-(z)dz)—f,-(x) dx+%

11 x+h ¢
<[ ([T - o)) X
p x
now due to the Lipschitzness of f; we have that
~ 1 x+h
i(x)—fi(x)‘dxg/ 1</ L-]z—x|dz> dx+§
p b \UJx h

YL ((x+h)?* x? 2¢
_/< S —Z—h-x>dx+h

_/ E Rdxt+2e<L- h+ﬁ

Therefore, if we choose h = \/¢9/L and we also set ¢ = €5/ (9L) the theorem follows.
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2.2 Lower Bound for Full-Support Estimation
Here, we establish lower bounds proving the optimality of Theorem 2.2. We prove:
1. the exponential dependence on k incurred in Theorem 2.2 is necessary and
2. the distributions cannot be recovered in Kolmogorov distance in their whole support.

In both these cases, we will construct a pair of distributions {f;}_; and {f/}%_, satisfying the
bounded density condition of Theorem 2.2 such that:

1. fiand f{ have W(f1, f{) = Q(¢e) and dx(f1, f{) > 1/2 and
2. Fewer than Q((Ae)~(=1) fail to distinguish them with large probability.

The main intuition behind our construction is that learning the behavior of any of the densities
below ¢ requires observing Y < ¢ and this only happens with probability ¢

Theorem 2.6. Let k € IN, and let e, A € (0,1/2). Then, there exist two tuples of distributions D =
{fiYs_ and D' = {f]}*_, with the first price auction model (Definition 2.1) on D, D' satisfies the density
bound condition from Theorem 2.2 such that for any estimator fi, we have:
" € N € 1
max (P {W (1({(Y, Z)}{), D) > ¢} P{W (a{ (¥, ZD}). D) 2 5 }) = 5
where (Y;,Z;), (Y!,Z}) are drawn i.i.d from D and D' respectively if n < 35 - (Ae)~ (k1)

Proof. Let Dy = {f1,..., fr} and D, = {f],..., f} denote the two sets of distributions character-
izing our first price auction model (Definition 2.1). We will have f; = f/ foralli > 1.

fi = fi=A-Unif([0,1]) + (1 — A) - Unif([3/4,1]) foralli > 1.
However, f1 and f] will have large Wasserstein and Kolmogorov distance:

fi = A-Unif([0,1]) + (1 — A) - Unif([0, e/4])
f1 = A-Unif([0,1]) + (1 — A) - Unif([3e/4, €]).

Let (Y,Z) and (Y’, Z’) be distributed according to the first price auction model with respect to D
and D,. We now define the events E and E' on (Y, Z) and (Y, Z’) as follows:

E={Ye(ell}and E'={Y'€ (¢1]} = P{E}=P{E'} =1-(1¢)"" (4)

By construction, (Y, Z) and (Y’, Z") have the same distribution conditioned on E and E’.

Now, let W = {(Y;, Z;) }ic[y and W' = {(Y;, Z;) }/L; be collections of n i.i.d samples from D
and D’ respectively, and let jI denote any estimator of the first price auction model. We show that
fl has large error on at least one of D or D’. Letting F (respectively, F’) denote the event that E
(respectively, E’) holds for all of the (Yj, Z;) (respectively, (Y, Z!)), we have:

P (W(p(W), D) < ¢/s) = P(F) - P (W(R(W), D) < ¢/s|F) + P(F) - P (W(p(W), D) < ¢/5|F) .

Now, if n < £ (Ae)~*~1, we have from Eq. (4) and a union bound that P(F) > 9/10. Furthermore,
note that condltloned on F and F/, W and W' have the same distribution and W(fy, f{) > ¢/4.
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Assuming the probability in the above equation is greater than 2/3, we may re-arrange the above
equation as follows:

2 € € 1
Z <« 0 < Z i / 0 / b -
3 S IP(F)P {W(V(W),D) <3 F} + 0 S < P(F)P {W(y( "N,D) > 5 F } + 10
By re-arranging the above equation, we have that either:
€ 2 € 2
/) <-r <= AW, D)<=} <=
H’{W(y(W),D) < 8} <3 orlP{W(y(W ),D') < 8} <3
concluding the proof of the theorem. O

Note that the probabilities 1/3 chosen in the above theorem is not a substantial restriction as
any algorithm successfully distinguishing between D and D’ with probability bounded away from
1/2 can be boosted to arbitrarily high probability by simple repetition. As a simple consequence of
this construction, we can rule out estimation in Kolmogorov distance:

Theorem 2.7. Let n € IN and fi be an estimator for the First-Price-Auction model. Then, for all 5 > 0,
there exists a First-Price-Auction model characterized by D = {f;}*_, satisfying the bounded density
condition of Theorem 2.2 satisfying:

P (de(a(W) D) < 7) < 3 +8

where W = {(Y;, Z;) }_, are drawn i.i.d from the first price auction model on D.

Proof. We will prove the lemma via contradiction. Let 1, fi be such that the there exists 6 > 0 such
that for all First-Price-Auction models, D, satisfying the bounded density condition:

P (de(a(W) D) < 7) > +6

Note that by repeating the experiment Q(1/5%) times, we may boost the success probability to
9/10 by taking the pointwise median of the resulting estimates. However, from our construction
in the proof of Theorem 2.6, we have by picking ¢ small enough in the construction that there
exists a distribution, D such that:

1 1
Pydc (A(W), D)= ;¢ 23
4 3
as all the distributions we construct have Kolmogorov distance greater than 1/2 between them.
This yields the contradiction, proving the theorem. O
2.3 Estimation from Partial Observations

In this section we show how our results in the previous sections can be translated to the partial
observation model introduced by Blum et al. [2015] defined below.

Definition 2.8 (Partial Observation Data). Let {Fi};‘:l be k cumulative distribution functions with
support [0,1], i.e. Fi(x) = 0Vx < 0and F;(1) = 1. A sample (r,Y, Z) from a first-price auction
with bid distributions {F;}¥_, is generated as follows:
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1. we, the observer, pick a price r € [0,1], and let X1 =1
2. generate X; ~ F; independently for all i € [k],
3. observe a winner Z = arg MaX;e 1) X;.

At first glance, it seems like the access to partial observation data is more restrictive than the
access to the first-price auction data that we defined in Definition 2.1. Nevertheless, we show that
partial observations suffice to run the same estimation used in Subsection 2.1.

Theorem 2.9 (First-Price Auctions — Partial Observations). Let {Z;}" , be n i.i.d. partially observed
samples from the same first-price auction as per Definition 2.8 and assume that the cumulative distribution
functions F; are continuous and admit Lipschitz-continuous densities f; with constant L. Then, given
p,v € [0,1] such that P(Xjcy < p) = 7, there exists a polynomial-time estimation algorithm, that
computes the cumulative distribution functions F; for i € [k|, so that for every e € (0,7 /2] it holds that

]P<max‘1—“ Fi(x)‘§£>>1—5
x€[p1]

foralli € [k] assuming that n = © (% log (%) log (%))

Proof. Note that under the partial observation model, we can estimate IP(Y > x) for any fixed x
by setting the reserve price to x (i.e., bidding x) and counting the number of times that the planted
bid wins the auction. More precisely, we can define

A(x )—1—l”211{z — k1)

We can similarly define, for any given agent i, an estimator for the probability that the agent
wins with price less than or equal to x:

ny )
Hi(x) = nl ;1 {Z; = i at reserve price 0} — 7112 ;1 {Z; = i at reserve price x } .

By construction H; — H; and H — H where H; and H are as defined earlier. Similarly to our
strategy in the proof of Theorem 2.3, let

U={y+i-6:ie NU{0}andy+i-§<1}U{l}and V=H Y(U)and W = H; *(U)

For convenience, define N = |U| < 671, and recall that k is the number of agents in the auction.
Our first goal is to obtain a set of estimates 9; ~ v; for the quantiles of H and another set @; ~ w;
for the quantiles of each H;. To accomplish this, we will run, for each u; € U, T iterations of binary
search between 0 and 1. In particular, we initialize 13](.0)
Hoeffding bound shows that

IP( 1(0) — H(5}") 61/2) <2exp{—2 (61/2)271}. 5)
]P(‘Hi ) — Hy(@ t))‘>€1/2)<2exp{—(€1/2)2n/2}. (6)

We condition on the above events by taking a union bound over all agents, all search steps, and
all points u; € U. Now, for each iteration ¢ of the binary search:

= 1 then, for each successive iteration ¢, a

12



1. If ]H(z?l(t)) —ut| < €1/2, then ]H(ﬁ(t)) — u| < €1, so we terminate and set 9; = z?l(t),

2. otherwise if H (9 l(t) ) —uy > €1/2 then H(9 l(t)) > 1; and we search the upper interval,

3. otherwise H (9 l(t)) —u < —e1/2and so H(? l(t)) < u; and we search the lower interval.

We perform an analogous process to find the @;. This ensures the correctness of the binary search,
and setting T = log(2L/¢€1), where L is a Lipschitz constant of H and all H;, guarantees that after
performing this search for each u;, we will find V and W such that

|H(9;) —uj| < forall  je[|U]], and (7)
|H; () — uj| <e forall je[|U|]andi € [K] (8)
w.p. 1-— ZTN exp {—2(€1/2)*} —2kTNexp {—(€1/2)*/2}

In order to define our approximation of G;, we will consider the list of indices X = V UW;, i.e., the
union of the estimated quantiles of H and H;. Using Hoeffding’s inequality;,

(%))
(%))

w.p. 1 —4kN exp {271,32} >1- tkexp {211[52}

forall  je[|X]], and

—H(x))| < B
-0 <pB  forall je[|X]], and

We further condition on the above and define an estimate of G;(x;) = |, xl] ﬁ dH;(z),

IX|-1
Gi(x)) = E (Hi(xs41) — Hi(xs)) /H(xs).
5=

Using the mean value theorem (see the Appendix A.1 for more detail),
X 1 1

Gi(0,) — H;(xs) — + A
1Gi(6r) Zl (o) = Hils) [ + maxe | e~ A

gﬂﬂﬁ+5+z?+ﬁ
Y Y

We now extend our approximation from the set of points {x;} to the entire interval [p, 1]. Note
that for any x in this interval, there exists an xj, x;,1 € X such that x € (x, x;,1]. Furthermore,
both G; and G; are monotonic in x by construction, and

X1 ] JH
L,

. whi H%Z) < %by assumption. Using this

|Gi(xn11) — Gixn)| = (6 4 2€1),

<1
!

since the x;
inequality and the monotonicity of G; yields:

A 1 2|X|By + 0 +2e1 +
Gix) > Gilx) > Gilxnn) — 1 (6 + 2ey) - AXPTEOEZALE

X[y +1)B+ (v +1)(6 + 261
,),2

> Gi(xpi1) —
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4(k+1)yB/6+25 + 4eq

> Gi(x) 7
A 4(k+1 6+26+4
Analogously, G;(x) < Gj(x) + et W'B,/Yz R

24(k+1)’ so that | G;(x) — G;(x)| < § with probability

1—210 il ex —746211 —1—2]{10 48L ex ’ye 24k —77%4 n
v2e 08\ 52 )P\ T1152" f T 92 8\ q2e ) P\ Ta608" [ T 426 TP\ T 288k 112" [

Thus, setting

 4608(k+1)> o 9%10 48L

N riet a y2e & r2e
makes this probability 1 — «. Now, the total number of samples required for this approach is
O(N - k- T - n), concluding the proof. O

Remark 2.10 (Inserting bids may change equilibria). As we highlighted above, using access to the
partial observation data we can estimate the distributions H; to within € error and thus apply a
similar algorithm to the ordinary first-price setting. Observe, however, that by inserting arbitrary
bids to get good estimates of the functions F;, the econometrician can affect the bidding strategy
of the agents and thus interfere with the equilibrium point of the first-price auction. This is not
true for our model in Definition 2.1, where the econometrician is a passive observer (in particular,
observations do not interfere with the equilibrium of the agents) and hence the bid distributions
can lead to an estimation of the value distributions as well (as we show in Subsection 2.4).

2.4 Estimation of Value Distributions

Theorems 2.2, 2.3, and 2.4 establish recovery results for the bid distribution of each agent. In a first-
price auction at (Bayes-Nash) equilibrium, however, these bid distributions do not correspond to
agents’ value distributions. Instead, at equilibrium, each agent draws a value v; ~ G;(-) and bids
the best responses to other agents, i.e.,

Bi(vi) = arg max ui(b;v;) = argmax —b) [ [E(b) )
j#i

As discussed in the introduction, in our asymmetric IPV setting, we (a) cannot write an explicit
form for the optimal bid for a given value; and (b) cannot derive smoothness results for the bid
distribution from smoothness assumptions on the value distribution. In fact, a unique Bayes-Nash
equilibrium is not even guaranteed to exist.

Approach. Lebrun [2006] provides the following characterization of Bayes-Nash equilibria for
asymmetric first-price auctions, and shows that such equilibria exist and are unique under under
some (relatively mild) assumptions:

Lemma 2.11 (Lebrun [2006]). Suppose the agents’ values are distributed according to the right-continuous
cumulative distribution functions G;(-) with support [0, 1] and whose derivatives (i.e., the value density
functions) g;(-) are locally bounded away from zero. Then, a set of strategies (bid functions) a;(-) : [0,1] —

14



[0, 00) is a Bayesian equilibrium if and only if there exists an yy € [0, 1] such that the inverses a;(-) = B; 1(-)

1
exist, are strictly increasing, and form a solution over [0, 1] of the following system of differential equations:

jblogc(m(b»—nil( = iy b) 2(0) =0, w(p) =1 (10)

J# (b

If bidders are not permitted to bid above their values, and if one of the following two conditions are met, then
the set of strategies B;(-) represents a unique equilibrium:

(i) The value distributions have an atom at zero, i.e., G;(0) > 0,

(ii) There exists 6 > 0 such that the cumulative density function of the i-th agent’s value is strictly
log-concave over (0,8) for all i.

Corollary 2.12. Rearranging Equation (10) from Lemma 2.11 yields

1 . (b 1
];db log Gj(aj(b)) = o) and in turn ;ggbi = ol b (11)

Since Lemma 2.11 guarantees that the inverse bidding strategies are strictly increasing at equi-
librium, the inverse mapping theorem dictates that G;(v) = F;(B;(v)). If the equilibrium strategies
Bi(-) were known, we could apply our results for the bid distributions to estimate G;(v) directly.
In our setting, however, we do not have access to the strategies B;(-)—in fact, a general closed
form does not exist for asymmetric auctions.

Instead, we will use the characterization given by Equation (9) of the equilibrium bid as the
best response to other bidders. In particular, since we have accurate estimates for each F;(-), we
can define the following empirical versions of each quantity introduced so far, including G;, an
estimate for the cumulative distribution functions of each agent’s value:

i;(b; v;) — ) HF , Bi(v) = argml?xﬁi(b;vi), Gi(v) = E(Bi(v)). (12)
J#i
Turning this into a formal argument requires tackling the following technical challenges:

1. Approximating the utility function via i7;(+; v;) and efficiently maximizing the estimated util-
ity function to find the optimal bid.

2. Showing that the maximizer of the i;(-, v;) is close to that of the true utility.
3. Bounding the combined error incurred from our empirical approximations.

We will start by tackling the above challenges in the effective-support regime. The following
characterizes the setup as well as the additional assumptions used to estimate the value distribu-
tion:

Assumption 2.13 (Value Estimation). We assume the preconditions of Lemma 2.11, as well as an
upper bound on the density of the value distributions, i.e., gi(b) < { foralli € [k].

Definition 2.14 (Effective Support). In the effective-support setting, we are given (p,y) € [0,1]
such that [T;cy Fi(p) = 7. This is identical to the effective-support setting for bid estimation, with
the addition that p is pre-defined, since it is part of the estimation algorithm.
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We are now prepared to tackle recovery of the valuation distribution in the effective-support
regime. Our main result is captured in Theorem 2.15 below. After proving the result, we will
show how it straightforwardly extends to full-support estimation, in a similar manner to our bid
estimation results.

Theorem 2.15 (Estimation of Value Distributions — Effective Support). Let {(Y;, Z;)}?, be n i.i.d.
samples from the same first-price auction as per Definition 2.1. Under the setup of Definition 2.14, there
exists a polynomial-time estimation algorithm that computes cumulative distribution functions G;(-) for
i € [k] with the following guarantee:

27276
sup |G;(v) — Gi(v)| <e ifn=0 <k cL 11(?‘(;6(1/5)> and F; is L-Lipschitz
vep] Tre
A ) ~ (k?C%log(1/6)
Dr (Gi Ay, Gie 1[17/1}) Se€ ifn=0 ( 7 16e12 >

foralli € [k|, where Dy (-,-) is distance in the Lévy metric.

Remark 2.16 (Testing Lipschitzness). The first guarantee given by Theorem 2.15 depends on the
(global) Lipschitzness of the bid CDFs F;. While efficiently testing global Lipschitzness of F; from
samples is impossible, if we have a specific €y > 0 in mind, we can instead test

~ 1 -~ -~
L= max — (‘Fi(x) — Fi(y)‘ +2€) :
[x—yl=eo €0
This maximization can be done efficiently in n steps, since F is piecewise constant. Since we
condition on accurate bid CDF estimation, we have that for any x and y,

F(x) ~E()| > [F(x) ~ )| -2,

L|F(x) — F(y)|, and so we can use L in place of L in the theorem.

and so L > max|; |, %

Proof of Theorem 2.15. In this effective-support setup, Theorem 2.3 guarantees that with probability
1 — 6, we can learn the bid CDFs on the interval [B;(p), 1] up to additive error €, for any ¢y > 0,

inn=0 (%) queries. We thus assume that we have CDF estimates Fi(-) that are within €
of the corresporolding true CDFs in the effective support.

Our point of start is to show that we can estimate the approximate utility function efficiently.
For each agent i, we can relabel each observed data point (Y, Z) as (Y, 1z—;) and run our estimation
procedure on the corresponding two-agent auction to get piecewise-constant ep-approximations
of [Tj; Fj(b) for all i € [k]. Since v;,b € [0,1], we can condition on the event that #;(-,v;) is an
€o-approximate estimate of the true utility function.

Now, the form of our estimate for [];; F;(b) is piecewise constant (with n pieces, where n is
the sample complexity of Theorem 2.3) and monotonically increasing in b. Meanwhile, (v; — b) is
strictly decreasing in b along any interval. We can thus exactly maximize i; by evaluating it at n
locations (i.e., the beginning of each piecewise-constant interval).

Next, define b* and b to be the maximizer of u;(-;v;) and if;(-; v;) respectively over the interval
[p, 1]. Since we have an ep-approximation of utility within this interval,

u;(b*;0;) — ui(b; ;)| < 2eq. (13)
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Our next goal is to translate this proximity in utility-space to proximity in parameter-space,
i.e., to show that b* ~ b. To do so, we use the derivative of the utility function with respect to the
bid, which is given by the following result:

Lemma 2.17 (Derivative of utility function). Fix any v; € [0,1], and let b* = B;(v;) be the equilibrium
bid for the i-th agent corresponding to value v;. Let u;(-;v;) denote the utility function as defined in (9).
Then,

i(b)

\H

d
%ui(b;v) = (a;(b ;

H
7&

w

Proof. Recalling the definition of the utility function from (9),

u;(b;v) b)-T]F®)

j#i
d
—ui(b;0) = =] [F(b)+ (0—b))_f;(b) [ ] F(b)
db o — L
J#i j# ki
fi(®) fi(®)
= ((U—“i<b>)21;(}])+ Zib 1) TF (@)
i i i i
Observing that v; = a;(b*) and using Corollary 2.12 concludes the proof. O
Now, returning to (13),
b*
20> | [ (ai(t) — ai(x) - L [IFw)dx (Corollary 2.12)  (14)
b a;(x) —x ihi

In order to bound |b* — b, we need the following lower bound on the derivative a/(x):
Lemma 2.18. Under the conditions of Assumption 2.13, forall b € [p, 1],
a;(b) —b
(k—1)2-¢°
We defer the proof of Lemma 2.18 to the Online Appendix (the proof is nearly identical to that

of Lemma A-1 in [Lebrun, 2006], with the exception that we keep better track of constants to get a
non-zero lower bound), and state the corollary:

%log Gi(ai(b)) > L(b) where L(b) =

Corollary 2.19. Under the conditions of Lemma 2.18,

wi(6) = 1+ (5108 Gilas0) ) > G- (ws0) - )

Now, let b = (b 4 b*) /2. By positivity of the integrand in (14),

[ @ -a) i TTRG

J#i

2¢ep >
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Using the intermediate value theorem, there exists z € [min(x, b), max(x, b)] so that

DB EE) ] s [F B i) -
/y ai(x) —x ]I;F]()d 2/@ (k—1)2-22 ai(x) — QF

2¢9 =

Using our effective support definition and bid optimality,

Z)—Z)-I;[Fj(Z)> (ai(z) —p)-y=(z—p)- 7= (A/2) -y
j#i

where A = [b — b*|. Thus, since a;(x) — x < 1,

Z

( HP > (A/2) - (HP x)/T]F(z ) (A/2) -y
filx j#i

j#i j#i

Returning to the integral,

A,y3 b _ A,.Y3 AZ
>z<k—1>2-cz'/z-,’x—b’dx>z<k_w'<s)' 5)

Thus, for any €; > 0, setting ey = 32k2 gz implies that A < €.

We are now ready to bound the error in our estimate of the valuation distribution. We consider
two cases: first, when the bid CDFs F;(-) satisfy a Lipschitz-like constraint; second, a more general
setting where we only require a lower bound on the valuation densities g;(-). In the first case, we
learn the valuation distributions in Kolmogorov distance over the interval [p, 1], whereas in the
second case we learn in 1-Wasserstein distance.

In both cases, our estimate will be given by:

Gi(v) :=1{v € [p,1]} - E(b(v))

260

Case 1: Lipschitz bid CDF In the first case, we assume that the cumulative distribution function
of each bid distribution is L-Lipschitz continuous (note that any bid distribution with density
bounded by L satisfies this). Then, for any v € [p, 1],

Gilo) = B(b(0)| <1Gi(0) ~ Fi(b(0))

~

where we recall that G;(v) := F;(b(v)). Thus, we define ¢; = €/(2L) so that

~ 272 ~ 27276

sup ‘G — Gj(v )‘ eusmgn—@(kél?og((}m>:@<k§L11(())86(1/5)>
€ €

vepl Y 1 s

E(b(0)) — Fi(b(v )))+eo L e +ey < 2Ley,

samples, which concludes the proof.

Case 2: General case. We can also obtain a convergence guarantee that is independent of the
Lipschitz continuity of F; by considering a slightly smaller interval [p + d,1] for some d > 0. In
this setting, the “best response” property of bids implies that, for any b € [p +4, 1],

b)_b)'l;lpj(b)>(“i(b)_P)"Y>(b_P)"Y2d"Y-
JF
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Thus from Corollary 2.12,

fi(b) B 1 1
LEG) " ab)—b S da

1

Using the same method as Case I (with L = 1/(d - ¢)), we can guarantee that for d > 0,

. - (K2Z%log(1/6
sup ‘Gi(v) - Gi(v)‘ <€ aslongasn € © <Clggé(6/)> . (16)
vE[p+d,1] yiodoe
Setting d = € concludes the proof of the Theorem. O

As a consequence of Theorem 2.15, we can accurately estimate valuation distributions in Wasser-
stein distance when the bid densities are lower bounded:

Theorem 2.20 (Estimation of Value Distributions — Full Support). Let {(Y;, Z;) }?_, be ni.i.d. samples
from the same first-price auction as per Definition 2.1. Under the setup of Definition 2.14 and assuming
|Fi(x) — Fi(y)| = Alx —y| forall x,y € [0,1], there exists a polynomial-time estimation algorithm that
computes cumulative distribution functions G;(-) for i € [k] with the following guarantee for all i € [k]:

) 1024\ o
W (Gi(v),Gi(v)) < e ifn=0 ((W}) 78 log(1/5)> and F; is L-Lipschitz,

2 16 6\ k
W (Gi(0),Gi(0)) < e ijfnz@((zm e ) a210g<1/5>> otherwise

Proof. We proceed identically to the proof of Theorem 2.2. In particular, for any > 0,

H(y) = I—[[]Pj(ﬂ) > (A-m)k.
jclk

Set ¥ = (A - 7)* and we use the first case of theorem Theorem 2.15, such that with

& <k262L6 log(1/96) >

ALk 10K 76

samples we can find estimates G, for all i such that the additive error between G; and G, is at most
1 in the interval [5,1]. From here an identical argument to that of the proof of Theorem 2.2 (i.e.,
Subsection 2.1.2) shows that W(G;, G;) < 2 -7, after which setting 7 = ¢/2 the first case in the
theorem follows. For the second case, we use (16) with p = 87/11,d = 35/11, v = (8An/11)F,
and 7 =€/2. O

3 Estimation from Second-price Auction Data

In this section, we will state and prove our main result for the estimation of bid distributions from
second-price auction observations. Unlike the first-price-auction setting, our main result in this
setting involves estimating the bid distributions under the full-support regime where we aim to
obtain distributions approximating F; up to small error in Kolmogorov distance. As in the first-
price-setting, this incurs an exponential dependence on k. We leave the problem of estimation in
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the effective-support regime as an open problem for future work. (We do show in Subsection 3.4 that
if the econometrician can insert bids of their own, then even just the identity of the winner and
an indicator of whether the reserve price was paid suffice to estimate bid distributions over the
effective support [Theorem 3.12], using a very simple algorithm.) The identification of the cumu-
lative density functions, F;, given access to the distribution of (Y, W) was previously established in
Athey and Haile [2002] building on techniques from reliability theory Meilijson [1981]. However,
this is to our knowledge, the first result establishing non-parametric finite-sample recovery from
observations of second-price-auction data. We now formally introduce the observation model
generating our data:

Definition 3.1. Let {f;}*_, be k probability density functions on [0,1]. An observation from the
second-price selection model on {f;}¥_, is defined as follows:

1. First generate X; ~ f; independently for i € [k]

2. Define W := arg max;.y X;

3. Observe the tuple (Y, W) where Y := max;cp\ wy Xi-

We now state the assumptions on F; required for our guarantees to hold:

Assumption 3.2. The bid distributions F; each admit densities f;(-) satisfying a < f; < 5 for some
constants &, 7 > 0.

Note that in comparison to Theorem 2.2, we require an upper bound on the densities, f;, in ad-
dition to the lower bound property used previously. Our main result in this setting is the following
theorem where we establish efficient, finite sample recovery guarantees from second-price-auction
data satisfying Assumption 3.2:

Theorem 3.3. Let e € (0,1) and X = {(Y;, W;) }'_, denote n i.i.d observations from a Second-Price-
Selection model (Definition 3.1) satisfying Assumption 3.2. Then, it is possible to learn in polynomial time
cumulative distribution functions F; satisfying:

sup |Fi(x) — F(x)| < e with probability at least 1 — p
xe[0,1]
1

_ct 2k
aslong ase < e~ 1<k and n > (1) " log1/p for some absolute constants C,%,“, C;zlra.

In the rest of the section, we prove Theorem 3.3. In Subsection 3.1, we present a high level
overview of our proof strategy where analogously to the first-price case, we derive a differential
equation relating the densities, f; to the distribution of (Y, W) (Definition 3.1) leading to a fixed
point equation satisfied by the cumulative functions {F;}. Subsequently, in Subsection 3.2, we
present a discretized version of the fixed point iteration that we analyze to prove our theorem. We
carry out the formal analysis of our in Subsection 3.3.

3.1 Approach

We now provide a high-level overview of our proof of Theorem 3.3. For clarity, we will first outline
the proof in the idealized population (infinite-sample) setting. In the next section, we formalize
this outline and establish finite-sample guarantees.
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We start by deriving a fixed point equation which plays a central part in our analysis. Note
that in the population setting, we have access to the functions

Gi(x) =P (W=1Y <x).

For each G;(x), we can use the independence of the bid distributions F; and some simple calcula-
tions to define a valid corresponding density:

gi(x) = (1—FE(x))_fi(x) [T RB(x).
Tr N oy

Rearranging and taking advantage of the product rule allows us to simplify this as

]I;!F](x) = /Ox 1 _:Il:i(z)gi(z) dz.

Re-parameterizing the above by letting U = [];..; Fi, we obtain the fixed point equation:

Y L N 1/ (k1) (k—2)/ (k-1)
Ui (x) = /0 . Hi(U*(z))gl(Z) dz where H;(v) = (gvj /v,

We divide the domain into smaller intervals and approximate F; by a piecewise-constant func-
tion on each interval. The Banach fixed-point theorem is crucial to our analysis:

Theorem 3.4 (Banach Fixed-Point Theorem). Let (X,d) be a complete metric space with a contrac-
tion mapping T : X — X, i.e., suppose there exists a metric d on X and a constant € > 0 such that
d(T(x), T(y)) < (1—0)-d(x,y) forall x,y € X. Then T admits a unique fixed-point x* € X. Further-
more, x* can be found: start with an arbitrary element xo € X and define a sequence {x, } by x, = T(x;_1)
forn > 1. Then x, — x*.

Unfortunately, it turns out that the fixed point iteration just described is not contractive with
respect to its input—instead, we proceed iteratively, starting with the origin and estimating F;
for each successive interval in turn. After solving for a set of intervals, we treat them as fixed,
and construct a new fixed-point iteration for the next interval. We make this argument precise in
the following sections. In doing so, the key technical difficulty faced by our approach is in the
amplification of errors incurred at earlier stages of the algorithm into later stages. As we shall see,
errors due to approximation, sampling or computation are compounded exponentially over the
running of the algorithm (Lemma 3.8). Therefore, we use a careful data-based approach where
samples are used to decide the widths of successive intervals, ensuring both that the fixed point
equation remains contractive and crucially, that there are not too many stages where successive
intervals are constructed (Lemma 3.9).

3.2 Fixed Point Definition

Here, we formally define the version of the fixed point iteration used in our algorithm. Recall that
the CDFs of the bid generating distributions, F;, satisfy:

. o o
Wemwm@_ggm_ﬁl_mﬂﬁ@ﬁ
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Recasting the above equation in terms of the functions, U, we obtain:

U ()1 6D

; LT — _[* gi(Z) .
Vie [k U (x) ._ga(x)_ /O e Wit Hi(E) = e

In our algorithm, we approximate the functions, U, by piecewise constant functions on intervals
of width ¢ (PAR) and approximate solutions to the above fixed point. We will subsequently prove
that the approximation errors as well as errors due to computational and statistical constraints
remain small despite these choices.

Our algorithm operates in stages: we divide the interval [v,1 — 0] (PAR) into a finite number
of “macro-intervals”, each of which contains a number of micro-intervals of width J, defined by
the points v := xp < x1--- < xr < 1 —0/2 where T and the width of each macro-interval are
chosen dynamically based on observed data to ensure the fixed point iteration remains suitably
contractive. However, we must ensure that the total number of intervals, T, does not grow too
rapidly as estimation errors incurred in earlier stages of the algorithm are exponentially amplified
in later stages.

We construct these macro-intervals in a recursive fashion where the end point of the next in-
terval, x, is chosen based on the previous one x,_;. Note the first point, x¢, is chosen to be v.
Conditioned on x;_; < 1 — 6, the end point of the subsequent macro-interval, x., is defined in the
following display where U; is a function coarsely approximating U (see Lemma 3.5 for a formal
definition) and G; are empirical approximations of G;:

(1) . (ML N X )
7 =maxie () g % Al

A A A 1 & .
A — Gi(xzm) — Gi(xzm-1), Gi(x) == - Y 1{W; =14,Y; <x}, xppi=xr 1 +16

im
j=1
0 = max {0 € N : ey < 201,20 <1-0/2and 7[7 <1/4}. (MACRO)
We terminate once x; > 1 — 6. Note x;¢p = x;_1 and X = Xr. The fixed point iteration

for estimating U (x) for x € [x;_1,x] is now defined below with the (1) entry of the variable
U® e R 1Y) meant to approximate U (x,):

il

!
(™)  di ! O Ly 2 ), -
LU =cli AV, — X<1), U;(x
b () = ctip n;ol—Hl{fn)(u(T)) i Vi Uilre) g - i)
1
[T (U ®&D
Hf;)(u(ﬂ) = max | min ]7&:(%)2), 1—a(l = Xem), gxem | , &Xem (FP)
’ (U
where VZ-(T) is recursively chosen as the estimate of U (x_1) by running the fixed point iteration,
¢(™1, L times (PAR). For initialization, we simply set Vi(o) i= G;(v). The precise choices of our

parameters are provided below:

32k 24k
e 1 ;v
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)16 e 24
, <3217> (PAR)
3.3 Proof of Theorem 3.3

In this subsection, we prove Theorem 3.3. The sole probabilistic condition we require is the em-
pirical concentration of G; (Lemma B.4) for €¢ in PAR; i.e, we assume:

Vi€ k] : |G — Gillo < & (PROB-COND)

The remainder of the proof is structured as follows. In Subsection 3.3.1, we show the functions
U; in the definition of ¢(Y) (FP) may be efficiently estimated from data. Subsequently, in Sub-
section 3.3.2, we analyze the contractivity properties of ¢(¥) allowing application of Theorem 3.4.
Then, in Subsection 3.3.3, we show how errors incurred in early stages of the procedure are ex-
ponentially compounded for each new macro-interval requiring careful control over the number of
such intervals, T. Finally, we bound T and prove Theorem 3.3 in Subsection 3.3.4.

3.3.1 Approximate Estimation

Here we describe the construction of U; used in FP, ensuring the truncation range contains the
true parameter values; i.e. we establish the following lemma:

Lemma 3.5. Let U; : [0,1 — /4] — R be monotonic functions defined as follows:

11’1
EZ Y-

j=1 ]

1{W; =1,V < x}.

16k
Then, for all x,y € [0,1 — (0/4)] such that U (x) — U (y) > (%) , we have:

g(UT(X) — Ui (y) < Ui(x) = Ui(y) < 2n(U7 (x) = U7 ()

Proof. Fix x,y satisfying the required constraints and consider the random variable:

i 1 —
u = a-v I{W =i,y <Y <x}.

We have:

Bl = [ o5 0= BE@) LA T R

J#i k#jii
and hence, we get: '
a(U; (x) = Ui (y)) < BIUT < (U7 (x) = U7 (y))-

Now, we will show that the estimate U’ can be uniformly estimated for all 7, x,y. For empirical
analysis, we have by the integration by parts formula:

n
'Zl_Yj'l{Wj:i'y<Y]’<x}



[ Gi(y) Gi(x) 1A
} ((1—y> i <1—x>) ~), aeapio

Similarly, we have for the population counterparts:

= _ [ Gly)  Gi(x) * 1
Bl = (725 - 7)) G

From the previous two displays, we get:

16]|G; — Gillw
62 '

This establishes the lemma by PROB-COND and PAR. O

|Ui(x) = Ui(y) — E[U]| <

3.3.2 Contractivity Analysis

We first state a few simple lemmas on the behavior of the mappings, $(7). All the following results
follow from direct calculation, provided in full in Appendix B.

Lemma 3.6. The mapping ¢p\™) maps the set S(V) defined as follows onto itself:

« 1 =« 2 .
S = {LI(T) € RFET ol (i(x) < U < < Uilxey) and uyy < ui(,lrj-l}'

Proof. The first constraint follows from FP while the second follows from the fact that ¢7 is a
clipping of a monotonic function onto a monotonically growing range (Lemma 3.5). O

In our proof, we establish contractivity of ¢(7) in the infinity-norm; i.e, for some p < 1:

lp () =9 (U [loo < plIU — U'||eo where [|M]|o = max| M.

Denoting the Jacobian of ¢{*) by | ™) (+), we bound its 1-norm defined below:

a9y ()
T (U ly == max Jpo@@™)) = max —
¢ il ]ez[k} ( ¢ )(z,l),(],m) il ielkl au](’;)
melt)] mee™]

Lemma 3.7 (Appendix B.1). We have, for all U(Y) € S(7),

6 1 x .
g (U) 1 < max16 - (Z) Uy 2 1 YAl

i€[k] Xr-1) m:1 —xrm

3.3.3 Error Propagation

Before proceeding, we introduce some notation. Let U7 ) to be estimates produced when the fixed
point iteration ¢(¥) (FP) is run L times and U(") € R* < be defined as:

vre [T)ie kI et 0y = U (x,)
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and is used to measure the accuracy of our estimates. Recall that we use {ITIZ(Z(:}B) }ie[k} as initializa-
tions, V(7), for the T iteration, ¢(¥) (FP). Finally, let U := [UM) ..UM and U := [a® - .- 0]
be the estimates and the true values aggregated into a single matrix. The main lemma of this sub-
section establishes that the error grows at most exponentially in the number of macro-intervals, T.
Hence, it is crucial to obtain a bound on T that does not grow too rapidly with respect to v which
is carried out in Lemma 3.9.

Lemma 3.8 (Appendix B.2). We have: ||U — U || < 27 (257v)%.

3.3.4 Bounding the Number of Macro Intervals

Here, we bound T (Lemma 3.9) as the most technical component of the proof and conclude the
proof of Theorem 3.3. To prove Lemma 3.9, we employ a potential function argument where we

track the growth of the functions U} the end points of the macro-intervals {x }cr). The key ob-
servation is that when x,_1 is smaller than an appropriate constant c; o, U} (x7) > (U (x7—1))! 7Y (2(=1)),
Hence, the rate of growth is doubly exponential before ¢, g allowing the bound on T ~ log,(1/v) +
kloglog(1/v) while the initial error scales is at most v*. With Lemma 3.8, a simple post-processing

step proves Theorem 3.3.

Lemma 3.9 (Appendix B.3). We have:

T < 2(k—1)loglog(1/(av)) +log,(2/v) + 2% <Z>14 (K*log(2n/a) + klog,(2/9)) .

To complete the proof of Theorem 3.3, we have from Lemmas 3.8 and 3.9 and our setting of the
parameter, v, that || (T — U] < 27(257v)F < (2v)*/8 < (a - e/3257)%.

We now recover estimates of F; from estimates of U;. Note, when x < 6, Fi(x) < ¢/16 and
hence, 0 is suitable in this range. Likewise, when x > 1 — 0, F;(x) > 1 —&/16 and 1 is correspond-
ingly accurate. For the final case, assume 6 < x < 1 — 6. We will first estimate F; on the grid
points, x; ;. Suppose now that x = x,, for some 7,/. We have:

93 0 [ o> 6 [0 ()

F mti

And, as a consequence, we get: (1 — E) < (1 + 16) Defining our estimate:

Fi(x) = TTj(0] )”(" vy ((ul.(llf))<k72)/(k71>>

H]#I(u/*( ))1/(k 2

we get by noting that F;(x) = CCIUGE

b <r- (145 (1) < (1+5) B

b b0 (1 £) (1) "> (1) )

Finally, for any 6 < x < 1 — 0, there exists x.; such that |x — x;| < J. And we have:

|Fi(x) — Ei(x7))] o [E(x) = F(xqp)| + |Fi(xr)) — Fi(xe))| o Ot (e/4)F(xr)) _ ¢
Fi(x) D Fi(xz) = [Fi(xe1) — Fi(x)] T FR(xg)-édnp T2

from our setting of 6 and 6. This concludes the proof of the theorem. O
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3.4 Estimation from Partial Observations

Finally, we explore a second-price analogue of the “partial observability” setting (introduced by
Blum et al. [2015]) that we studied in the context of first-price auctions in Section 2.3. In particular,
in this setting we observe the winner of each auction and a binary indicator of whether the reserve
price was triggered, but not the price that the winner pays for the auctioned good. On the other
hand, as in [Blum et al., 2015], in this setting the econometrician is given the ability to set the
reserve price (or equivalently, insert bids into the auction). We formally define the setting below:

Definition 3.10 (Partial Observation Data — Second-price). Let {F;}X_, be k cumulative distribution
functions with support [0,1], i.e. Fi(x) = 0Vx < 0 and F;(1) = 1. A sample (7,Y,Z) from a first-
price auction with bid distributions {F;}_, is generated as follows:

1. we, the observer, pick a price r € [0,1], and let X1 =7
2. generate X; ~ F; independently for all i € [k],

3. observe a winner Z = argmax;. .,y X; and an indicator Q indicating whether the reserve
price r was triggered.

We again operate in the effective-support setting (cf. Theorem 2.3), and—that is, we a tuple
p,7 € [0,1] such that for all j € [k], [T)+j Fi(p) = 7. In other words, the transaction price of the
auction will be less than p with probability at least 7.

It turns out that in this seemingly limited observation model, a very simple algorithm suffices
for recovering agents’ value distributions. We begin with the Lemma demonstrating pointwise
recovery of the bid distributions for any x € [p,1]:

Lemma 3.11. Fix any x € [p,1] and any € > 0. Using n samples from the we can obtain as estimate
Fie (x) satisfying, for all j € [k],

( F(x) - pj(x)‘ <e  with probability at least 1 — 5,

as long as n > %log(Zk/(S).

Proof. First, suppose we set the reserve price of the auction to x, and define the random variable Z;
as the indicator of whether either (a) agent j won the auction and the reserve price was triggered;
or (b) no one won the auction and the reserve price was triggered. By construction (and since (a)
and (b) are disjoint),

]P(Z] = 1) = IP(X] = X,X_]‘ < x) —I-H)(X[k] < x) = (1 — F](X))HFZ(X) + H FZ(X) = HFZ(X).
s ik s

Thus, applying a (multiplicative) Chernoff bound combined with the lower bound [T;..; Fi(x) > -y
given by our effective support assumption,

4

n

Y z" -TAK)

>e€- HFl(x)> < 2exp {—€*yn/3}
i=1 14

I#j
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Now, by our effective support assumption, as long as k > 2,

. [T (21

(z
Fix) ) (Y g A

(Zl )]> S (1-e)Ilx kK

< (1+4€)F(x)

and an identical argument for the lower bound shows that |1?](x) — F;(x)| < 4e. Applying a union
bound over all agents completes the proof. O

We can use this result to construct piecewise-constant approximations of F;(x) that is e-close
to the true bid distributions:

Theorem 3.12. Assume the partially observed second-price setting, and suppose the cumulative density
functions Fy are all Lipschitz-continuous with Lipschitz constant L. For any pair p,y € [0,1] that define

an effective support, we can find piecewise-constant functions 1?]() satisfying

sup ‘F F](x)‘ < € with probability at least 1 — 6,
x€[p1]

klog(k/e€)log(L/€)?
e3y

usingn = © ( ) samples from the partially observed second-price model.

Given Lemma 3.11, we can use the exact binary search and estimation procedure from Subsec-
tion 2.3 to prove Theorem 3.12—we give the full proof in Appendix B.4.

4 Conclusion

In this work, we presented efficient methods for estimating first- and second-price auctions un-
der independent (asymmetric) private values and partial observability. Our methods come with
convergence guarantees that are uniform in that their error rates do not depend on the bid/value
distributions being estimated. These methods and the corresponding finite-sample guarantees
build on a long line of work in Econometrics that establishes either identification results, or esti-
mation results under restrictive assumptions such as symmetry or full bid observability.
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A Omitted Proofs for First-Price Auctions

A.1 Omitted Calculations from Proof of Theorem 2.9

We further condition on the above and define an estimate of G;(x;) = fxl] % dH;(z),

1X|-1
Gi(xj) = Z (Hi(st) - Hi(xs)) /H(xs).

s=j

Using the mean value theorem, there exists a set of points {{;} with {; € (x;, xj;1] and

X1 H, (x — Hi(xs
Gi(xj) = /:H%.z)dHi(Z) - Z H;( S+[1{)(€S)Hl( )
] 5=

We first bound the difference between our piecewise estimate and the true G; on the set X:

5 ' Hi(xe) = Hi(xs) NS Aieg) — i)
Gi(0t) — Gi(0¢)| = N .
|Gi(0r) — Gi(01)] ZJ H(Zs) Z] H(x)
' Hilxn) = Hitrs) N5 Bi(xon) — Hilx)
< g H(Z,) B g H(Zs)
' Hilxse) = Ailxs) NS Hi(xan) = Ai(xs)
TS R i TFY
1X| 1 1
Z|H Xs - xs)| +Sr€1}‘a)gh (xs+1) o H(Xs)
< 2]X],B+5+2-§1+,3
0% Y
S2X[p 1 —
< y + ’)’ seia)gT ’H CS ( )’

A.2 Proof of Lemma 2.18

We will proceed similarly to the proof of [Lebrun, 2006], who use a similar technique to prove
strict monotonicity (i.e., a lower bound of zero). In particular, proving a quantitative lower bound

requires carefully controlling additional terms that cancel in the original proof.
For 1 <i < n, we define

b = inf{b' €[0,1]: %log(Gi(vi(b))) > L(b) forallb e (b’,l]},

and let i be such that b} = maxj<x<, b;. Our goal is to prove that b; < p, since (by construction)

this would imply that our desired property is true on the entire range.
By continuity of (d/db) log G;(v;(b)) and of L(b), at the point b we must have that

ddb log Gi(a:(b)) = L(b).
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Suppose that b > p—by our definition of effective support, G;(«;(b})) > 7. Re-arranging the
characterization of the Bayes-Nash equilibrium (10) (cf. Lemma 2.11),

(Ui(b)—b)‘di,log(ci(vi(b))):nil( RV Z) )
j#i ]

Taking the derivative with respect to b yields

_ (b)) (0ilb) = b)Y vi(b) — v;(b)
IO (;(b)—b +;(v](b) b 7)

Our next goal is to upper-bound the value of (17) at b;. First, note that for all j # i, our construction
of bl implies that b} € [b]’-, 1] (since i = argmax by), and SO

vi(b;;—b; - v]-(b;;—bg = ddb log (Gj(2;(b1))) — ;b log (Gi(wi(t}))) > 0,

meaning that

vi(b) — v;(b)

ai(b;) < aj(by) = ICOED (18)

Thus, we can safely ignore the (negative) final term when upper bounding (17). Turning our
attention to the second term, (11) implies the existence of at least one j # i such that

d 1
- oy >_ - i
7 log Gj(a;(b)) > p— vl(b) , and rearranging,
Gj(vj(b )) 4
v;(b) — b)v'(b} / > . (19)
(@il0) =000 2 Gy g0 7 D
Since vj(b), b € [0,1] and v;(b;) > v;(b;), we have 0 < v;(b}) — b; < 1, and in turn
v;(b) — b)v(b!
( Z( ), ) ]/(21) 2 Y (20)
(vj () — b;) (n=1)-7
for at least one j # i, and thus
b) — b)v(b
O < @
N () ) T V7
Finally, recall that
vi(b;) - gilai(b7)) L(b;) - Gi(ai(b;))
L(b)) = - L = vi(b)) = — L
) =G ST )
Combining this with (18) and (19), and using that a;(b}) > «;(b;) yields
— ! — —-1)- !

(n—1)n j#ivj(bf)—b{\(n—l)-iy w; (b)) — bl
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where the last equality is by definition of L. Meanwhile, by definition

D) = 5 { () ~ ) 5 og (Gilwu(8) }
2
= (0}(6) ~ 1) - 7108 Gi(ai (b)) + (01(b) ) - o Tog Gi(w(b))
D(ED) > (0 1) L) + (01(b}) — b)) - 0 log (1), @

Combining the above results yields (v;(b) — ) - ;l—; log Gi(vi(b)) < —L(b}) < 0,and since v;(b}) —
bl > 0, this must mean 4 log G;(a;(b)) < 0. However, this in turn implies that there existsane > 0
such that log G;(«;(b!)) < x, which is a contradiction of our definition of B;(’). Thus, our initial
assumption (b > ¢) is impossible, which proves the desired result.
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B Omitted Proofs for Second-Price Auctions

B.1 Proof of Lemma 3.7

Considering a term in the Jacobian of ¢(T), we get from Lemmas 3.5, 3.6 and B.3:

o9,/ (U)W ™) 1 2 .
L = | 1] 5y Gee) < WP W) < 3 Uit
ouy;) ouy;) 21] ’ “

1 1 (t) (17(2) ()
—1{1—]}‘ 'Hi,m(u ) Alm
<Je ~H )R\
B Xtm 1 (1)

‘—1{1 ]}‘ I —xem)? (0 Al

nooon |1 Xt,m 1 (1)

< a s J— . . .
0{2 4 X ’k—]_ 1{1 ]}’ (1 me)2 u;s(me) Az,m

n 7\4 . Xt,m 1 (7)
< 4 (X -

S4- 2 (a) ‘k g ]}‘ ‘(1—x 2 U (xgm)

1 /55 Xt,m 1 (%)
<4.-. (1Y s 1{i= ' - A
sty (a) 21 ‘k - Hi=g '(1——xr 2 Ui(xep)

17 6 . x'r,m ]‘ (T)
<8 (=) - |———-1{i=j}|" ~ A

(0() ‘k 1 {i ]}‘ '(1_xrm)2 Ui(xc—1) "™

Summing the previous equation over all j, m yields:
(T)
n 6 1 4 Xt,m (1)
16 - - A
Dol < mpre Q) oy B

B.2 Proof of Lemma 3.8

Proof. We will prove the lemma by induction on the number of macro intervals. Concretely, we
will prove the following claim via induction on 7:

1T — 0™ < 27 @2yv)k. (IND)
For the base case, we have:
\Gi(v)—uf(v)]<8g+|Gi( ) — Ui (v )]—sg+/ (1-(1-F Zf] HFm(z)dz
j#i m#i
<eg+ 17v/ Y £i(2) T] En(2)dz < eg +nvl;y(v) < (2nv)F
J#i M

For the induction step, suppose IND is true for all intervals up to T — 1. From Lemma 3.7, cp(T)
is 1/4 contractive. Letting Uf( X)e 4 denote the fixed point of ¢'?) (Theorem 3.4), we have:

- - 1
1T — Uil < 57 (23)
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Hence, it suffices to bound the error between Uf(;)e 4 and .

1T — ULl < HU(T)—¢<f><‘<f>>noo+||¢( (@) — Ul
— 1T = ¢ (@) |l + ¢ (T — ¢ (U)o
< |lat —¢<f< Nleo + 1T — UL oo /4.

For the RHS, we have for fixed i € [k], ¢ € [¢(7)]:

_ /x” @)z U (ko) — i ¥A(? — v
Xr_1 1-— Fi(Z) =1 1-— F'(X-L—,l) b
< /x“ 1 gi(z)dz — i A(, ‘U* X 1) — VI(T)
g 1 Fl( ) 1:11 Fl(le) l
Xt0 1 4 1 (1) ~ _
< - o B W — (=1 _ g1 |
= /x_[l 1-— Fi(Z) gl(Z)dZ 1221 1-— F,-(xT,l)Al" + Hu u Hoo

e 1 -1 @
—— - gi(2)dz — — A
/xrl 1-— Fi(z) g < ) l:zl 1-— Fl-(xrll) il
: 1 ) )
Z/ (Z - i(z)dz — m((}i(%z) = Gi(xr,)-1))
1=1 Y *7,1-1 i i :
4 X1 1 1
S - - gi(z)dz|+
l:zl X711 <1_Fi(z) 1_Fi(x'r,l)> g( )
d 1 . .
Zl F(x l) (Gz(x'rl)_Gz(xrlfl)—(Gi(xrl) Gl(xﬂl)))‘
=1 i\Xe,

4 [ 8eoll™  dps  8eg lV
< i <
h /xT,0 gilz)dz + ad T (ah)? LT

Egs. (24) to (26) and (23) conclude the induction step with PAR and IND.

B.3 Proof of Lemma 3.9

We start by stating and proving some useful Lemmata:

N

Lemma B.1. We have, for all Vi € [k],x € [0,1] : g;(x) <

o
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(24)

(25)

(26)



Proof. Fix x € [0,1] and let i* = arg max;. Fi(x). For any i € [k], we get:

gi(x) = (1= Fi(x)) }_fj(x) [ Fo(x) < (1 = F(x)) }_ [ | Fe(x)

J#i U#ij JEI L]
2 2
< (Z) (1= Ee ()Y T Eo(x) < <’Zx> A= F(x) YT B ()
i LF#,] JELFEL]

2 2 k-2 2

U k-2 U 1 U
= - —_— —_ 7% % < —_— . _— < —_—

k-0 (L) a-reEw 2 (L) (1-2) <L

where the first two inequalities follow from Assumption 3.2. O

Lemma B.2. We have
@vte(T]: 0D >0, (Bxr>1-106
(VT € [T] 5.k Xy g goq <Min(2c1,1—6/2) 197 > 1/8

. % % 1 o 10 av k=1
(@ VT € [T)i € [k U (x0) = Uf (xe1) 2 5o (17> 0 ()

Proof. We start with the first claim. From Eq. (FP), we have x;_; < 1 — 6. Furthermore, we have
Xr-11 < 2x7_1 from our definition of § and v PAR. For the second condition, from Lemma B.1 and

our bounds on ¢, 0,6 (PAR) and U;(x+_1) (Lemma 3.5):

(1) . 7\° 1 Xz 1+0 ()
— 8. (1Y) . _ : A
= mes () Gy x-S
17 6 1 fol—'l_é A A
< 8' - N ° . Gl T— 5 _G T—
I};ﬁ)}( (tx) Ui(xrq) (1—x¢-q —9)2 (GilFe1+9) o))
7\® 1 Xe—1+0 728 1
< N R . N e el
<ms () gy e e (e +2) <4

establishing the first claim. Note that the previous argument also establishes the second claim as
if x7 < 1 — 6, a new macro-interval exists (FP).
For the third claim, we have:

(1) _ 17\® 1 XT,m (1)
=max16- (=) - = A
,)//(T) le[k] ([X) ul(x’[—l) me1 (1 — xT/m)z 1,m
(D41
Ui 6 1 4 Xz,m (1) Xp o041 ()
=max16-(+) «- ——m— _mm A0 T lUHL Al
i€lk] (a) Ui(x-1) (mZ:l (T=xem)® ™ (1= p041)? B0+
(7) AN 1 1-6/4 (% 1
> —16- (1) . , (e J1
= ’)/j(‘r)Jrl 16 ([X) Ai(x.ril) (9/4)2 X + 2€g > 3

where the final inequality follows from Lemma B.1, the fact that 'yé(?)ﬂ > 1/4,6 < 6/4 and our

bounds on g, 4,0 (PAR) and l:[l-(xr,l) as in the previous claim.
For the final claim, suppose T € [T]. From FP, x;_1 < 1 —6. We first consider the case

where 77 > 1/8. In this case, we have for some i from the facts x;,, < 1—0/2, x¢,, = v and
Y o) . ,

Ui(xr-1) = Gi(v) = (1 —nv)(av)* =1 — ey
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(1)
7\° A s 16 (1)° Yom A0 5 1
64 ( — >16(-) = A > =
((X) Z:: 1 _me) 'm (0() ul(x'ffl) m=1 (1 —XT,m)z Lm 8
Re-arranging the above and applying Lemmas B.3 and B.6 yields for all j € [k]:

2 (1) (0 () = U (1)) 3 29U () = U (1)

proving the claim in this case.
Next, we consider the case where x__ Lo 41 > 2Xr-1. In this case, note that as x;_1 > v and

our bound on J yields x;_1 + ¢ (0§ > ‘;xT 1 and the claim follows as:

)k—l

U7 (x) = U (30) = [ L 5i2) TT Falede > (k= D [ a2)f 22> O

Tl mi,j

For the final case, the second claim and MACRO imply x7 = x; withx;—1 <1—0and x; +J >
1 —6/2. In this case, we note again from our choice of ¢ that x; > 1 — (36) /4. Furthermore, since
Xr—1 <1—06,wehave from Lemma B.5:

. 36 ) 1%
ul' (xr) — U (XT 1) U (1 — 4> — ui (1 — = / Zf] H Fm(z)dz
0 T i
=¥ -2 «f

Y [ Fu(2)dz > oc/l_e (k= 1)U; (1 - 0)dz > .

10 jZim#ij
concluding the proof in this case. O

To bound T, we break [v, 1 — 6] into three segments and handle each separately:
32 32
o o 1 1 0
Il . [V, <217> ] ,12 . [(217> ,1 47]k] and 13 |:1— 417k,1—2:| .

Case 1: We start with I; and restrict ourselves to the intervals, [x;_1, x] such that ’y( >1/8

as as there are at most log,(2/v) intervals where this doesn’t happen (MACRO and Lemma B.2).

(1)

1)+ there exists some i € [k] such that:

From the definition of y

R



Uy (xe) /6D 0

(1)
(1 - XT) m=1 (1 - xT,m) Lm
1

NUANS (U (x0) — U
<5 () U (v a7t (L () = U (o))

<32.(E 1

6 1

Re-arranging the above, two applications of Lemma B.3 with the fact U7 (x) < (gx)k 1

14
j € [k Uf(xe) 2 (2:) U () B O 3 U7 (g )T/ 20,
Defining S1 := {7 : [xr_1,%¢] C [; and ’)/E(TT)) > 1/8}, Ty = |S1] and 17 := maxS;, we get by a
recursive application of the above inequality for all j € [k]:

1

T T
—(k— % " 1 k=1 (1—- 1
eV > U (xrr) > (U (xo))( ) > ()" (1-mtw)

Iteratively taking logs, exp {—%} log(av) >1 = T1 <2(k—1)loglog(1/(av)). Hence, the
number of intervals in I; is bounded by 2(k — 1) loglog(1/(av)) +log,(2/v).

Case 2: Similarly, for I, we restrict ourselves to intervals [x_1, xr] C I with 'yE,(T,)) > 1/8. Noting
1 —x¢ > 1/(47nk), we have from Lemmas 3.5, B.2 and B.6 for some i € [k]:

(1)
1 7\ 1 2X7r_1 ¢ 1 (1)
-<16- (= = A
8 <“> Ui(x7-1) (1—x7) =1 (1= xem) "
(1)
A S 1 ()
<16 (= = k - A
("‘) Ui (xr—1) 1 =1 (1= xgm) "
1 * *
<1024k (1) — Gy (U () = U ()

Re-arranging the above inequality and two applications of Lemma B.3 yield:

, 1 a\ M 1 a\
- Uur —Uf(xr—1) 2> —— - | — UM (X)) 22— | = U (x1).
Vj € k] : U (xr) — Uj (x7-1) 5199k <;7> U (xr-1) 5199k (ﬂ) U (x7-1)

Define Sy = {7 : [x{-1,x;] C L and ’yé(?) > 1/8}, T, = |S2| and 77 = max$; as before. As

xr-1 = (/2a)3* for all T € S,, recursively applying the above inequality yields:

T
1 a 14 a 32
S U () > - (* O '
1/uf(xfz)/<1+819zk (77) ) i <<2;7)

=1 and taking logs, the current case follows:

T a0\ g\ B4=1) s0in (1)1
12e {16384k (17) } <217> 2S 27K (a) log(217/a).

Again, noting U]?“(x) > (ax)
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Case 3: For I3, we subdivide it into 7 subintervals {I3, := [1—270,1 —2/~16] };:0. Note that
r < log,(2/6) + 1. We now bound the number of intervals in each of these sub-intervals and
restrict ourselves to intervals [x;_1,x;] C I3, for some p with T < T. Note this excludes at

most 2r + 1 intervals. For one such interval [x;_1,x;] € I3 p, Note that ’yé > 1/8 (Lemma B.2).
Similarly, we have for some i using Lemmas 3.5, B.2, B.5 and B.6:

(D)

1 Ui 6 1 Xt,m (1)
_ < 16- (L - — AL
8 (oc) Ui(xe 1) = (1 — Xgg)?
(1)
1 1 1 ()
<16 (+) - = AL
("‘) Ui(xr-1) mZ:: (1 —x7m)(20710) 0"
256 n\’ .
= 2r-1g (&) (U7 (xr) = U7 (xr-1))
which yields:
\ \ 2019 ()’ . . . 2p-1g /a1
U7 (xc) = Ui (ret) > g () = Vi€ W Ui = U ) > G- (5
Again, defining Sz, = {T < T: [x¢_1,x¢] C I3}, T3 := [S3,p|, we have from the above:
2048 /y\10 )
< (L * _opr-1 —1* _ 2P
By < o (1) (ur (1-27710) —ur (1-2%))

_or-1p
:%. (Z)lo./ll U F 0 TT By (0)dx

26 i

2098 (g)lo - (k- 2P710) < 2048k - (g)n

S 2r-19
Summing up over p, we get that: T3 := Y, T, , < 4096k - (1) " log,(2/6). Finally, summing over
the previous three cases concludes the proof of the lemma. O
B.3.1 Miscellaneous Results

Here, we present miscellaneous results used in various parts of our proof. The first lemma shows
that the functions, U, for different i are within a constant factor of each other.

Lemma B.3. We have Vi, j € [k],x >y € [0,1]:

3
(%) @it - i < Ui - < (1) (w0 - s )
Proof. We have:
0; ()~ 7 w) = [* T 4(2) TT Fuladdz < (1) 010~ 17 )

1#£i m#i,l

where the second inequality follows from Assumption 3.2:

VI,I,z € (0,1] : fi(z) T] Ful ( ) fi(z) TT En(2)-

m#i,l m#j,l’
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Our next lemma establishes concentration of G;, as empirical approximations of G;.

Lemma B.4. Forall i € [k|, we have ||G; — Gil|e < &g with probability at least 1 — p as long as n >
log(2k/p)/ (252,).

Proof. Define random variables, Vi € [k],j € [n] : Z]Z: =Y;-1{W; = i} + 1{W; # 1}. The CDF of Z;
corresponds to G; while its empirical CDF corresponds to G;. The lemma follows from the DKW
inequality [Dvoretzky et al., 1956] and a union bound over i. O

The two following lemmas find use in the proof of Lemma 3.9.
Lemma B.5. Foralli € [k] and for all x € [1 - 41Wf 1} , we have U7 (x) > 3.
Proof. Let X; i F;. Then, by the union bound: P {Eli X, > 11— i} < %. O

Lemma B.6. We have, forall i € [k] and all T € [T],

VI € 6 2 (Ui(xry) — Ui(xg-1)) <

! ~A(T):1-i# 1{Zj=ix <Y < xe}
1—x ol n =1 (1_xrl) o ol
1 & 1 . N N
= = ]:21 a-v) U{Zj =i, x000 <Y <xpp} = Ui(xgy) — Ui(xgyq).

Summing the above inequality over I concludes the proof of the lower bound. Similarly, for the
upper bound, we get VI € ¢(7):

1 N N
'Az(,l) (Ui(xrp) — Ui(xg-1))

1 1
((1—xﬂ)_(1—yj)> 1{Zj =i, xp1 <Yj < X1}

—_
|
=

~

M=‘

VAN
S|~ I~ I
M= T
—

1{Z—ZXT11<Y xﬂ}

<(1 - xT,li(l - Yj))

(2(11—YJ)> 1{Z =1,%x)1 <Y< Xep} = % (Cli(xf,l) — ai(x"f,l—1>)'

Il
—

j

M:

<

~.
Il
iy

Again, re-arranging and summing over / concludes the proof. O
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B.4 Proof of Theorem 3.12

Proof. We combine this result with the same binary search from Subsection 2.3 to identify quantiles
of the functions F;. In particular, fix e > 0 and let

W={w, =v+a- f|a€]Nand'y—|—a - <1}uU{1}.

An identical argument from the one from the proof of Theorem 2.9 shows that for any € > 0, we
can use binary search to find Z;, such that

|Fj(2ja) — wa| < gfor allj € [k] and a € [|W]] (27)
4L ,
w.p. 1—— log exp { —€*yn1/192}

using C - 1y - k - log(4L/€) /e samples for a universal constant C (in particular, see the proof of
Theorem 2.9, set § = €1 = €/2, and use Lemma 3.11 for the pointwise guarantee in place of (5)).

Conditioning on this event, we can thus define the piecewise-constant functions F; for j € [k]
as

~

€
F](x) = Z 1 {X S [Zj,arzj,a+1)} : (’)/+a . E)
ac[|W]]

Now, consider any x € [p,1] and define a € IN such that x € [£;,,2;,.1], so that by construction
I?J(x) = W), Then:

Fi(x) > Fi(Zja) (monotonicity of CDF)
= Wjga41 + (F (Z]a) wj,a) + (wj,ﬂ - wj/ﬂ+1)
Z Wjgr1 —€/2—€/2 (definition of W and (27))
> A]( )—€ (definition of 1?])

Similarly, F;(x) < E(x) +e.
It remains to handle x € [p,Z;o]: note that by (strict) monotonicity of the I?j, we must have
1?]-_1( ) < p. Thus, if p < x < Zjp),

Fi(x) = F(p) = v = E(x), and Fi(x) < F(gp) <7+

Thus, |Fj(x) — I?](x)| < € over the entire interval [p, 1] with probability at least 1 — J, as long as

Ck log(k/€)log(L/€)?
€3y

7

for a universal constant C, completing the proof. O
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