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Abstract

We provide efficient estimation methods for first- and second-price auctions under indepen-

dent (asymmetric) private values and partial observability. Given a finite set of observations,

each comprising the identity of the winner and the price they paid in a sequence of identi-

cal auctions, we provide algorithms for non-parametrically estimating the bid distribution of

each bidder, as well as their value distributions under equilibrium assumptions. We provide

finite-sample estimation bounds which are uniform in that their error rates do not depend on

the bid/value distributions being estimated. Our estimation guarantees advance a body of

work in Econometrics wherein only identification results have been obtained (e.g. Athey and

Haile [2002, 2007]), unless the setting is symmetric (e.g. Morganti [2011], Menzel and Morganti

[2013]), parametric (e.g. Athey et al. [2011]), or all bids are observable (e.g. Guerre et al. [2000]).

Our guarantees also provide computationally and statistically effective alternatives to classi-

cal techniques from reliability theory [Meilijson, 1981]. Finally, our results are immediately

applicable to Dutch and English auctions.

1 Introduction

Estimating value and/or bid distributions from an observed sequence of auctions is a fundamen-

tal challenge in Econometrics with direct practical applications. For example, these fundamentals

allow one to analyze the performance of an auction and make counterfactual predictions about

alternatives. The difficulty of this problem depends on the format of the auctions and the struc-

ture of the observed information from each one, as well as how the fundamentals of bidders are

interrelated and vary across the sequence of observations.

In this paper, we study a basic version of the afore-described estimation challenge, wherein the

auction format and the bidder distributions stay fixed across observations, and the bidders have

independent private values (which are independently resampled across different observations).

The auction formats that we consider are first- and second-price auctions, as well as Dutch and

English auctions. What will make our problem challenging is that (i) our bidders are ex ante

asymmetric, drawing their independent private values from different distributions; (ii) we will
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make no parametric assumptions about these distributions; and (iii) we will only be observing the

identity of the winner and the price they paid but not the losing bids. Under this observational

model and our independent private values assumption above, we can focus our attention on first-

and second-price auctions, and our results automatically extend to Dutch and English auctions.

In the above settings, we give computationally and sample efficient methods for estimating all

agents’ bid distributions and (under equilibrium assumptions) value distributions:

◮ In the case of first-price auctions, we provide finite-sample estimation guarantees under

Lévy, Kolmogorov and Total Variation distance with minimal assumptions. Under (a condi-

tion weaker than) a lower bound on the density of the bid distributions (although we actu-

ally do not need existence of densities), Theorem 2.2 shows that the bid distributions can be

estimated to within ε in Lévy distance, using 1/εO(k) samples, where k is the number of bid-

ders. Theorem 2.6 shows that the exponential dependence on k is necessary, and Theorem 2.7

shows that Lévy distance cannot be strengthened to Kolmogorov distance. Sidestepping the

exponential sample dependence on k, strengthening the estimation distance, and removing

the density lower bound assumption, Theorem 2.3 shows that, assuming only continuity of

their cumulative functions, the bid distributions can be estimated to within ε in Kolmogorov

distance on their effective supports, i.e. the part of the support that is likely to be observed,

defined in Blum et al. [2015]. Finally, under Lipschitzness assumptions on the densities of

the bid distributions, Theorem 2.4 improves the latter to ε-error in Total Variation distance.

Our sample requirements for estimation over the effective supports of the bid distributions

under either Kolmogorov or TV distance are dramatically improved to logarithmic in the

number of bidders and benign in 1/ε. Finally, assuming that bidders use Bayesian Nash

equilibrium strategies, Theorems 2.20 and 2.15 show that bidders’ value distributions can

be estimated over their full and, respectively, effective supports with similar sample sizes as

those needed for the estimation of bid distributions.

All of our estimation algorithms run in polynomial time in their sample sizes, and all our

estimation error bounds are uniform in that they do not depend on the bid/value distri-

butions being estimated, unlike the instance-dependent rates that commonly arise from the

use of kernel density estimation methods. It is also important to note that we estimate the

value distributions in Lévy distance (in fact, in the stronger notion of Wasserstein distance)

and this is sufficient for the purposes of performing counter-factual predictions about the

revenue that would result from running alternative auctions [Brustle et al., 2020].

◮ In the case of second-price auctions, Theorem 3.3 establishes that bid distributions can be

estimated to within ε in Kolmogorov distance over their entire supports assuming upper

and lower bounds on their density functions. Again the sample complexity scales as 1/εO(k).

This result poses major technical challenges, requiring a computationally and statistically ef-

fective, fixed point computation alternative to Meilijson [1981]’s method. We again sidestep

the exponential dependence of the required sample size on k, by considering estimation over

the effective support of the distributions in a setting, similar to that proposed by Blum et al.

[2015] for first-price auctions, where we can insert bids to the auction or, equivalently, set a

reserve price (see discussion in Section 2.3). In this setting, Theorem 3.12 shows that bid dis-

tributions can be estimated to within ε in Kolmogorov distance over their effective supports,

using a sample size that is polynomial in both 1/ε and k. Similar to Theorem 2.4 estimation

2



in Kolmogorov distance can be turned to estimation in Total Variation distance under Lips-

chitzness of the densities. Of course, assuming that the bidders bid according to the truthful

bidding equilibrium, our estimation results for bid distributions automatically translate to

estimation results for value distributions.

To the best of our knowledge, our results are the first finite-sample estimation guarantees for

the general problem we consider. In particular:

• There is an extensive line of work on identification of bid and value distributions from com-

plete or partial observations of bids; see Athey and Haile [2007] for a survey. In our setting

of independent private values, Athey and Haile [2002] show that with infinite samples, bid

distributions are identifiable from the distribution of the identity of the winner and the price

they paid.

Identification results for bid and value distributions have been established in the presence of

correlated values, alternative auction formats, and unobserved heterogeneity, or unknown

numbers of bidders [Paarsch, 1992, Laffont and Vuong, 1993, Laffont et al., 1995, Donald

and Paarsch, 1996, Baldwin et al., 1997, Donald et al., 2003, Bajari and Ye, 2003, Haile, 2001,

Luo and Xiao, 2020, Haile et al., 2003, Mbakop, 2017, Hu et al., 2013]. In contrast, here we

focus on the IPV framework (albeit, in its more challenging asymmetric case) and standard

auction mechanisms (first-price, second-price, Dutch, and English auctions), and provide

finite-sample estimation results in these settings.

• On the estimation front, Morganti [2011] and Menzel and Morganti [2013] both provide es-

timators of bid distributions in first- and second-price auctions (in fact they provide estima-

tion using any order statistics of the bid distributions) under the restrictive assumption that

the bidders are symmetric. They obtain rates for estimation of the bid distributions over the

full support, which degrade exponentially with the number of bidders. In comparison, we

get similar rates for the significantly more challenging asymmetric setting, and also provide

drastically better estimation rates (with logarithmic dependence on the number of bidders)

on the effective supports of the distributions.

• In terms of non-parametric estimation of value distributions from bid distributions in first-

price auctions, Guerre et al. [2000] provide estimation algorithms which operate under the

restrictive assumption that the bidders are symmetric. Their estimation makes use of the ex-

plicit formula for the Bayesian Nash equilibrium in the symmetric case. Later work [Campo

et al., 2003, Bajari and Ye, 2003, Krasnokutskaya, 2011, Haile et al., 2003] extends these re-

sults to the more general asymmetric setting, where the Bayesian Nash equilibrium has no

closed-form expression; as such, these analyses are typically limited to the setting with only

two unique bidder types. Our algorithms operate in the latter (significantly more challeng-

ing) setting, with the additional challenges of (a) allowing each bidder to have their own

unique value distribution (b) only observing the winning bid, rather than all agents’ bids;

(c) not using higher-order differentiability assumptions used in prior work while also pro-

viding uniform convergence bounds (i.e., bounds not depending on the distributions being

estimated).

• In the computer science literature, there has been work on non-parametric estimation of bid

distributions in first-price auctions, under the stronger assumption that the econometrician
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can insert bids which do not influence the bidding behavior of the bidders Blum et al. [2015].

We compare to that setting and work in Section 2.3, explaining that our work obtains sub-

stantial improvements on their rates.

Besides the non-parametric identification work on auctions, discussed above, there has been

more extensive work on estimation and identification under parametric or semi-parametric as-

sumptions: see [Donald and Paarsch, 1996] and [Athey and Haile, 2006] for an overview. For

example, Athey et al. [2011] fit the parameters of Weibull distributions to observed maximum

bids in to estimate bid distributions in USFS timber auctions.

1.1 Preliminaries

The (asymmetric) independent private values model. In this work, we consider the asymmet-

ric independent private values (IPV) model, with the additional stipulation that not all bids are

observed. In this model, we observe a series of identical auctions between k agents (known k > 2):

in each auction, every agent i submits a bid Xi, sampled independently from a (fixed) distribution

with cumulative distribution function Fi. The sampled bids, together with the auction type, deter-

mine the winner Z of each auction (typically Z = arg maxi Xi) and a transaction price Y, i.e., what

the winner pays for the auctioned item. In this work, we will only observe Z and (sometimes) Y,

and rather than all bids Xi.

Two key differences between our setting and the typical IPV setup are (a) the aforementioned

partial observability; and (b) asymmetry—in particular, a typical assumption is that all agents

bid according to the same fixed distribution F, which simplifies both bid and value estimation

significantly (e.g., we could estimate a first-price auction by learning the CDF of the largest bid,

and then estimate the individual bid distributions as the k-th root).

Statistical distances. Throughout our work, we provide finite-sample convergence bounds in

terms of the Wasserstein, Lévy, and Kolmogorov distances, depending on the setting. The Wasser-

stein distance W between two distributions P, Q supported on [0, 1] is

W(P, Q) , inf
R

E(x,y)∼R [|x − y|] ,

where the infimum is over all joint distributions R with support [0, 1]2 such that the marginal of x

is equal to P and the marginal of y is equal to Q when (x, y) ∼ R. The Kolmogorov distance dK

between two distributions P and Q over an interval I is defined as

dK(P, Q) , sup
x∈I

|FP(x)− FQ(x)|,

where FP and FQ are the cumulative distribution functions of P and Q, respectively. Finally, the

Lévy distance DL between P and Q is given by

DL(P, Q) = min {ǫ : FP(x − ǫ)− ǫ 6 FQ(x) 6 FP(x + ǫ) + ǫ} .

Note that Lévy distance is a strictly weaker notion than Wasserstein distance and Kolmogorov

distance, in the sense that both DL(P, Q) 6 dK(P, Q) and DL(P, Q) 6
√
W(P, Q). Thus, all of our

results in Wasserstein and Kolmogorov distance also effectively bound Lévy distance.
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Finite-sample rates. We present our convergence results using order notation: in particular, the

constants omitted from all order notation in this paper are absolute constants that do not depend

on the distributions being estimated or any other parameters of the setting being considered. In

other words, our bounds are uniform. For example, whenever a bound in a theorem statement

reads as O( f (k, 1/ε, L)), where f is some function and k, ε, L are parameters of the setting, this

means that there is an absolute constant C such that for any setting conforming to the setting ex-

amined in this theorem we can replace O( f (k, 1/ε, L)) in the theorem statement by C · f (k, 1/ε, L).

Recall that Õ( f (·)) means that for some absolute constants C and k > 1, the bound can be replaced

by C f (·) logk f (·). Finally, in this work we present most of our bounds in terms of the number of

samples necessary to attain a specific learning error ε—these can be straightforwardly converted

to bounds on ε in terms of the number of samples n, providing estimation rates as n → ∞.

2 Estimation from First-price Auction Data

In this section we show how to estimate the bid distributions from a finite number of first-price

auction observations. We consider two regimes:

◮ In the full-support regime, our goal is to provide an estimation of the bid distributions in their

whole support [0, 1]. As shown in Theorem 2.2, in this regime we estimate the probability

distributions within ε in Wasserstein distance. The sample complexity here is ≅ (1/ε)k and

has exponential dependence on the number of the agents k. As we explain in Subsection 2.2,

this dependence on k is necessary for the full-support regime (due to the exponentially low

probability of observing winning bids near zero).

◮ In the effective-support regime, our goal is to provide an estimation of the bid distributions

only at the bid values that have probability at least λ to be observed as an outcome of the

first-price auction. As we show in Theorem 2.3, in this regime we avoid the exponential

dependence on k and we are able to get an algorithm that depends only polynomially in

ε and γ and only logarithmically in k. This is a doubly exponential improvement over the

full-support regime and an exponential improvement on the best known effective-support

result from Blum et al. [2015]. This result also provides the first algorithm with sublinear

sample complexity for this problem.

Our first step is to formally define the procedure from which the first-price auction data are

generated. The observation access that we assume is minimal in the sense that we only observe

the outcome of the auction; who wins and how much they pay.

Definition 2.1 (First-Price Auction Data). Let {Fi}k
i=1 be k cumulative distribution functions with

support [0, 1], i.e. Fi(x) = 0 ∀x < 0 and Fi(1) = 1. A sample (Y, Z) from a first-price auction with

bid distributions {Fi}k
i=1 is generated as follows:

1. first generate Xi ∼ Fi independently for all i ∈ [k],

2. observe the tuple (Y, Z) , (maxi∈[k] Xi, arg maxi∈[k] Xi).

A different access model explored in Blum et al. [2015] gives the econometrician control over

an additional agent that has the ability to bid arbitrarily, but only allows them to observe the

identity of the winner of each auction (not the transaction price). Using our result we can also

improve the result of Blum et al. [2015] under this model (see Subsection 2.3).
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2.1 Estimation of Bid Distributions

We are now ready to state our main results for the estimation of the bid distributions given sample

access to first-price auction data as defined in Definition 2.1. We start with our result for the full-

support regime.

Theorem 2.2 (First-Price Auctions – Full Support). Let {(Yi, Zi)}n
i=1 be n i.i.d. samples from the first-

price auction as per Definition 2.1. Assume that the cumulative distribution functions Fi are continuous

and satisfy |Fi(x)− Fi(y)| > λ|x − y| for all x, y ∈ [0, 1]. Then, there is a polynomial-time algorithm that

computes functions F̂i for i ∈ [k] such that

P
(
W(F̂i, Fi) 6 ε

)
> 1 − δ

for all i ∈ [k] assuming that n = Θ̃
((

2
λ·ε
)4k log(1/δ)

ε2

)
, where W is the Wasserstein distance.

As we show in Subsection 2.2, the sample complexity of Theorem 2.2 is almost optimal. Nev-

ertheless, as we already explained, the exponential dependence on the number of agents k can be

reduced to only logarithmic dependence if we only focus on the part of the support that is likely

to be observed. In this case, our estimation guarantee is also simpler: we estimate the cumulative

distribution functions with additive error ε.

Theorem 2.3 (First-Price Auctions – Effective Support). Let {(Yi, Zi)}n
i=1 be n i.i.d. samples from

the same first-price auction as per Definition 2.1 and assume that the cumulative distribution functions Fi

are continuous. Then, there exists a polynomial-time estimation algorithm, that computes the cumulative

distribution functions F̂i for i ∈ [k], such that for every p, γ ∈ {p, γ > 0 : P(Y,Z)∼P1
(Y 6 p) > γ}, and

every ε ∈ (0, γ/2],

P

(
max

x∈[p,1]

∣∣F̂i(x)− Fi(x)
∣∣ 6 ε

)
> 1 − δ

for all i ∈ [k] assuming that n = Θ̃
(
log(k/δ)/(γ4ε2)

)
.

Finally, we establish estimation of the corresponding probability density functions { fi}:

Theorem 2.4. Let {(Yi, Zi)}n
i=1 be n i.i.d. samples from the same first-price auction as per Definition 2.1

and assume the densities fi of Fi are well-defined and Lipschitz continuous, i.e.,

| fi(x)− fi(y)| 6 L|x − y| for all x, y ∈ [0, 1].

Then, there exists a polynomial-time estimation algorithm, that computes functions f̂i for i ∈ [k], with the

following guarantee; for every p, γ > 0 such that P(Y 6 p) > γ, and for every ε ∈ (0, γ/2] it holds that

P

(∫ 1

p

∣∣∣ f̂i(x)− fi(x)
∣∣∣dx 6 ε

)
> 1 − δ

for all i ∈ [k] assuming that n = Θ̃
(

L2 · log(k/δ)/(γ4 · ε4)
)
.

Before explaining the formal proofs of the above theorems we give some intuition behind our

estimation algorithm. This intuition is given in a simplified setting where: (1) we assume the pop-

ulation model where we have access to infinitely many samples from the first-price auction data

defined in Definition 2.1, and (2) the distributions are smoothed enough so that all the probability

density functions that are involved are well defined. In this simplified setting we have access to

the following distributions:
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⊲ Hi is the cumulative distribution function of Y conditioned on Z = i, for i ∈ [k] and

⊲ H is the cumulative distribution function of Y with no conditioning on Z.

If we assume that all the Hi’s have well-defined densities hi, then

hi(x) = fi(x) · ∏
j 6=i

Fj(x), H(x) = ∏
j∈[k]

Fj(x), and H(x) = ∑
j∈[k]

Hj(x).

Based on the above relations we can solve for the distribution F1 as follows

d

dx
log(Fi(x)) =

fi(x)

Fi(x)
=

hi(x)

H(x)
=⇒ Fi(x) = exp

(
−
∫ 1

x

hi(z)

H(z)
dz

)
.

This simple idea summarizes our approach in the population setting where infinite samples are

available. Moving to the finite sample case an important observation is that the aforementioned

expression of Fi can be also written as

Fi(x) = exp

(
−E(y,z)∼P1

[
1{z = i}

H(y)

∣∣∣∣ y > x

])
.

The above expression allows the expectation involved to be estimated with an empirical expec-

tation instead of an integral, assuming that a good estimation of H(z) is computed. Towards

designing our actual estimation algorithm and proving its exact sample complexity we face the

following additional technical difficulties:

1. in the above outline we assume that all the distributions are smooth enough so that all the

densities are well defined—in our main theorem this assumption is not necessary,

2. the usual estimation of H has an additive error, whereas in the above expression a multi-

plicative error guarantee is needed,

3. the term 1/H(z) that is crucial in our estimation is not numerically stable for z close to 0

where H(z) can also be very close to 0 as well.

2.1.1 Proof of Theorem 2.3

We start by considering the effective-support setting. Our first result will be an information theo-

retic result enabling identification of Fi with access to the function H and the measure Hi (without

requiring a density function).

Lemma 2.5. For all i ∈ [k] and all x ∈ (0, 1) such that Fi(x) > 0 and H(x) > 0,

Fi(x) = exp

(
−
∫ 1

x

1

H(y)
dHi

)
.

Proof. Using Lemma 3.1 from Norvaiša [2002] we have that

log(Fi(1))− log(Fi(x)) =
∫ 1

x

1

Fi(y)
dFi =

∫ 1

x

∏j 6=i Fj(y)

∏j∈[k] Fj(y)
dFi =

∫ 1

x

1

H(y)
dHi,

where the last equality follows from the continuity of Fi’s and the properties of Riemann-Stieltjes

integration. The lemma follows by observing that Fi(1) = 1.
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We now focus our attention on obtaining good estimates of the quantity within the exponential

on the right hand side in Lemma 2.5. We introduce the following notation:

Ĥ(x) ,
1

n

n

∑
j=1

1
{

Yj 6 x
}

Ĝi(x) ,
1

n

n

∑
j=1

1

Ĥ(Yj)
1
{

Yj > x and Zj = i
}

Based on the above definitions we can define our estimate for Fi as F̂i(x) = exp
(
−Ĝi(x)

)
.

Our next goal is to prove that F̂i is close to Fi for every value y ∈ [0, 1] such that H(y) > γ.

Now we establish concentration of Ĥ. By the DKW inequality Dvoretzky et al. [1956]:

max
x∈[0,1]

∣∣Ĥ(x)− H(x)
∣∣ 6 1

20
· γ2ε

with probability at least 1− δ/2 for our setting of n. Conditioning on the above event and observ-

ing that H(x) > γ for all x > p,

max
x∈[p,1]

∣∣1/H(x)− 1/Ĥ(x)
∣∣ 6 ε

10
. (1)

To establish concentration of Ĝi(x), we introduce another quantity G̃i, defined as follows:

G̃i(x) ,
1

n
·

n

∑
j=1

1

H(Yi)
1
{

Yj > x and Zj = i
}

.

We have from (1) that |Ĝi(x)− G̃i(x)| 6 ε
10 for all x ∈ [p, 1]. Thus, it suffices to establish concen-

tration of G̃ around G. We first prove concentration on a discrete set of points and interpolate to

the rest of the interval. Define Ui and Vi as:

Ui =
{

γ + i · ε

10
: i ∈ [N] ∪ {0} and γ + i · ε

10
6 1

}
∪ {1} and Vi = F−1

i (Ui).

and let V = ∪i∈[k]Vi. We have for all x ∈ V, i ∈ [k], by Hoeffding’s inequality that:

|G̃i(x)− Gi(x)| 6 ε

10
with probability at least 1 − δ/2. (2)

We now condition on the above event as well. By combining Eqs. (1) and (2), we get:

∀x ∈ V, i ∈ [k] : |Ĝi(x)− Gi(x)| 6 ε/5, and so for all x ∈ V, i ∈ [k], we have:

exp {−ε/5} · Fi(x) 6 F̂i(x) 6 exp {ε/5} · Fi(x).

We now extend from V to the rest of [p, 1]. Note that Ĝi(x) is a decreasing function of x. Hence, F̂i

is an increasing function of x. Now, let x ∈ (p, 1) \ V and i ∈ [k]. We must have xl , xh ∈ V with

xl < x 6 xh satisfying Fi(xh)− Fi(xl) 6 ε/10. We now get:

F̂i(x) 6 F̂i(xh) 6 exp {ε/5} · Fi(xh) 6 exp {ε/5} Fi(xl) + ε/8 6 exp {ε/5} Fi(x) + ε/8,

F̂i(x) > exp {−ε/5} Fi(xl) > exp {−ε/5} Fi(xh) + ε/10 > exp {−ε/5} Fi(x) + ε/10.

The above two inequalities and our condition on ε conclude the proof.
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2.1.2 Proof of Theorem 2.2

We now leverage our effective-support recovery result to recover bid distributions on their full

support (in Wasserstein distance). Under the “lower bound on density” assumption,

H(η) = ∏
j∈[k]

Fj(η) > (λ · η)k. (3)

Now, setting γ = (λ · η)k and using Theorem 2.3 we have that Θ̃
(

log(k/δ)
λk ·ηk ·η2

)
samples suffice to

find estimates F̂i such that the additive error between F̂i and Fi is at most η in the interval [η, 1].

For every i, the maximum possible mass in the interval [0, η] with respect to the measure Fi is 1.

Therefore, any two measures with support [0, η] mass at most 1 have a Wasserstein distance of

at most η. Also, in the subset [η, 1] of the support we have that since the longest distance in the

support is at most 1 and maxx∈[η,1]

∣∣F̂i(x)− Fi(x)
∣∣ 6 η we have that the Wasserstein distance of the

measures F̂i and Fi conditioned on the support [η, 1] is at most ε · 1. Thus,

W(F̂i, Fi) 6 2 · η.

Setting η = ε/2 the theorem follows.

2.1.3 Proof of Theorem 2.4

We are going to use the estimation F̂i from Theorem 2.3 together with the Lipschitzness of fi to

prove this theorem. Let h > 0 and ǫ0 > 0 be parameters that we will determine later. We define,

for every x ∈ [p, 1], an density estimate

f̂i(x) ,
1

h
(F̂i(x + h)− F̂i(x)),

where due to Theorem 2.3 we have |F̂i(x + h)− Fi(x + h)| 6 ε0 and |F̂i(x)− Fi(x)| 6 ε0 for n =

Θ̃
(

log(k/δ)
γ4ε2

)
samples. Then,

∫ 1

p

∣∣∣ f̂i(x)− fi(x)
∣∣∣ dx =

∫ 1

p

∣∣∣∣
1

h
(F̂i(x + h)− F̂i(x))− fi(x)

∣∣∣∣ dx

6
∫ 1

p

∣∣∣∣
1

h
(Fi(x + h)− Fi(x))− fi(x)

∣∣∣∣ dx + 2ε

=
∫ 1

p

∣∣∣∣
1

h

(∫ x+h

x
fi(z) dz

)
− fi(x)

∣∣∣∣ dx +
2ε

h

6
∫ 1

p

1

h

(∫ x+h

x
| fi(z)− fi(x)| dz

)
dx +

2ε

h

now due to the Lipschitzness of fi we have that
∫ 1

p

∣∣∣ f̂i(x)− fi(x)
∣∣∣ dx 6

∫ 1

p

1

h

(∫ x+h

x
L · |z − x| dz

)
dx +

2ε

h

=
∫ 1

p

L

h

(
(x + h)2

2
− x2

2
− h · x

)
dx +

2ε

h

=
∫ 1

p

L

h
· h2 dx + 2ε 6 L · h +

2ε

h
.

Therefore, if we choose h =
√

ε0/L and we also set ε = ε2
0/(9L) the theorem follows.
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2.2 Lower Bound for Full-Support Estimation

Here, we establish lower bounds proving the optimality of Theorem 2.2. We prove:

1. the exponential dependence on k incurred in Theorem 2.2 is necessary and

2. the distributions cannot be recovered in Kolmogorov distance in their whole support.

In both these cases, we will construct a pair of distributions { fi}k
i=1 and { f ′i }k

i=1 satisfying the

bounded density condition of Theorem 2.2 such that:

1. f1 and f ′1 have W( f1, f ′1) > Ω(ε) and dK( f1, f ′1) > 1/2 and

2. Fewer than Ω((λε)−(k−1)) fail to distinguish them with large probability.

The main intuition behind our construction is that learning the behavior of any of the densities

below ε requires observing Y 6 ε and this only happens with probability ε−k.

Theorem 2.6. Let k ∈ N, and let ε, λ ∈ (0, 1/2). Then, there exist two tuples of distributions D =

{ fi}k
i=1 and D′ = { f ′i }k

i=1 with the first price auction model (Definition 2.1) on D,D′ satisfies the density

bound condition from Theorem 2.2 such that for any estimator µ̂, we have:

max
(

P

{
W
(
µ̂({(Yi, Zi)}n

i=1),D
)
>

ε

8

}
, P

{
W
(

µ̂(
{
(Y′

i , Z′
i)
}n

i=1
),D′

)
>

ε

8

})
>

1

3

where (Yi, Zi), (Y
′
i , Z′

i) are drawn i.i.d from D and D′ respectively if n 6 1
10 · (λε)−(k−1).

Proof. Let D1 = { f1, . . . , fk} and D2 = { f ′1, . . . , f ′k} denote the two sets of distributions character-

izing our first price auction model (Definition 2.1). We will have fi = f ′i for all i > 1.

f ′i = fi = λ · Unif([0, 1]) + (1 − λ) · Unif([3/4, 1]) for all i > 1.

However, f1 and f ′1 will have large Wasserstein and Kolmogorov distance:

f1 = λ · Unif([0, 1]) + (1 − λ) · Unif([0, ε/4])

f ′1 = λ · Unif([0, 1]) + (1 − λ) · Unif([3ε/4, ε]).

Let (Y, Z) and (Y′, Z′) be distributed according to the first price auction model with respect to D1

and D2. We now define the events E and E′ on (Y, Z) and (Y′, Z′) as follows:

E = {Y ∈ (ε, 1]} and E′ = {Y′ ∈ (ε, 1]} =⇒ P {E} = P
{

E′} = 1 − (λε)k−1 (4)

By construction, (Y, Z) and (Y′, Z′) have the same distribution conditioned on E and E′.
Now, let W = {(Yi, Zi)}i∈[n] and W

′ = {(Yi, Zi)}n
i=1 be collections of n i.i.d samples from D

and D′ respectively, and let µ̂ denote any estimator of the first price auction model. We show that

µ̂ has large error on at least one of D or D′. Letting F (respectively, F′) denote the event that E

(respectively, E′) holds for all of the (Yi, Zi) (respectively, (Y′
i , Z′

i)), we have:

P (W(µ̂(W),D) 6 ε/8) = P(F) · P (W(µ̂(W),D) 6 ε/8|F) + P(F̄) · P (W(µ̂(W),D) 6 ε/8|F̄) .

Now, if n 6 1
10 (λε)−(k−1), we have from Eq. (4) and a union bound that P(F) > 9/10. Furthermore,

note that conditioned on F and F′, W and W
′ have the same distribution and W( f1, f ′1) > ε/4.

10



Assuming the probability in the above equation is greater than 2/3, we may re-arrange the above

equation as follows:

2

3
6 P(F)P

{
W(µ̂(W),D) 6

ε

8

∣∣∣∣F
}
+

1

10
6 P(F′)P

{
W(µ̂(W ′),D′) >

ε

8

∣∣∣∣F
′
}
+

1

10
.

By re-arranging the above equation, we have that either:

P

{
W(µ̂(W),D) 6

ε

8

}
6

2

3
, or P

{
W(µ̂(W ′),D′) 6

ε

8

}
6

2

3

concluding the proof of the theorem.

Note that the probabilities 1/3 chosen in the above theorem is not a substantial restriction as

any algorithm successfully distinguishing between D and D′ with probability bounded away from
1/2 can be boosted to arbitrarily high probability by simple repetition. As a simple consequence of

this construction, we can rule out estimation in Kolmogorov distance:

Theorem 2.7. Let n ∈ N and µ̂ be an estimator for the First-Price-Auction model. Then, for all δ > 0,

there exists a First-Price-Auction model characterized by D = { fi}k
i=1 satisfying the bounded density

condition of Theorem 2.2 satisfying:

P

(
dK(µ̂(W),D) 6

1

4

)
6

1

2
+ δ.

where W = {(Yi, Zi)}n
i=1 are drawn i.i.d from the first price auction model on D.

Proof. We will prove the lemma via contradiction. Let n, µ̂ be such that the there exists δ > 0 such

that for all First-Price-Auction models, D, satisfying the bounded density condition:

P

(
dK(µ̂(W),D) 6

1

4

)
>

1

2
+ δ.

Note that by repeating the experiment Ω(1/δ2) times, we may boost the success probability to

9/10 by taking the pointwise median of the resulting estimates. However, from our construction

in the proof of Theorem 2.6, we have by picking ε small enough in the construction that there

exists a distribution, D such that:

P

{
dK (µ̂(W),D) >

1

4

}
>

1

3

as all the distributions we construct have Kolmogorov distance greater than 1/2 between them.

This yields the contradiction, proving the theorem.

2.3 Estimation from Partial Observations

In this section we show how our results in the previous sections can be translated to the partial

observation model introduced by Blum et al. [2015] defined below.

Definition 2.8 (Partial Observation Data). Let {Fi}k
i=1 be k cumulative distribution functions with

support [0, 1], i.e. Fi(x) = 0 ∀x < 0 and Fi(1) = 1. A sample (r, Y, Z) from a first-price auction

with bid distributions {Fi}k
i=1 is generated as follows:

11



1. we, the observer, pick a price r ∈ [0, 1], and let Xk+1 = r

2. generate Xi ∼ Fi independently for all i ∈ [k],

3. observe a winner Z = arg maxi∈[k+1] Xi.

At first glance, it seems like the access to partial observation data is more restrictive than the

access to the first-price auction data that we defined in Definition 2.1. Nevertheless, we show that

partial observations suffice to run the same estimation used in Subsection 2.1.

Theorem 2.9 (First-Price Auctions – Partial Observations). Let {Zi}n
i=1 be n i.i.d. partially observed

samples from the same first-price auction as per Definition 2.8 and assume that the cumulative distribution

functions Fi are continuous and admit Lipschitz-continuous densities fi with constant L. Then, given

p, γ ∈ [0, 1] such that P(Xi∈[k] 6 p) > γ, there exists a polynomial-time estimation algorithm, that

computes the cumulative distribution functions F̂i for i ∈ [k], so that for every ε ∈ (0, γ/2] it holds that

P

(
max

x∈[p,1]

∣∣F̂i(x)− Fi(x)
∣∣ 6 ε

)
> 1 − δ

for all i ∈ [k] assuming that n = Θ
(

k
γ6ǫ5 log

(
k

γ2ǫα

)
log
(

L
γ2ǫ

))

Proof. Note that under the partial observation model, we can estimate P(Y > x) for any fixed x

by setting the reserve price to x (i.e., bidding x) and counting the number of times that the planted

bid wins the auction. More precisely, we can define

Ĥ(x) = 1 − 1

n1

n1

∑
i=1

1 {Zi = k + 1} .

We can similarly define, for any given agent i, an estimator for the probability that the agent

wins with price less than or equal to x:

Ĥi(x) ,
1

n2

n2

∑
j=1

1
{

Zj = i at reserve price 0
}
− 1

n2

n2

∑
j=1

1
{

Zj = i at reserve price x
}

.

By construction Ĥi → Hi and Ĥ → H where Hi and H are as defined earlier. Similarly to our

strategy in the proof of Theorem 2.3, let

U = {γ + i · δ : i ∈ N ∪ {0} and γ + i · δ 6 1} ∪ {1} and V = H−1(U) and W = H−1
i (U)

For convenience, define N = |U| 6 δ−1, and recall that k is the number of agents in the auction.

Our first goal is to obtain a set of estimates v̂j ≈ vj for the quantiles of H and another set ŵj ≈ wj

for the quantiles of each Hi. To accomplish this, we will run, for each uj ∈ U, T iterations of binary

search between 0 and 1. In particular, we initialize v̂
(0)
j = 1 then, for each successive iteration t, a

Hoeffding bound shows that

P

(∣∣∣Ĥ(v̂
(t)
j )− H(v̂

(t)
j )
∣∣∣ > ǫ1/2

)
< 2 exp

{
−2 (ǫ1/2)2 n

}
. (5)

P

(∣∣∣Ĥi(ŵ
(t)
j )− Hi(ŵ

(t)
j )
∣∣∣ > ǫ1/2

)
< 2 exp

{
− (ǫ1/2)2 n/2

}
. (6)

We condition on the above events by taking a union bound over all agents, all search steps, and

all points ui ∈ U. Now, for each iteration t of the binary search:
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1. If |Ĥ(v̂
(t)
i )− ut| 6 ǫ1/2, then |H(v̂

(t)
i )− ut| 6 ǫ1, so we terminate and set v̂i = v̂

(t)
i ,

2. otherwise if Ĥ(v̂
(t)
i )− ut > ǫ1/2 then H(v̂

(t)
i ) > ut and we search the upper interval,

3. otherwise Ĥ(v̂
(t)
i )− ut < −ǫ1/2 and so H(v̂

(t)
i ) < ut and we search the lower interval.

We perform an analogous process to find the ŵj. This ensures the correctness of the binary search,

and setting T = log(2L/ǫ1), where L is a Lipschitz constant of H and all Hi, guarantees that after

performing this search for each ui, we will find V̂ and Ŵ such that

|H(v̂j)− uj| 6 ǫ1 for all j ∈ [|U|], and (7)

|Hi(ŵj)− uj| 6 ǫ1 for all j ∈ [|U|] and i ∈ [k] (8)

w.p. 1 − 2TN exp
{
−2(ǫ1/2)2

}
− 2kTN exp

{
−(ǫ1/2)2/2

}

In order to define our approximation of Gi, we will consider the list of indices X = V ∪Wi, i.e., the

union of the estimated quantiles of H and Hi. Using Hoeffding’s inequality,

|H(xj)− Ĥ(xj)| 6 β for all j ∈ [|X|], and

|Hi(xj)− Ĥi(xj)| 6 β for all j ∈ [|X|], and

w.p. 1 − 4kN exp
{

2nβ2
}
> 1 − 4k

δ
exp

{
2nβ2

}

We further condition on the above and define an estimate of Gi(xj) =
∫ 1

xj

1
H(z)

dHi(z),

Ĝi(xj) =
|X|−1

∑
s=j

(
Ĥi(xs+1)− Ĥi(xs)

)
/Ĥ(xs).

Using the mean value theorem (see the Appendix A.1 for more detail),

|Gi(v̂t)− Ĝi(v̂t)| 6
2

γ
·
|X|
∑
s=1

|Hi(xs)− Ĥi(xs)|+ max
s∈[|X|]

∣∣∣∣
1

H(xs+1)
− 1

Ĥ(xs)

∣∣∣∣

6
2|X|β

γ
+

δ + 2 · ǫ1 + β

γ2

We now extend our approximation from the set of points {xi} to the entire interval [ρ, 1]. Note

that for any x in this interval, there exists an xh, xh+1 ∈ X such that x ∈ (xh, xh+1]. Furthermore,

both Gi and Ĝi are monotonic in x by construction, and

|Gi(xh+1)− Gi(xh)| =
∣∣∣∣
∫ xh+1

xh

1

H(z)
dHi

∣∣∣∣ 6
1

γ
· (δ + 2ǫ1),

since the xi are at least as close as the quantiles of Hi, while 1
H(z)

6 1
γ by assumption. Using this

inequality and the monotonicity of Gi yields:

Gi(x) > Gi(xh) > Ĝi(xh+1)−
1

γ
(δ + 2ǫ1)−

2|X|βγ + δ + 2ǫ1 + β

γ2

> Ĝi(xh+1)−
(2|X|γ + 1)β + (γ + 1)(δ + 2ǫ1)

γ2
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> Ĝi(x)− 4(k + 1)γβ/δ + 2δ + 4ǫ1

γ2

Analogously, Gi(x) 6 Ĝi(x) +
4(k + 1)γβ/δ + 2δ + 4ǫ1

γ2

Now, set: δ = γ2ǫ
6 , ǫ1 = γ2ǫ

24 , and β = γǫ2

24(k+1)
, so that |Ĝi(x)− Gi(x)| 6 ǫ

2 with probability

1 − 12

γ2ǫ
log

(
48L

γ2ǫ

)
exp

{
−γ4ǫ2

1152
n

}
− 12k

γ2ǫ
log

(
48L

γ2ǫ

)
exp

{
−γ4ǫ2

4608
n

}
− 24k

γ2ǫ
exp

{
− γ2ǫ4

288(k + 1)2
n

}
.

Thus, setting

n =
4608(k + 1)2

γ4ǫ4
log

(
3

α

24k

γ2ǫ
log

(
48L

γ2ǫ

))

makes this probability 1 − α. Now, the total number of samples required for this approach is

O(N · k · T · n), concluding the proof.

Remark 2.10 (Inserting bids may change equilibria). As we highlighted above, using access to the

partial observation data we can estimate the distributions Hi to within ǫ error and thus apply a

similar algorithm to the ordinary first-price setting. Observe, however, that by inserting arbitrary

bids to get good estimates of the functions Fi, the econometrician can affect the bidding strategy

of the agents and thus interfere with the equilibrium point of the first-price auction. This is not

true for our model in Definition 2.1, where the econometrician is a passive observer (in particular,

observations do not interfere with the equilibrium of the agents) and hence the bid distributions

can lead to an estimation of the value distributions as well (as we show in Subsection 2.4).

2.4 Estimation of Value Distributions

Theorems 2.2, 2.3, and 2.4 establish recovery results for the bid distribution of each agent. In a first-

price auction at (Bayes-Nash) equilibrium, however, these bid distributions do not correspond to

agents’ value distributions. Instead, at equilibrium, each agent draws a value vi ∼ Gi(·) and bids

the best responses to other agents, i.e.,

βi(vi) = arg max
b

ui(b; vi) := arg max
b

(vi − b)∏
j 6=i

Fi(b). (9)

As discussed in the introduction, in our asymmetric IPV setting, we (a) cannot write an explicit

form for the optimal bid for a given value; and (b) cannot derive smoothness results for the bid

distribution from smoothness assumptions on the value distribution. In fact, a unique Bayes-Nash

equilibrium is not even guaranteed to exist.

Approach. Lebrun [2006] provides the following characterization of Bayes-Nash equilibria for

asymmetric first-price auctions, and shows that such equilibria exist and are unique under under

some (relatively mild) assumptions:

Lemma 2.11 (Lebrun [2006]). Suppose the agents’ values are distributed according to the right-continuous

cumulative distribution functions Gi(·) with support [0, 1] and whose derivatives (i.e., the value density

functions) gi(·) are locally bounded away from zero. Then, a set of strategies (bid functions) αi(·) : [0, 1] →
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[0, ∞) is a Bayesian equilibrium if and only if there exists an η ∈ [0, 1] such that the inverses αi(·) = β−1
i (·)

exist, are strictly increasing, and form a solution over [0, η] of the following system of differential equations:

d

db
log Gi(αi(b)) =

1

n − 1

(
−(n − 2)

αi(b)− b
+ ∑

j 6=i

1

αj(b)− b

)
, αi(0) = 0, αi(η) = 1. (10)

If bidders are not permitted to bid above their values, and if one of the following two conditions are met, then

the set of strategies βi(·) represents a unique equilibrium:

(i) The value distributions have an atom at zero, i.e., Gi(0) > 0,

(ii) There exists δ > 0 such that the cumulative density function of the i-th agent’s value is strictly

log-concave over (0, δ) for all i.

Corollary 2.12. Rearranging Equation (10) from Lemma 2.11 yields

∑
j 6=i

d

db
log Gj(αj(b)) =

1

αi(b)− b
, and in turn ∑

j 6=i

f j(b)

Fj(b)
=

1

αi(b)− b
. (11)

Since Lemma 2.11 guarantees that the inverse bidding strategies are strictly increasing at equi-

librium, the inverse mapping theorem dictates that Gi(v) = Fi(βi(v)). If the equilibrium strategies

βi(·) were known, we could apply our results for the bid distributions to estimate Gi(v) directly.

In our setting, however, we do not have access to the strategies βi(·)—in fact, a general closed

form does not exist for asymmetric auctions.

Instead, we will use the characterization given by Equation (9) of the equilibrium bid as the

best response to other bidders. In particular, since we have accurate estimates for each Fi(·), we

can define the following empirical versions of each quantity introduced so far, including Ĝi, an

estimate for the cumulative distribution functions of each agent’s value:

ûi(b; vi) = (vi − b) ∏
j 6=i

F̂j(b), β̂i(v) = arg max
b

ûi(b; vi), Ĝi(v) = F̂i(β̂i(v)). (12)

Turning this into a formal argument requires tackling the following technical challenges:

1. Approximating the utility function via ûi(·; vi) and efficiently maximizing the estimated util-

ity function to find the optimal bid.

2. Showing that the maximizer of the ûi(·, vi) is close to that of the true utility.

3. Bounding the combined error incurred from our empirical approximations.

We will start by tackling the above challenges in the effective-support regime. The following

characterizes the setup as well as the additional assumptions used to estimate the value distribu-

tion:

Assumption 2.13 (Value Estimation). We assume the preconditions of Lemma 2.11, as well as an

upper bound on the density of the value distributions, i.e., gi(b) 6 ζ for all i ∈ [k].

Definition 2.14 (Effective Support). In the effective-support setting, we are given (p, γ) ∈ [0, 1]

such that ∏i∈[k] Fi(p) > γ. This is identical to the effective-support setting for bid estimation, with

the addition that p is pre-defined, since it is part of the estimation algorithm.
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We are now prepared to tackle recovery of the valuation distribution in the effective-support

regime. Our main result is captured in Theorem 2.15 below. After proving the result, we will

show how it straightforwardly extends to full-support estimation, in a similar manner to our bid

estimation results.

Theorem 2.15 (Estimation of Value Distributions – Effective Support). Let {(Yi, Zi)}n
i=1 be n i.i.d.

samples from the same first-price auction as per Definition 2.1. Under the setup of Definition 2.14, there

exists a polynomial-time estimation algorithm that computes cumulative distribution functions Ĝi(·) for

i ∈ [k] with the following guarantee:

sup
v∈[p,1]

∣∣Ĝi(v)− Gi(v)
∣∣ 6 ǫ if n = Θ̃

(
k2ζ2L6 log(1/δ)

γ10ǫ6

)
and Fi is L-Lipschitz

DL

(
Ĝi · 1[p,1], Gi · 1[p,1]

)
6 ǫ if n = Θ̃

(
k2ζ2 log(1/δ)

γ16ǫ12

)

for all i ∈ [k], where DL(·, ·) is distance in the Lévy metric.

Remark 2.16 (Testing Lipschitzness). The first guarantee given by Theorem 2.15 depends on the

(global) Lipschitzness of the bid CDFs Fi. While efficiently testing global Lipschitzness of Fi from

samples is impossible, if we have a specific ǫ0 > 0 in mind, we can instead test

L̂ = max
|x−y|=ǫ0

1

ǫ0

(∣∣∣F̂i(x)− F̂i(y)
∣∣∣+ 2ǫ

)
.

This maximization can be done efficiently in n steps, since F̂i is piecewise constant. Since we

condition on accurate bid CDF estimation, we have that for any x and y,
∣∣∣F̂i(x)− F̂i(y)

∣∣∣ > |Fi(x)− Fi(y)| − 2ǫ,

and so L̂ > max|x−y|=ǫ0

1
ǫ0
|Fi(x)− Fi(y)|, and so we can use L̂ in place of L in the theorem.

Proof of Theorem 2.15. In this effective-support setup, Theorem 2.3 guarantees that with probability

1 − δ, we can learn the bid CDFs on the interval [βi(ρ), 1] up to additive error ǫ0, for any ǫ0 > 0,

in n = Θ̃
(

log(k/δ)

γ4ǫ2
0

)
queries. We thus assume that we have CDF estimates F̂i(·) that are within ǫ0

of the corresponding true CDFs in the effective support.

Our point of start is to show that we can estimate the approximate utility function efficiently.

For each agent i, we can relabel each observed data point (Y, Z) as (Y, 1Z=i) and run our estimation

procedure on the corresponding two-agent auction to get piecewise-constant ǫ0-approximations

of ∏j 6=i Fj(b) for all i ∈ [k]. Since vi, b ∈ [0, 1], we can condition on the event that ûi(·, vi) is an

ǫ0-approximate estimate of the true utility function.

Now, the form of our estimate for ∏j 6=i Fj(b) is piecewise constant (with n pieces, where n is

the sample complexity of Theorem 2.3) and monotonically increasing in b. Meanwhile, (vi − b) is

strictly decreasing in b along any interval. We can thus exactly maximize ûi by evaluating it at n

locations (i.e., the beginning of each piecewise-constant interval).

Next, define b∗ and b̂ to be the maximizer of ui(·; vi) and ûi(·; vi) respectively over the interval

[p, 1]. Since we have an ǫ0-approximation of utility within this interval,
∣∣∣ui(b

∗; vi)− ui(b̂; vi)
∣∣∣ 6 2ǫ0. (13)
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Our next goal is to translate this proximity in utility-space to proximity in parameter-space,

i.e., to show that b∗ ≈ b̂. To do so, we use the derivative of the utility function with respect to the

bid, which is given by the following result:

Lemma 2.17 (Derivative of utility function). Fix any vi ∈ [0, 1], and let b∗ = βi(vi) be the equilibrium

bid for the i-th agent corresponding to value vi. Let ui(·; vi) denote the utility function as defined in (9).

Then,

d

db
ui(b; v) = (αi(b

∗)− αi(b))∑
j 6=i

f j(b)

Fj(b)
∏
j 6=i

Fj(b).

Proof. Recalling the definition of the utility function from (9),

ui(b; v) = (v − b) · ∏
j 6=i

Fj(b)

d

db
ui(b; v) = −∏

j 6=i

Fj(b) + (v − b)∑
j 6=i

f j(b) ∏
k 6=j,i

Fk(b)

=

(
(v − αi(b))∑

j 6=i

f j(b)

Fj(b)
+ (αi(b)− b)∑

j 6=i

f j(b)

Fj(b)
− 1

)

∏
j 6=i

Fj(b).

Observing that vi = αi(b
∗) and using Corollary 2.12 concludes the proof.

Now, returning to (13),

2ǫ0 >

∣∣∣∣∣

∫ b∗

b̂
(αi(b

∗)− αi(x)) · 1

αi(x)− x
· ∏

j 6=i

Fj(x) dx

∣∣∣∣∣. (Corollary 2.12) (14)

In order to bound |b∗ − b̂|, we need the following lower bound on the derivative α′
i(x):

Lemma 2.18. Under the conditions of Assumption 2.13, for all b ∈ [ρ, 1],

d

db
log Gi(αi(b)) > L(b) where L(b) :=

αi(b)− b

(k − 1)2 · ζ
.

We defer the proof of Lemma 2.18 to the Online Appendix (the proof is nearly identical to that

of Lemma A-1 in [Lebrun, 2006], with the exception that we keep better track of constants to get a

non-zero lower bound), and state the corollary:

Corollary 2.19. Under the conditions of Lemma 2.18,

α′
i(b) =

γ

ζ
·
(

d

db
log Gi(αi(b))

)
>

γ

(k − 1)2 · ζ2
· (αi(b)− b).

Now, let b̄ = (b̂ + b∗)/2. By positivity of the integrand in (14),

2ǫ0 >

∣∣∣∣∣

∫ b̂

b̄

(
αi(x)− αi(b̄)

)
· 1

αi(x)− x
· ∏

j 6=i

Fj(x) dx

∣∣∣∣∣.
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Using the intermediate value theorem, there exists z ∈ [min(x, b̄), max(x, b̄)] so that

2ǫ0 >

∣∣∣∣∣

∫ b̂

b̄

(
x − b̄

)
α′

i(z)

αi(x)− x
· ∏

j 6=i

Fj(x) dx

∣∣∣∣∣ >
∫ b̂

b̄

γ|x − b̄|
(k − 1)2 · ζ2

· αi(z)− z

αi(x)− x
· ∏

j 6=i

Fj(x) dx.

Using our effective support definition and bid optimality,

(αi(z)− z) · ∏
j 6=i

Fj(z) > (αi(z)− p) · γ > (z − p) · γ > (∆/2) · γ,

where ∆ = |b̂ − b∗|. Thus, since αi(x)− x 6 1,

αi(z)− z

αi(x)− x
· ∏

j 6=i

Fj(x) > (∆/2) · γ ·
(

∏
j 6=i

Fj(x)/ ∏
j 6=i

Fj(z)

)
> (∆/2) · γ2

Returning to the integral,

2ǫ0 >
∆γ3

2(k − 1)2 · ζ2
·
∫ b̂

b̄
|x − b̄| dx >

∆γ3

2(k − 1)2 · ζ2
·
(

∆2

8

)
. (15)

Thus, for any ǫ1 > 0, setting ǫ0 =
ǫ3

1Γ3

32k2ζ2 implies that ∆ < ǫ1.

We are now ready to bound the error in our estimate of the valuation distribution. We consider

two cases: first, when the bid CDFs Fi(·) satisfy a Lipschitz-like constraint; second, a more general

setting where we only require a lower bound on the valuation densities gi(·). In the first case, we

learn the valuation distributions in Kolmogorov distance over the interval [ρ, 1], whereas in the

second case we learn in 1-Wasserstein distance.

In both cases, our estimate will be given by:

Ĝi(v) := 1 {v ∈ [p, 1]} · F̂i(b̂(v))

Case 1: Lipschitz bid CDF In the first case, we assume that the cumulative distribution function

of each bid distribution is L-Lipschitz continuous (note that any bid distribution with density

bounded by L satisfies this). Then, for any v ∈ [p, 1],
∣∣∣Gi(v)− F̂i(b̂(v))

∣∣∣ 6 |Gi(v)− Fi(b(v))|+
∣∣∣Fi(b̂(v))− Fi(b(v))

∣∣∣+ ǫ0 6 L · ǫ1 + ǫ0 < 2Lǫ1,

where we recall that Ĝi(v) := F̂i(b̂(v)). Thus, we define ǫ1 = ǫ/(2L) so that

sup
v∈[p,1]

∣∣∣Gi(v)− Ĝi(v)
∣∣∣ 6 ǫ using n = Θ̃

(
k2ζ2 log(1/δ)

γ10ǫ6
1

)
= Θ̃

(
k2ζ2L6 log(1/δ)

γ10ǫ6

)

samples, which concludes the proof.

Case 2: General case. We can also obtain a convergence guarantee that is independent of the

Lipschitz continuity of Fi by considering a slightly smaller interval [p + d, 1] for some d > 0. In

this setting, the “best response” property of bids implies that, for any b ∈ [p + d, 1],

(αi(b)− b) · ∏
j 6=i

Fj(b) > (αi(b)− p) · γ > (b − p) · γ > d · γ.
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Thus from Corollary 2.12,

∑
j 6=i

f j(b)

Fj(b)
=

1

αi(b)− b
6

1

d · γ
=⇒ f j(b) 6

1

d · γ
for all j ∈ [k].

Using the same method as Case I (with L = 1/(d · γ)), we can guarantee that for d > 0,

sup
v∈[p+d,1]

∣∣∣Ĝi(v)− Gi(v)
∣∣∣ < ǫ, as long as n ∈ Θ̃

(
k2ζ2 log(1/δ)

γ16d6ǫ6

)
. (16)

Setting d = ǫ concludes the proof of the Theorem.

As a consequence of Theorem 2.15, we can accurately estimate valuation distributions in Wasser-

stein distance when the bid densities are lower bounded:

Theorem 2.20 (Estimation of Value Distributions – Full Support). Let {(Yi, Zi)}n
i=1 be n i.i.d. samples

from the same first-price auction as per Definition 2.1. Under the setup of Definition 2.14 and assuming

|Fi(x) − Fi(y)| > λ|x − y| for all x, y ∈ [0, 1], there exists a polynomial-time estimation algorithm that

computes cumulative distribution functions Ĝi(·) for i ∈ [k] with the following guarantee for all i ∈ [k]:

W
(
Ĝi(v), Gi(v)

)
6 ǫ if n = Θ̃

((
1024

λ10ǫ10

)k

ζ2L6 log(1/δ)

)
and Fi is L-Lipschitz,

W
(
Ĝi(v), Gi(v)

)
6 ǫ if n = Θ̃

((
20482 · (11/8)16 · (11/3)6

λ16ǫ22

)k

ζ2 log(1/δ)

)
otherwise.

Proof. We proceed identically to the proof of Theorem 2.2. In particular, for any η > 0,

H(η) = ∏
j∈[k]

Fj(η) > (λ · η)k.

Set γ = (λ · η)k and we use the first case of theorem Theorem 2.15, such that with

Θ̃

(
k2ζ2L6 log(1/δ)

λ10k · η10k · η6

)

samples we can find estimates Ĝi for all i such that the additive error between Ĝi and Gi is at most

η in the interval [η, 1]. From here an identical argument to that of the proof of Theorem 2.2 (i.e.,

Subsection 2.1.2) shows that W(Ĝi, Gi) 6 2 · η, after which setting η = ε/2 the first case in the

theorem follows. For the second case, we use (16) with p = 8η/11, d = 3η/11, γ = (8λη/11)k,

and η = ǫ/2.

3 Estimation from Second-price Auction Data

In this section, we will state and prove our main result for the estimation of bid distributions from

second-price auction observations. Unlike the first-price-auction setting, our main result in this

setting involves estimating the bid distributions under the full-support regime where we aim to

obtain distributions approximating Fi up to small error in Kolmogorov distance. As in the first-

price-setting, this incurs an exponential dependence on k. We leave the problem of estimation in
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the effective-support regime as an open problem for future work. (We do show in Subsection 3.4 that

if the econometrician can insert bids of their own, then even just the identity of the winner and

an indicator of whether the reserve price was paid suffice to estimate bid distributions over the

effective support [Theorem 3.12], using a very simple algorithm.) The identification of the cumu-

lative density functions, Fi, given access to the distribution of (Y, W) was previously established in

Athey and Haile [2002] building on techniques from reliability theory Meilijson [1981]. However,

this is to our knowledge, the first result establishing non-parametric finite-sample recovery from

observations of second-price-auction data. We now formally introduce the observation model

generating our data:

Definition 3.1. Let { fi}k
i=1 be k probability density functions on [0, 1]. An observation from the

second-price selection model on { fi}k
i=1 is defined as follows:

1. First generate Xi ∼ fi independently for i ∈ [k]

2. Define W := arg maxi∈[k] Xi

3. Observe the tuple (Y, W) where Y := maxi∈[k]\{W} Xi.

We now state the assumptions on Fi required for our guarantees to hold:

Assumption 3.2. The bid distributions Fi each admit densities fi(·) satisfying α 6 fi 6 η for some

constants α, η > 0.

Note that in comparison to Theorem 2.2, we require an upper bound on the densities, fi, in ad-

dition to the lower bound property used previously. Our main result in this setting is the following

theorem where we establish efficient, finite sample recovery guarantees from second-price-auction

data satisfying Assumption 3.2:

Theorem 3.3. Let ε ∈ (0, 1) and X = {(Yi, Wi)}n
i=1 denote n i.i.d observations from a Second-Price-

Selection model (Definition 3.1) satisfying Assumption 3.2. Then, it is possible to learn in polynomial time

cumulative distribution functions F̂i satisfying:

sup
x∈[0,1]

|F̂i(x)− Fi(x)| 6 ε with probability at least 1 − ρ

as long as ε 6 e−C1
η,αk and n >

(
1
ε

)C2
η,αk

log 1/ρ for some absolute constants C1
η,α, C2

η,α.

In the rest of the section, we prove Theorem 3.3. In Subsection 3.1, we present a high level

overview of our proof strategy where analogously to the first-price case, we derive a differential

equation relating the densities, fi to the distribution of (Y, W) (Definition 3.1) leading to a fixed

point equation satisfied by the cumulative functions {Fi}. Subsequently, in Subsection 3.2, we

present a discretized version of the fixed point iteration that we analyze to prove our theorem. We

carry out the formal analysis of our in Subsection 3.3.

3.1 Approach

We now provide a high-level overview of our proof of Theorem 3.3. For clarity, we will first outline

the proof in the idealized population (infinite-sample) setting. In the next section, we formalize

this outline and establish finite-sample guarantees.
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We start by deriving a fixed point equation which plays a central part in our analysis. Note

that in the population setting, we have access to the functions

Gi(x) = P (W = i, Y 6 x) .

For each Gi(x), we can use the independence of the bid distributions Fi and some simple calcula-

tions to define a valid corresponding density:

gi(x) = (1 − Fi(x))∑
j 6=i

f j(x) ∏
l 6=i,j

Fl(x).

Rearranging and taking advantage of the product rule allows us to simplify this as

∏
j 6=i

Fj(x) =
∫ x

0

1

1 − Fi(z)
gi(z) dz.

Re-parameterizing the above by letting U∗
i = ∏j 6=i Fi, we obtain the fixed point equation:

U∗
i (x) =

∫ x

0

1

1 − Hi(U∗(z))
gi(z) dz where Hi(v) =

(

∏
j 6=i

v
1/(k−1)
j

)
/v

(k−2)/(k−1)
i

We divide the domain into smaller intervals and approximate F̃i by a piecewise-constant func-

tion on each interval. The Banach fixed-point theorem is crucial to our analysis:

Theorem 3.4 (Banach Fixed-Point Theorem). Let (X, d) be a complete metric space with a contrac-

tion mapping T : X → X, i.e., suppose there exists a metric d on X and a constant θ > 0 such that

d(T(x), T(y)) 6 (1 − θ) · d(x, y) for all x, y ∈ X. Then T admits a unique fixed-point x∗ ∈ X. Further-

more, x∗ can be found: start with an arbitrary element x0 ∈ X and define a sequence {xn} by xn = T(xk−1)

for n > 1. Then xn → x∗.

Unfortunately, it turns out that the fixed point iteration just described is not contractive with

respect to its input—instead, we proceed iteratively, starting with the origin and estimating F̃i

for each successive interval in turn. After solving for a set of intervals, we treat them as fixed,

and construct a new fixed-point iteration for the next interval. We make this argument precise in

the following sections. In doing so, the key technical difficulty faced by our approach is in the

amplification of errors incurred at earlier stages of the algorithm into later stages. As we shall see,

errors due to approximation, sampling or computation are compounded exponentially over the

running of the algorithm (Lemma 3.8). Therefore, we use a careful data-based approach where

samples are used to decide the widths of successive intervals, ensuring both that the fixed point

equation remains contractive and crucially, that there are not too many stages where successive

intervals are constructed (Lemma 3.9).

3.2 Fixed Point Definition

Here, we formally define the version of the fixed point iteration used in our algorithm. Recall that

the CDFs of the bid generating distributions, Fi, satisfy:

∀i ∈ [k] : U∗
i (x) := ∏

j 6=i

Fj(x) =
∫ x

0

1

1 − Fi(z)
· gi(z)dz.
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Recasting the above equation in terms of the functions, U∗
i , we obtain:

∀i ∈ [k] : U∗
i (x) := ∏

j 6=i

Fj(x) =
∫ x

0

gi(z)

1 − Hi(z)
dz with Hi(z) =

∏j 6=i(U
∗
j (z))

1/(k−1)

(U∗
i (z))

(k−2)/(k−1)
.

In our algorithm, we approximate the functions, U∗
i , by piecewise constant functions on intervals

of width δ (PAR) and approximate solutions to the above fixed point. We will subsequently prove

that the approximation errors as well as errors due to computational and statistical constraints

remain small despite these choices.

Our algorithm operates in stages: we divide the interval [ν, 1 − θ] (PAR) into a finite number

of “macro-intervals”, each of which contains a number of micro-intervals of width δ, defined by

the points ν := x0 < x1 · · · < xT 6 1 − θ/2 where T and the width of each macro-interval are

chosen dynamically based on observed data to ensure the fixed point iteration remains suitably

contractive. However, we must ensure that the total number of intervals, T, does not grow too

rapidly as estimation errors incurred in earlier stages of the algorithm are exponentially amplified

in later stages.

We construct these macro-intervals in a recursive fashion where the end point of the next in-

terval, xτ, is chosen based on the previous one xτ−1. Note the first point, x0, is chosen to be ν.

Conditioned on xτ−1 < 1 − θ, the end point of the subsequent macro-interval, xτ, is defined in the

following display where Ûi is a function coarsely approximating U∗
i (see Lemma 3.5 for a formal

definition) and Ĝi are empirical approximations of Gi:

γ
(τ)
ℓ

:= max
i∈[k]

16 ·
(η

α

)6
· 1

Ûi(xτ−1)

ℓ

∑
m=1

xτ,m

(1 − xτ,m)2
· ∆

(τ)
i,m

∆
(τ)
i,m := Ĝi(xτ,m)− Ĝi(xτ,m−1), Ĝi(x) :=

1

n
·

n

∑
j=1

1
{

Wj = i, Yj 6 x
}

, xτ,l := xτ−1 + lδ

ℓ
(τ) := max

{
ℓ ∈ N : xτ,ℓ 6 2xτ−1, xτ,ℓ 6 1 − θ/2 and γ

(τ)
ℓ

6 1/4
}

. (MACRO)

We terminate once xτ > 1 − θ. Note xτ,0 = xτ−1 and xτ,ℓ(τ) = xτ. The fixed point iteration

for estimating U∗
i (x) for x ∈ [xτ−1, xτ] is now defined below with the (i, l)th entry of the variable

U(τ) ∈ R
k×ℓ(τ) , U

(τ)
i,l meant to approximate U∗

i (xτ,l):

φ
(τ)
i,l (U(τ)) = clip




l

∑
m=0

1

1 − H
(τ)
i,m (U(τ))

· ∆
(τ)
i,m + V

(τ)
i ,

2

α
· Ûi(xτ,l),

1

2η
· Ûi(xτ,l)




H
(τ)
i,m (U(τ)) = max


min


∏j 6=i(U

(τ)
j,m )

1
(k−1)

(U
(τ)
i,m )

(k−2)
(k−1)

, 1 − α(1 − xτ,m), ηxτ,m


 , αxτ,m


 (FP)

where V
(τ)
i is recursively chosen as the estimate of U∗

i (xτ−1) by running the fixed point iteration,

φ(τ−1), L times (PAR). For initialization, we simply set V
(0)
i := Ĝi(ν). The precise choices of our

parameters are provided below:

θ :=
ε

16η
, δ :=

(
α

8η
ν

)32k

, εg := δ ·
(

αν

2η

)24k

, L := log(4/εg)
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ν := min





(
α

2η

)256

, exp

(
−232k

(η

α

)
log

(
2η

α

))
,

(
θ

2

)( 4η
α )

16

,

(
αε

32η

)24


 (PAR)

3.3 Proof of Theorem 3.3

In this subsection, we prove Theorem 3.3. The sole probabilistic condition we require is the em-

pirical concentration of Ĝi (Lemma B.4) for εg in PAR; i.e, we assume:

∀i ∈ [k] : ‖Ĝi − Gi‖∞ 6 εg. (PROB-COND)

The remainder of the proof is structured as follows. In Subsection 3.3.1, we show the functions

Ûi in the definition of φ(τ) (FP) may be efficiently estimated from data. Subsequently, in Sub-

section 3.3.2, we analyze the contractivity properties of φ(τ) allowing application of Theorem 3.4.

Then, in Subsection 3.3.3, we show how errors incurred in early stages of the procedure are ex-

ponentially compounded for each new macro-interval requiring careful control over the number of

such intervals, T. Finally, we bound T and prove Theorem 3.3 in Subsection 3.3.4.

3.3.1 Approximate Estimation

Here we describe the construction of Ûi used in FP, ensuring the truncation range contains the

true parameter values; i.e. we establish the following lemma:

Lemma 3.5. Let Ûi : [0, 1 − θ/4] → R be monotonic functions defined as follows:

Ûi(x) :=
1

n

n

∑
j=1

1

1 − Yj
· 1
{

Wj = i, Yj 6 x
}

.

Then, for all x, y ∈ [0, 1 − (θ/4)] such that U∗
i (x)− U∗

i (y) >
(

αν
2η

)16k
, we have:

α

2
(U∗

i (x)− U∗
i (y)) 6 Ûi(x)− Ûi(y) 6 2η(U∗

i (x)− U∗
i (y)).

Proof. Fix x, y satisfying the required constraints and consider the random variable:

Ũi =
1

(1 − Y)
· 1 {W = i, y < Y 6 x} .

We have:

E[Ũi] =
∫ y

x

1

(1 − z)
· (1 − Fi(z))∑

j 6=i

f j(z) ∏
k 6=j,i

Fk(z)dz

and hence, we get:

α(U∗
i (x)− U∗

i (y)) 6 E[Ũi] 6 η(U∗
i (x)− U∗

i (y)).

Now, we will show that the estimate Ui can be uniformly estimated for all i, x, y. For empirical

analysis, we have by the integration by parts formula:

Ûi(x)− Ûi(y) :=
1

n
·

n

∑
j=1

1

1 − Yj
· 1
{

Wj = i, y < Yj 6 x
}
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=

(
Ĝi(y)

(1 − y)
− Ĝi(x)

(1 − x)

)
−
∫ x

y

1

(1 − z)2
Ĝi(z)dz.

Similarly, we have for the population counterparts:

E[Ũi] =

(
Gi(y)

(1 − y)
− Gi(x)

(1 − x)

)
−
∫ x

y

1

(1 − z)2
· Gi(z)dz.

From the previous two displays, we get:

|Ûi(x)− Ûi(y)− E[Ũi]| 6 16‖Gi − Ĝi‖∞

θ2
.

This establishes the lemma by PROB-COND and PAR.

3.3.2 Contractivity Analysis

We first state a few simple lemmas on the behavior of the mappings, φ(τ). All the following results

follow from direct calculation, provided in full in Appendix B.

Lemma 3.6. The mapping φ(τ) maps the set S(τ) defined as follows onto itself:

S(τ) :=

{
U(τ) ∈ R

k×ℓ(τ) :
1

2η
· Ûi(xτ,l) 6 U

(τ)
i,l 6

2

α
· Ûi(xτ,l) and U

(τ)
i,l 6 U

(τ)
i,l+1

}
.

Proof. The first constraint follows from FP while the second follows from the fact that φτ is a

clipping of a monotonic function onto a monotonically growing range (Lemma 3.5).

In our proof, we establish contractivity of φ(τ) in the infinity-norm; i.e, for some ρ < 1:

‖φ(τ)(U)− φ(τ)(U′)‖∞ 6 ρ‖U − U′‖∞ where ‖M‖∞ = max
i,j

|Mi,j|.

Denoting the Jacobian of φ(τ) by Jφ(τ)(·), we bound its 1-norm defined below:

‖Jφ(τ)(U(τ))‖1 := max
i,l

∑
j∈[k]

m∈[ℓ(τ)]

(
Jφ(τ)(U(τ))

)
(i,l),(j,m)

= max
i,l

∑
j∈[k]

m∈[ℓ(τ)]

∣∣∣∣∣∣
∂φ

(τ)
i,l (U(τ))

∂U
(τ)
j,m

∣∣∣∣∣∣

Lemma 3.7 (Appendix B.1). We have, for all U(τ) ∈ S(τ),

‖Jφ(τ)(U(τ))‖1 6 max
i∈[k]

16 ·
(η

α

)6
· 1

Ûi(xτ−1)

ℓ(τ)

∑
m=1

xτ,m

(1 − xτ,m)2
· ∆

(τ)
i,m .

3.3.3 Error Propagation

Before proceeding, we introduce some notation. Let Ũ(τ) to be estimates produced when the fixed

point iteration φ(τ) (FP) is run L times and Ū(τ) ∈ R
k×ℓ(τ) be defined as:

∀τ ∈ [T], i ∈ [k], l ∈ ℓ
(τ) : Ū

(τ)
i,l

:= U∗
i (xτ,l)
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and is used to measure the accuracy of our estimates. Recall that we use {Ũ
(τ−1)

i,ℓ(τ−1)}i∈[k] as initializa-

tions, V(τ), for the τth iteration, φ(τ) (FP). Finally, let Ũ := [Ũ(1) · · · Ũ(T)] and Ū := [Ū(1) · · · Ū(T)]

be the estimates and the true values aggregated into a single matrix. The main lemma of this sub-

section establishes that the error grows at most exponentially in the number of macro-intervals, T.

Hence, it is crucial to obtain a bound on T that does not grow too rapidly with respect to ν which

is carried out in Lemma 3.9.

Lemma 3.8 (Appendix B.2). We have: ‖Ũ − Ū‖∞ 6 2T(2ην)k.

3.3.4 Bounding the Number of Macro Intervals

Here, we bound T (Lemma 3.9) as the most technical component of the proof and conclude the

proof of Theorem 3.3. To prove Lemma 3.9, we employ a potential function argument where we

track the growth of the functions U∗
i the end points of the macro-intervals {xτ}τ∈[T]. The key ob-

servation is that when xτ−1 is smaller than an appropriate constant cη,α, U∗
i (xτ) > (U∗

i (xτ−1))
1−1/(2(k−1)).

Hence, the rate of growth is doubly exponential before cη,θ allowing the bound on T ≈ log2(1/ν) +

k log log(1/ν) while the initial error scales is at most νk. With Lemma 3.8, a simple post-processing

step proves Theorem 3.3.

Lemma 3.9 (Appendix B.3). We have:

T 6 2(k − 1) log log(1/(αν)) + log2(2/ν) + 220
(η

α

)14 (
k2 log(2η/α) + k log2(2/θ)

)
.

To complete the proof of Theorem 3.3, we have from Lemmas 3.8 and 3.9 and our setting of the

parameter, ν, that ‖Ū − Ũ‖∞ 6 2T(2ην)k 6 (2ην)k/8 6 (α · ε/32η)2k .

We now recover estimates of Fi from estimates of U∗
i . Note, when x 6 θ, Fi(x) 6 ε/16 and

hence, 0 is suitable in this range. Likewise, when x > 1 − θ, Fi(x) > 1 − ε/16 and 1 is correspond-

ingly accurate. For the final case, assume θ 6 x 6 1 − θ. We will first estimate Fi on the grid

points, xτ,l . Suppose now that x = xτ,l for some τ, l. We have:

U∗
i (x) >

∫ x

0
∑
j 6=i

f j(z) ∏
m 6=i,j

Fm(z)dz > (k − 1)αk−1
∫ x

0
zk−2dz >

(αε

16

)k−1
.

And, as a consequence, we get:
(
1 − ε

16

)
6

U∗
i (x)

Ũ
(τ)
i,l

6
(
1 + ε

16

)
. Defining our estimate:

F̂i(x) := ∏j 6=i(Ũ
(τ)
j,l )1/(k−1)/

(
(U

(τ)
i,l )(k−2)/(k−1)

)

we get by noting that Fi(x) =
∏j 6=i(U

∗
j (x))1/(k−1)

(U∗
i (x))(k−2)/(k−1) :

F̂i(x) 6 Fi(x) ·
(

1 +
ε

16

)
·
(

1 − ε

16

)−1
6
(

1 +
ε

4

)
· Fi(x)

F̂i(x) > Fi(x) ·
(

1 − ε

16

)
·
(

1 +
ε

16

)−1
>
(

1 − ε

4

)
· Fi(x).

Finally, for any θ 6 x 6 1 − θ, there exists xτ,l such that |x − xτ,l | 6 δ. And we have:

|Fi(x)− F̂i(xτ,l)|
Fi(x)

6
|Fi(x)− Fi(xτ,l)|+ |Fi(xτ,l)− F̂i(xτ,l)|

Fi(xτ,l)− |Fi(xτ,l)− Fi(x)| 6
δη + (ε/4)Fi(xτ,l)

Fi(xτ,l)− δη
6

ε

2

from our setting of δ and θ. This concludes the proof of the theorem.
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3.4 Estimation from Partial Observations

Finally, we explore a second-price analogue of the “partial observability” setting (introduced by

Blum et al. [2015]) that we studied in the context of first-price auctions in Section 2.3. In particular,

in this setting we observe the winner of each auction and a binary indicator of whether the reserve

price was triggered, but not the price that the winner pays for the auctioned good. On the other

hand, as in [Blum et al., 2015], in this setting the econometrician is given the ability to set the

reserve price (or equivalently, insert bids into the auction). We formally define the setting below:

Definition 3.10 (Partial Observation Data – Second-price). Let {Fi}k
i=1 be k cumulative distribution

functions with support [0, 1], i.e. Fi(x) = 0 ∀x < 0 and Fi(1) = 1. A sample (r, Y, Z) from a first-

price auction with bid distributions {Fi}k
i=1 is generated as follows:

1. we, the observer, pick a price r ∈ [0, 1], and let Xk+1 = r

2. generate Xi ∼ Fi independently for all i ∈ [k],

3. observe a winner Z = arg maxi∈[k+1] Xi and an indicator Q indicating whether the reserve

price r was triggered.

We again operate in the effective-support setting (cf. Theorem 2.3), and—that is, we a tuple

p, γ ∈ [0, 1] such that for all j ∈ [k], ∏l 6=j Fl(p) > γ. In other words, the transaction price of the

auction will be less than p with probability at least γ.

It turns out that in this seemingly limited observation model, a very simple algorithm suffices

for recovering agents’ value distributions. We begin with the Lemma demonstrating pointwise

recovery of the bid distributions for any x ∈ [p, 1]:

Lemma 3.11. Fix any x ∈ [p, 1] and any ǫ > 0. Using n samples from the we can obtain as estimate

F̂j∈[k](x) satisfying, for all j ∈ [k],

∣∣∣F̂j(x)− Fj(x)
∣∣∣ 6 ǫ with probability at least 1 − δ,

as long as n > 48
γǫ2 log(2k/δ).

Proof. First, suppose we set the reserve price of the auction to x, and define the random variable Zj

as the indicator of whether either (a) agent j won the auction and the reserve price was triggered;

or (b) no one won the auction and the reserve price was triggered. By construction (and since (a)

and (b) are disjoint),

P(Zj = 1) = P(Xj > x, X−j 6 x) + P(X[k] 6 x) = (1 − Fj(x))∏
l 6=j

Fl(x) + ∏
l∈[k]

Fl(x) = ∏
l 6=j

Fl(x).

Thus, applying a (multiplicative) Chernoff bound combined with the lower bound ∏l 6=j Fl(x) > γ

given by our effective support assumption,

P

(∣∣∣∣∣
n

∑
i=1

Z
(i)
j − ∏

l 6=j

Fl(x)

∣∣∣∣∣ > ǫ · ∏
l 6=j

Fl(x)

)
6 2 exp

{
−ǫ2γn/3

}
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Now, by our effective support assumption, as long as k > 2,

F̂j(x) :=
∏l∈[k]

(
∑

n
i=1 Z

(i)
j

) 1
k−1

(
∑

n
i=1 Z

(i)
j

) 6
(1 + ǫ)k/(k−1) ∏l∈[k] Fl(x)

(1 − ǫ)∏l 6=j Fl(x)
6 (1 + 4ǫ)Fj(x)

and an identical argument for the lower bound shows that |F̂j(x)− Fj(x)| 6 4ǫ. Applying a union

bound over all agents completes the proof.

We can use this result to construct piecewise-constant approximations of Fj(x) that is ǫ-close

to the true bid distributions:

Theorem 3.12. Assume the partially observed second-price setting, and suppose the cumulative density

functions F[k] are all Lipschitz-continuous with Lipschitz constant L. For any pair p, γ ∈ [0, 1] that define

an effective support, we can find piecewise-constant functions F̂j(·) satisfying

sup
x∈[p,1]

∣∣∣F̂j(x)− Fj(x)
∣∣∣ 6 ǫ with probability at least 1 − δ,

using n = Θ
(

k log(k/ǫ) log(L/ǫ)2

ǫ3γ

)
samples from the partially observed second-price model.

Given Lemma 3.11, we can use the exact binary search and estimation procedure from Subsec-

tion 2.3 to prove Theorem 3.12—we give the full proof in Appendix B.4.

4 Conclusion

In this work, we presented efficient methods for estimating first- and second-price auctions un-

der independent (asymmetric) private values and partial observability. Our methods come with

convergence guarantees that are uniform in that their error rates do not depend on the bid/value

distributions being estimated. These methods and the corresponding finite-sample guarantees

build on a long line of work in Econometrics that establishes either identification results, or esti-

mation results under restrictive assumptions such as symmetry or full bid observability.
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A Omitted Proofs for First-Price Auctions

A.1 Omitted Calculations from Proof of Theorem 2.9

We further condition on the above and define an estimate of Gi(xj) =
∫ 1

xj

1
H(z)

dHi(z),

Ĝi(xj) =
|X|−1

∑
s=j

(
Ĥi(xs+1)− Ĥi(xs)

)
/Ĥ(xs).

Using the mean value theorem, there exists a set of points {ζ j} with ζ j ∈ (xj, xj+1] and

Gi(xj) =
∫ 1

xj

1

H(z)
dHi(z) =

|X|−1

∑
s=j

Hi(xs+1)− Hi(xs)

H(ζs)
.

We first bound the difference between our piecewise estimate and the true Gi on the set X:

|Gi(v̂t)− Ĝi(v̂t)| =
∣∣∣∣∣
|X|−1

∑
s=j

Hi(xs+1)− Hi(xs)

H(ζs)
−

|X|−1

∑
s=j

Ĥi(xs+1)− Ĥi(xs)

Ĥ(xs)

∣∣∣∣∣

6

∣∣∣∣∣
|X|−1

∑
s=j

Hi(xs+1)− Hi(xs)

H(ζs)
−

|X|−1

∑
s=j

Ĥi(xs+1)− Ĥi(xs)

H(ζs)

∣∣∣∣∣

+

∣∣∣∣∣
|X|−1

∑
s=j

Ĥi(xs+1)− Ĥi(xs)

H(ζs)
−

|X|−1

∑
s=j

Ĥi(xs+1)− Ĥi(xs)

Ĥ(xs)

∣∣∣∣∣

6
2

γ
·
|X|
∑
s=1

|Hi(xs)− Ĥi(xs)|+ max
s∈[|X|]

∣∣∣∣
1

H(xs+1)
− 1

Ĥ(xs)

∣∣∣∣

6
2|X|β

γ
+

δ + 2 · ǫ1 + β

γ2

6
2|X|β

γ
+

1

γ2
max

s∈[|X|]

∣∣H(ζs)− Ĥ(xs)
∣∣

A.2 Proof of Lemma 2.18

We will proceed similarly to the proof of [Lebrun, 2006], who use a similar technique to prove

strict monotonicity (i.e., a lower bound of zero). In particular, proving a quantitative lower bound

requires carefully controlling additional terms that cancel in the original proof.

For 1 6 i 6 n, we define

b′i = inf

{
b′ ∈ [0, 1] :

d

db
log (Gi(vi(b))) > L(b) for all b ∈ (b′, 1]

}
,

and let i be such that b′i = max16k6n b′k. Our goal is to prove that b′i < ρ, since (by construction)

this would imply that our desired property is true on the entire range.

By continuity of (d/db) log Gi(vi(b)) and of L(b), at the point b′i we must have that

d

db
log Gi(αi(b)) = L(b).
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Suppose that b′i > ρ—by our definition of effective support, Gi(αi(b
′
i)) > γ. Re-arranging the

characterization of the Bayes-Nash equilibrium (10) (cf. Lemma 2.11),

(vi(b)− b) · d

db
log (Gi(vi(b))) =

1

n − 1

(
−(n − 2) + ∑

j 6=i

vi(b)− b

vj(b)− b

)
.

Taking the derivative with respect to b yields

D(b) = ∑
j 6=i

v′i(b)
vj(b)− b

− ∑
j 6=i

(vi(b)− b)v′j(b)

(vj(b)− b)2
+ ∑

j 6=i

vi(b)− vj(b)

(vj(b)− b)2
. (17)

Our next goal is to upper-bound the value of (17) at b′i . First, note that for all j 6= i, our construction

of b′i implies that b′i ∈ [b′j, 1] (since i = arg maxk b′k), and so

1

vi(b′i)− b′i
− 1

vj(b′i)− b′i
=

d

db
log
(
Gj(vj(b

′
i))
)
− d

db
log
(
Gi(vi(b

′
i))
)
> 0,

meaning that

αi(b
′
i) 6 αj(b

′
i) =⇒ vi(b)− vj(b)

(vj(b)− b)2
6 0. (18)

Thus, we can safely ignore the (negative) final term when upper bounding (17). Turning our

attention to the second term, (11) implies the existence of at least one j 6= i such that

d

db
log Gj(αj(b)) >

1

n − 1

1

vi(b)− b
, and rearranging,

(vi(b)− b)v′j(b
′
i) >

Gj(vj(b
′
i))

(n − 1) · gj(vj(b′i))
>

γ

(n − 1) · η
. (19)

Since vj(b), b ∈ [0, 1] and vj(b
′
i) > vi(b

′
i), we have 0 6 vj(b

′
i)− b′i 6 1, and in turn

(vi(b)− b)v′j(b
′
i)

(vj(b′i)− b′i)
2

>
γ

(n − 1) · η
(20)

for at least one j 6= i, and thus

−∑
j 6=i

(vi(b)− b)v′j(b
′
i)

(vj(b′i)− b′i)
2

6 − γ

(n − 1) · η
. (21)

Finally, recall that

L(b′i) =
v′i(b

′
i) · gi(αi(b

′
i))

Gi(αi(b′i))
=⇒ v′i(b

′
i) =

L(b′i) · Gi(αi(b
′
i))

gi(αi(b′i))
.

Combining this with (18) and (19), and using that αj(b
′
i) > αi(b

′
i) yields

D(b′i) 6
−γ

(n − 1) · η
+ ∑

j 6=i

L(b′i)
vj(b′i)− b′i

6
−γ

(n − 1) · η
+

(n − 1) · L(b′i)
αi(b′i)− b′i

= 0,
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where the last equality is by definition of L. Meanwhile, by definition

D(b) =
d

db

{
(vi(b)− b) · d

db
log (Gi(vi(b)))

}

=
(
v′i(b)− 1

)
· d

db
log Gi(αi(b)) + (vi(b)− b) · d2

db2
log Gi(vi(b))

D(b′i) > (0 − 1) · L(b′i) + (vi(b
′
i)− b′i) ·

d2

db2
log Gi(vi(b)). (22)

Combining the above results yields (vi(b
′
i)− b′i) · d2

db2 log Gi(vi(b)) 6 −L(b′i) < 0, and since vi(b
′
i)−

b′i > 0, this must mean d
db log Gi(αi(b)) < 0. However, this in turn implies that there exists an ǫ > 0

such that log Gi(αi(b
′
i)) < x, which is a contradiction of our definition of βi(

′). Thus, our initial

assumption (b′i > δ) is impossible, which proves the desired result.
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B Omitted Proofs for Second-Price Auctions

B.1 Proof of Lemma 3.7

Considering a term in the Jacobian of φ(τ), we get from Lemmas 3.5, 3.6 and B.3:
∣∣∣∣∣∣
∂φ

(τ)
i,l (U(τ))

∂U
(τ)
j,m

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∂W

(τ)
i,l (U(τ))

∂U
(τ)
j,m

· 1

{
1

2η
· Ûi(xτ,l) 6 W

(τ)
i,l (U(τ)) 6

2

α
· Ûi(xτ,l)

}∣∣∣∣∣∣

6

∣∣∣∣
1

k − 1
− 1 {i = j}

∣∣∣∣ ·

∣∣∣∣∣∣
1

(1 − H
(τ)
i,m (U(τ)))2

·


 1

U
(τ)
j,m

· H
(τ)
i,m (U(τ))


 · ∆

(τ)
i,m

∣∣∣∣∣∣

6
η

α2
·
∣∣∣∣

1

k − 1
− 1 {i = j}

∣∣∣∣ ·

∣∣∣∣∣∣
xτ,m

(1 − xτ,m)2
· 1

U
(τ)
j,m

· ∆
(τ)
i,m

∣∣∣∣∣∣

6
η

α2
· 4 · η

α
·
∣∣∣∣

1

k − 1
− 1 {i = j}

∣∣∣∣ ·
∣∣∣∣∣

xτ,m

(1 − xτ,m)2
· 1

U∗
j (xτ,m)

· ∆
(τ)
i,m

∣∣∣∣∣

6 4 · η

α2
·
(η

α

)4
·
∣∣∣∣

1

k − 1
− 1 {i = j}

∣∣∣∣ ·
∣∣∣∣

xτ,m

(1 − xτ,m)2
· 1

U∗
i (xτ,m)

· ∆
(τ)
i,m

∣∣∣∣

6 4 · 1

α
·
(η

α

)5
· 2η ·

∣∣∣∣
1

k − 1
− 1 {i = j}

∣∣∣∣ ·
∣∣∣∣

xτ,m

(1 − xτ,m)2
· 1

Ûi(xτ,0)
· ∆

(τ)
i,m

∣∣∣∣

6 8 ·
(η

α

)6
·
∣∣∣∣

1

k − 1
− 1 {i = j}

∣∣∣∣ ·
∣∣∣∣

xτ,m

(1 − xτ,m)2
· 1

Ûi(xτ−1)
· ∆

(τ)
i,m

∣∣∣∣.

Summing the previous equation over all j, m yields:

∥∥∥Jφ(τ)

∥∥∥
1
6 max

i∈[k]
16 ·

(η

α

)6
· 1

Ûi(xτ−1)

ℓ(τ)

∑
m=1

xτ,m

(1 − xτ,m)2
· ∆

(τ)
i,m .

B.2 Proof of Lemma 3.8

Proof. We will prove the lemma by induction on the number of macro intervals. Concretely, we

will prove the following claim via induction on τ:

‖Ũ(τ) − Ū(τ)‖ 6 2τ(2ην)k. (IND)

For the base case, we have:

|Ĝi(ν)− U∗
i (ν)| 6 εg + |Gi(ν)− U∗

i (ν)| = εg +
∫ ν

0
(1 − (1 − Fi(z))) · ∑

j 6=i

f j(z) ∏
m 6=i,j

Fm(z)dz

6 εg + ην
∫ ν

0
∑
j 6=i

f j(z) ∏
m 6=i,j

Fm(z)dz 6 εg + ηνU∗
i (ν) 6 (2ην)k

For the induction step, suppose IND is true for all intervals up to τ − 1. From Lemma 3.7, φ(τ)

is 1/4 contractive. Letting U
(τ)
fixed denote the fixed point of φ(τ) (Theorem 3.4), we have:

‖Ũ(τ) − U
(τ)
fixed‖∞ 6

1

4L
. (23)
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Hence, it suffices to bound the error between U
(τ)
fixed and Ū(τ):

‖Ū(τ) − U
(τ)
fixed‖∞ 6 ‖Ū(τ) − φ(τ)(Ū(τ))‖∞ + ‖φ(τ)(Ū(τ))− U

(τ)
fixed‖∞

= ‖Ū(τ) − φ(τ)(Ū(τ))‖∞ + ‖φ(τ)(Ū(τ))− φ(τ)(U
(τ)
fixed)‖∞

6 ‖Ū(τ) − φ(τ)(Ū(τ))‖∞ + ‖Ū(τ) − U
(τ)
fixed‖∞/4. (24)

For the RHS, we have for fixed i ∈ [k], ℓ ∈ [ℓ(τ)]:

∣∣∣Ū(τ)
i,ℓ − (φ(τ)(Ū(τ)))i,ℓ

∣∣∣ =

∣∣∣∣∣∣
Ūi,ℓ −

ℓ

∑
l=1

1

1 − H
(τ)
i,l (Ū(τ))

∆
(τ)
i,l − V

(τ)
i

∣∣∣∣∣∣

=

∣∣∣∣∣

∫ xτ,ℓ

xτ−1

1

1 − Fi(z)
· gi(z)dz + U∗

i (xτ−1)−
ℓ

∑
l=1

1

1 − Fi(xτ,l)
∆
(τ)
i,l − V

(τ)
i

∣∣∣∣∣

6

∣∣∣∣∣

∫ xτ,ℓ

xτ−1

1

1 − Fi(z)
· gi(z)dz −

ℓ

∑
l=1

1

1 − Fi(xτ,l)
∆
(τ)
i,l

∣∣∣∣∣+
∣∣∣U∗

i (xτ−1)− V
(τ)
i

∣∣∣

6

∣∣∣∣∣

∫ xτ,ℓ

xτ−1

1

1 − Fi(z)
· gi(z)dz −

ℓ

∑
l=1

1

1 − Fi(xτ,l)
∆
(τ)
i,l

∣∣∣∣∣+
∥∥∥Ũ(τ−1) − Ū(τ−1)

∥∥∥
∞

. (25)

For the first term in the above expression, we have:

∣∣∣∣∣

∫ xτ,ℓ

xτ−1

1

1 − Fi(z)
· gi(z)dz −

ℓ

∑
l=1

1

1 − Fi(xτ,l)
∆
(τ)
i,l

∣∣∣∣∣

=

∣∣∣∣∣
ℓ

∑
l=1

∫ xτ,l

xτ,l−1

1

1 − Fi(z)
· gi(z)dz − 1

1 − Fi(xτ,l)
(Ĝi(xτ,l)− Ĝi(xτ,l−1))

∣∣∣∣∣

6

∣∣∣∣∣
ℓ

∑
l=1

∫ xτ,l

xτ,l−1

(
1

1 − Fi(z)
− 1

1 − Fi(xτ,l)

)
· gi(z)dz

∣∣∣∣∣+
∣∣∣∣∣

ℓ

∑
l=1

1

1 − Fi(xτ,l)
(Ĝi(xτ,l)− Ĝi(xτ,l−1)− (Gi(xτ,l)− Gi(xτ,l−1)))

∣∣∣∣∣

6
ℓ

∑
l=1

∫ xτ,l

xτ,l−1

(Fi(xτ,l)− Fi(z))

(1 − Fi(z))(1 − Fi(xτ,l))
· gi(z)dz +

8εgℓ
(τ)

αθ

6
4ηδ

(αθ)2

∫ xτ,ℓ

xτ,0

gi(z)dz +
8εgℓ

(τ)

αθ
6

4ηδ

(αθ)2
+

8εgℓ
(τ)

αθ
. (26)

Eqs. (24) to (26) and (23) conclude the induction step with PAR and IND.

B.3 Proof of Lemma 3.9

We start by stating and proving some useful Lemmata:

Lemma B.1. We have, for all ∀i ∈ [k], x ∈ [0, 1] : gi(x) 6 η2

α .

34



Proof. Fix x ∈ [0, 1] and let i∗ = arg maxi∈[k] Fi(x). For any i ∈ [k], we get:

gi(x) = (1 − Fi(x))∑
j 6=i

f j(x) ∏
ℓ 6=i,j

Fℓ(x) 6 η(1 − Fi(x))∑
j 6=i

∏
ℓ 6=i,j

Fℓ(x)

6

(
η2

α

)
· (1 − Fi∗(x))∑

j 6=i
∏
ℓ 6=i,j

Fℓ(x) 6

(
η2

α

)
· (1 − Fi∗(x))∑

j 6=i
∏
ℓ 6=i,j

Fi∗(x)

= (k − 1)

(
η2

α

)
(1 − Fi∗(x))(Fi∗(x))k−2 6

(
η2

α

)
·
(

1 − 1

k − 1

)k−2

6
η2

α

where the first two inequalities follow from Assumption 3.2.

Lemma B.2. We have

(a) ∀τ ∈ [T] : ℓ(τ) > 0, (b) xT > 1 − θ

(c) ∀τ ∈ [T] s.t xτ−1,ℓ(τ)+1 6 min(2xτ−1, 1 − θ/2) : γ
(τ)

ℓ(τ)
> 1/8

(d) ∀τ ∈ [T], i ∈ [k] : U∗
i (xτ)− U∗

i (xτ−1) >
1

2048
·
(

α

η

)10

· θ ·
(αν

2

)k−1
.

Proof. We start with the first claim. From Eq. (FP), we have xτ−1 < 1 − θ. Furthermore, we have

xτ−1,1 < 2xτ−1 from our definition of δ and ν PAR. For the second condition, from Lemma B.1 and

our bounds on εg, θ, δ (PAR) and Ûi(xτ−1) (Lemma 3.5):

γ
(τ)
1 := max

i∈[k]
8 ·
(η

α

)6
· 1

Ûi(xτ−1)
· xτ−1 + δ

(1 − xτ−1 − δ)2
· ∆

(τ)
i,m

6 max
i∈[k]

8 ·
(η

α

)6
· 1

Ûi(xτ−1)
· xτ−1 + δ

(1 − xτ−1 − δ)2
· (Ĝi(xτ−1 + δ)− Ĝi(xτ−1))

6 max
i∈[k]

8 ·
(η

α

)6
· 1

Ûi(xτ−1)
· xτ−1 + δ

(1 − xτ−1 − δ)2
·
(

η2δ

α
+ 2εg

)
<

1

4

establishing the first claim. Note that the previous argument also establishes the second claim as

if xT < 1 − θ, a new macro-interval exists (FP).

For the third claim, we have:

γ
(τ)

ℓ(τ)
= max

i∈[k]
16 ·

(η

α

)6
· 1

Ûi(xτ−1)

ℓ(τ)

∑
m=1

xτ,m

(1 − xτ,m)2
· ∆

(τ)
i,m

= max
i∈[k]

16 ·
(η

α

)6
· 1

Ûi(xτ−1)

(
ℓ(τ)+1

∑
m=1

xτ,m

(1 − xτ,m)2
∆
(τ)
i,m −

xτ,ℓ(τ)+1

(1 − xτ,ℓ(τ)+1)
2

∆
(τ)

i,ℓ(τ)+1

)

> γ
(τ)

ℓ(τ)+1
− 16 ·

(η

α

)6
· 1

Ûi(xτ−1)
· 1 − θ/4

(θ/4)2
·
(

η2δ

α
+ 2εg

)
>

1

8

where the final inequality follows from Lemma B.1, the fact that γ
(τ)

ℓ(τ)+1
> 1/4, δ < θ/4 and our

bounds on εg, δ, θ (PAR) and Ûi(xτ−1) as in the previous claim.

For the final claim, suppose τ ∈ [T]. From FP, xτ−1 < 1 − θ. We first consider the case

where γ
(τ)

ℓ(τ)
> 1/8. In this case, we have for some i from the facts xτ,m < 1 − θ/2, xτ,m > ν and

Ûi(xτ−1) > Ĝi(ν) > (1 − ην)(αν)k−1 − εg:
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64
(η

α

)6 1

(αν)k−1

1

θ

ℓ(τ)

∑
m=1

1

(1 − xτ,m)
∆
(τ)
i,m > 16

(η

α

)6 1

Ûi(xτ−1)

ℓ(τ)

∑
m=1

xτ,m

(1 − xτ,m)2
∆
(τ)
i,m >

1

8

Re-arranging the above and applying Lemmas B.3 and B.6 yields for all j ∈ [k]:

2
(η

α

)4
(U∗

j (xτ)− U∗
j (xτ−1)) > 2η(U∗

i (xτ)− U∗
i (xτ−1))

> Ûi(xτ)− Ûi(xτ−1) >
1

1024
·
(

α

η

)6

· θ · (αν)k−1

proving the claim in this case.

Next, we consider the case where xτ−1,ℓ(τ)+1 > 2xτ−1. In this case, note that as xτ−1 > ν and

our bound on δ yields xτ−1 + ℓ(τ)δ > 3
2 xτ−1 and the claim follows as:

U∗
i (xτ)− U∗

i (xτ−1) =
∫ xτ

xτ−1

∑
j 6=i

f j(z) ∏
m 6=i,j

Fm(z)dz > (k − 1)α
∫ ν

2

0
(αz)k−2dz >

(αν)k−1

2k−1
.

For the final case, the second claim and MACRO imply xT = xτ with xτ−1 < 1 − θ and xτ + δ >

1 − θ/2. In this case, we note again from our choice of δ that xτ > 1 − (3θ)/4. Furthermore, since

xτ−1 < 1 − θ, we have from Lemma B.5:

U∗
i (xτ)− U∗

i (xτ−1) > U∗
i

(
1 − 3θ

4

)
− U∗

i (1 − θ) =
∫ 1− 3θ

4

1−θ
∑
j 6=i

f j(z) ∏
m 6=i,j

Fm(z)dz

> α
∫ 1− 3θ

4

1−θ
∑
j 6=i

∏
m 6=i,j

Fm(z)dz > α
∫ 1− 3θ

4

1−θ
(k − 1)U∗

i (1 − θ)dz >
αθ

8
.

concluding the proof in this case.

To bound T, we break [ν, 1 − θ] into three segments and handle each separately:

I1 :

[
ν,

(
α

2η

)32
]

, I2 :

[(
α

2η

)32

, 1 − 1

4ηk

]
, and I3 :

[
1 − 1

4ηk
, 1 − θ

2

]
.

Case 1: We start with I1 and restrict ourselves to the intervals, [xτ−1, xτ] such that γ
(τ)

ℓ(τ)
> 1/8

as as there are at most log2(2/ν) intervals where this doesn’t happen (MACRO and Lemma B.2).

From the definition of γ
(τ)

ℓ(τ)
, there exists some i ∈ [k] such that:

16 ·
(η

α

)6
· 1

Ûi(xτ−1)

ℓ(τ)

∑
m=1

xτ,m

(1 − xτ,m)2
· ∆

(τ)
i,m >

1

8

U∗
i (xτ−1) > (αxτ−1)

k−1 =⇒ xτ−1 6
U∗

i (xτ−1)
1/(k−1)

α

and as a result, we obtain from Lemmas 3.5 and B.6 and the last claim of Lemma B.2:

1

8
6 16 ·

(η

α

)6
· 1

Ûi(xτ−1)
· 2xτ−1

(1 − xτ)

ℓ(τ)

∑
m=1

1

(1 − xτ,m)
· ∆

(τ)
i,m
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6 32 ·
(η

α

)6
· 1

Ûi(xτ−1)
· 1

α
· U∗

i (xτ−1)
1/(k−1)

(1 − xτ)

ℓ(τ)

∑
m=1

1

(1 − xτ,m)
· ∆

(τ)
i,m

6 512 ·
(η

α

)8
· 1

U∗
i (xτ−1)(k−2)/(k−1)

· (U∗
i (xτ)− U∗

i (xτ−1)) .

Re-arranging the above, two applications of Lemma B.3 with the fact U∗
j (x) 6 (ηx)k−1:

j ∈ [k] : U∗
j (xτ) >

(
2α

η

)14

· U∗
j (xτ−1)

(k−2)/(k−1) > U∗
j (xτ−1)

1−1/(2(k−1)).

Defining S1 := {τ : [xτ−1, xτ] ⊂ I1 and γ
(τ)

ℓ(τ)
> 1/8}, T1 := |S1| and τ∗

1 := max S1, we get by a

recursive application of the above inequality for all j ∈ [k]:

e−(k−1) > U∗
j (xτ∗

1
) > (U∗

j (x0))

(
1− 1

2(k−1)

)T1

> (αν)
(k−1)

(
1− 1

2(k−1)

)T1

.

Iteratively taking logs, exp
{
− T1

2(k−1)

}
log(αν) > 1 =⇒ T1 6 2(k − 1) log log(1/(αν)). Hence, the

number of intervals in I1 is bounded by 2(k − 1) log log(1/(αν)) + log2(2/ν).

Case 2: Similarly, for I2, we restrict ourselves to intervals [xτ−1, xτ] ⊂ I2 with γ
(τ)

ℓ(τ)
> 1/8. Noting

1 − xτ > 1/(4ηk), we have from Lemmas 3.5, B.2 and B.6 for some i ∈ [k]:

1

8
6 16 ·

(η

α

)6
· 1

Ûi(xτ−1)
· 2xτ−1

(1 − xτ)

ℓ(τ)

∑
m=1

1

(1 − xτ,m)
· ∆

(τ)
i,m

6 16 ·
(η

α

)6
· 1

Ûi(xτ−1)
· 8ηk ·

ℓ(τ)

∑
m=1

1

(1 − xτ,m)
· ∆

(τ)
i,m

6 1024k ·
(η

α

)8
· 1

U∗
i (xτ−1)

· (U∗
i (xτ)− U∗

i (xτ−1)) .

Re-arranging the above inequality and two applications of Lemma B.3 yield:

∀j ∈ [k] : U∗
j (xτ)− U∗

j (xτ−1) >
1

8192k
·
(

α

η

)11

· U∗
i (xτ−1) >

1

8192k
·
(

α

η

)14

· U∗
j (xτ−1).

Define S2 := {τ : [xτ−1, xτ] ⊂ I2 and γ
(τ)

ℓ(τ)
> 1/8}, T2 := |S2| and τ∗

2 := max S2 as before. As

xτ−1 > (η/2α)32 for all τ ∈ S2, recursively applying the above inequality yields:

1 > U∗
j (xτ∗

2
) >

(
1 +

1

8192k
·
(

α

η

)14
)T2

U∗
j

((
α

2η

)32
)

.

Again, noting U∗
j (x) > (αx)k−1 and taking logs, the current case follows:

1 > exp

{
T2

16384k
·
(

α

η

)14
}
·
(

α

2η

)64(k−1)

=⇒ T2 6 220k2
(η

α

)14
log(2η/α).
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Case 3: For I3, we subdivide it into r subintervals
{

I3,p :=
[
1 − 2pθ, 1 − 2p−1θ

]}r

p=0
. Note that

r 6 log2(2/θ) + 1. We now bound the number of intervals in each of these sub-intervals and

restrict ourselves to intervals [xτ−1, xτ] ⊂ I3,p for some p with τ < T. Note this excludes at

most 2r + 1 intervals. For one such interval [xτ−1, xτ] ∈ I3,p, note that γ
(τ)

ℓ(τ)
> 1/8 (Lemma B.2).

Similarly, we have for some i using Lemmas 3.5, B.2, B.5 and B.6:

1

8
6 16 ·

(η

α

)6
· 1

Ûi(xτ−1)

ℓ(τ)

∑
m=1

xτ,m

(1 − xτ,m)2
· ∆

(τ)
i,m

6 16 ·
(η

α

)6
· 1

Ûi(xτ−1)

ℓ(τ)

∑
m=1

1

(1 − xτ,m)(2p−1θ)
· ∆

(τ)
i,m

6
256

2p−1θ
·
(η

α

)7
· (U∗

i (xτ)− U∗
i (xτ−1))

which yields:

U∗
i (xτ)− U∗

i (xτ−1) >
2p−1θ

2048
·
(

α

η

)7

=⇒ ∀j ∈ [k] : U∗
j (xτ)− U∗

j (xτ−1) >
2p−1θ

2048
·
(

α

η

)10

.

Again, defining S3,p = {τ < T : [xτ−1, xτ] ⊂ I3,p}, T3,p := |S3,p|, we have from the above:

T3,p 6
2048

2p−1θ
·
(η

α

)10 (
U∗

i

(
1 − 2p−1θ

)
− U∗

i (1 − 2pθ)
)

=
2048

2p−1θ
·
(η

α

)10
·
∫ 1−2p−1θ

1−2pθ
∑
j 6=i

f j(x) ∏
q 6=i,j

Fq(x)dx

6
2048

2p−1θ
·
(η

α

)10
· (ηk · 2p−1θ) 6 2048k ·

(η

α

)11
.

Summing up over p, we get that: T3 := ∑
r
p=0 Tr,p 6 4096k ·

( η
α

)11
log2(2/θ). Finally, summing over

the previous three cases concludes the proof of the lemma.

B.3.1 Miscellaneous Results

Here, we present miscellaneous results used in various parts of our proof. The first lemma shows

that the functions, U∗
i , for different i are within a constant factor of each other.

Lemma B.3. We have ∀i, j ∈ [k], x > y ∈ [0, 1]:

(
α

η

)3

(U∗
j (x)− U∗

j (y)) 6 U∗
i (x)− U∗

i (y) 6
(η

α

)3
(U∗

j (x)− U∗
j (y)).

Proof. We have:

U∗
i (x)− U∗

i (y) =
∫ x

y
∑
l 6=i

fl(z) ∏
m 6=i,l

Fm(z)dz 6
(η

α

)3
(U∗

j (x)− U∗
j (y))

where the second inequality follows from Assumption 3.2:

∀l, l′, z ∈ [0, 1] : fl(z) ∏
m 6=i,l

Fm(z) 6
(η

α

)3
· fl′(z) ∏

m 6=j,l′
Fm(z).
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Our next lemma establishes concentration of Ĝi, as empirical approximations of Gi.

Lemma B.4. For all i ∈ [k], we have ‖Ĝi − Gi‖∞ 6 εg with probability at least 1 − ρ as long as n >

log(2k/ρ)/(2ε2
g).

Proof. Define random variables, ∀i ∈ [k], j ∈ [n] : Zi
j := Yj · 1{Wj = i}+ 1{Wj 6= 1}. The CDF of Zi

j

corresponds to Gi while its empirical CDF corresponds to Ĝi. The lemma follows from the DKW

inequality [Dvoretzky et al., 1956] and a union bound over i.

The two following lemmas find use in the proof of Lemma 3.9.

Lemma B.5. For all i ∈ [k] and for all x ∈
[
1 − 1

4ηk , 1
]
, we have U∗

i (x) > 3
4 .

Proof. Let Xi
iid
∼ Fi. Then, by the union bound: P

{
∃i : Xi > 1 − 1

4ηk

}
6 1

4 .

Lemma B.6. We have, for all i ∈ [k] and all τ ∈ [T],

∀l ∈ ℓ
(τ) :

(
Ûi(xτ,l)− Ûi(xτ,l−1)

)
6

1

1 − xτ,l
· ∆

(τ)
i,l 6 2

(
Ûi(xτ,l)− Ûi(xτ,l−1)

)

∀Ûi(xτ)− Ûi(xτ−1) 6
ℓ(τ)

∑
l=1

1

1 − xτ,l
· ∆

(τ)
i,l 6 2 ·

(
Ûi(xτ)− Ûi(xτ−1)

)

Proof. For the lower bound, we have ∀l ∈ ℓ(τ):

1

1 − xτ,l
· ∆

(τ)
i,l =

1

n
·

n

∑
j=1

1

(1 − xτ,l)
· 1
{

Zj = i, xτ,l−1 < Yj 6 xτ,l

}

>
1

n
·

n

∑
j=1

1

(1 − Yj)
· 1
{

Zj = i, xτ,l−1 < Yj 6 xτ,l

}
= Ûi(xτ,l)− Ûi(xτ,l−1).

Summing the above inequality over l concludes the proof of the lower bound. Similarly, for the

upper bound, we get ∀l ∈ ℓ(τ):

1

1 − xτ,l
· ∆

(τ)
i,l − (Ûi(xτ,l)− Ûi(xτ,l−1))

=
1

n
·

n

∑
j=1

(
1

(1 − xτ,l)
− 1

(1 − Yj)

)
· 1
{

Zj = i, xτ,l−1 < Yj 6 xτ,l

}

6
1

n
·

n

∑
j=1

(
δ

(1 − xτ,l)(1 − Yj)

)
· 1
{

Zj = i, xτ,l−1 < Yj 6 xτ,l

}

6
1

n
·

n

∑
j=1

(
1

2 · (1 − Yj)

)
· 1
{

Zj = i, xτ,l−1 < Yj 6 xτ,l

}
=

1

2

(
Ûi(xτ,l)− Ûi(xτ,l−1)

)
.

Again, re-arranging and summing over l concludes the proof.
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B.4 Proof of Theorem 3.12

Proof. We combine this result with the same binary search from Subsection 2.3 to identify quantiles

of the functions F̂i. In particular, fix ǫ > 0 and let

W = {wa := γ + a · ǫ

2
| a ∈ N and γ + a · ǫ

2
6 1} ∪ {1}.

An identical argument from the one from the proof of Theorem 2.9 shows that for any ǫ > 0, we

can use binary search to find ẑj,a such that

|Fj(ẑj,a)− wa| 6
ǫ

2
for all j ∈ [k] and a ∈ [|W|] (27)

w.p. 1 − 4k

ǫ
log

(
4L

ǫ

)
exp

{
−ǫ2γn1/192

}

using C · n1 · k · log(4L/ǫ)/ǫ samples for a universal constant C (in particular, see the proof of

Theorem 2.9, set δ = ǫ1 = ǫ/2, and use Lemma 3.11 for the pointwise guarantee in place of (5)).

Conditioning on this event, we can thus define the piecewise-constant functions F̂j for j ∈ [k]

as

F̂j(x) = ∑
a∈[|W|]

1
{

x ∈ [zj,a, zj,a+1)
}
·
(

γ + a · ǫ

2

)

Now, consider any x ∈ [p, 1] and define a ∈ N such that x ∈ [ẑj,a, ẑj,a+1], so that by construction

F̂j(x) = wj,a. Then:

Fj(x) > Fj(ẑj,a) (monotonicity of CDF)

= wj,a+1 + (Fj(ẑj,a)− wj,a) + (wj,a − wj,a+1)

> wj,a+1 − ǫ/2 − ǫ/2 (definition of W and (27))

> F̂j(x)− ǫ (definition of F̂j)

Similarly, Fj(x) 6 F̂j(x) + ǫ.

It remains to handle x ∈ [p, ẑj,0]: note that by (strict) monotonicity of the F̂j, we must have

F̂−1
j (γ) 6 p. Thus, if p 6 x 6 ẑj,0],

Fi(x) > Fi(p) > γ = F̂i(x), and Fi(x) 6 Fi(ẑj,0) 6 γ +
ǫ

2
6 F̂i(x) + ǫ.

Thus, |Fj(x)− F̂j(x)| 6 ǫ over the entire interval [p, 1] with probability at least 1 − δ, as long as

n >
Ck log(k/ǫ) log(L/ǫ)2

ǫ3γ
,

for a universal constant C, completing the proof.
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