
Topology and its Applications 316 (2022) 108108
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Compactly supported A1-Euler characteristic and the Hochschild 

complex

Niny Arcila-Maya a,∗, Candace Bethea b, Morgan Opie c, Kirsten Wickelgren a, 
Inna Zakharevich d

a Department of Mathematics, Duke University, Durham NC, United States of America
b Department of Mathematics, University of South Carolina, Columbia SC, United States of America
c Department of Mathematics, University of California, Los Angeles CA, United States of America
d Department of Mathematics, Cornell University, Ithaca NY, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 March 2020
Received in revised form 8 April 
2021
Available online 7 April 2022

MSC:
primary 14F42
secondary 19E15, 13D03, 55M05

Keywords:
A1-Euler characteristic
Grothendieck–Witt group
Hochschild cohomology
Hermitian K-theory

We show the A1-Euler characteristic of a smooth, projective scheme over a 
characteristic 0 field is represented by its Hochschild complex together with a 
canonical bilinear form, and give an exposition of the compactly supported A1-
Euler characteristic χc

A1 : K0(Vark) GW(k) from the Grothendieck group of 
varieties to the Grothendieck–Witt group of bilinear forms. We also provide example 
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1. Introduction

The Euler characteristic is one of the first combinatorial topological invariants. Leonhard Euler originally 
introduced it for polyhedra, claiming that for any Euclidean polyhedron it is the case that for any polyhedron

# vertices − # edges + # faces = 2.

Although this is true for any convex polyhedron, this is a surprisingly difficult fact to state formally and 
correctly, and depends intrinsically on what one means by “polyhedron”. The Euler characteristic turns out 
to be a topological invariant, which is most classically defined for a finite CW complex X to be
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χ(X) def=
∞∑
i=0

(−1)i dimQHi(X;Q).

To make the Euler characteristic well-defined for non-compact sets it is necessary to replace homology with 
cohomology with compact support; with this definition it follows that for a closed subspace Z of X with 
open complement U ,

χ(X) = χ(Z) + χ(U). (1.1)

If instead of general topological spaces we consider only varieties (or schemes) over C, the Euler charac-
teristic of a variety X can be defined by the formula

χ(X) def= χ(X(C)) =
∞∑
i=0

(−1)i dimQHi
c(X(C);Q) ∈ Z.

This invariant can be elevated by replacing Q with any field k, and retaining more cohomological infor-
mation. Instead of taking dimensions, we can consider the vector spaces Hi

c(X(C); k) as elements of K0(k), 
the Grothendieck group of the ground field. This gives the new definition

χk(X) def=
∞∑
i=0

(−1)i[Hi
c(X(C); k)] ∈ K0(k).

As K0(k) ∼= Z, with the isomorphism given by the dimension, this may not appear to be a useful observation.
However, in the case when X is a smooth, projective variety, X(C) is a manifold and Poincaré duality 

states that there is a duality on the cohomology. By keeping track of the duality, we obtain an enriched 
Euler characteristic: such an Euler characteristic takes values in bilinear forms, rather than vector spaces. 
The form-valued Euler characteristic has beautiful applications in topology [28] [11] [9]. Stabilizing, we get 
an invariant taking values in the Grothendieck–Witt group, enriching the Euler characteristic valued in 
K0(k) ∼= Z.

Definition 1.2. Let k be a field. The Grothendieck–Witt group GW(k) is the free abelian group generated 
by isomorphism classes of k-vector spaces equipped with a symmetric, nondegenerate bilinear form, under 
the relation that

[V, b] + [V ′, b′] = [V ⊕ V ′, b⊕ b′].

To make this approach work correctly in the context of A1-homotopy theory, it is necessary to shift 
perspective. We will work with coherent cohomology, and the relevant additional structure is given by 
Grothendieck–Serre duality. Before describing the cohomological approach, we begin with the abstract 
definition of the categorical Euler characteristic. For the rest of this paper we restrict to fields of characteristic 
0.

Definition 1.3. Let X be a smooth, projective variety over a field k. Then the motivic suspension spectrum 
Σ∞

T (X+) is dualizable in the stable motivic homotopy category SH(k) [17, Theorem 5.22] [18, Appendix A]
[20, Section 1 or ArXiv version 3 Section 1.1] [27] [34, Section 2]. Thus there exists an element

χA1
(X) def=

(
1k Σ∞

T (X+) ∧k D(Σ∞
T (X+)) D(Σ∞

T (X+)) ∧k Σ∞
T (X+) 1k

)
in EndSH(k)(1k), where 1k denotes the motivic sphere spectrum, the first and last maps are coevaluation 
and evaluation, the middle is the symmetry swap isomorphism, and D(−) denotes dualizing. See for example 
[16] or [20] for further discussion.
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It is a beautiful theorem of F. Morel that EndSH(k)(1k) ∼= GW(k), see for example [23] or [24, Theorem 
1.23, Corollary 1.24], giving the categorical Euler characteristic χA1(X) in GW(k). So, one can hope to 
recover an enhancement of a cohomological construction by explicitly describing the map in Definition 1.3.

A description in terms of coherent duality was independently suggested by M.J. Hopkins, A. Raksit, and 
J.-P. Serre in oral communication. It was proven to equal χA1(X) by M. Levine and A. Raksit [21, Theorem 
1.3]. This is the description that motivated the introduction above, and as we will use it to prove our main 
result, we give a more detailed account now.

For any vector space V over k, write V [i] for the chain complex consisting of V concentrated in degree 
−i, with 0’s elsewhere. Consider a smooth and proper variety X of pure dimension d.

Definition 1.4. Let

Hdg(X/k) def=
d⊕
i,j

Hi(X,Ωj
X/k)[j − i] ∈ Chk . (1.5)

This is equipped with a symmetric bilinear form via the cup product and the canonical trace map 
Tr : Hd(X; Ωd

X/k) k

Hi(X,Ωj
X/k) ⊗Hd−i(X,Ωd−j

X/k) Hd(X,Ωd
X/k) k.∪ Tr (1.6)

This structure produces a bilinear form Tr on Hdg(X/k).

See [21, Section 8D] for a review of the formalism of chain complexes with bilinear forms. The bilinear 
form Tr in fact recovers χA1 as defined above.

Theorem 1.7 ([21, Theorem 1.3]). For X smooth and projective over a field k of characteristic not 2,

χA1
(X/k) = (Hdg(X/k),Tr) ∈ GW(k).

We remind the reader that in this paper k will be a field of characteristic 0. Another description is as 
follows.

Definition 1.8. Let pX : X Spec k denote the structure map of a smooth proper variety X. Let

TX := ⊕0
i=−d(∧−iT ∗

X),

with zero differential. This is the Koszul complex of the tangent bundle TX with respect to the zero section. 
It has a natural non-degenerate bilinear form

βX : TX ⊗ TX TX ∧d T ∗
X [d]

given by composing the multiplication of forms with projection to the −dth term of TX .

Because X is smooth and proper, Serre duality allows us to pushforward a non-degenerate bilinear form 
valued in ∧dT ∗

X [d] and obtain a non-degenerate bilinear form valued in k [13, p. 7 Ideal Theorem c], [8, 
Theorem 4.2.9]:

RpX∗βX : RpX∗TX ⊗ RpX∗TX RpX∗(TX ⊗ TX) RpX∗ ∧d T ∗
X [d]

Tr
k (1.9)

There is more discussion of this in [6, Section 2.2] and we will discuss a similar situation in Lemma 2.4.
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Proposition 1.10 ([6, Proposition 2.4]). Let X be smooth and proper over k. With notation as above, 
(RpX∗TX , RpX∗βX) = (Hdg(X/k), Tr) in GW(k).

Each isomorphism class in GW(k) can be represented by a perfect chain complex over k with a nonde-
generate symmetric bilinear form. This is a result of Hermitian K-theory; see [30] and [31] for background 
on Hermitian K-theory. A representing chain complex with duality provides the opportunity to do further 
homotopy theory. The example we have in mind will be described below. As a candidate representative, 
however, the Koszul complex has the following property: it depends on a section. There are situations in 
which one naturally has a section, e.g. [19], but the association of the Euler characteristic to a scheme is 
arguably not one of them: We chose the zero section above, but is this a good choice? Any section would 
in fact do [6, Proposition 2.4], and it may be desirable not to choose at all. The main result of this paper 
allows this by offering the Hochschild complex as an alternative.

There is a canonical pairing on the Hochschild homology HH, which appears in greater generality in 
work of Alonso-Jeremías-Lipman, [2]. This pairing can be viewed as coming from the connection between 
Grothendieck duality and Hochschild homology, due to Avramov, Lipman, and Iyengar, among others. We 
give a construction specific to our case of interest using work of Neeman in Section 2. We then show that this 
agrees with (Hdg(X/k), Tr) and (RpX∗TX , RpX∗βX) using the Hochschild–Kostant–Rosenberg theorem for 
smooth and proper schemes X over a field of characteristic 0.

Theorem 1. Let X be a smooth, projective scheme over a field of characteristic 0. HH(X) together with a 
canonical pairing represents the categorical A1-Euler characteristic for smooth projective X.

This is Theorem 2.11 in Section 2. The example alluded to above is the following enrichment of the 
A1-Euler characteristic. In joint as well as independent work, J. Campbell and the fifth-named author have 
constructed a spectrum whose π0 is the Grothendieck group of varieties K0(Vark). See [7,35]. Indepen-
dently, O. Röndigs [29] constructs a K-theory of varieties spectrum whose π0 receives a surjective map from 
K0(Vark). (The Grothendieck group of varieties is by definition the universal cut-and-paste invariant, and 
is described in more detail in for example [4].) Bittner’s presentation promotes the A1-Euler characteristic 
of a smooth, projective variety to a compactly supported A1-Euler characteristic for any variety over k. In 
more detail:

Theorem 1.11 ([4, Theorem 3.1]). Let k be a field of characteristic 0. The group K0(Vark) is isomorphic 
to the free abelian group generated by smooth projective varieties modulo the relation that for any smooth 
closed subvariety Y ⊆ X,

[BlY X] − [E] = [X] − [Y ],

where BlY X is the blow-up of X at Y , and E is the exceptional divisor of the blowup.

Definition 1.12. Let X be a smooth scheme over a field k of characteristic 0. We define χc(X) as follows. 
For dimX = 0 we define χA1

c (X) = χA1(X). For dimX > 0, write [X] =
∑n

i=1 εi[Xi] in K0(Vark), where 
each Xi is smooth projective and εi = ±1. Then define

χA1

c (X) def=
n∑

i=1
εiχ

A1

c (Xi).

Theorem 1.13. χA1

c is well-defined, and induces a homomorphism K0(Vark) GW(k).

This follows from [29, Theorem 5.2, Corollary 6.7]. We also provide an exposition in Theorem 2.13.
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Question 1.14. Does the compactly supported A1-Euler characteristic χA1

c lift to a map of spectra from a 
spectrum level version of K0(Vark) to Hermitian K-theory? What kind of information would such maps 
encode?

O. Röndigs gives an affirmative answer to the first question in [29, Theorem 6.6]. He constructs his map 
using the categorical A1-Euler characteristic and Waldhausen’s model of K-theory. We suggest an alternate 
approach these questions, studying the association of the Hochschild complex to a smooth, projective scheme, 
especially as related to Bittner’s presentation. Section 3 provides sample computations.
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Notation

k will denote a field of characteristic 0.
By a variety over k we mean a reduced, irreducible, separated schemes of finite type over a field k. For a 

variety X over k, the map pX denotes the structure map pX : X Spec k. When X is clear from context 
we omit it from the notation, and write p for the structure map. Our chain complexes are cohomological and 
often concentrated in negative degrees. Write hCoh(X) for the derived category of coherent sheaves on X.

2. Hochschild complex represents the A1-Euler characteristic

We use the connection between Grothendieck duality and Hochschild homology to give a bilinear form 
on the absolute Hochschild complex in this section. This form appears in greater generality in work of 
Alonso-Jeremías-Lipman [2]. We then show this complex with duality represents the A1-Euler characteristic 
for a smooth, projective scheme over a field of characteristic 0, and use Bittner’s presentation to give an 
exposition of the compactly supported A1-Euler characteristic. Recall that we are working over a field of 
characteristic 0.

In future work we hope to use this formalism to lift the compactly supported Euler characteristic to a 
spectrum-level construction from J. Campbell and the fifth-named author’s spectrum of varieties [7] [35]
landing in the Hermitian K-theory of k. As working in the derived category is presumably not sufficient 
to make such a construction well-defined, we keep track (and include in our notation) which functors are 
defined outside the derived category, as well. Thus, for example, given a map f : X Y we think of f∗ as 
a functor Coh(Y ) Coh(X) and denote the derived functor by Lf∗ : hCoh(Y ) hCoh(X).

Let k be a field. We will shortly restrict to the case where k is characteristic 0.

Definition 2.1. Let p : X Spec k be a smooth separated scheme over k, and let hCoh(X) be the derived 

category of coherent sheaves on X. Write Δ : X X×X for the diagonal map, and define OΔ
X

def= Δ∗OX . 
This inherits a ring structure from OX ; write μX : OΔ

X ⊗OΔ
X OΔ

X for the multiplication map.
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Since Δ is affine, RΔ∗ = Δ∗, so this is in fact a derived construction. Define the Hochschild complex 
HHX(X) in hCoh(X) to be

HHX(X) def= (LΔ∗)(Δ∗OX),

which is equivalent to OΔ
X ⊗L

X×X OΔ
X . Since LΔ∗ is strongly monoidal, the Hochschild complex inherits a 

multiplication

LΔ∗μX : HHX(X) ⊗ HHX(X) HHX(X)

We then define the absolute Hochschild complex HH(X) in hCoh(k) to be

HH(X) def= Rp∗ HHX(X).

To see that the Hochschild homology is a good candidate to represent the A1-Euler characteristic, we 
first note that it is a representative in K0(k) when the characteristic of k is 0:

Theorem 2.2 (Hochschild–Kostant–Rosenberg, [15] [3, p. 1]). Let k be a field of characteristic 0. For a 
smooth projective X, [HH(X)] = Hdg(X/k) in K0(k).

We would like the Euler characteristic to take values in GW(k), rather than K0(k). To accomplish this, 
we use the connection between Grothendieck duality and Hochschild homology found by Avramov and 
Iyengar [1], and particularly the work of Neeman [26] to construct a nondegenerate symmetric bilinear form 
on HHX(X). This pairing appears in greater generality in Alonso-Jeremías-Lipman [2].

The multiplication on OΔ
X induces a multiplication

μ̂X : HH(X) ⊗ HH(X) HH(X)

in the following manner. Define μ̂X to be the composition

HH(X) ⊗ HH(X) Rp∗(HHX(X) ⊗ HHX(X))
(Rp∗)(LΔ∗

X)μX HH(X),

where the first map is given by the lax monoidal structure on Rp∗. Using this multiplication, HH(X) is 
equipped with the following canonical bilinear pairing.

Definition 2.3. Let X be proper, and let p : X Spec k be the structure map.1 Let π2 : X ×X X be 
the projection onto the second coordinate, as in the following commutative diagram:

X

X ×X X

X Spec k

Δ

π2

π1

p

p

1 Many of the constructions, and in particular the result of Neeman, are possible in much greater generality.
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By [26, Proposition 3.3], there is a canonical isomorphism

δX : (LΔ∗)π!
2OX p!Ok.

Inside the derived category, the adjoint to the weak equivalence (π2)∗OΔ
X = (π2)∗Δ∗OX

∼ (π2 ◦Δ)∗OX =
OX , is

t : OΔ
X π!

2OX .

Define α′ to be the composition of LΔ∗t with δX

α′ : HHX(X) = (LΔ∗)OΔ
X (LΔ∗)π!

2OX
δX

p!Ok.

The map α′ is a special case of the fundamental class of a flat map of Alonso-Jeremías-Lipman [2, p. 390]. 
Since X is proper, there is a natural equivalence p! p∗; the map α adjoint to α′ can thus be written as

α : HH(X) Ok.

Define the bilinear form

BX : HH(X) ⊗ HH(X) Ok by BX
def= α ◦ μ̂X .

Since μX is a commutative multiplication and Rp∗ is lax symmetric monoidal, μ̂X is commutative; it 
follows that BX is symmetric.

Lemma 2.4. (Alonso-Jeremías-Lipman) BX is nondegenerate.

Lemma 2.4 is a special case of Alonso, Jeremías, and Lipman’s [2, Corollary 4.8.4]. We provide a proof 
adapted to our level of generality to provide a self-contained exposition.

Proof. The map α′ ◦ (LΔ∗
X)μX determines a map

HHX(X) RHom(HHX(X), p!Ok), (2.5)

which we claim is an isomorphism. To see this, observe that (2.5) is equal to the composition

LΔ∗OΔ
X RHom(LΔ∗OΔ

X ,LΔ∗π!
2OX) δX◦ RHom(LΔ∗OΔ

X , p!Ok),

where the first map is induced from the multiplication. Since δX is an isomorphism, the second is as well, 
so it remains to show that

LΔ∗OΔ
X RHom(LΔ∗OΔ

X ,LΔ∗π!
2OX) (2.6)

is an isomorphism. Since X is smooth, Δ is perfect [32, Section 37.54, Lemma 37.54.18.], and thus has finite 
Tor-dimension [32, Section 0685 Lemma 37.53.11]. Since Δ is proper and finite Tor-dimension,

LΔ∗RHom(OΔ
X , π!

2OX) 	 RHom(LΔ∗OΔ
X , π!

2OX)

by [26, Lemma 4.3], and the morphism (2.6) is induced by LΔ∗ applied to
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OΔ
X RHom(OΔ

X , π!
2OX).

This is an isomorphism, since it equal to the composition

Δ∗OX
∼= Δ∗RHom(OX ,OX) ∼= Δ∗Hom(OX ,Δ!π!

2OX) ∼= Hom(Δ∗OX , π!
2OX),

where the third isomorphism is by [26, (2.5.2)] and the fourth is by [26, p. 14].
By coherent duality [13, p. 7 Ideal Theorem c], the composition of the natural map

RHomX(HH(X), p!Ok) RHomY (Rp∗ HH(X),Rp∗p
!Ok)

with the map induced by the trace Rp∗p! 1 is isomorphism

Rp∗RHomX(HH(X), p!Ok)
∼= RHomk(HH(X),Ok).

Since (2.5) is an isomorphism, it follows that the map HH(X) RHomk(HH(X), Ok) induced by α◦μ̂X◦ζX
is an isomorphism. �

In order to show that (HH(X), BX) gives the A1-Euler characteristic, we will use that the algebra 
structure on HH(X) is compatible with the algebra structure on differential forms: let TX denote the 
Koszul complex as in Definition 1.8.

Theorem 2.7 (Hochschild–Kostant–Rosenberg Theorem). Let k be a field of characteristic 0. Giving 
H∗(HHX(X)) the algebra structure induced from LΔ∗μX and TX the algebra structure from wedge product 
of forms, there is an algebra isomorphism H∗(HHX(X)) TX .

See also [33, Corollaire 1.2], identifying the relevant Tor in commutative differential graded algebras.

Proof. Let I denote the ideal sheaf of the closed immersion Δ. There is an exact sequence

0 I OX×X Δ∗OX 0

of coherent sheaves on X ×X. Applying LΔ∗, we obtain the distinguished triangle

LΔ∗I LΔ∗OX×X HHX(X) LΔ∗I[1].

The associated long exact sequence on homology sheaves defines a map

HHX
1 (X) ∼= H1(HHX(X)) H0LΔ∗I ∼= Δ∗I ∼= I/I2 ∼= ΩX/k, (2.8)

where HH1 denotes the first Hochschild homology and H1(HHX(X)) denotes the first homology sheaf of the 
complex HHX(X) (which is denoted with a superscript 1 because our complexes are graded cohomologically). 
H1(LΔ∗OX×X) = 0 because OX×X is a flat OX×X -module. Thus (2.8) is injective. Moreover the map 
OX

∼= Δ∗OX×X Δ∗Δ∗OX
∼= OX is the identity. We therefore have that (2.8) is an isomorphism.

The map LΔ∗μX induces a multiplication on H(HHX(X)) compatible with the multiplication on open 
affines of [15]. By [15, Theorem 3.1], H(HHX(X)) is the exterior algebra on H1(HHX(X)) after restricting 
to affine open subsets of X. Thus H(HHX(X)) is the exterior algebra on H1(HHX(X)). Therefore, (2.8)
extends to an algebra homomorphism H∗(HHX(X)) TX . Since TX is the exterior algebra on ΩX/k, the 
homomorphism H∗(HHX(X)) TX is an isomorphism. �
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We now show that the A1-Euler characteristic is represented by the form on HH(X) just constructed. 
Given a bilinear form on a graded vector space V •×V • k, the 0-th graded piece V 0, and the direct sums 
V (n) := V −n +V n for n > 0 carry a nondegenerate bilinear form. We denote the corresponding elements of 
GW(k) by [V 0] and [V (n)] respectively. The class in GW(k) determined by the form is the alternating sum 
[V 0] +

∑
n>0(−1)n[V (n)].

Definition 2.9. Given a nondegenerate, symmetric β : V • × V • Ok in hCoh(k), let [β] denote the class 
in GW(k) given by [H0(V •)] +

∑
i>0(−1)i[H∗(V •)(i)].

In the following theorem, we prove that [BX ] = χA1(X) by identifying the former with the pairing on 
(Hdg(X/k), Tr). It is proved analogously to the proof of [6, Proposition 2.4]. However, we also need a key 
duality result, which gives us a better understand of the constituents used to define BX .

Theorem 2.10 ([2, Proposition 2.4.2][26, Theorem 3.5], [36, Proposition 4.6.3]). Let d = dimX, and let 
α′ : HHX(X) p!Ok be as defined above. Then the map Hd(α′) induced on d-th cohomology sheaves over 
X is an isomorphism.

With this result, we have the following:

Theorem 2.11. Let X be smooth and projective over a field k of characteristic 0. Then the class of BX in 
GW(k) is the categorical A1-Euler characteristic χA1(X) of X. When X is smooth and proper, the class of 
BX is the Euler number of the tangent bundle.

Remark 2.12. The Euler class of a vector bundle was defined by [5] and developed further by J. Fasel [10] and 
others. Under orientation conditions on the vector bundle which are always satisfied by the tangent bundle, 
the Euler class can be pushed forward to an Euler number. It is a theorem of M. Levine that for X smooth 
and projective, the categorical A1-Euler characteristic equals the Euler number of the tangent bundle [20, 
Theorem 3.1 or ArXiv version 3 Theorem 1.1], and in particular, X is dualizable in an appropriate sense, 
see [20, Theorem 3.1 or ArXiv version 3 Theorem 1.1]

Proof. Let n = dimX. There is a hypercohomology spectral sequence

Ei,j
2 = Rip∗H

j HHX(X) Hi+j HH(X).

By the isomorphism Hj HHX(X) ∼= Ω−j
X of the Hochschild–Kostant–Rosenberg theorem, Ei,j

2
∼=

Hi(X, Ω−j
X ). The hypercohomology spectral sequence is multiplicative, giving a bilinear form on the Er-

pages for r ≥ 2 coming from the cup product

Ei,j
2 × Ei′,j′

2 Ri+i′p∗H
j+j′(HHX(X) ⊗ HHX(X)).

Composing with α ◦ (Rp∗(μ̂)) ◦ ζX , we obtain a new form on the Er-page which we denote βr

βr : Ei,j
r × En−i,n−j

r k.

Note that Ei,j
2 is the degree (i, j) summand of (Hdg(X/k), Tr), as defined in (1.5). By Theorems 2.10 and 

2.7, β2 is the cup product pairing, whence [β2] = [(Hdg(X/k), Tr)]. Recall that the notation [β2] was defined 
in 2.9. By [6, Lemma 2.7], it follows that βr is symmetric, non-degenerate and [βr] = [β2] for all r ≥ 2, 
including r = ∞. By [6, Lemma 2.6], [β∞] = BX . For X smooth and projective [(Hdg(X/k), Tr)] = χA1(X)
by [21, Theorem 1.3]. By [6, Theorem 1.1, second Corollary p. 3] [(Hdg(X/k), Tr)] is the Euler number of 
the tangent bundle. Combining, we see [β2] = [βr] = BX , which completes the proof by the previous. �
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Using Bittner’s presentation, we now show that [X] [BX ] defines a homomorphism out of the 
Grothendieck ring of varieties, and which agrees with the usual Euler characteristic. In future work we 
hope to prove this theorem using scdh-descent and Hochschild homology. It is interesting to note that, 
by contrast, Hochschild homology does not satisfy cdh-descent. The below proof is similar to one of O. 
Röndigs in that it uses cut and paste properties of the categorical Euler characteristic [29, Theorem 5.2]
[25, 3 Remark 2.30]. The below is of a more computational flavor, relying on recent work of M. Levine.

Theorem 2.13. Let k be a field of characteristic 0. The map X [BX ] for X smooth and projective defines 
a homomorphism K0(Vark) GW(k) which agrees with the categorical A1-Euler characteristic.

Proof. That [BX ] is the categorical A1-Euler characteristic χA1(X) is Theorem 2.11. (Also see Remark 2.12
for context.)

Let

E BlY X

Y X,

be the blow-up diagram of a smooth, proper k-variety X along a smooth closed subvariety Y of codimension 
c. It follows from [20, Proposition 1.4 (5) or ArXiv version 3 Proposition 1.10 (4)] that χA1(BlY X) =
χA1(X) +

∑c−1
i=1 〈−1〉iχA1(Y ). The exceptional divisor E is the projectivization PNY X of the normal bundle 

of Y in X. By [20, Proposition 1.4 (4) or ArXiv version 3 Proposition 1.10 (3)], χA1
E =

∑c−1
i=0 〈−1〉iχA1(Y ). 

Thus

χA1
(BlY X) = χA1

(X) − χA1
(Y ) + χA1

(E)

and the homomorphism is well-defined by Bittner’s presentation (see Theorem 1.11). �
3. A direct perspective

In this section, we compute χA1(X) = χA1

c (X) for the smooth, proper varieties X = Spec k, P 1, P 2, 
and Bl0 P 2 using the complex with duality (Hdg(X/k), Tr) described in Definition 1.4. In other words, we 
compute A1-Euler characteristics explicitly using coherent duality. This allows a direct verification that 
the association of the complex with duality (Hdg(X/k), Tr) to a smooth projective variety X satisfies the 
relation [(Hdg(P 2/k), Tr)] +[(Hdg(P 1/k), Tr)] = [(Hdg(Bl0 P 2/k), Tr)] +[(Hdg(k/k), Tr)] in GW(k) imposed 
on classes of smooth projective varieties in Bittner’s presentation (see 1.11). It gives an alternate proof of 
the n = 1, 2 case of M. Hoyois’s computation of χA1(Pn) [16, Example 1.7], and an alternate proof of the 
case X = Bl0 P 2 of M. Levine’s computation of the A1-Euler characteristic of a blow up [20, Proposition 
1.4 or ArXiv version 3 Proposition 1.10]. As before, we work over a field of characteristic 0.

The collapse of appropriate spectral sequences renders (Hdg(X/k), Tr) equivalent to the complex with 
duality (RpX∗TX , RpX∗βX) described in (1.9). Let pX : X Spec k denote the structure map of X; 
recall that

TX
def= ⊕0

i=−d(∧−iT ∗
X)

is equipped with the natural duality given by composing multiplication of forms with projection off of the 
top wedge power of T ∗

X . After pushforward to Spec k, this complex with duality represents χA1 for smooth 
projective varieties, by [6, Proposition 2.4].
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i

j

H0(P1,OP1
)

H0(P1,O(−2)
)

H1(P1,OP1
)

H1(P1,O(−2)
)

0 0

0

0

0

Fig. 1. (3.4) for X = P1.

Consider the blow-up square

P 1 Bl0 P 2

Spec k P 2.

i′

f

i

f ′ (3.1)

The goal is to show the equality

[RpP1∗TP1 ] + [RpP2∗TP2 ] = [RpSpec k∗TSpec k] + [RpBl0 P2∗TBl0 P2 ] (3.2)

GW(k); we have omitted the dualities from the notation for legibility, but these too must be considered.

Remark 3.3. In this section we write p for the map pX : X Spec k whenever X is clear from context.

3.1. Verification in K0(k)

In this subsection, k is any field. As a 1-category, hCoh(k) is equivalent to the category of graded 
k-vector spaces by taking homology. We now compute Rp∗TSpec k, Rp∗TP1 , Rp∗TP2 , and Rp∗TBl0 P2 as 
k-vector spaces using the hypercohomology spectral sequence [22, Theorem 12.12]

Ei,j
2 = Hi

(
X,Tj

X

)
= Hi

(
X,∧jT ∗

X

)
Hj−i

(
(pX)∗TX

)
. (3.4)

Along the way, we verify (3.2) in K0(k).
Consider (3.2). The complex Rp∗TSpec k is k in degree zero and trivial otherwise.
The computations of Rp∗TP1 , Rp∗TP2 , and Rp∗TBl0 P2 as graded k-vector spaces are done in Proposi-

tions 3.5, 3.6, and 3.8, respectively; we compute the forms in Subsection 3.2. We will not explicitly discuss 
differentials in the spectral sequence, as each of the examples we compute will end up concentrated in a 
single diagonal, and therefore no differentials are possible.

Proposition 3.5. Rp∗TP1 ∼= k2 where k2 is concentrated in degree 0.

Proof. Consider the E2-page of (3.4) when X = P 1, illustrated in Fig. 1. Noting that T ∗
P1

∼= O(−2), Serre 
duality implies that

H1(P 1,OP1
)

= H0(P 1,O(−2)
)

= 0

and
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j
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k0
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0

0

Fig. 2. Result of computation.

H1(P 1,O(−2)
)

= H0(P 1,OP1
)

= k.

Thus the spectral sequence is as illustrated in Fig. 2. �
Proposition 3.6. Rp∗TP2 ∼= k3 where k3 is concentrated in degree zero.

Proof. The reader can refer to Fig. 3 for the E2-page of (3.4) when X = P 2.
The computation of Rp∗TP2 is similar to the computation of Rp∗TP1 . In this case the Koszul complex 

takes the form

TP2 = OP2 ⊕ T ∗
P2 ⊕ ∧2T ∗

P2 .

Thus we have possibly nonzero terms Ei,j
2 for i, j ∈ {0, 1, 2}.

Recall that Hi
(
Pk, O(n)

)
= 0 for all n and all 0 < i < k. Note also that ∧2T ∗

P2
∼= O(−3). It follows that 

H1(P 2, ∧2T ∗
P2

)
and H1(P 2, OP2

)
are trivial. Moreover, Serre duality implies that

H2(P 2,OP2
)

= H0(P 2,O(−3)
)

= 0

and

H2(P 2,O(−3)
)

= H0(P 2,OP2
)

= k.

Since TPn = Hom
(
O(−1), On+1/O(−1)

)
, there is a short exact sequence

0 → OPn → O(−1)n+1 → TPn → 0.

The dual sequence is

0 → T ∗
Pn → O(1)n+1 → OPn → 0. (3.7)

From the long exact sequence associated to (3.7), it follows that

H0(P 2, T ∗
P2

)
= H2(P 2, T ∗

P2

)
= 0

and

H1(P 2, T ∗
P2

)
= k.

These computations are summarized in Fig. 4. �
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H0(P2, T ∗
P2

)
H0(P2,O(−3)

)

H1(P2,OP2
)

H1(P2, T ∗
P2

)
H1(P2,O(−3)

)

H2(P2,OP2
)

H2(P2, T ∗
P2

)
H2(P2,O(−3)
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Fig. 3. (3.4) for X = P2.
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Fig. 4. Result of computation.

Proposition 3.8. Rp∗TBl0 P2 ∼= k4 where k4 is concentrated in degree zero.

In order to prove this we must first carry out two auxiliary computations in 3.9 and 3.10.

Lemma 3.9.

Hyi
(
Bl0 P 2; ΩBl0 P2/P2

) ∼= {
k i = 1,
0 i �= 1.

Proof. Let i′ : P 1 → Bl0 P 2 be the inclusion of the exceptional divisor. Since Kähler differentials commute 
with pullback [32, Tag 01UM], the support of ΩBl0 P2/P2 is contained in the exceptional divisor. In fact, 
the canonical map ΩBl0 P2/P2 i′∗(i′)∗ΩBl0 P2/P2 is an isomorphism. To see this: let I denote the sheaf 
of ideals associated to the closed immersion i′. By the proof of [32, Tag 01QY], it suffices to see that 
IΩBl0 P2/P2 = 0. Since the support of ΩBl0 P2/P2 is contained in the exceptional divisor, it thus suffices to 
see that IΩBl0 A2/A2 = 0. This can be seen by direct computation. The blow-up

Bl0 A2 ∼= Projk[x,y]
k[x, y][Z,W ]
〈xZ − yW 〉

is covered by two affine opens, one canonically isomorphic to Spec k[x,y,WZ ]
〈x−yW

Z 〉 and the other canonically iso-

morphic to Spec k[x,y, Z
W ]

〈x Z
W −y〉 . The sheaf of relative differentials of, say, the first over Speck[x, y] has a single 

generator dW
Z with a single relation −ydW

Z . The sheaf of differentials of the second is computed similarly, 
showing that IΩBl0 A2/A2 = 0. Thus ΩBl0 P2/P2 ∼= i′∗(i′)∗ΩBl0 P2/P2 as claimed.
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It follows that ΩBl0 P2/P2 ∼= i′∗T
∗
P1 by another application of the commutativity of Kähler differentials 

and pullback [32, Tag 01UM]. Thus

Hi
(
Bl0 P 2; ΩBl0 P2/P2

) ∼= Hi
(
Bl0 P 2; i′∗T ∗

P1

) ∼= Hi
(
P 1;T ∗

P1

)
.

The result then follows from Proposition 3.5. �
Lemma 3.10.

Hi
(
Bl0 P 2; f∗T ∗

P2

) ∼= {
k i = 1,
0 i �= 1.

Proof. Consider the blow-up square (3.1).

Claim 3.11. This gives a distinguished triangle in the bounded derived category of P 2:

OP2 i∗OSpec k ⊕ Rf∗OBl0 P2 Rm∗OP1 ,

where m := f ◦ i′ = i ◦ f ′.

Given the claim, note that T ∗
P2 is a flat module (in fact, locally free) since P 2 is smooth, so tensoring 

preserves exact sequences. Thus we get a distinguished triangle:

T ∗
P2 (T ∗

P2 ⊗ Ri∗OSpec k) ⊕ (T ∗
P2 ⊗ Rf∗OBl0 P2) T ∗

P2 ⊗ Rm∗OP1 .

Now, using a projection formula from [32, Theorem 20.49.2] we have that

T ∗
P2 ⊗ Rf∗OBl0 P2 	 Rf∗(f∗T ∗

P2),

and similarly for other terms. Thus we have a distinguished triangle:

T ∗
P2 Ri∗(i∗T ∗

P2) ⊕ Rf∗(f∗T ∗
P2) Rm∗(m∗T ∗

P2).

Now, we apply R(pP2∗) to get a long exact sequence on cohomology.

H0(P 2;T ∗
P2

)
H0(Spec k; i∗T ∗

P2

)
⊕H0(Bl0 P 2; f∗T ∗

P2

)
H0(P 1; (i ◦ f ′)∗T ∗

P2

)

H1(P 2;T ∗
P2

)
H1(Spec k; i∗T ∗

P2

)
⊕H1(Bl0 P 2; f∗T ∗

P2

)
H1(P 1; (i ◦ f ′)∗T ∗

P2

)

H2(P 2;T ∗
P2

)
H2(Spec k; i∗T ∗

P2

)
⊕H2(Bl0 P 2; f∗T ∗

P2

)
H2(P 1; (i ◦ f ′)∗T ∗

P2

)
.

(3.12)

Considering dimensions, we see that

H1(Spec k; i∗T ∗
P2

)
= H2(Spec k; i∗T ∗

P2

)
= H2(P 1; (i ◦ f ′)∗T ∗

P2

)
= 0,

implying that H2(Bl0 P 2; f∗T ∗
2) = 0.
P
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From the proof Proposition 3.6 we know

Hj
(
P 2;T ∗

P2

)
= 0

unless j = 1, in which case it is k.
Recall that i : Spec k ↪→ P 2 is the inclusion. By definition i∗T ∗

P2 = i−1T ∗
P2 ⊗i−1OP2 Ok. Therefore

i∗T ∗
P2 = T ∗

P2 |Spec k ⊗OP2 |Spec k
Ok

∼= T ∗
P2 |Spec k ∼= O⊕2

k .

This implies

H0(Spec k; i∗T ∗
P2

)
= H0(Spec k;O⊕2

k

)
= H0(Spec k;Ok

)
⊕H0(Spec k;Ok

)
= k2.

Observing that (i ◦ f ′)∗T ∗
P2

∼= (f ′)∗O⊕2
k

∼= O⊕2
P1 , we get that:

H0(P 1; (i ◦ f ′)∗T ∗
P2

)
= H0(P 1;O⊕2

P1

)
= k2,

and

H1(P 1; (i ◦ f ′)∗T ∗
P2

)
= H1(P 1;O⊕2

P1

)
= H1(P 1;OP1

)
⊕H1(P 1;OP1

)
= 0.

Plugging this in to (3.12) gives the exact sequence

0 k2 ⊕H0(Bl0 P 2; f∗T ∗
P2

)
k2 k H1(Bl0 P 2; f∗T ∗

P2

)
0.

The desired result follows. �
Proof of Claim 3.11. Consider the short exact sequence of OBl0 P2-modules

0 OBl0 P2(−E) OBl0 P2 i′∗OE 0,

where E 	 P 1 is the exceptional divisor of the blow-up. Applying Rf∗ gives an exact triangle in the derived 
category of P 2

Rf∗OBl0 P2(−E) Rf∗OBl0 P2 Rf∗(i′∗OE), (3.13)

whose associated long exact sequence on cohomology gives

0 f∗OBl0 P2(−E) f∗OBl0 P2 	 OP2 m∗OE 	 i∗OSpec k R1f∗OBl0 P2(−E).

But in fact Rif∗OBl0 P2(−E) = 0 for i > 0, as the following argument shows. Note first that 
Rif∗OBl0 P2(−E)) is a coherent sheaf ∀i ≥ 0 by [32, Theorem 30.19.1].

It is enough to check that the fibers are all zero. Combining [12, Theorem 3.2.1], [14, Exercise II.3.10], 
and [14, Corollary III.9.4], we see that the fiber over p ∈ P 2 is

(Rif∗OBl0 P2(−E))(p) ∼= Hi(Bl0 P 2
p ,OBl0 P2(−E)f−1(p)) ∼= Hi(f−1(p),OBl0 P2(−E)).

Consider the case where p ∈ P 2 − 0. Since f |P2−0 : Bl0 P 2 − E P 2 − 0 is an isomorphism, f−1(p) is 
a point and therefore affine. Thus Hi(f−1(p), OBl0 P2(−E)) = 0 for all i > 0, as desired.
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Consider the case p = 0. Then we have f−1(p) ∼= P 1, and

H1(f−1(p),OBl0 P2(−E)) ∼= H1(P 1,OP1(1)) = 0,

as desired. Therefore Rif∗OBl0 P2(−E) = 0 for i > 0, and so we get a short exact sequence

0 f∗OBl0 P2(−E) OP2 i∗OSpec k 0,

which in fact represents a distinguished triangle

Rf∗OBl0 P2(−E) OP2 i∗OSpec k,

in the derived category of P 2 with the property that the shift map i∗OSpec k Rf∗OBl0 P2(−E)[1] is zero. 
By [32, Theorem 13.4.10], we get that

OP2 = Rf∗OBl0 P2(−E) ⊕ i∗OSpec k (3.14)

in the derived category of P 2.
Now, note that (3.13) becomes

Rf∗OBl0 P2(−E) Rf∗OBl0 P2 Rm∗OP1 . (3.15)

The modifications to the last term follow from recalling that E 	 P 1 and that the inclusion i′ : P 1 X ′

is affine. By [32, Theorem 36.5.3], Ri′∗ = i′∗, and hence

Rf∗(i′∗OE) = Rf∗Ri′∗OP1 = Rm∗OP1 .

Moreover, we also have a trivial distinguished triangle:

i∗OSpec k i∗OSpec k 0. (3.16)

Using [32, Lemma 13.4.9] we get a distinguished triangle by summing (3.15) and (3.16):

Rf∗OBl0 P2(−E) ⊕ i∗OSpec k Rf∗OBl0 P2 ⊕ i∗OSpec k Rm∗OP1 .

But, appealing to (3.14), this is precisely the distinguished triangle claimed. �
We are now ready to prove Proposition 3.8.

Proof of Proposition 3.8. Consider the top row E2-page of the spectral sequence (3.4) for Bl0 P 2; this 
is given in Fig. 5. Following the proof of [14, Proposition V.3.4] we see that H2(Bl0 P 2, OBl0 P2

)
=

H1(Bl0 P 2, OBl0 P2
)

= 0. Since Bl0 P 2 is smooth and compact, Serre duality implies that

H2(Bl0 P 2, ωBl0 P2
)

= H0(Bl0 P 2,OBl0 P2
)

= k,

H1(Bl0 P 2, ωBl0 P2
)

= H1(Bl0 P 2,OBl0 P2
)

= 0, and

H0(Bl0 P 2, ωBl0 P2
)

= H2(Bl0 P 2,OBl0 P2
)

= 0.

To compute the terms in the second row of the E2-page, consider the blow-up map f : Bl0 P 2 → P 2. 
There is an exact sequence of sheaves on Bl0 P 2,
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Fig. 5. (3.4) for X = Bl0P
2.

f∗T ∗
P2 → T ∗

Bl0 P2 → ΩBl0 P2/P2 → 0.

In general this sequence is not left exact, but we will show that f∗T ∗
P2 → T ∗

Bl0 P2 is injective in this specific 
example. We can explicitly write

Bl0 P 2 = Proj
(
k[x, y][X,Y ]
〈Xy − xY 〉

)
where x and y have degree 0 and X and Y have degree 1. We will show the map is injective on the affine 
open sets

UX
def= {X �= 0}

and

UY
def= {Y �= 0}.

The situation is symmetric, so we will only give the argument on UX . Observe

UX = Spec
(
k[x, y][X,Y ][1/X]0

〈Xy − xY 〉

)
= Spec

(
k[x, y, Y/X]
〈Y − xY/X〉

)
.

Considering f |UX
: UX Spec k[x, y] ⊆ P 2, we have an explicit description

f∗T ∗
P2(UX) = Odx⊕Ody

and

T ∗ Bl0 P 2(UX) = Odx⊕Od(Y/X).

Under this identification, the map of sheaves f∗T ∗
P2(UX) T ∗ Bl0 P 2(UX) is given in coordinates by

dx �→ dx

and

dy �→ d(xY ) = (dx)(Y ) + xd(Y ).

X X X
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This is the map we want to show is injective.
Observe that given (g, h) ∈ O ⊕O,

(g, h) �→ (g + h
Y

X
, xh).

If xh = 0 ∈ k[x,y,Y/X]
〈Y−xY/X〉 , then h = 0. Therefore if (0, 0) = (g + h Y

X , xh) = (g, 0), we must have g = 0. Thus,

ker(f∗T ∗P 2(UX) T ∗
Bl0 P2(UX)) = {(0, 0)},

as desired. Applying the same argument for UY , we conclude that f∗T ∗
P2 → T ∗

Bl0 P2 is injective.
It follows that there is a short exact sequence of coefficients

0 → f∗T ∗
P2 → T ∗

Bl0 P2 → ΩBl0 P2/P2 → 0,

that induces a long exact sequence on cohomology

H0(Bl0 P 2; f∗T ∗
P2

)
H0(Bl0 P 2;T ∗

Bl0 P2

)
H0(Bl0 P 2; ΩBl0 P2/P2

)

H1(Bl0 P 2; f∗T ∗
P2

)
H1(Bl0 P 2;T ∗

Bl0 P2

)
H1(Bl0 P 2; ΩBl0 P2/P2

)

H2(Bl0 P 2; f∗T ∗
P2

)
H2(Bl0 P 2;T ∗

Bl0 P2

)
H2(Bl0 P 2; ΩBl0 P2/P2

)
→ · · ·

(3.17)

Substituting the results of Lemmas 3.9 and 3.10 implies that (3.17) takes the form

0 → H0(Bl0 P 2;T ∗
Bl0 P2

)
→ 0 → k → H1(Bl0 P 2;T ∗

Bl0 P2

)
→ k → 0 → H2(Bl0 P 2;T ∗

Bl0 P2

)
→ 0.

Consequently,

H0(Bl0 P 2;T ∗
Bl0 P2

)
= H2(Bl0 P 2;T ∗

Bl0 P2

)
= 0

and

H1(Bl0 P 2;T ∗
Bl0 P2

)
= k2.

Therefore, the second page of the spectral sequence takes the form shown in Fig. 6, which means that the 
spectral sequence collapses on this page. �

This completes the proof that equality (3.2) holds after applying the forgetful homomorphism 
GW(k) K0(k). It remains to show the relation is satisfied by forms.

3.2. Verification in GW(k)

In this subsection, k denotes a field of characteristic not 2. We compute the bilinear form on Rp∗TX

for X = Spec k, P 1, P 2 or Bl0 P 2, and complete the verification of equality (3.2) in GW(k). We begin by 
defining elements in GW(k) which we will use to express these classes.
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Fig. 6. Result of computation.

Definition 3.18. The hyperbolic bilinear form H is defined to be the rank 2 symmetric bilinear form with 
Gram matrix (

0 1
1 0

)
.

Definition 3.19. Let a ∈ k. Then we write 〈a〉 for the rank 1 bilinear form (x, y) �→ axy.

Remark 3.20. In GW(k) there is an equality between the class of H and 〈1〉 + 〈−1〉 in GW(k).

We start with computing the form for Rp∗TSpec k: recall that the complex Rp∗TSpec k is k in degree zero. 
The following result is immediate:

Proposition 3.21. Rp∗TSpec k has the trivial duality 〈1〉.

Next, consider P 1.

Proposition 3.22. χA1(P 1) = H in GW(k).

Remark 3.23. This provides an alternate proof of the n = 1 case of [16, Example 1.7].

Proof. Referring to the spectral sequences in Figs. 1 and 2, we recall that

Rp∗TP1 	 H0(P 1,OP1) ⊕H1(P 1,ΩP1) 	 k2,

in degree 0. The cup product composed with the trace, which computes our bilinear form on Rp∗TP1 , gives 
the Serre duality isomorphism H0(P 1, OP1)∗ 	 H1(P 1, ΩP1).

From this, we can express the bilinear form of interest in terms of evaluation on H0(P 1, OP1) ⊕
H0(P 1, OP1)∗ k. Indeed, our form can be written as the composition:(

H0(P 1,OP1) ⊕H0(P 1,OP1)∗
)
⊗

(
H0(P 1,OP1) ⊕H0(P 1,OP1)∗

)(
H0(P 1,OP1) ⊗H0(P 1,OP1)∗

)
⊕
(
H0(P 1,OP1)∗ ⊗H0(P 1,OP1)

)
k,

where the first map is projecting onto the cross terms, and the second is given by

e⊗ f + f ′ ⊗ e′ �→ f(e) + f ′(e′).

From this formula, we readily verify that Gram matrix is
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(
0 1
1 0

)
. �

Proposition 3.24. χA1(P 2) = H + 〈1〉 in GW(k).

Remark 3.25. This provides an alternate proof of the n = 2 case of [16, Example 1.7].

Proof. We refer to the spectral sequences depicted in Figs. 3 and 4 for computations of underlying vector 
spaces. We first note that the rank 2 bilinear form on H0(P 2, OP2) ⊕ H2(P 2, Ω2

P2) is equal to H, by an 
argument virtually identical to that in Proposition 3.22.

To complete the proposition, we will show that the symmetric bilinear form

H1(P 2, T ∗
P2) ⊗H1(P 2, T ∗

P2) H2(P 2, ωP2) k∪ Tr (3.26)

is the map k × k → k given by (x, y) �→ xy, which is 〈1〉 as defined in Definition 3.19.
We first find a basis for H1(P 2, T ∗

P2). To this end, consider the Euler sequence

0 T ∗
P2 O(−1)3 OP2 0.ψ φ

Say P 2 = P (k[x, y, z]). Let f ∈ k[x, y, z], we denote the distinguished open set of f by P 2
f . Following [14, 

Theorem II.8.13], the homomorphism ψ is defined on distinguished open sets as follows

ψ
(
f1d

(y
x

)
+ f2d

( z
x

))
=

(
− y

x2 f1 −
z

x2 f2,
f1

x
,
f2

x

)
on P 2

x ,

ψ

(
g1d

(x
y

)
+ g2d

(z
y

))
=

(
g1

y
,− x

y2 g1 −
z

y2 g2,
g2

y

)
on P 2

y , and

ψ
(
h1d

(x
z

)
+ h2d

(y
z

))
=

(
h1

z
,
h2

z
,− x

z2h1 −
y

z2h2

)
on P 2

z ,

with

fi
def= fi(y/x, z/x),

gi
def= gi(x/y, z/y),

and

hi
def= hi(x/z, y/z)

for i ∈ {1, 2}. The homomorphism φ is defined by

φ(s0, s1, s2) = xs0 + ys1 + zs2.

Let δ : H0(P 2, OP2) → H1(P 2, T ∗
P2) be the zeroth connecting homomorphism in the long exact sequence 

associated to the Euler sequence. Since δ is an isomorphism, δ(1) is a basis for H1(P 2, T ∗
P2) ∼= k. We next 

use Čech cohomology to calculate δ(1).
Let U be the affine covering of P 2 by distinguished open sets P 2

x , P 2
y and P 2

z . In what follows, (
C∗(U, F), d∗

)
denotes the Čech complex associated to F and U, where F is a sheaf of abelian groups 

on P 2.
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We recall the definition of the connecting homomorphism. The Euler sequence induces a short exact 
sequence of cochain complexes, [14, Theorem III.4.5]:

0 → C∗(U, T ∗
P2

)
→ C∗(U,O(−1)3

)
→ C∗(U,OP2

)
→ 0,

then δ is defined by diagram chasing in the diagram below,

0 C0(U, T ∗
P2

)
C0(U,O(−1)3

)
C0(U,OP2

)
0

0 C1(U, T ∗
P2

)
C1(U,O(−1)3

)
C1(U,OP2

)
0.

d0 d0 d0 (3.27)

Take (1, 1, 1) ∈ OP2(P 2
x) × OP2(P 2

y ) × OP2(P 2
z ) the generator of H0(P 2, OP2) ∼= k. By the definition of φ, 

d0 and ψ we see that δ(1, 1, 1) =
(

y
xd

(
x
y

)
, z
yd

(
y
z

)
, z
xd

(
x
z

))
∈ H1(P 2, T ∗

P2), as diagram (3.28) illustrates.

(( 1
x , 0, 0

)
,
(
0, 1

y , 0
)
,
(
0, 0, 1

z

))
(1, 1, 1)

(
y
xd

(
x
y

)
, z
yd

(
y
z

)
, z
xd

(
x
z

)) (( 1
x ,−

1
y , 0

)
,
(
0, 1

y ,−
1
z

)
,
( 1
x , 0,−

1
z

)) (3.28)

Our next task is to calculate Q(δ(1) ⊗δ(1)). We first compute δ(1) ∪δ(1), as Q(δ(1) ⊗δ(1)) = Tr(δ(1) ∪δ(1)). 
Consider the diagram below

H0(P 2,OP2) ⊗H1(P 2, T ∗
P2) H1(P 2, T ∗

P2) ⊗H1(P 2, T ∗
P2)

H1(P 2,OP2 ⊗ T ∗
P2) H2(P 2, T ∗

P2 ⊗ T ∗
P2) H2(P 2, ωP2) k,

δ⊗id

∪ ∪

∂ ∧ Tr

(3.29)

where ∂ is the first connecting homomorphism in the long exact sequence associated to the short exact 
sequence

0 T ∗
P2 ⊗ T ∗

P2 O(−1)3 ⊗ T ∗
P2 OP2 ⊗ T ∗

P2 0,ψ⊗id φ⊗id

which is obtained by tensorizing the Euler sequence with T ∗
P2 . By commutativity of diagram (3.29), we have 

that δ(1) ∪ δ(1) = ∂(1 ∪ δ(1)) = ∂(δ(1)).

Claim 3.30. Let α denote the Čech cocycle

z2

xy
d
(x
z

)
∧ d

(y
z

)
∈ H2(P 2, ωP2).

We claim that the composite H1(P 2,OP2 ⊗ T ∗
P2) H2(P 2, T ∗

P2 ⊗ T ∗
P2) H2(P 2, ωP2)∂ ∧ satisfies

δ(1) �→ −α.

Given the claim, we complete the argument. The canonical trace map sends the form of [14, Remark 
7.1.1] to 1. Since α differs from this by the permutation swapping x and z, which has sign −1, we deduce 
that α maps to −1 under the trace. By Claim 3.30 it follows that Tr(δ(1) ⊗ δ(1)) = 1. �
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Proof of Claim 3.30. We calculate ∂(δ(1)) via the commutative diagram below.

0 C1(U, T ∗
P2 ⊗ T ∗

P2

)
C1(U,O(−1)3 ⊗ T ∗

P2

)
C1(U,OP2 ⊗ T ∗

P2

)
0

0 C2(U, T ∗
P2 ⊗ T ∗

P2

)
C2(U,O(−1)3 ⊗ T ∗

P2

)
C2(U,OP2 ⊗ T ∗

P2

)
0.

d1 d1 d1 (3.31)

Note that

δ(1) =
(

y
x ⊗ d

(
x
y

)
, z
y ⊗ d

(
y
z

)
, z
x ⊗ d

(
x
z

))
∈ H1(P 2,OP2 ⊗ T ∗

P2).

For ease of notation, we define

A
def=

(( y

x2 ⊗ d
(x
y

)
, 0, 0

)
,
(
0, z

y2 ⊗ d
(y
z

)
, 0
)
,
( z

x2 ⊗ d
(x
z

)
, 0, 0,

))
and

B
def= z2

xy
d
(x
z

)
⊗ d

(y
z

)
.

By definition of φ we have that (φ ⊗ id)(A) = δ(1). Moreover, d1(A) is equal to(
1 ⊗

( y

x2 d
(x
y

)
− z

x2 d
(x
z

))
, 1 ⊗ z

y2 d
(y
z

)
, 0
)

∈
(
O(−1)3 ⊗ T ∗

P2

)
(P 2

xyz). (3.32)

To simplify (3.32) we use the equality

z

x
d
(x
z

)
= z

x

(
y

z
d
(x
y

)
+ x

y
d
(y
z

))
= y

x
d
(x
y

)
+ z

y
d
(y
z

)
. (3.33)

Substituting (3.33) into the first coordinate of (3.32) yields

d1(A) =
(
− z

xy
,
z

y2 , 0
)
⊗ d

(y
z

)
. (3.34)

We now compute (ψ ⊗ id)(B) and d1(A) + (ψ ⊗ id)(B). By definition of ψ we have

(ψ ⊗ id)(B) =
(
z2

xy

1
z
, 0,− z2

xy

x

z2

)
⊗ d

(y
z

)
=

(
z

xy
, 0,−1

y

)
⊗ d

(y
z

)
, (3.35)

and combining (3.34) and (3.35) we obtain

d1(A) + (ψ ⊗ id)(B) =
(

0, z

y2 ,−
1
y

)
⊗ d

(y
z

)
= ψ ⊗ id

(
−d

(z
y

)
⊗ d

(y
z

))
.

Note that we have actually proved that ∂(δ(1)) = d
(

z
y

)
⊗ d

(
y
z

)
−B, as we can see in the diagram below.

A δ(1)

d
(
z
y

)
⊗ d

(
y
z

)
−B d1(A)

(3.36)
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Since

d
(z
y

)
⊗ d

(y
z

)
= d

(z
y

)
⊗ d

(y
z

)
= −y2

z2 d
(y
z

)
⊗ d

(y
z

)
,

it follows that d
(
z
y

)
∧ d

(
y
z

)
= 0. From this we obtain the claim:

H1(P 2, T ∗
P2 ⊗OP2) H2(P 2, T ∗

P2 ⊗ T ∗
P2) H2(P 2, ωP2)

δ(1) d
(z
y

)
⊗ d

(y
z

)
−B −α.

∂ ∧

�

Proposition 3.37. χA1(Bl0 P 2) = 2H in GW(k).

Proof. As before, we first consider the pairing on H0(Bl0 P 2, OBl0 P2) ⊕H2(Bl0 P 2, Ω2
Bl0 P2) and show it is 

H in GW(k). The argument here is again as in Proposition 3.22.
Now let Q′ denote the class of the symmetric bilinear form

H1(Bl0 P 2, T ∗
Bl0 P2) ⊗H1(Bl0 P 2, T ∗

Bl0 P2) H2(Bl0 P 2, ωBl0 P2) k.∪ Tr

We will show that Q′ isomorphic to H.
To do this it is enough to find a non-zero element v in H1(Bl0 P 2, T ∗

Bl0 P2) such that the image of v ∪ v

in H1(Bl0 P 2, ωBl0 P2) is 0. To see this, note that we may extend v to a basis {v, w} of H1(Bl0 P 2, T ∗
Bl0 P2). 

Replacing w by w− Q′(w,w)
2Q′(v,w)v (note that we use that the characteristic is not 2 here), we obtain a new basis 

{w′, v} so that the Gram matrix of Q′ is(
0 Q′(w′, v)

Q′(w′, v) 0

)
.

Rescaling v, we have (
0 1
1 0

)
,

which is H in GW(k).
The blow-up T ∗

Bl0 P2 can be described as the projectivization of total space of the bundle O(−1) ⊕O on 
P 1:

T ∗
Bl0 P2

∼= ProjProj k[x,y,z] k[x, y, z][S, T ]/〈Sx− Ty〉 ∼= PProj k[S,T ](O(−1) ⊕O).

Let π : Bl0 P 2 P 1 denote the projection. The map π induces a map H1(P 1, ΩP1) H1(Bl0 P 2, π∗ΩP1). 
Composing with the map π∗ΩP1 ΩBl0 P2 , we obtain

π∗ : H1(P 1,ΩP1) H1(Bl0 P 2,ΩBl0 P2).

Since H2(P 2, ΩP1 ⊗ΩP1) = 0, any v in the image of π∗ satisfies Q′(v, v) = 0 by naturally of the cup product.
We have thus reduced the problem to showing that π∗ is nonzero. Since πi′ is the identity on P 1, the 

composition of π∗ with the map
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H1(Bl0 P 2;T ∗
Bl0 P2

)
H1(Bl0 P 2; ΩBl0 P2/P2

) ∼= H1(Bl0 P 2; i′∗ΩP1
) ∼= H1(P 1,ΩP1)

of Equation (3.17) is the identity. Since H1(P 1; ΩP1) ∼= k, it follows that π∗ is nonzero as claimed. �
Now we can verify the equality (3.2); that is, that χA1(P 1) + χA1(P 2) = χA1(Spec k) + χA1(Bl0 P 2). 

Substituting in the results of Propositions 3.21, 3.22, 3.24 and 3.37, we obtain the result.
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