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1. Introduction

The Euler characteristic is one of the first combinatorial topological invariants. Leonhard Euler originally
introduced it for polyhedra, claiming that for any Euclidean polyhedron it is the case that for any polyhedron

# vertices — # edges + # faces = 2.

Although this is true for any convex polyhedron, this is a surprisingly difficult fact to state formally and
correctly, and depends intrinsically on what one means by “polyhedron”. The Euler characteristic turns out
to be a topological invariant, which is most classically defined for a finite CW complex X to be
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oo

X(X) €N (1) dimg Hi(X; Q).

=0

To make the Euler characteristic well-defined for non-compact sets it is necessary to replace homology with
cohomology with compact support; with this definition it follows that for a closed subspace Z of X with
open complement U,

X(X) = x(Z) + x(U). (1.1)

If instead of general topological spaces we consider only varieties (or schemes) over C, the Euler charac-
teristic of a variety X can be defined by the formula

o0

X(X) = x(X(C)) = Y (1) dimg HI(X(C); Q) € Z.
=0

This invariant can be elevated by replacing Q with any field k, and retaining more cohomological infor-
mation. Instead of taking dimensions, we can consider the vector spaces H:(X (C); k) as elements of Kq(k),
the Grothendieck group of the ground field. This gives the new definition

o0

Xe(X) €S (-1)[HIX(C): k)] € Kok).

=0

As Ko(k) = Z, with the isomorphism given by the dimension, this may not appear to be a useful observation.

However, in the case when X is a smooth, projective variety, X (C) is a manifold and Poincaré duality
states that there is a duality on the cohomology. By keeping track of the duality, we obtain an enriched
Euler characteristic: such an Euler characteristic takes values in bilinear forms, rather than vector spaces.
The form-valued Euler characteristic has beautiful applications in topology [28] [11] [9]. Stabilizing, we get
an invariant taking values in the Grothendieck—Witt group, enriching the Euler characteristic valued in
Ko(k) = Z.

Definition 1.2. Let k be a field. The Grothendieck—Witt group GW (k) is the free abelian group generated
by isomorphism classes of k-vector spaces equipped with a symmetric, nondegenerate bilinear form, under
the relation that

Vb + [V ¥]=[VaV, bab

To make this approach work correctly in the context of A'-homotopy theory, it is necessary to shift
perspective. We will work with coherent cohomology, and the relevant additional structure is given by
Grothendieck—Serre duality. Before describing the cohomological approach, we begin with the abstract
definition of the categorical Euler characteristic. For the rest of this paper we restrict to fields of characteristic
0.

Definition 1.3. Let X be a smooth, projective variety over a field k. Then the motivic suspension spectrum
Y3 (X4) is dualizable in the stable motivic homotopy category SH (k) [17, Theorem 5.22] [18, Appendix A]
[20, Section 1 or ArXiv version 3 Section 1.1] [27] [34, Section 2]. Thus there exists an element
1 def
AX) (L —— SR (X) A DEF (X)) — DISF (X)) A S5 (X4) — 1)
in Endgg(x)(1x), where 1 denotes the motivic sphere spectrum, the first and last maps are coevaluation

and evaluation, the middle is the symmetry swap isomorphism, and D(—) denotes dualizing. See for example
[16] or [20] for further discussion.
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It is a beautiful theorem of F. Morel that Endgg k) (1x) = GW(k), see for example [23] or [24, Theorem
1.23, Corollary 1.24], giving the categorical Euler characteristic y» (X) in GW(k). So, one can hope to
recover an enhancement of a cohomological construction by explicitly describing the map in Definition 1.3.

A description in terms of coherent duality was independently suggested by M.J. Hopkins, A. Raksit, and
J.-P. Serre in oral communication. It was proven to equal x*' (X) by M. Levine and A. Raksit [21, Theorem
1.3]. This is the description that motivated the introduction above, and as we will use it to prove our main
result, we give a more detailed account now.

For any vector space V over k, write V[i] for the chain complex consisting of V' concentrated in degree
—1, with 0’s elsewhere. Consider a smooth and proper variety X of pure dimension d.

Definition 1.4. Let
Hdg(X/k) = €D H'(X, 9% ,)lj — ] € Chy,. (1.5)
4,

This is equipped with a symmetric bilinear form via the cup product and the canonical trace map

Tr: Hd(X;le(/k) —k

H'(X, Q) ® HI7H(X, Q1) —= HY(X,0%),) —— k. (1.6)

This structure produces a bilinear form Tr on Hdg(X/k).

See [21, Section 8D] for a review of the formalism of chain complexes with bilinear forms. The bilinear
form Tr in fact recovers XAI as defined above.

Theorem 1.7 ([21, Theorem 1.3]). For X smooth and projective over a field k of characteristic not 2,
XM (X/k) = (Hdg(X/k), Tr) € GW (k).

We remind the reader that in this paper k will be a field of characteristic 0. Another description is as
follows.

Definition 1.8. Let px : X —> Speck denote the structure map of a smooth proper variety X. Let
Tx = ®?:—d(/\7iT)*()a

with zero differential. This is the Koszul complex of the tangent bundle T'x with respect to the zero section.
It has a natural non-degenerate bilinear form

Ox : TxTx —> Tx ——> N T)*([d}
given by composing the multiplication of forms with projection to the —dth term of Tx.

Because X is smooth and proper, Serre duality allows us to pushforward a non-degenerate bilinear form
valued in AYT%[d] and obtain a non-degenerate bilinear form valued in k [13, p. 7 Ideal Theorem c], [8,
Theorem 4.2.9]:

Tr
RpX*BX : RpX*‘TX ® RpX*‘J'X — RpX*(‘TX X Tx) — RpX* /\d T)*([d] — k (19)

There is more discussion of this in [6, Section 2.2] and we will discuss a similar situation in Lemma 2.4.
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Proposition 1.10 (/6, Proposition 2.4]). Let X be smooth and proper over k. With notation as above,
(Rpx.Tx, Rpx,Bx) = (Hdg(X/k), Tr) in GW (k).

Each isomorphism class in GW(k) can be represented by a perfect chain complex over k with a nonde-
generate symmetric bilinear form. This is a result of Hermitian K-theory; see [30] and [31] for background
on Hermitian K-theory. A representing chain complex with duality provides the opportunity to do further
homotopy theory. The example we have in mind will be described below. As a candidate representative,
however, the Koszul complex has the following property: it depends on a section. There are situations in
which one naturally has a section, e.g. [19], but the association of the Euler characteristic to a scheme is
arguably not one of them: We chose the zero section above, but is this a good choice? Any section would
in fact do [6, Proposition 2.4], and it may be desirable not to choose at all. The main result of this paper
allows this by offering the Hochschild complex as an alternative.

There is a canonical pairing on the Hochschild homology HH, which appears in greater generality in
work of Alonso-Jeremias-Lipman, [2]. This pairing can be viewed as coming from the connection between
Grothendieck duality and Hochschild homology, due to Avramov, Lipman, and Iyengar, among others. We
give a construction specific to our case of interest using work of Neeman in Section 2. We then show that this
agrees with (Hdg(X/k), Tr) and (Rpx,Tx, Rpx,.0x) using the Hochschild-Kostant—Rosenberg theorem for
smooth and proper schemes X over a field of characteristic 0.

Theorem 1. Let X be a smooth, projective scheme over a field of characteristic 0. HH(X) together with a
canonical pairing represents the categorical A'-Euler characteristic for smooth projective X .

This is Theorem 2.11 in Section 2. The example alluded to above is the following enrichment of the
A'-Euler characteristic. In joint as well as independent work, J. Campbell and the fifth-named author have
constructed a spectrum whose 7 is the Grothendieck group of varieties Ko(Vary). See [7,35]. Indepen-
dently, O. Rondigs [29] constructs a K-theory of varieties spectrum whose 7y receives a surjective map from
Ky(Vary). (The Grothendieck group of varieties is by definition the universal cut-and-paste invariant, and
is described in more detail in for example [4].) Bittner’s presentation promotes the Al-Euler characteristic
of a smooth, projective variety to a compactly supported A!-Euler characteristic for any variety over k. In
more detail:

Theorem 1.11 ([, Theorem 3.1]). Let k be a field of characteristic 0. The group Ko(Vary) is isomorphic
to the free abelian group gemerated by smooth projective varieties modulo the relation that for any smooth
closed subvariety Y C X,

[Bly X] - [E] = [X] - [V],
where Bly X is the blow-up of X atY, and E is the exceptional divisor of the blowup.
Definition 1.12. Let X be a smooth scheme over a field k of characteristic 0. We define y.(X) as follows.

For dim X = 0 we define y2' (X) = xA"(X). For dim X > 0, write [X] = Yo &[X;] in Ko(Vary), where
each X; is smooth projective and €¢; = +1. Then define

1 def " 1
X (X) =D exd (X)),
i=1

Theorem 1.13. xfl is well-defined, and induces a homomorphism Ky(Vary) — GW (k).

This follows from [29, Theorem 5.2, Corollary 6.7]. We also provide an exposition in Theorem 2.13.
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Question 1.14. Does the compactly supported A'-Euler characteristic ijle lift to a map of spectra from a
spectrum level version of Ko(Vary) to Hermitian K-theory? What kind of information would such maps
encode?

O. Rondigs gives an affirmative answer to the first question in [29, Theorem 6.6]. He constructs his map
using the categorical A!'-Euler characteristic and Waldhausen’s model of K-theory. We suggest an alternate
approach these questions, studying the association of the Hochschild complex to a smooth, projective scheme,
especially as related to Bittner’s presentation. Section 3 provides sample computations.
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Notation

k will denote a field of characteristic 0.

By a wvariety over k we mean a reduced, irreducible, separated schemes of finite type over a field k. For a
variety X over k, the map px denotes the structure map px : X — Speck. When X is clear from context
we omit it from the notation, and write p for the structure map. Our chain complexes are cohomological and
often concentrated in negative degrees. Write hCoh(X) for the derived category of coherent sheaves on X.

2. Hochschild complex represents the A'-Euler characteristic

We use the connection between Grothendieck duality and Hochschild homology to give a bilinear form
on the absolute Hochschild complex in this section. This form appears in greater generality in work of
Alonso-Jeremfas-Lipman [2]. We then show this complex with duality represents the A'-Euler characteristic
for a smooth, projective scheme over a field of characteristic 0, and use Bittner’s presentation to give an
exposition of the compactly supported A'-Euler characteristic. Recall that we are working over a field of
characteristic 0.

In future work we hope to use this formalism to lift the compactly supported Euler characteristic to a
spectrum-level construction from J. Campbell and the fifth-named author’s spectrum of varieties [7] [35]
landing in the Hermitian K-theory of k. As working in the derived category is presumably not sufficient
to make such a construction well-defined, we keep track (and include in our notation) which functors are
defined outside the derived category, as well. Thus, for example, given a map f: X — Y we think of f* as
a functor Coh(Y) — Coh(X) and denote the derived functor by Lf* : hCoh(Y) — hCoh(X).

Let k be a field. We will shortly restrict to the case where k is characteristic 0.

Definition 2.1. Let p : X —> Speck be a smooth separated scheme over k, and let hCoh(X) be the derived

category of coherent sheaves on X. Write A : X — X x X for the diagonal map, and define Oj‘( def AOx.

This inherits a ring structure from Ox; write px : O)A( ® (’)% — (’)ﬁ‘( for the multiplication map.
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Since A is affine, RA, = A,, so this is in fact a derived construction. Define the Hochschild complex
HH™ (X) in hCoh(X) to be

def

which is equivalent to 0% ®%, v O%. Since LA* is strongly monoidal, the Hochschild complex inherits a
multiplication

LA*ux : HHY(X) @ HHY (X) — HH™(X)
We then define the absolute Hochschild complexr HH(X) in hCoh(k) to be

def

HH(X) = Rp, HH™ (X).

To see that the Hochschild homology is a good candidate to represent the A'-Euler characteristic, we
first note that it is a representative in Ko(k) when the characteristic of k is 0:

Theorem 2.2 (Hochschild-Kostant—Rosenberg, [15] [3, p. 1]). Let k be a field of characteristic 0. For a
smooth projective X, [HH(X)] = Hdg(X/k) in Ko(k).

We would like the Euler characteristic to take values in GW(k), rather than K(k). To accomplish this,
we use the connection between Grothendieck duality and Hochschild homology found by Avramov and
Iyengar [1], and particularly the work of Neeman [26] to construct a nondegenerate symmetric bilinear form
on HH™ (X). This pairing appears in greater generality in Alonso-Jeremias-Lipman [2].

The multiplication on (’))A( induces a multiplication

fix - HH(X) ® HH(X) —— HH(X)
in the following manner. Define ix to be the composition

(Rp.) (LAY ux

HH(X) ® HH(X) — Rp.(HH™ (X) @ HH¥ (X)) HH(X),

where the first map is given by the lax monoidal structure on Rp,. Using this multiplication, HH(X) is
equipped with the following canonical bilinear pairing.

Definition 2.3. Let X be proper, and let p : X — Speck be the structure map.' Let m : X x X — X be
the projection onto the second coordinate, as in the following commutative diagram:

X

™

X xX X
1
X P Speck

! Many of the constructions, and in particular the result of Neeman, are possible in much greater generality.
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By [26, Proposition 3.3], there is a canonical isomorphism

5X : (LA*)W‘QOX %plok.

Inside the derived category, the adjoint to the weak equivalence (m2).O% = (72)+A.Ox > (T20A),.Ox =
Ox, is

t: 0% — m0x.

Define o' to be the composition of LA*t with dx

o HHY (X) = (LAY)0% — (LAY)m0x 5 p'O,.

The map o is a special case of the fundamental class of a flat map of Alonso-Jeremias-Lipman [2, p. 390].
Since X is proper, there is a natural equivalence p; — p,; the map « adjoint to o’ can thus be written as

(62N HH(X) —> Ok.
Define the bilinear form
By HH(X)® HI(X) —— O, by By ®aojix.

Since px is a commutative multiplication and Rp, is lax symmetric monoidal, fix is commutative; it
follows that By is symmetric.

Lemma 2.4. (Alonso-Jeremias-Lipman) Bx is nondegenerate.

Lemma 2.4 is a special case of Alonso, Jeremias, and Lipman’s [2, Corollary 4.8.4]. We provide a proof
adapted to our level of generality to provide a self-contained exposition.

Proof. The map o' o (LA%)ux determines a map
HH™ (X) —— RHom(HH™ (X), p'Oy), (2.5)

which we claim is an isomorphism. To see this, observe that (2.5) is equal to the composition

LA*0% — RHom(LA*02, LA*1,0x) 2% RHom(LA* 02, p'Oy),

where the first map is induced from the multiplication. Since Jx is an isomorphism, the second is as well,
S0 it remains to show that

LA*O% —— RHom(LA*O%, LA*1,0x) (2.6)

is an isomorphism. Since X is smooth, A is perfect [32, Section 37.54, Lemma 37.54.18.], and thus has finite
Tor-dimension [32, Section 0685 Lemma 37.53.11]. Since A is proper and finite Tor-dimension,

LA*RHom(0%, m50x) ~ RHom(LA*O%, m5O0x)

by [26, Lemma 4.3], and the morphism (2.6) is induced by LA* applied to
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0% —— RHom(0%, m50x).
This is an isomorphism, since it equal to the composition
A, Ox = A,RHom(Ox,Ox) = A, Hom(Ox, A'tyOx) = Hom(A,Ox, mOx ),

where the third isomorphism is by [26, (2.5.2)] and the fourth is by [26, p. 14].
By coherent duality [13, p. 7 Ideal Theorem c|, the composition of the natural map

RHomy (HH(X), p'O) —— RHomy (Rp, HH(X), Rp,p'Oy)

with the map induced by the trace Rp,p' —> 1 is isomorphism

Ryp, RHom x (HH(X), p'O)) —— RHom; (HH(X), Oy).

Since (2.5) is an isomorphism, it follows that the map HH(X) — RHomy (HH(X), Ok) induced by aojixo(x
is an isomorphism. O

In order to show that (HH(X), Bx) gives the A'-Euler characteristic, we will use that the algebra
structure on HH(X) is compatible with the algebra structure on differential forms: let Tx denote the
Koszul complex as in Definition 1.8.

Theorem 2.7 (Hochschild-Kostant—Rosenberg Theorem). Let k be a field of characteristic 0. Giving
H*(HHX (X)) the algebra structure induced from LA*x and Tx the algebra structure from wedge product
of forms, there is an algebra isomorphism H*(HH™ (X)) — Tx.

See also [33, Corollaire 1.2], identifying the relevant Tor in commutative differential graded algebras.

Proof. Let I denote the ideal sheaf of the closed immersion A. There is an exact sequence

0—— 1 — Oxxx A Ox 0
of coherent sheaves on X x X. Applying LA*, we obtain the distinguished triangle
LA*] — LA*Oxxx — HHY(X) — LA*I[1].
The associated long exact sequence on homology sheaves defines a map
HHY(X) 2 H(HHY (X)) — HOLAT 2 A T = [/1* = Qyy, (2.8)

where HH; denotes the first Hochschild homology and H!(HH™ (X)) denotes the first homology sheaf of the
complex HHX (X) (which is denoted with a superscript 1 because our complexes are graded cohomologically).
HYLA*Oxxx) = 0 because Oxxx is a flat Oxxx-module. Thus (2.8) is injective. Moreover the map
Ox 2 A*Oxyx — A*A,Ox = Ox is the identity. We therefore have that (2.8) is an isomorphism.

The map LA*ux induces a multiplication on H(HHX (X)) compatible with the multiplication on open
affines of [15]. By [15, Theorem 3.1], H(HH™ (X)) is the exterior algebra on #'(HH™ (X)) after restricting
to affine open subsets of X. Thus H(HH™ (X)) is the exterior algebra on H'(HHY (X)). Therefore, (2.8)
extends to an algebra homomorphism H*(HH™ (X)) —> Tx. Since Tx is the exterior algebra on Qyx /k> the
homomorphism H*(HH™ (X)) — Tx is an isomorphism. 0
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We now show that the Al-Euler characteristic is represented by the form on HH(X) just constructed.
Given a bilinear form on a graded vector space V* x V® —> k, the 0-th graded piece V°, and the direct sums
V() .= V=" L V" for n > 0 carry a nondegenerate bilinear form. We denote the corresponding elements of
GW (k) by [V°] and [V ()] respectively. The class in GW (k) determined by the form is the alternating sum

VO + Xm0 (=1)" V],

Definition 2.9. Given a nondegenerate, symmetric 8 : V* x V* — Oy in hCoh(k), let [5] denote the class
in GW(k) given by [HO(V*)] + Yoo (1) [H*(V*)@].

In the following theorem, we prove that [Bx] = XAI(X ) by identifying the former with the pairing on
(Hdg(X/k), Tr). It is proved analogously to the proof of [6, Proposition 2.4]. However, we also need a key
duality result, which gives us a better understand of the constituents used to define Bx.

Theorem 2.10 (/2, Proposition 2.4.2][26, Theorem 3.5], [36, Proposition 4.6.3]). Let d = dim X, and let
o : HHY(X) —> p'Oy, be as defined above. Then the map H (') induced on d-th cohomology sheaves over
X is an isomorphism.

With this result, we have the following:

Theorem 2.11. Let X be smooth and projective over a field k of characteristic 0. Then the class of Bx in
GW (k) is the categorical A'-Euler characteristic x» (X) of X. When X is smooth and proper, the class of
Bx is the FEuler number of the tangent bundle.

Remark 2.12. The Euler class of a vector bundle was defined by [5] and developed further by J. Fasel [10] and
others. Under orientation conditions on the vector bundle which are always satisfied by the tangent bundle,
the Euler class can be pushed forward to an Euler number. It is a theorem of M. Levine that for X smooth
and projective, the categorical A'-Euler characteristic equals the Euler number of the tangent bundle [20,
Theorem 3.1 or ArXiv version 3 Theorem 1.1], and in particular, X is dualizable in an appropriate sense,
see [20, Theorem 3.1 or ArXiv version 3 Theorem 1.1]

Proof. Let n = dim X. There is a hypercohomology spectral sequence
EY = Rip,H HHY (X) = H"" HH(X).

By the isomorphism H’/HHY(X) = Q3 of the Hochschild Kostant Rosenberg theorem, FEy’/ =
HY(X, ). The hypercohomology spectral sequence is multiplicative, giving a bilinear form on the F,-
pages for r > 2 coming from the cup product

E¥ x EY R p, BT (HEX (X) @ HHY (X)).
Composing with « o (Rp.(f1)) o (x, we obtain a new form on the E,-page which we denote £,
Br i B x EFTUMTT s k.

Note that E27 is the degree (,j) summand of (Hdg(X/k), Tr), as defined in (1.5). By Theorems 2.10 and
2.7, Ba is the cup product pairing, whence [52] = [(Hdg(X/k), Tr)]. Recall that the notation [32] was defined
in 2.9. By [6, Lemma 2.7], it follows that §, is symmetric, non-degenerate and [8,] = [B2] for all r > 2,
including r = co. By [6, Lemma 2.6], [s0] = Bx. For X smooth and projective [(Hdg(X/k), Tr)] = &' (X)
by [21, Theorem 1.3]. By [6, Theorem 1.1, second Corollary p. 3] [(Hdg(X/k), Tr)] is the Euler number of
the tangent bundle. Combining, we see [32] = [8,] = Bx, which completes the proof by the previous. O
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Using Bittner’s presentation, we now show that [X] — [Bx] defines a homomorphism out of the
Grothendieck ring of varieties, and which agrees with the usual Euler characteristic. In future work we
hope to prove this theorem using scdh-descent and Hochschild homology. It is interesting to note that,
by contrast, Hochschild homology does not satisfy cdh-descent. The below proof is similar to one of O.
Rondigs in that it uses cut and paste properties of the categorical Euler characteristic [29, Theorem 5.2]
[25, 3 Remark 2.30]. The below is of a more computational flavor, relying on recent work of M. Levine.

Theorem 2.13. Let k be a field of characteristic 0. The map X — [Bx]| for X smooth and projective defines
a homomorphism Ko(Vary) — GW (k) which agrees with the categorical A'-Euler characteristic.

Proof. That [By] is the categorical A'-Euler characteristic A (X) is Theorem 2.11. (Also see Remark 2.12
for context.)
Let

EF —— Bly X
Y X

be the blow-up diagram of a smooth, proper k-variety X along a smooth closed subvariety Y of codimension
c. Tt follows from [20, Proposition 1.4 (5) or ArXiv version 3 Proposition 1.10 (4)] that YA (Bly X) =
XA (X)+ 352 (—=1)ixA (V). The exceptional divisor E is the projectivization P Ny X of the normal bundle
of Y in X. By [20, Proposition 1.4 (4) or ArXiv version 3 Proposition 1.10 (3)], XA E = Y570 (—1)I\A" (V).
Thus

—

)

1 1 1 1
X* (Bly X) =x* (X) —x* (V) +x* (B)
and the homomorphism is well-defined by Bittner’s presentation (see Theorem 1.11). O
3. A direct perspective

In this section, we compute XAI(X) = xfl(X) for the smooth, proper varieties X = Speck, P!, P2,
and Bly P? using the complex with duality (Hdg(X/k), Tr) described in Definition 1.4. In other words, we
compute A'-Euler characteristics explicitly using coherent duality. This allows a direct verification that
the association of the complex with duality (Hdg(X/k), Tr) to a smooth projective variety X satisfies the
relation [(Hdg(P?/k), Tr)]+[(Hdg(P'/k), Tr)] = [(Hdg(Blo P?/k), Tr)]+[(Hdg(k/k), Tr)] in GW (k) imposed
on classes of smooth projective varieties in Bittner’s presentation (see 1.11). It gives an alternate proof of
the n = 1,2 case of M. Hoyois’s computation of XAI(]P)”) [16, Example 1.7], and an alternate proof of the
case X = BlgP? of M. Levine’s computation of the Al-Euler characteristic of a blow up [20, Proposition
1.4 or ArXiv version 3 Proposition 1.10]. As before, we work over a field of characteristic 0.

The collapse of appropriate spectral sequences renders (Hdg(X/k), Tr) equivalent to the complex with
duality (Rpx.Tx,Rpx,.0Bx) described in (1.9). Let px : X — Speck denote the structure map of X;
recall that

def — ik
Tx = ®—_g(AN'T%)

is equipped with the natural duality given by composing multiplication of forms with projection off of the
top wedge power of T%. After pushforward to Speck, this complex with duality represents xAl for smooth
projective varieties, by [6, Proposition 2.4].



N. Arcila-Maya et al. / Topology and its Applications 316 (2022) 108108 11

2 0 0 0
1 HO(P', 0(~2)) H' (P, 0(-2)) 0
0 HO (P!, Op:1) H' (P!, Op:) 0
) ) , i

Fig. 1. (3.4) for X = P*.

Consider the blow-up square

Pt — " Bl P?
f[ Jf (3.1)
Spec k — P2
The goal is to show the equality
[Rpp1,Tp1] + [Rpp2,Tp2] = [Rpspec k, Tspec k| + [RPB1, P2, T8I, P2] (3.2)

GW (k); we have omitted the dualities from the notation for legibility, but these too must be considered.

Remark 3.3. In this section we write p for the map px : X — Speck whenever X is clear from context.
3.1. Verification in Ko (k)

In this subsection, k is any field. As a l-category, hCoh(k) is equivalent to the category of graded
k-vector spaces by taking homology. We now compute Rp.Tspeck, Rp«Tp1, Rp,JTp2, and Rp,Tp), p2 as
k-vector spaces using the hypercohomology spectral sequence [22, Theorem 12.12]

By = H'(X,7%) = H'(X,NTx) == H "*((px):Tx). (3.4)

Along the way, we verify (3.2) in Ky(k).

Consider (3.2). The complex Rp,Tgpeck is k in degree zero and trivial otherwise.

The computations of Rp.Tp1, Rp,Tp2, and Rp.Tp), p2 as graded k-vector spaces are done in Proposi-
tions 3.5, 3.6, and 3.8, respectively; we compute the forms in Subsection 3.2. We will not explicitly discuss
differentials in the spectral sequence, as each of the examples we compute will end up concentrated in a
single diagonal, and therefore no differentials are possible.

Proposition 3.5. Rp,Tp1 = k? where k? is concentrated in degree 0.

Proof. Consider the Es-page of (3.4) when X = P!, illustrated in Fig. 1. Noting that T3, = O(—2), Serre
duality implies that

H'(P',0p1) = H°(P',0(-2)) =0

and
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Fig. 2. Result of computation.
H'(P',0(-2)) = H*(P',0p1) = k.
Thus the spectral sequence is as illustrated in Fig. 2. O
Proposition 3.6. Rp,Tp2 = k3 where k3 is concentrated in degree zero.

Proof. The reader can refer to Fig. 3 for the Es-page of (3.4) when X = P2,
The computation of Rp,Tp2 is similar to the computation of Rp,Tp1. In this case the Koszul complex
takes the form

Tpz = Op2 @ T2 ® A°Tpo.
Thus we have possibly nonzero terms E;J for i,5 € {0,1,2}.
Recall that H*(P*,O(n)) = 0 for all n and all 0 < i < k. Note also that A*T, = O(—3). It follows that
H'(P2, A\*T},) and H*(P?, Op2) are trivial. Moreover, Serre duality implies that
H?(P?,0p2) = H*(P?,0(-3)) =0
and
H?(P?,0(-3)) = H*(P?, Op2) = k.
Since TP™ = Hom(O(—1), 0" /O(—1)), there is a short exact sequence
0 — Opn — O(=1)"" = TP — 0.
The dual sequence is
0— Tpn — O(1)" ™ — Opn — 0. (3.7)
From the long exact sequence associated to (3.7), it follows that
H°(P? Tp>) = H*(P?,Tp2) =0
and
H'(P?,Tp.) = k.

These computations are summarized in Fig. 4. O
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3 0 0 0 0

2 H°(P?,0(-3)) HYP%,0(-3)) H?(P20(-3)) 0

1 HO (P2, T}.) HY (P2, T.) H?(P2,T.) 0

0 HO(P2,O[P2) Hl(PQ,Opz) HQ(]PQ,(/)Pz) 0
%

0 1 2 3

Fig. 3. (3.4) for X = P2,

ol k 0 0 0

0 1 2 3

Fig. 4. Result of computation.

Proposition 3.8. Rp.Tp, p2 = k* where k* is concentrated in degree zero.
In order to prove this we must first carry out two auxiliary computations in 3.9 and 3.10.
Lemma 3.9.

Hy' (Bl P?; Qpj, p2/p2) = {k =1

0 i#1.
Proof. Let i/ : P! — Bly P2 be the inclusion of the exceptional divisor. Since Kahler differentials commute
with pullback [32, Tag 01UM], the support of Qg p2/p2 is contained in the exceptional divisor. In fact,
the canonical map Qg p2/pz — i, (i) Qg p2/p2 is an isomorphism. To see this: let 7 denote the sheaf
of ideals associated to the closed immersion i’. By the proof of [32, Tag 01QY], it suffices to see that
g, p2/p2 = 0. Since the support of {2, pz/pz is contained in the exceptional divisor, it thus suffices to
see that ZQp, o2/42 = 0. This can be seen by direct computation. The blow-up

. k[zy][Z, W]
BlgA? =P =
0 TO) K[z, <JJZ — yW>
klz,y, %]

is covered by two affine opens, one canonically isomorphic to Spec and the other canonically iso-

(z—y %)
klzy, &)
(x & —vy)

generator d% with a single relation fyd%. The sheaf of differentials of the second is computed similarly,

. The sheaf of relative differentials of, say, the first over Speck[z,y] has a single

morphic to Spec

ShOWiIlg that IQBIO A2/A2 = 0. Thus QBIO P2 /P2 = 7,; (i/)*QBlo P2/p2 as claimed.
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It follows that Qpy, p2/p2 = i, Tp: by another application of the commutativity of Kahler differentials
and pullback [32, Tag 01UM]. Thus

H' (Bl P%; Qpy, pe/p2) = H (Bly P4, T ) = H' (P Tp ).
The result then follows from Proposition 3.5. O
Lemma 3.10.

Eoi=1,
0 i#1.

H'(Bly P?; f*Tp,) = {
Proof. Consider the blow-up square (3.1).
Claim 3.11. This gives a distinguished triangle in the bounded derived category of P?:
Op2 — 1.0speck ® Rf.Op, p2 — Rm..Op1,

where m := foi =io f'.

Given the claim, note that Tj. is a flat module (in fact, locally free) since P? is smooth, so tensoring
preserves exact sequences. Thus we get a distinguished triangle:

Tp2 —— (Tp2 ® RixOspeck) @ (Tp2 @ RfOpyyp2) —— Tp2 @ Rm,Op:.
Now, using a projection formula from [32, Theorem 20.49.2] we have that
Tp> @ Rf.Opi,p2 ~ Rf(f"Tp2),
and similarly for other terms. Thus we have a distinguished triangle:
Tgs —— Ri. (i"Tga) & RE(FTg2) —— Rima (m* Tga).
Now, we apply R(pp2,) to get a long exact sequence on cohomology.

H°(P?Tp.) — H°(Speck;i*Tp.) @ HO(Blo P?; f*Tp.) — HO(PY;(io f/)* Tp-)
A
H'(P%Tp.) — H'(Speck;i*Tp.) @ H' (Bly P%; f*T3.) — H'(PY;(io f')*Tp:) (3.12)

H?(P?Tp>) — H*(Speck;i*Tp.) ® H?(Blg P?; f*Tp.) — H?(P';(io f/)*Tps).

Considering dimensions, we see that
H! (Spec k; i*T]Ez) = H? (Spec k; i*Tﬁz) = H? (]P’l; (io f’)*T]f;a) =0,

implying that H?(Bly P?; f*Tjp.) = 0.
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From the proof Proposition 3.6 we know
HI(P*Tg>) =0

unless j = 1, in which case it is k.
Recall that i : Speck < P? is the inclusion. By definition i*Tp. =i ' T}, ®i-10,, Ok. Therefore

*Tp2 = Tpalspeck @0ps lspecr Ok = Tpaspeck = OF.
This implies
HO(Spec k:;i*T];Q) =H° (Spec k; (’),?2) =H° (Spec k; (’)k) @ H (Spec k; Ok) = k2.
Observing that (i o f')*Tp, = (f’)*(’),i92 = (’)]?12, we get that:
HO(PY;(io f))*Tp.) = H*(PH OF7) = k2,
and
H' (P (io f)*Tp2) = H' (P'; 087) = H' (P Op1) @ H' (P! Op1) = 0.
Plugging this in to (3.12) gives the exact sequence

0 —— k* & H°(Blo P%; f*Tp-) k> k H'(Bly P?; f*Tp2) — 0.

The desired result follows. 0O
Proof of Claim 3.11. Consider the short exact sequence of Op, p2z-modules
0 —— Opy, p2(—E) — Opjyp2 — i,0p — 0,

where E ~ P! is the exceptional divisor of the blow-up. Applying Rf, gives an exact triangle in the derived
category of P2

Rf.Op, p2(—FE) — R f.Op), p» — Rf.(i,OF), (3.13)
whose associated long exact sequence on cohomology gives
0— f*OBlo ]P’z(iE) - f*OBlo p2 ~ Op2 — m,Op ~ Z.*(DSpeck — le*OBlo lP’Q(*E)-

But in fact Rif.Op,p:(—FE) = 0 for i > 0, as the following argument shows. Note first that
R'f.Og),p2(—F)) is a coherent sheaf Vi > 0 by [32, Theorem 30.19.1].

It is enough to check that the fibers are all zero. Combining [12, Theorem 3.2.1], [14, Exercise 11.3.10],
and [14, Corollary I11.9.4], we see that the fiber over p € P? is

(R’ f.0g1,p2(—E))(p) = H' (Bl P, Oy, p2 (—E)f-1() = H'(f(p), Opi, p2(—E)).

Consider the case where p € P2 — 0. Since f|p>_¢: BlgP? — E — P2 — 0 is an isomorphism, f~!(p) is
a point and therefore affine. Thus H*(f~*(p), Oy, p2(—F)) = 0 for all i > 0, as desired.
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Consider the case p = 0. Then we have f~!(p) = P!, and
H'(f7}(p), Op1 2 (= E)) = H'(P1,Op: (1)) = 0,
as desired. Therefore R’ f.Op), p2(—FE) = 0 for i > 0, and so we get a short exact sequence
0 — f.Ogi,p2(—F) — Op2 —— i, Ospeck ——> 0,
which in fact represents a distinguished triangle
R f.Op,p2(—F) — Op2 —> i, Ospeck,

in the derived category of P? with the property that the shift map i.Ospec k — R f+Opy, p2(—E)[1] is zero.
By [32, Theorem 13.4.10], we get that

Op2 = Rf*OBlo IPZ(*E) @i*ospeck (3.14)
in the derived category of P2.
Now, note that (3.13) becomes
Rf*OBlo ]pz(—E) E— Rf*OBlo P2 —> Rm*O]pl. (3.15)

The modifications to the last term follow from recalling that E ~ P! and that the inclusion i': P! — X’
is affine. By [32, Theorem 36.5.3], R/, = i/, and hence

Rf.(i.Og) = Rf.Ri,Op: = Rm,Op:.
Moreover, we also have a trivial distinguished triangle:
1+ Ospec k —> 1xOspec ks ——> 0. (3.16)
Using [32, Lemma 13.4.9] we get a distinguished triangle by summing (3.15) and (3.16):
Rf.Op),p2(—E) & ixOspec k — Rf:Op1, P2 @ 1xOspec k —— Rm.Op.
But, appealing to (3.14), this is precisely the distinguished triangle claimed. O
We are now ready to prove Proposition 3.8.
Proof of Proposition 3.8. Consider the top row E?-page of the spectral sequence (3.4) for BlgP?; this
is given in Fig. 5. Following the proof of [14, Proposition V.3.4] we see that H? (Blo P2, Og, pz) =

H'(Bly P2, Opy, p2) = 0. Since Bly P? is smooth and compact, Serre duality implies that

H?(Bly P?,wpy, p2) = H°(Bly P?, Op, p2) = £,
H'(Bly P?,wpy, p2) = H' (Bl P?, Opy, p2) =0, and
H°(Bly P?,wpy, p2) = H?(Bly P?, Opy, p2) = 0.

To compute the terms in the second row of the E,-page, consider the blow-up map f : BlyP? — P2.
There is an exact sequence of sheaves on Bly P2,
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3 0 0 0 0

2 H(Bly P2, wgy, p2) H*(Blo P2, wg, p2) H?(Bly P2, wgy, p2) 0

1 H°(Bly P?, T, p2) H' (Bl P?, T, p2) H?(Blo P?, T3, p2) 0

0 H°(Bly P2, Opy, p2) H' (Bl P?, Og, p2) H?(Bl, P2, Og, p2) 0
7

0 1 2 3

Fig. 5. (3.4) for X = BloP2.

f*T§2 — T§10 P2 — QBIO P2/P2 — 0.

17

In general this sequence is not left exact, but we will show that f*7p, — Tglo p2 is injective in this specific

example. We can explicitly write

where z and y have degree 0 and X and Y have degree 1. We will show the map is injective on the affine

open sets

Ux  {X # 0}

and

Uy € {y £0}.

The situation is symmetric, so we will only give the argument on Ux. Observe

k[xvy][va][l/X]O _ ec k‘[.]i,y,Y/X]
Xy —z¥) ) =5p <<YzY/X>) |

Ux = Spec (

Considering f|y, : Ux — Speck[z,y] C P2, we have an explicit description
fTp2(Ux) = Odz & Ody
and
T*Bly P*(Ux) = Odx @ Od(Y/X).
Under this identification, the map of sheaves f*Tj.(Ux) — T* Bl P?(Ux) is given in coordinates by
dz — dx

and

dy — d(x%) = (dx)(%) + xd(%)
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This is the map we want to show is injective.
Observe that given (g,h) € O & O,

(g,h) — (9+h§xh)-

Ifzh=0¢€ %, then h = 0. Therefore if (0,0) = (g 4+ h%,zh) = (g,0), we must have g = 0. Thus,

ker(f*T*P?*(Ux) — Ty, p2(Ux)) = {(0,0)},

as desired. Applying the same argument for Uy, we conclude that f*Tp, — T§10 p2 1s injective.
It follows that there is a short exact sequence of coefficients

0 — f*Tp> — Tp), p2 — OB, p2/P2 — 0,
that induces a long exact sequence on cohomology

H°(Bly P?; f*Tp.) — H(BloP% T5), p2) —— H(Blo P% Qg p2/p2)
D
H'(BloP?; f*Tpa) — H'(BloP? T3, p2) — H'(BloP% Qp, p2,p2) (3.17)

H? (Bl P?; f*Tp.) — H?*(BloP% T5), p2) — H?(Blo P?; Qpy, pejp2) — -

Substituting the results of Lemmas 3.9 and 3.10 implies that (3.17) takes the form
0 — H°(Blg P* T, p2) — 0 — k — H' (Blg P* T p2) — k — 0 — H?(Bly P%; T p2) — 0.
Consequently,
H° (Bl P?; Ty p2) = H?(Blo P% T, p2) =0
and
H'(Bly P T, p2) = k2.

Therefore, the second page of the spectral sequence takes the form shown in Fig. 6, which means that the
spectral sequence collapses on this page. O

This completes the proof that equality (3.2) holds after applying the forgetful homomorphism
GW (k) — Ko(k). It remains to show the relation is satisfied by forms.

3.2. Verification in GW (k)
In this subsection, k& denotes a field of characteristic not 2. We compute the bilinear form on Rp,Tx

for X = Speck,P!,P? or Bly P2, and complete the verification of equality (3.2) in GW (k). We begin by
defining elements in GW (k) which we will use to express these classes.
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ok 0 0 O

0 1 2 3

Fig. 6. Result of computation.

Definition 3.18. The hyperbolic bilinear form H is defined to be the rank 2 symmetric bilinear form with

(1)

Definition 3.19. Let a € k. Then we write (a) for the rank 1 bilinear form (x,y) — axy.

Gram matrix

Remark 3.20. In GW (k) there is an equality between the class of H and (1) + (—1) in GW (k).

We start with computing the form for Rp.Tgpec : recall that the complex Rp.Tgpeck is k in degree zero.
The following result is immediate:

Proposition 3.21. Rp.Tspec i has the trivial duality (1).

Next, consider P'.
Proposition 3.22. ' (P) = H in GW(k).
Remark 3.23. This provides an alternate proof of the n =1 case of [16, Example 1.7].
Proof. Referring to the spectral sequences in Figs. 1 and 2, we recall that

Rp.Tp: ~ HY(P!, Op1) @ H' (P!, Qp1) ~ k2,

in degree 0. The cup product composed with the trace, which computes our bilinear form on Rp,Tp1, gives
the Serre duality isomorphism H?(P!, Op:)* ~ HY(P!, Qp1).

From this, we can express the bilinear form of interest in terms of evaluation on H°(P!,Op:1) @

H°(P!,Op1)* —> k. Indeed, our form can be written as the composition:

(H°(P',O0p1) ® H'(P', 0p1)*) @ (H°(P', Op1) @ H* (P!, Op1)*) ——
(H(P',0p1) @ H' (P!, 0p1)*) & (HO(P',Op1)* @ HY (P!, Op1)) — k,

where the first map is projecting onto the cross terms, and the second is given by
e f+f @e = fle)+ f(e).

From this formula, we readily verify that Gram matrix is
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0 1
1 0/
Proposition 3.24. y2' (P2) = H + (1) in GW(k).
Remark 3.25. This provides an alternate proof of the n = 2 case of [16, Example 1.7].
Proof. We refer to the spectral sequences depicted in Figs. 3 and 4 for computations of underlying vector
spaces. We first note that the rank 2 bilinear form on H(P?2, Op2) @& H?(P?,Q3,) is equal to H, by an

argument virtually identical to that in Proposition 3.22.
To complete the proposition, we will show that the symmetric bilinear form

HY (P2, Tp.) @ HY (P2, Tp,) —2— H?(P2,wp2) —2 k (3.26)

is the map k x k — k given by (x,y) — xy, which is (1) as defined in Definition 3.19.
We first find a basis for H*(P?,Tj.). To this end, consider the Euler sequence

0 Tp, —2 O(=1)3 —2 Op: 0.

Say P2 = P(k[xz,y,z2]). Let f € k[x,y, 2], we denote the distinguished open set of f by ]P’J%. Following [14,
Theorem I1.8.13], the homomorphism 1 is defined on distinguished open sets as follows

(%) () = (25— 5 2 ) o2

xT

v (gld(g) +gzd(§)) = (9_;9_%91 - 592, %) on ]P;, and
D)) - (2225~ ) e

with
def
def
gi = gi(x/y,2/y),
and

hi € hi(z/2,y)2)

for i € {1,2}. The homomorphism ¢ is defined by

®(s0, 81, $2) = xSo + Ys1 + 282.

Let 6 : HO(P?,Op2) — H'(P?,T},) be the zeroth connecting homomorphism in the long exact sequence
associated to the Euler sequence. Since § is an isomorphism, §(1) is a basis for H!(P?,Tp,) = k. We next
use Cech cohomology to calculate §(1).

Let U be the affine covering of P? by distinguished open sets P7, P7 and P?. In what follows,

(C*(u,]:),d*) denotes the Cech complex associated to F and U, where F is a sheaf of abelian groups
on P2.
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We recall the definition of the connecting homomorphism. The Euler sequence induces a short exact
sequence of cochain complexes, [14, Theorem I11.4.5]:

0— C*(U, Tp2) — C*(U, O(—1)*) = C* (U, Opz) — 0,
then § is defined by diagram chasing in the diagram below,

0 — C°(U,Tp.) —— C°(U,0(~1)*) —— C°(U,Op2) —— 0

|ae I & (3.27)

0 — C'(U,Tp.) —— C'(U,0(-1)*) —— C' (U, Op2) — 0.

Take (1,1,1) € Op2(P2) x Op2(P?) x Op2(P2) the generator of H°(P?, Op2) = k. By the definition of ¢,
d° and 9 we see that §(1,1,1) = (%d( ) id(%), fd(f)) € H' (P2, Tp.), as diagram (3.28) illustrates.

((%,0,0) ) (Oa i70) ) (0707 %)) —_ (17 ]-a 1)
I (3.28)
(2a(3). 5a(2). 2a(2)) — (15,00 (0.5, -2). (.0,-1)
Our next task is to calculate Q(5(1)®4(1)). We first compute §(1)Ud(1), as Q(6(1)®4(1)) = Tr(6(1)Ud(1)).
Consider the diagram below

HO(P2,0p2) @ H (P2, Tp») 225 H (P2, Tp.) @ H (P2, Tp-)

lu lu (3.29)

H'(P?,0p> @ Tpps) ——2—— H?(P?, Ty @ Tps) —2— H?(P? wp2) -5 k,

where 0 is the first connecting homomorphism in the long exact sequence associated to the short exact
sequence

0 —— T @ Tis 2% O(-1)° @ Tpo 2% Ope @ T —— 0,

which is obtained by tensorizing the Euler sequence with Tj.. By commutativity of diagram (3.29), we have

that §(1) U 8(1) = 8(1 U (1)) = (5(1)).

Claim 3.30. Let o denote the Cech cocycle

;—Zd(g) Ad(%) € H2(P?, wp2).

We claim that the composite H'(P? Op> @ Tps) -2, H*(P? Tp: @ Tp) —2— H*(P? wp2) satisfies
0(1) = —a.

Given the claim, we complete the argument. The canonical trace map sends the form of [14, Remark
7.1.1] to 1. Since « differs from this by the permutation swapping = and z, which has sign —1, we deduce
that « maps to —1 under the trace. By Claim 3.30 it follows that Tr(6(1) ® 6(1)) = 1. O
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Proof of Claim 3.30. We calculate 9(§(1)) via the commutative diagram below.

0 — CHU,Tp. @ Tp2) — CHU,O(-1)* @ Tp>) — C'(U,Op2 @ Tp2) — 0
(3.31)

I I e

0 — C*(U,Tp2 ® Tp2) — C*(U,0(—1)> ® Tp=) — C*(U,Op2 ® Tp2) — 0.

Note that
6(1) = (L@ad(2),z @d(L), 2 @ d(2)) € H'(P%, Op2 @ Tga).

For ease of notation, we define

4% (L oa(2)0). (0.5 54(2) ). (S a(2)00.)

and

B () a(t).

By definition of ¢ we have that (¢ ® id)(A) = §(1). Moreover, d'(A) is equal to

Yal®y - Za(® Zal? 1B e T 2
<1®<I2d<y) xQd(z)),1®y2d(z),O> € (0(-1® ® Tg:) (P2,.). (3.32)
To simplify (3.32) we use the equality
CA(EY =2 (YalEY 2 Zal(Y))) = Ya(E) « Za(Y
Ed(;) oz (zd(y) + yd(z)> xd<y) + yd<z) (3.33)
Substituting (3.33) into the first coordinate of (3.32) yields
Yo (2 2 Y 3
d'(A) ( w20 ©d(¥) (3.34)
We now compute (¢ @ id)(B) and d'(A) + (¢ ® id)(B). By definition of 1) we have
221 22z Yy z 1 Y
id)(B) = =,0,-2 % N (Z,0,-= Y .
woid®) = (= o-2 5 ) wd() = (S0 ) wd(Y) (335

and combining (3.34) and (3.35) we obtain
1 ayB) = (0,2 -1 N 1 y
d'(A) + (¢ @ id)(B) = (o, ot y) ® d<z> =y @id ( d(y) ®d<z)> .
d(%) — B, as we can see in the diagram below.

Note that we have actually proved that 9(6(1)) = d(é) ®

[ E— 5(1)
(3.36)

i



N. Arcila-Maya et al. / Topology and its Applications 316 (2022) 108108 23

Since

i(5)2a(2) =a(5) a(t) =~a(2) 2 a(?).

it follows that d(i) A d(%) = 0. From this we obtain the claim:
HY (P2, Ty, ® Op>) —25 H*(P2, Ty @ Tppa) — H?(P?,wp2)
z

5(1) —— d(y

)®d(%) B —a.

Proposition 3.37. y2' (Bly P2) = 2H in GW(k).

Proof. As before, we first consider the pairing on H%(Bly P2, Op, p2) & H?(Bly P?, 912310 p2) and show it is
H in GW (k). The argument here is again as in Proposition 3.22.
Now let " denote the class of the symmetric bilinear form

H'(Blo P2, T, p2) ® H' (Blo P2, T}, p2) —— H*(Blo P2, wpy, p2) LY )

We will show that Q' isomorphic to H.
To do this it is enough to find a non-zero element v in H*(Bly P?, T} p») such that the image of v Uwv
in H' (Bl P?,wp), p2) is 0. To see this, note that we may extend v to a basis {v,w} of H!(Bl ]PQ,T&O p2)-

Replacing w by w — 2%,(2‘:}11‘;)) v (note that we use that the characteristic is not 2 here), we obtain a new basis

{w',v} so that the Gram matrix of Q" is
0 Q'(w',v)
Q' (w',v) 0 ’

0 1
1 0)’
which is H in GW (k).
The blow-up 13, p2 can be described as the projectivization of total space of the bundle O(—1) @ O on
Pl

Rescaling v, we have

T]_i,lo P2 = ProjProj k[z,y,z] k’[l‘, Y, Z] [S’ T]/<S.’I,‘ - Ty> = PPI‘Oj k[S,T}(O(_l) D O)

Let 7 : BlgP? — P! denote the projection. The map 7 induces a map H (P!, Qp1) — H!(Blg P2, 7*Qp1).
Composing with the map 7*Qp1 — Qp), p2, we obtain

T Hl(Pl, Q]pl) —_—> Hl(Blo PQ, QBIO ]p>2).
Since H?(P?, Qp1 ®Qp1) = 0, any v in the image of 7* satisfies Q’(v,v) = 0 by naturally of the cup product.

We have thus reduced the problem to showing that 7* is nonzero. Since i’ is the identity on P!, the
composition of 7* with the map
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Hl (Blo P2;T§10P2) —_— Hl (Blo P2;QB10]P’2/P2) = Hl(Blo PZ;i;Q]Pl) = Hl(Pl,Q]pl)
of Equation (3.17) is the identity. Since H'(P!; Qp1) = k, it follows that 7* is nonzero as claimed. O

Now we can verify the equality (3.2); that is, that A (P1) + xA (P2) = xA"(Speck) + x*' (Bl P2).
Substituting in the results of Propositions 3.21, 3.22, 3.24 and 3.37, we obtain the result.

References

[1] Luchezar L. Avramov, Srikanth B. Iyengar, Gorenstein algebras and Hochschild cohomology, in: Special Volume in Honor
of Melvin Hochster 57 (2008) 17-35.
[2] Leovigildo Alonso Tarrio, Ana Jeremias Lopez, Joseph Lipman, Bivariance, Grothendieck duality and Hochschild homology,
II: the fundamental class of a flat scheme-map, Adv. Math. 257 (2014) 365-461.
[3] Benjamin Antieau, Gabriele Vezzosi, A remark on the Hochschild-Kostant-Rosenberg theorem in characteristic p, Ann.
Sc. Norm. Super. Pisa, Cl. Sci. (5) 20 (3) (2020) 1135-1145.
[4] Franziska Bittner, The universal Euler characteristic for varieties of characteristic zero, Compos. Math. 140 (4) (2004)
1011-1032.
[5] Jean Barge, Fabien Morel, Groupe de Chow des cycles orientés et classe d’Euler des fibrés vectoriels, C. R. Acad. Sci., Sér.
1 Math. 330 (4) (2000) 287-290.
[6] T. Bachmann, K. Wickelgren, Al-Euler classes: six functors formalisms, dualities, integrality, and linear subspaces of
complete intersections, Preprint, available at https://arxiv.org/abs/2002.01848.
[7] Jonathan A. Campbell, The K-theory spectrum of varieties, Trans. Am. Math. Soc. 371 (11) (2019) 7845-7884.
[8] Baptiste Calmes, Jens Hornbostel, Tensor-triangulated categories and dualities, Theory Appl. Categ. 22 (6) (2009) 136-200.
[9] S.K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differ. Geom. 18 (2) (1983) 279-315.
[10] Jean Fasel, Groupes de Chow-Witt, Mém. Soc. Math. Fr. 113 (2008), viii+197.
[11] Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differ. Geom. 17 (3) (1982) 357-453.
[12] Alexander Grothendieck, Eléments de géométrie algébrique: I1I. Etude cohomologique des faisceaux cohérents, premiére
partie, Publ. Math. THES 11 (1961) 5-167.
[13] Robin Hartshorne, Residues and Duality. Lecture Notes of a Seminar on the Work of A. Grothendieck, Given at Harvard
1963/64, With an appendix by P. Deligne, Lecture Notes in Mathematics, vol. 20, Springer-Verlag, Berlin-New York, 1966.
[14] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Springer, New York, 2013.
[15] G. Hochschild, Bertram Kostant, Alex Rosenberg, Differential forms on regular affine algebras, Trans. Am. Math. Soc.
102 (1962) 383-408.
[16] Marc Hoyois, A quadratic refinement of the Grothendieck—Lefschetz—Verdier trace formula, Algebraic Geom. Topol. 14 (6)
(2015) 3603—-3658.
[17] Marc Hoyois, The six operations in equivariant motivic homotopy theory, Adv. Math. 305 (2017) 197-279.
[18] Po Hu, On the Picard group of the stable Al-homotopy category, Topology 44 (3) (2005) 609-640.
[19] Jesse Kass, Kirsten Wickelgren, An arithmetic count of the lines on a smooth cubic surface, Compos. Math. 157 (2021)
677-709.
[20] Marc Levine, Aspects of enumerative geometry with quadratic forms, Doc. Math. 25 (2020) 2179-2239.
[21] Marc Levine, Arpon Raksit, Motivic Gauss-Bonnet formulas, Algebra Number Theory 14 (7) (2020) 1801-1851.
[22] John McCleary, A User’s Guide to Spectral Sequences, second edition, Cambridge Studies in Advanced Mathematics,
vol. 58, Cambridge University Press, Cambridge, 2001.
[23] Fabien Morel, A!l-algebraic topology, in: International Congress of Mathematicians. Vol. IT, Eur. Math. Soc., Ziirich, 2006,
pp. 1035-1059.
[24] Fabien Morel, A!-Algebraic Topology over a Field, Lecture Notes in Mathematics, Springer Berlin Heidelberg, 2012.
[25] F. Morel, V. Voevodsky, A'-homotopy theory of schemes, Publ. Math. Inst. Hautes Etudes Sci. 90 (1999) 45-143.
[26] Amnon Neeman, The relation between Grothendieck duality and Hochschild homology, in: K-Theory—Proceedings of the
International Colloquium, Mumbai, 2016, Hindustan Book Agency, New Delhi, 2018, pp. 91-126.

[27] Joél Riou, Dualité de spanier—whitehead en géométrie algébrique, C. R. Math. 340 (6) (2005) 431-436.

[28] V.A. Rohlin, New results in the theory of four-dimensional manifolds, Dokl. Akad. Nauk SSSR (N.S.) 84 (1952) 221-224.
[29] Oliver Rondigs, The Grothendieck ring of varieties and algebraic k-theory of spaces, arXiv:1611.09327.

[30] Marco Schlichting, Hermitian K-theory of exact categories, J. K-Theory 5 (1) (2010) 105-165.

[31] Marco Schlichting, Hermitian K-theory, derived equivalences and karoubi’s fundamental theorem, J. Pure Appl. Algebra

221 (7) (2017) 1729-1844.

[32] The Stacks project authors. The stacks project, https://stacks.math.columbia.edu, 2020.

[33] Bertrand Toén, Gabriele Vezzosi, Algébres simpliciales S!-équivariantes, théorie de de Rham et théorémes HKR multipli-
catifs, Compos. Math. 147 (6) (2011) 1979-2000.

[34] Vladimir Voevodsky, Motivic cohomology with Z/2-coefficients, Publ. Math. Inst. Hautes Etudes Sci. 98 (2003) 59-104.

[35] Inna Zakharevich, The K-theory of assemblers, Adv. Math. 304 (2017) 1176-1218.

[36] Joseph Lipman, Residues and Traces of Differential Forms via Hochschild Homology, Contemporary Mathematics, Amer-
ican Mathematical Society, 1987.


http://refhub.elsevier.com/S0166-8641(22)00110-9/bibF6B4D7C4CEECBB14C7431F8831C17C17s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibF6B4D7C4CEECBB14C7431F8831C17C17s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib904BEFB38B7E9E5133351B4FC56AB529s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib904BEFB38B7E9E5133351B4FC56AB529s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib5B2265F17C63EA618D18212B29A26BE6s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib5B2265F17C63EA618D18212B29A26BE6s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib2F5A6448C0C9FC51623E2E2ADAF3248As1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib2F5A6448C0C9FC51623E2E2ADAF3248As1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib28430D1FC2EA17D3B7B1C10BFCF46274s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib28430D1FC2EA17D3B7B1C10BFCF46274s1
https://arxiv.org/abs/2002.01848
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib3F0B8D8580D700154745170D8FF15B76s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib46456CE71E790DD473C7A23B7BBE4ED5s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibFB850EB64AB4B498D9715D53454C8107s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibCD7B8162F4BAADE136D14E30DFCDED41s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibA846D843094CE9AC10B6E0017D7E9CBBs1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib8BD3779F90126819E5401CF84ADDBE55s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib8BD3779F90126819E5401CF84ADDBE55s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib91FA18A6F64CC17FB8718F3626691F8Es1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib91FA18A6F64CC17FB8718F3626691F8Es1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibE9D6437F30E7E590893B6B4383D3CE0Fs1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibCE090267B30E489C0DD4CEDC00029D90s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibCE090267B30E489C0DD4CEDC00029D90s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib9107590C0C3114A0DEE16B700117A1C5s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib9107590C0C3114A0DEE16B700117A1C5s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibFDCA8752D210F5E485A985C25A683089s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib5B6B30BFF16295B7FF0EB18A44893FE3s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib50023B83A51417CBB868E2CC30DF571Es1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib50023B83A51417CBB868E2CC30DF571Es1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibFE3170799FDFF82D09E8465B1CCED188s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib5E97011CE2A65BDB3AF8A1CA9A77DEAAs1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibF9E07EA5EB4663DADD0B118BEF6719ABs1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibF9E07EA5EB4663DADD0B118BEF6719ABs1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib5388E464CA9C04C8AA149BF4B948A2B8s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib5388E464CA9C04C8AA149BF4B948A2B8s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib44A48EAA053EA6D9A75DE124728C5D3Bs1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibFA076340231974D172EDEBEAA211CB8Ds1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib9D4DF7F0B1C686B1A2CFC37F72CF827Es1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib9D4DF7F0B1C686B1A2CFC37F72CF827Es1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibB2A2443A219A7E7B90C88329D19A569As1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibF92B5F2132473D539D2EE6680BFC601Es1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibA0FC883BFD23AED44DFFDA8F6375723Cs1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibEE754CEA16846CB4EAC74D3FA868DD17s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib121B3380F12EB8232481728C36550750s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib121B3380F12EB8232481728C36550750s1
https://stacks.math.columbia.edu
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib748F95B797614B3F94351B983926C24Bs1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib748F95B797614B3F94351B983926C24Bs1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibC9DFF5521A2985C8E3BFF07E220678C1s1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bib5BDB75DDB8C847DFA505A58FFB99B20Cs1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibB1CA4565F0CFBE3FDCFFE67C3067CC1Bs1
http://refhub.elsevier.com/S0166-8641(22)00110-9/bibB1CA4565F0CFBE3FDCFFE67C3067CC1Bs1

	Compactly supported A1-Euler characteristic and the Hochschild complex
	1 Introduction
	Acknowledgments

	2 Hochschild complex represents the A1-Euler characteristic
	3 A direct perspective
	3.1 Verification in K0(k)
	3.2 Verification in GW(k)

	References


