
The Complexity of Constrained Min-Max Optimization

Constantinos Daskalakis
MIT

costis@csail.mit.edu

Stratis Skoulakis
SUTD

efstratios@sutd.edu.sg

Manolis Zampetakis
MIT

mzampet@mit.edu

September 22, 2020

Abstract

Despite its important applications in Machine Learning, min-max optimization of objective

functions that are nonconvex-nonconcave remains elusive. Not only are there no known first-

order methods converging even to approximate local min-max points, but the computational

complexity of identifying them is also poorly understood. In this paper, we provide a charac-

terization of the computational complexity of the problem, as well as of the limitations of first-

order methods in constrained min-max optimization problems with nonconvex-nonconcave

objectives and linear constraints.

As a warm-up, we show that, even when the objective is a Lipschitz and smooth differ-

entiable function, deciding whether a min-max point exists, in fact even deciding whether an

approximate min-max point exists, is NP-hard. More importantly, we show that an approxi-

mate local min-max point of large enough approximation is guaranteed to exist, but finding

one such point is PPAD-complete. The same is true of computing an approximate fixed point

of the (Projected) Gradient Descent/Ascent update dynamics.

An important byproduct of our proof is to establish an unconditional hardness result

in the Nemirovsky-Yudin [NY83] oracle optimization model. We show that, given oracle

access to some function f : P → [−1, 1] and its gradient ∇ f , where P ⊆ [0, 1]d is a known

convex polytope, every algorithm that finds a ε-approximate local min-max point needs to

make a number of queries that is exponential in at least one of 1/ε, L, G, or d, where L

and G are respectively the smoothness and Lipschitzness of f and d is the dimension. This

comes in sharp contrast to minimization problems, where finding approximate local minima

in the same setting can be done with Projected Gradient Descent using O(L/ε) many queries.

Our result is the first to show an exponential separation between these two fundamental

optimization problems in the oracle model.ar
X

iv
:2

0
0
9
.0

9
6
2
3
v
1

[c

s.
C

C
]

 2
1
 S

ep
 2

0
2
0

Contents

1 Introduction 1

1.1 Brief Overview of the Techniques . 5

1.2 Local Minimization vs Local Min-Max Optimization 6

1.3 Further Related Work . 7

2 Preliminaries 9

3 Computational Problems of Interest 12

3.1 Mathematical Definitions . 12

3.2 First-Order Local Optimization Computational Problems 14

3.3 Bonus Problems: Fixed Points of Gradient Descent/Gradient Descent-Ascent 15

4 Summary of Results 16

5 Existence of Approximate Local Min-Max Equilibrium 18

6 Hardness of Local Min-Max Equilibrium – Four-Dimensions 19

6.1 The 2D Bi-Sperner Problem . 19

6.2 From 2D Bi-Sperner to Fixed Points of Gradient Descent/Ascent 23

7 Hardness of Local Min-Max Equilibrium – High-Dimensions 31

7.1 The High Dimensional Bi-Sperner Problem . 32

7.2 From High Dimensional Bi-Sperner to Fixed Points of Gradient Descent/Ascent . . 34

8 Smooth and Efficient Interpolation Coefficients 40

8.1 Smooth Step Functions – Toy Single Dimensional Example 41

8.2 Construction of SEIC Coefficients in High-Dimensions 43

8.3 Sketch of the Proof of Theorem 8.1 . 45

9 Unconditional Black-Box Lower Bounds 45

10 Hardness in the Global Regime 47

A Proof of Theorem 4.1 57

B Missing Proofs from Section 5 58

B.1 Proof of Theorem 5.1 . 58

B.2 Proof of Theorem 5.2 . 60

C Missing Proofs from Section 8 61

D Constructing the Turing Machine – Proof of Theorem 7.6 74

E Convergence of PGD to Approximate Local Minimum 81

1 Introduction

Min-Max Optimization has played a central role in the development of Game Theory [vN28],

Convex Optimization [Dan51, Adl13], and Online Learning [Bla56, CBL06, SS12, BCB12, SSBD14,

Haz16]. In its general constrained form, it can be written down as follows:

min
x∈R

d1

max
y∈R

d2

f (x, y); (1.1)

s.t. g(x, y) ≤ 0.

Here, f : R
d1 × R

d2→ [−B, B] with B ∈ R+, and g : R
d1 × R

d2→ R is typically taken to be a

convex function so that the constraint set g(x, y) ≤ 0 is convex. In this paper, we only use linear

functions g so the constraint set is a polytope, thus projecting on this set and checking feasibility

of a point with respect to this set can both be done in polynomial time.

The goal in (1.1) is to find a feasible pair (x⋆, y⋆), i.e., g(x⋆, y⋆) ≤ 0, that satisfies the following

f (x⋆, y⋆) ≤ f (x, y⋆), for all x s.t. g(x, y⋆) ≤ 0; (1.2)

f (x⋆, y⋆) ≥ f (x⋆, y), for all y s.t. g(x⋆, y) ≤ 0. (1.3)

It is well-known that, when f (x, y) is a convex-concave function, i.e., f is convex in x for

all y and it is concave in y for all x, then Problem (1.1) is guaranteed to have a solution, under

compactness of the constraint set [vN28, Ros65], while computing a solution is amenable to

convex programming. In fact, if f is L-smooth, the problem can be solved via first-order methods,

which are iterative, only access f through its gradient,1 and achieve an approximation error of

poly(L, 1/T) in T iterations; see e.g. [Kor76, Nem04].2 When the function is strongly convex-

strongly concave, the rate becomes geometric [FP07].

Unfortunately, our ability to solve Problem (1.1) remains rather poor in settings where our ob-

jective function f is not convex-concave. This is emerging as a major challenge in Deep Learning,

where min-max optimization has recently found many important applications, such as train-

ing Generative Adversarial Networks (see e.g. [GPM+14, ACB17]), and robustifying deep neural

network-based models against adversarial attacks (see e.g. [MMS+18]). These applications are

indicative of a broader deep learning paradigm wherein robustness properties of a deep learning

system are tested and enforced by another deep learning system. In these applications, it is very

common to encounter min-max problems with objectives that are nonconvex-nonconcave, and

thus evade treatment by the classical algorithmic toolkit targeting convex-concave objectives.

Indeed, the optimization challenges posed by objectives that are nonconvex-nonconcave are

not just theoretical frustration. Practical experience with first-order methods is rife with frustra-

tion as well. A common experience is that the training dynamics of first-order methods is unsta-

ble, oscillatory or divergent, and the quality of the points encountered in the course of training

can be poor; see e.g. [Goo16, MPPSD16, DISZ18, MGN18, DP18, MR18, MPP18, ADLH19]. This

experience is in stark contrast to minimization (resp. maximization) problems, where even for

1In general, the access to the constraints g by these methods is more involved, namely through an optimization

oracle that optimizes convex functions (in fact, quadratic suffices) over g(x, y) ≤ 0. In the settings considered in this

paper g is linear and these tasks are computationally straightforward.
2In the stated error rate, we are suppressing factors that depend on the diameter of the feasible set. Moreover, the

stated error of ε(L, T) , poly(L, 1/T) reflects that these methods return an approximate min-max solution, wherein

the inequalities on the LHS of (1.2) and (1.3) are satisfied to within an additive ε(L, T).

1

nonconvex (resp. nonconcave) objectives, first-order methods have been found to efficiently con-

verge to approximate local optima or stationary points (see e.g. [AAZB+17, JGN+17, LPP+19]),

while practical methods such Stochastic Gradient Descent, Adagrad, and Adam [DHS11, KB14,

RKK18] are driving much of the recent progress in Deep Learning.

The goal of this paper is to shed light on the complexity of min-max optimization problems, and

elucidate its difference to minimization and maximization problems—as far as the latter is concerned

without loss of generality we focus on minimization problems, as maximization problems behave

exactly the same; we will also think of minimization problems in the framework of (1.1), where

the variable y is absent, that is d2 = 0. An important driver of our comparison between min-max

optimization and minimization is, of course, the nature of the objective. So let us discuss:

⊲ Convex-Concave Objective. The benign setting for min-max optimization is that where the ob-

jective function is convex-concave, while the benign setting for minimization is that where the

objective function is convex. In their corresponding benign settings, the two problems behave

quite similarly from a computational perspective in that they are amenable to convex program-

ming, as well as first-order methods which only require gradient information about the objective

function. Moreover, in their benign settings, both problems have guaranteed existence of a so-

lution under compactness of the constraint set. Finally, it is clear how to define approximate

solutions. We just relax the inequalities on the left hand side of (1.2) and (1.3) by some ε > 0.

⊲ Nonconvex-Nonconcave Objective. By contrapositive, the challenging setting for min-max op-

timization is that where the objective is not convex-concave, while the challenging setting for

minimization is that where the objective is not convex. In these challenging settings, the behav-

ior of the two problems diverges significantly. The first difference is that, while a solution to a

minimization problem is still guaranteed to exist under compactness of the constraint set even

when the objective is not convex, a solution to a min-max problem is not guaranteed to exist

when the objective is not convex-concave, even under compactness of the constrained set. A triv-

ial example is this: minx∈[0,1] maxy∈[0,1](x− y)2. Unsurprisingly, we show that checking whether a

min-max optimization problem has a solution is NP-hard. In fact, we show that checking whether

there is an approximate min-max solution is NP-hard, even when the function is Lispchitz and

smooth and the desired approximation error is an absolute constant (see Theorem 10.1).

Since min-max solutions may not exist, what could we plausibly hope to compute? There are

two obvious targets:

(I) approximate stationary points of f , as considered e.g. by [ALW19]; and

(II) some type of approximate local min-max solution.

Unfortunately, as far as (I) is concerned, it is still possible that (even approximate) station-

ary points may not exist, and we show that checking if there is one is NP-hard, even when

the constraint set is [0, 1]d, the objective has Lipschitzness and smoothness polynomial in d,

and the desired approximation is an absolute constant (Theorem 4.1). So we focus on (II),

i.e. (approximate) local min-max solutions. Several kinds of those have been proposed in the

literature [DP18, MR18, JNJ19]. We consider a generalization of the concept of local min-max

equilibria, proposed in [DP18, MR18], that also accommodates approximation.

2

Definition 1.1 (Approximate Local Min-Max Equilibrium). Given f , g as above, and ε, δ > 0,

some point (x⋆, y⋆) is an (ε, δ)-local min-max solution of (1.1), or a (ε, δ)-local min-max equilibrium,

if it is feasible, i.e. g(x⋆, y⋆) ≤ 0, and satisfies:

f (x⋆, y⋆) < f (x, y⋆) + ε, for all x such that ‖x− x⋆‖ ≤ δ and g(x, y⋆) ≤ 0; (1.4)

f (x⋆, y⋆) > f (x⋆, y)− ε, for all y such that ‖y− y⋆‖ ≤ δ and g(x⋆, y) ≤ 0. (1.5)

In words, (x⋆, y⋆) is an (ε, δ)-local min-max equilibrium, whenever the min player cannot update

x to a feasible point within δ of x⋆ to reduce f by at least ε, and symmetrically the max player

cannot change y locally to increase f by at least ε.

We show that the existence and complexity of computing such approximate local min-max

equilibria depends on the relationship of ε and δ with the smoothness, L, and the Lipschitzness,

G, of the objective function f . We distinguish the following regimes, also shown in Figure 1

together with a summary of our associated results.

◮ Trivial Regime. This occurs when δ <
ε
G . This regime is trivial because the G-Lipschitzness of

f guarantees that all feasible points are (ε, δ)-local min-max solutions.

◮ Local Regime. This occurs when δ <

√
2ε
L , and it represents the interesting regime for min-

max optimization. In this regime, we use the smoothness of f to show that (ε, δ)-local min-max

solutions always exist. Indeed, we show (Theorem 5.1) that computing them is computationally

equivalent to the following variant of (I) which is more suitable for the constrained setting:

(I’) (approximate) fixed points of the projected gradient descent-ascent dynamics (Section 3.3).

We show via an application of Brouwer’s fixed point theorem to the iteration map of the projected

gradient descent-ascent dynamics that (I)’ are guaranteed to exist. In fact, not only do they exist,

but computing them is in PPAD, as can be shown by bounding the Lipschitzness of the projected

gradient descent-ascent dynamics (Theorem 5.2).

◮ Global Regime. This occurs when δ is comparable to the diameter of the constraint set. In

this case, the existence of (ε, δ)-local min-max solutions is not guaranteed, and determining their

existence is NP-hard, even if ε is an absolute constant (Theorem 10.1).

The main results of this paper, summarized in Figure 1, are to characterize the complexity of

computing local min-max solutions in the local regime. Our first main theorem is the following:

Informal Theorem 1 (see Theorems 4.3, 4.4 and 5.1). Computing (ε, δ)-local min-max solutions of

Lipschitz and smooth objectives over convex compact domains in the local regime is PPAD-complete. The

hardness holds even when the constraint set is a polytope that is a subset of [0, 1]d, the objective takes values

in [−1, 1] and the smoothness, Lipschitzness, 1/ε and 1/δ are polynomial in the dimension. Equivalently,

computing α-approximate fixed points of the Projected Gradient Descent-Ascent dynamics on smooth and

Lipschitz objectives is PPAD-complete, and the hardness holds even when the the constraint set is a polytope

that is a subset of [0, 1]d, the objective takes values in [−d, d] and smoothness, Lipschitzness, and 1/α are

polynomial in the dimension.

For the above complexity result we assume that we have “white box” access to the objective

function. An important byproduct of our proof, however, is to also establish an unconditional

hardness result in the Nemirovsky-Yudin [NY83] oracle optimization model, wherein we are given

black-box access to oracles computing the objective function and its gradient. Our second main

result is informally stated in Informal Theorem 2.

3

Informal Theorem 2 (see Theorem 4.5). Assume that we have black-box access to an oracle computing

a G-Lipschitz and L-smooth objective function f : P → [−1, 1], where P ⊆ [0, 1]d is a known polytope,

and its gradient ∇ f . Then, computing an (ε, δ)-local min-max solution in the local regime (i.e., when

δ <
√

2ε/L) requires a number of oracle queries that is exponential in at least one of the following: 1/ε,

L, G, or d. In fact, exponential in d-many queries are required even when L, G, 1/ε and 1/δ are all

polynomial in d.

Importantly, the above lower bounds, in both the white-box and the black-box setting, come

in sharp contrast to minimization problems, given that finding approximate local minima of

smooth non-convex objectives ranging in [−B, B] in the local regime can be done using first-

order methods using O(B · L/ε) time/queries (see Section E). Our results are the first to show an

exponential separation between these two fundamental problems in optimization in the black-

box setting, and a super-polynomial separation in the white-box setting assuming PPAD 6= FP.

1.1 Brief Overview of the Techniques

We very briefly outline some of the main ideas for the PPAD-hardness proof that we present

in Sections 6 and 7. Our starting point as in many PPAD-hardness results is a discrete analog

of the problem of finding Brouwer fixed points of a continuous map. Departing from previous

work, however, we do not use Sperner’s lemma as the discrete analog of Brouwer’s fixed point

theorem. Instead, we define a new problem, called BiSperner, which is useful for showing our

hardness results. BiSperner is closely related to the problem of finding panchromatic simplices

guaranteed by Sperner’s lemma except, roughly speaking, that the vertices of the simplicization

of a d-dimensional hypercube are colored with 2d rather than d + 1 colors, every point of the

simplicization is colored with d colors rather than one, and we are seeking a vertex of the sim-

plicization so that the union of colors on the vertices in its neighborhood covers the full set of

colors. The first step of our proof is to show that BiSperner is PPAD-hard. This step follows

from the hardness of computing Brouwer fixed points.

The step that we describe next is only implicitly done by our proof, but it serves as useful

intuition for reading and understanding it. We want to define a discrete two-player zero-sum

game whose local equilibrium points correspond to solutions of a given BiSperner instance.

Our two players, called “minimizer” and “maximizer,” each choose a vertex of the simplicization

of the BiSperner instance. For every pair of strategies in our discrete game, i.e. vertices, chosen

by our players, we define a function value and gradient values. Note that, at this point, we

treat these values at different vertices of the simplicization as independent choices, i.e. are not

defining a function over the continuum whose function values and gradient values are consistent

with these choices. It is our intention, however, that in the continuous two-player zero-sum game

that we obtain in the next paragraph via our interpolation scheme, wherein the minimizer and

maximizer may choose any point in the continuous hypercube, the function value determines

the payment of the minimizer to the maximizer, and the gradient value determines the direction

of the best-response dynamics of the game. Before getting to that continuous game in the next

paragraph, the main technical step of this discrete part of our construction is showing that every

local equilibrium of the discrete game corresponds to a solution of the BiSperner instance we are

reducing from. In order to achieve this we need to add some constraints to couple the strategies

of the minimizer and the maximizer player. This step is the reason that the constraints g(x, y) ≤ 0

appear in the final min-max problem that we produce.

5

The third and quite challenging step of the proof is to show that we can interpolate in a

smooth and computationally efficient way the discrete zero-sum game of the previous step. In

low dimensions (treated in Section 6) such smooth and efficient interpolation can be done in

a relatively simple way using single-dimensional smooth step functions. In high dimensions,

however, the smooth and efficient interpolation becomes a challenging problem and to the best

of our knowledge no simple solution exists. For this reason we construct our novel smooth and

efficient interpolation coefficients of Section 8. These are a technically involved construction that we

believe will prove to be very useful for characterizing the complexity of approximate solutions

of other optimization problems.

The last part of our proof is to show that all the previous steps can be implemented in

an efficient way both with respect to computational but also with respect to query complexity.

This part is essential for both our white-box and black-box results. Although this seems like a

relatively easy step, it becomes more difficult due to the complicated expressions in our smooth

and efficient interpolation coefficients used in our previous step.

Closing this section we mention that all our NP-hardness results are proven using a cute

application of Lovász Local Lemma [EL73], which provides a powerful rounding tool that can

drive the inapproximability all the way up to an absolute constant.

1.2 Local Minimization vs Local Min-Max Optimization

Because our proof is convoluted, involving multiple steps, it is difficult to discern from it why

finding local min-max solutions is so much harder than finding local minima. For this reason, we

illustrate in this section a fundamental difference between local minimization and local min-max

optimization. This provides good intuition about why our hardness construction would fail if we

tried to apply it to prove hardness results for finding local minima (which we know don’t exist).

So let us illustrate a key difference between min-max problems that can be expressed in

the form minx∈X maxy∈Y f (x, y), i.e. two-player zero-sum games wherein the players optimize

opposing objectives, and min-min problems of the form minx∈X miny∈Y f (x, y), i.e., two-player

coordination games wherein the players optimize the same objective. For simplicity, suppose

X = Y = R and let us consider long paths of best-response dynamics in the strategy space,

X ×Y , of the two players; these are paths along which at least one of the players improves their

payoff. For our illustration, suppose that the derivative of the function with respect to either

variable is either 1 or −1. Consider a long path of best-response dynamics starting at a pair of

strategies (x0, y0) in either a min-min problem or a min-max problem, and a specific point (x, y)

along that path. We claim that in min-min problems the function value at (x, y) will have to

reveal how far from (x0, y0) point (x, y) lies within the path in ℓ1 distance. On the other hand,

in min-max problems the function value at (x, y) may reveal very little about how far (x, y) lies

from (x0, y0). We illustrate this in Figure 2. While in our min-min example the function value

must be monotonically decreasing inside the best-response path, in the min-max example the

function values repeat themselves in every straight line segment of length 3, without revealing

where in the path each segment is.

Ultimately a key difference between min-min and min-max optimization is that best-response

paths in min-max optimization problems can be closed, i.e., can form a cycle, as shown in Figure

2, Panel (b). On the other hand, this is impossible in min-min problems as the function value

must monotonically decrease along best-response paths, thus cycles may not exist.

6

ria in normal-form games is PPAD-complete; [EY10] study the complexity of computing exact

Nash equilibria (which may use irrational probabilities), introducing the complexity class FIXP;

Figure 3: The complexity-theoretic land-

scape of total search problems in NP.

[VY11, CPY17] consider the complexity of com-

puting Market equilibria; [Das13, Rub15, Rub16]

consider the complexity of computing approximate

Nash equilibria of constant approximation; [KM18]

establish a connection between approximate Nash

equilibrium computation and the SoS hierarchy;

[Meh14, DFS20] study the complexity of comput-

ing Nash equilibria in specially structured games.

A result that is particularly useful for our work is

the result of [HPV89] which shows black-box query

lower bounds for computing Brouwer fixed points

of a continuous function. We use this result in

Section 9 as an ingredient for proving our black-

box lower bounds for computing approximate local

min-max solutions.

Beyond equilibrium computation and its ap-

plications to Economics and Game Theory, the

study of total search problems has found pro-

found connections to many scientific fields, in-

cluding continuous optimization [DP11, DTZ18],

combinatorial optimization [SY91], query complex-

ity [BCE+95], topology [GH19], topological com-

binatorics and social choice theory [FG18, FG19,

FRHSZ20b, FRHSZ20a], algebraic combinatorics [BIQ+17, GKSZ19], and cryptography [Jeř16,

BPR15, SZZ18]. For a more extensive overview of total search problems we refer the reader to

the recent survey by Daskalakis [Das18].

As already discussed, min-max optimization has intimate connections to the foundations

of Game Theory, Mathematical Programming, Online Learning, Statistics, and several other

fields. Recent applications of min-max optimization to Machine Learning, such as Generative

Adversarial Networks and Adversarial Training, have motivated a slew of recent work target-

ing first-order (or other light-weight online learning) methods for solving min-max optimiza-

tion problems for convex-concave, nonconvex-concave, as well as nonconvex-nonconcave ob-

jectives. Work on convex-concave and nonconvex-concave objectives has focused on obtaining

online learning methods with improved rates [KM19, LJJ19, TJNO19, NSH+19, LTHC19, OX19,

Zha19, ADSG19, AMLJG20, GPDO20, LJJ20] and last-iterate convergence guarantees [DISZ18,

DP18, MR18, MPP18, RLLY18, HA18, ADLH19, DP19, LS19, GHP+19, MOP19, ALW19], while

work on nonconvex-nonconcave problems has focused on identifying different notions of local

min-max solutions [JNJ19, MV20] and studying the existence and (local) convergence properties

of learning methods at these points [WZB19, MV20, MSV20].

8

2 Preliminaries

Notation. For any compact and convex K ⊆ R
d and B ∈ R+, we define L∞(K, B) to be the set of

all continuous functions f : K → R such that maxx∈K | f (x)| ≤ B. When K = [0, 1]d, we use L∞(B)

instead of L∞([0, 1]d, B) for ease of notation. For p > 0, we define diamp(K) = maxx,y∈K ‖x− y‖p,

where ‖·‖p is the usual ℓp-norm of vectors. For an alphabet set Σ, the set Σ∗, called the Kleene

star of Σ, is equal to ∪∞
i=0Σi. For any string q ∈ Σ we use |q| to denote the length of q. We use the

symbol log(·) for base 2 logarithms and ln(·) for the natural logarithm. We use [n] , {1, . . . , n},
[n]− 1 , {0, . . . , n− 1}, and [n]0 , {0, . . . , n}.
Lipschitzness, Smoothness, and Normalization. Our main objects of study are continuously

differentiable Lipschitz and smooth functions f : P → R, where P ⊆ [0, 1]d is some polytope. A

continuously differentiable function f is called G-Lipschitz if | f (x)− f (y)| ≤ G ‖x− y‖2, for all

x, y, and L-smooth if ‖∇ f (x)−∇ f (y)‖2 ≤ L ‖x− y‖2, for all x, y.

Remark 2.1 (Function Normalization). Note that the G-Lipschitzness of a function f : P → R, where

P ⊆ [0, 1]d implies that for any x and y it holds that | f (x)− f (y)| ≤ G
√

d. Whenever the range of a

G-Lipschitz function is taken to be [−B, B], for some B, we always assume that B ≤ G
√

d. This can be

accomplished by setting f̃ (x) = f (x)− f (x0) for some fixed x0 in the domain of f . For all the problems

that we consider in this paper any solution for f̃ is also a solution for f and vice-versa.

Function Access. We study optimization problems involving real-valued functions, considering

two access models to such functions.

◮ Black Box Model. In this model we are given access to an oracle O f such that given a point

x ∈ [0, 1]d the oracle O f returns the values f (x) and ∇ f (x). In this model we assume that

we can perform real number arithmetic operations. This is the traditional model used to

prove lower bounds in Optimization and Machine Learning [NY83].

◮ White Box Model. In this model we are given the description of a polynomial-time Turing

machine C f that computes f (x) and ∇ f (x). More precisely, given some input x ∈ [0, 1]d,

described using B bits, and some accuracy ε, C f runs in time upper bounded by some

polynomial in B and log(1/ε) and outputs approximate values for f (x) and ∇ f (x), with

approximation error that is at most ε in ℓ2 distance. We note that a running time upper

bound on a given Turing Machine can be enforced syntactically by stopping the compu-

tation and outputting a fixed output whenever the computation exceeds the bound. See

also Remark 2.6 for an important remark about how to formally study the computational

complexity of problems that take as input a polynomial-time Turing Machine.

Promise Problems. To simplify the exposition of our paper, make the definitions of our compu-

tational problems and theorem statements clearer, and make our intractability results stronger,

we choose to enforce the following constraints on our function access, O f or C f , as a promise,

rather than enforcing these constraints in some syntactic manner.

1. Consistency of Function Values and Gradient Values. Given some oracle O f or Turing

machine C f , it is difficult to determine by querying the oracle or examining the description

of the Turing machine whether the function and gradient values output on different inputs

are consistent with some differentiable function. In all our computational problems, we

9

will only consider instances where this is promised to be the case. Moreover, for all our

computational hardness results, the instances of the problems arising from our reductions

satisfy these constraints, which are guaranteed syntactically by our reduction.

2. Lipschitzness, Smoothness and Boundedness. Similarly, given some oracle O f or Turing

machine C f , it is difficult to determine, by querying the oracle or examining the description

of the Turing machine, whether the function and gradient values output by O f or C f are

consistent with some Lipschitz, smooth and bounded function with some prescribed Lips-

chitzness, smoothness, and bound on its absolute value. In all our computational problems,

we only consider instances where the G-Lipschitzness, L-smoothness and B-boundedness

of the function are promised to hold for the prescribed, in the input of the problem, pa-

rameters G, L and B. Moreover, for all our computational hardness results, the instances

of the problems arising from our reductions satisfy this constraint, which is guaranteed

syntactically by our reduction.

In summary, in the rest of this paper, whenever we prove an upper bound for some compu-

tational problem, namely an upper bound on the number of steps or queries to the function

oracle required to solve the problem in the black-box model, or the containment of the problem

in some complexity class in the white-box model, we assume that the afore-described properties

are satisfied by the O f or C f provided in the input. On the other hand, whenever we prove a

lower bound for some computational problem, namely a lower bound on the number of steps/-

queries required to solve it in the black-box model, or its hardness for some complexity class

in the white-box model, the instances arising in our lower bounds are guaranteed to satisfy

the above properties syntactically by our constructions. As such, our hardness results will not

exploit the difficulty in checking whether O f or C f satisfy the above constraints in order to in-

fuse computational complexity into our problems, but will faithfully target the computational

problems pertaining to min-max optimization of smooth and Lipschitz objectives that we aim to

understand in this paper.

2.1 Complexity Classes and Reductions

In this section we define the main complexity classes that we use in this paper, namely NP, FNP

and PPAD, as well as the notion of reduction used to show containment or hardness of a problem

for one of these complexity classes.

Definition 2.2 (Search Problems, NP, FNP). A binary relation Q ⊆ {0, 1}∗ × {0, 1}∗ is in the class

FNP if (i) for every x, y ∈ {0, 1}∗ such that (x, y) ∈ Q, it holds that |y| ≤ poly(|x|); and (ii) there

exists an algorithm that verifies whether (x, y) ∈ Q in time poly(|x| , |y|). The search problem

associated with a binary relation Q takes some x as input and requests as output some y such

that (x, y) ∈ Q or outputting ⊥ if no such y exists. The decision problem associated with Q takes

some x as input and requests as output the bit 1, if there exists some y such that (x, y) ∈ Q,

and the bit 0, otherwise. The class NP is defined as the set of decision problems associated with

relations Q ∈ FNP.

To define the complexity class PPAD we first define the notion of polynomial-time reductions

between search problems3, and the computational problem End-of-a-Line
4.

3In this paper we only define and consider Karp-reductions between search problems.
4This problem is sometimes called End-of-the-Line, but we adopt the nomenclature proposed by [Rub16] since

we agree that it describes the problem better.

10

Definition 2.3 (Polynomial-Time Reductions). A search problem P1 is polynomial-time reducible to

a search problem P2 if there exist polynomial-time computable functions f : {0, 1}∗ → {0, 1}∗
and g : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ with the following properties: (i) if x is an input to

P1, then f (x) is an input to P2; and (ii) if y is a solution to P2 on input f (x), then g(x, f (x), y) is

a solution to P1 on input x.

End-of-a-Line.

Input: Binary circuits CS (for successor) and CP (for predecessor) with n inputs and n outputs.

Output: One of the following:

0. 0 if either both CP(CS(0)) and CS(CP(0)) are equal to 0, or if they are both different than

0, where 0 is the all-0 string.

1. a binary string x ∈ {0, 1}n such that x 6= 0 and CP(CS(x)) 6= x or CS(CP(x)) 6= x.

To make sense of the above definition, we envision that the circuits CS and CP implicitly define

a directed graph, with vertex set {0, 1}n, such that the directed edge (x, y) ∈ {0, 1}n × {0, 1}n

belongs to the graph if and only if CS(x) = y and CP(y) = x. As such, all vertices in the implicitly

defined graph have in-degree and out-degree at most 1. The above problem permits an output

of 0 if 0 has equal in-degree and out-degree in this graph. Otherwise it permits an output x 6= 0

such that x has in-degree or out-degree equal to 0. It follows by the parity argument on directed

graphs, namely that in every directed graph the sum of in-degrees equals the sum of out-degrees,

that End-of-a-Line is a total problem, i.e. that for any possible binary circuits CS and CP there

exists a solution of the “0.” kind or the “1.” kind in the definition of our problem (or both).

Indeed, if 0 has unequal in- and out-degrees, there must exist another vertex x 6= 0 with unequal

in- and out-degrees, thus one of these degrees must be 0 (as all vertices in the graph have in- and

out-degrees bounded by 1).

We are finally ready to define the complexity class PPAD introduced by [Pap94b].

Definition 2.4 (PPAD). The complexity class PPAD contains all search problems that are poly-

nomial time reducible to the End-of-a-Line problem.

The complexity class PPAD is of particular importance, since it contains lots of fundamental

problems in Game Theory, Economics, Topology and several other fields [DGP09, Das18]. A

particularly important PPAD-complete problem is finding fixed points of continuous functions,

whose existence is guaranteed by Brouwer’s fixed point theorem.

Brouwer.

Input: Scalars L and γ and a polynomial-time Turing machine CM evaluating a L-Lipschitz

function M : [0, 1]d → [0, 1]d.

Output: A point z⋆ ∈ [0, 1]d such that ‖z⋆ −M(z⋆)‖2 < γ.

While not stated exactly in this form, the following is a straightforward implication of the results

presented in [CDT09].

Lemma 2.5 ([CDT09]). Brouwer is PPAD-complete even when d = 2. Additionally, Brouwer is

PPAD-complete even when γ = poly(1/d) and L = poly(d).

Remark 2.6 (Respresentation of a polynomial-time Turing Machine). In the definition of the problem

Brouwer we assume that we are given in the input the description of a Turing Machine CM that computes

11

the map M. In order for polynomial-time reductions to and from this problem to be meaningful we need to

have an upper bound on the running time of this Turing Machine which we want to be polynomial in the

input of the Turing Machine. The formal way to ensure this and derive meaningful complexity results is to

define a different problem, say k-Brouwer, for every k ∈ N. In the problem k-Brouwer the input Turing

Machine CM has running time bounded by nk in the size n of its input. In the rest of the paper whenever

we say that a polynomial-time Turing Machine is required in the input to a computational problem Pr, we

formally mean that we define a hierarchy of problems k-Pr, k ∈ N, such that k-Pr takes as input Turing

Machines with running time bounded by nk, and we interpret computational complexity results for Pr

in the following way: whenever we prove that Pr belongs to some complexity class, we prove that k-Pr

belongs to the complexity class for all k ∈ N; whenever we prove that Pr is hard for some complexity class,

we prove that, for some absolute constant k0 determined in the hardness proof, k-Pr is hard for that class,

for all k ≥ k0. For simplicity of exposition of our problems and results we do not repeat this discussion in

the rest of this paper.

3 Computational Problems of Interest

In this section, we define the computational problems that we study in this paper and discuss

our main results, postponing formal statements to Section 4. We start in Section 3.1 by defining

the mathematical objects of our study, and proceed in Section 3.2 to define our main compu-

tational problems, namely: (1) finding approximate stationary points; (2) finding approximate

local minima; and (3) finding approximate local min-max equilibria. In Section 3.3, we present

some bonus problems, which are intimately related, as we will see, to problems (2) and (3). As

discussed in Section 2, for ease of presentation, we define our problems as promise problems.

3.1 Mathematical Definitions

We define the concepts of stationary points, local minima, and local min-max equilibria of real val-

ued functions, and make some remarks about their existence, as well as their computational

complexity. The formal discussion of the latter is postponed to Sections 3.2 and 4.

Before we proceed with our definitions, recall that the goal of this paper is to study con-

strained optimization. Our domain will be the hypercube [0, 1]d, which we might intersect with

the set {x | g(x) ≤ 0}, for some convex (potentially multivariate) function g. Although most

of the definitions and results that we explore in this paper can be extended to arbitrary convex

functions, we will focus on the case where g is linear, and the feasible set is thus a polytope.

Focusing on this case avoids additional complications related to the representation of g in the

input to the computational problems that we define in the next section, and avoids also issues

related to verifying the convexity of g.

Definition 3.1 (Feasible Set and Refutation of Feasibility). Given A ∈ R
d×m and b ∈ R

m, we

define the set of feasible solutions to be P(A, b) = {z ∈ [0, 1]d | ATz ≤ b}. Observe that testing

whether P(A, b) is empty can be done in polynomial time in the bit complexity of A and b.

Definition 3.2 (Projection Operator). For a nonempty, closed, and convex set K ⊂ R
d, we define

the projection operator ΠK : R
d → K as follows ΠK x = argminy∈K ‖x− y‖2. It is well-known

that for any nonempty, closed, and convex set K the argminy∈K ‖x− y‖2 exists and is unique,

hence ΠK is well defined.

Now that we have defined the domain of the real-valued functions that we consider in this

paper we are ready to define a notion of approximate stationary points.

12

Definition 3.3 (ε-Stationary Point). Let f : [0, 1]d → R be a G-Lipschitz and L-smooth function

and A ∈ R
d×m, b ∈ R

m. We call a point x⋆ ∈ P(A, b) a ε-stationary point of f if ‖∇ f (x⋆)‖2 < ε.

It is easy to see that there exist continuously differentiable functions f that do not have any

(approximate) stationary points, e.g. linear functions. As we will see later in this paper, deciding

whether a given function f has a stationary point is NP-hard and, in fact, it is even NP-hard to

decide whether a function has an approximate stationary point of a very gross approximation.

At the same time, verifying whether a given point is (approximately) stationary can be done

efficiently given access to a polynomial-time Turing machine that computes∇ f , so the problem of

deciding whether an (approximate) stationary point exists lies in NP, as long as we can guarantee

that, if there is such a point, there will also be one with polynomial bit complexity. We postpone

a formal discussion of the computational complexity of finding (approximate) stationary points

or deciding their existence until we have formally defined our corresponding computational

problem and settled the bit complexity of its solutions.

For the definition of local minima and local min-max equilibria we need the notion of closed

d-dimensional Euclidean balls.

Definition 3.4 (Euclidean Ball). For r ∈ R+ we define the closed Euclidean ball of radius r to be

the set Bd(r) =
{

x ∈ R
d | ‖x‖2 ≤ r

}
. We also define the closed Euclidean ball of radius r centered at

z ∈ R
d to be the set Bd(r; z) =

{
x ∈ R

d | ‖x− z‖2 ≤ r
}

.

Definition 3.5 ((ε, δ)-Local Minimum). Let f : [0, 1]d → R be a G-Lipschitz and L-smooth func-

tion, A ∈ R
d×m, b ∈ R

m, and ε, δ > 0. A point x⋆ ∈ P(A, b) is an (ε, δ)-local minimum of f con-

strained on P(A, b) if and only if f (x⋆) < f (x) + ε for every x ∈ P(A, b) such that x ∈ Bd(δ; x⋆).

To be clear, using the term “local minimum” in Definition 3.5 is a bit of a misnomer, since for

large enough values of δ the definition captures global minima as well. As δ ranges from large

to small, our notion of (ε, δ)-local minimum transitions from being an ε-globally optimal point

to being an ε-locally optimal point. Importantly, unlike (approximate) stationary points, a (ε, δ)-

local minimum is guaranteed to exist for all ε, δ > 0 due to the compactness of [0, 1]d ∩ P(A, b)

and the continuity of f . Thus the problem of finding an (ε, δ)-local minimum is total for arbitrary

values of ε and δ. On the negative side, for arbitrary values of ε and δ, there is no polynomial-size

and polynomial-time verifiable witness for certifying that a point x⋆ is an (ε, δ)-local minimum.

Thus the problem of finding an (ε, δ)-local minimum is not known to lie in FNP. As we will

see in Section 4, this issue can be circumvented if we focus on particular settings of ε and δ, in

relationship to the Lipschitzness and smoothness of f and the dimension d.

Finally we define (ε, δ)-local min-max equilibrium as follows, recasting Definition 1.1 to the

constraint set P(A, b).

Definition 3.6 ((ε, δ)-Local Min-Max Equilibrium). Let f : [0, 1]d1 × [0, 1]d2 → R be a G-Lipschitz

and L-smooth function, A ∈ R
d×m and b ∈ R

m, where d = d1 + d2, and ε, δ > 0. A point

(x⋆, y⋆) ∈ P(A, b) is an (ε, δ)-local min-max equilibrium of f if and only if the following hold:

◮ f (x⋆, y⋆) < f (x, y⋆) + ε for every x ∈ Bd1
(δ; x⋆) with (x, y⋆) ∈ P(A, b); and

◮ f (x⋆, y⋆) > f (x⋆, y)− ε for every y ∈ Bd2
(δ; y⋆) with (x⋆, y) ∈ P(A, b).

13

Similarly to Definition 3.5, for large enough values of δ, Definition 3.6 captures global min-max

equilibria as well. As δ ranges from large to small, our notion of (ε, δ)-local min-max equilib-

rium transitions from being an ε-approximate min-max equilibrium to being an ε-approximate

local min-max equilibrium. Moreover, in comparison to local minima and stationary points, the

problem of finding an (ε, δ)-local min-max equilibrium is neither total nor can its solutions be

verified efficiently for all values of ε and δ, even when P(A, b) = [0, 1]d. Again, this issue can be

circumvented if we focus on particular settings of ε and δ values, as we will see in Section 4.

3.2 First-Order Local Optimization Computational Problems

In this section, we define the search problems associated with our aforementioned definitions

of approximate stationary points, local minima, and local min-max equilibria. We state our

problems in terms of white-box access to the function f and its gradient. Switching to the black-

box variants of our computational problems amounts to simply replacing the Turing machines

provided in the input of the problems with oracle access to the function and its gradient, as

discussed in Section 2. As per our discussion in the same section, we define our computational

problems as promise problems, the promise being that the Turing machine (or oracle) provided in

the input to our problems outputs function values and gradient values that are consistent with

a smooth and Lipschitz function with the prescribed in the input smoothness and Lipschitzness.

Besides making the presentation cleaner, as we discussed in Section 2, the motivation for doing

so is to prevent the possibility that computational complexity is tacked into our problems due

to the possibility that the Turing machines/oracles provided in the input do not output function

and gradient values that are consistent with a Lipschitz and smooth function. Importantly, all

our computational hardness results syntactically guarantee that the Turing machines/oracles

provided as input to our constructed hard instances satisfy these constraints.

Before stating our main computational problems below, we note that, for each problem, the

dimension d (in unary representation) is also an implicit input, as the description of the Turing

machine C f (or the interface to the oracle O f in the black-box counterpart of each problem be-

low) has size at least linear in d. We also refer to Remark 2.6 for how we may formally study

complexity problems that take a polynomial-time Turing Machine in their input.

StationaryPoint.

Input: Scalars ε, G, L, B > 0 and a polynomial-time Turing machine C f evaluating a G-Lipschitz

and L-smooth function f : [0, 1]d → [−B, B] and its gradient ∇ f : [0, 1]d → R
d; a matrix

A ∈ R
d×m and vector b ∈ R

m such that P(A, b) 6= ∅.

Output: If there exists some point x ∈ P(A, b) such that ‖∇ f (x)‖2 < ε/2, output some point

x⋆ ∈ P(A, b) such that ‖∇ f (x⋆)‖2 < ε; if, for all x ∈ P(A, b), ‖∇ f (x)‖2 > ε, output ⊥;

otherwise, it is allowed to either output x⋆ ∈ P(A, b) such that ‖∇ f (x⋆)‖2 < ε or to output ⊥.

It is easy to see that StationaryPoint lies in FNP. Indeed, if there exists some point x ∈ P(A, b)

such that ‖∇ f (x)‖2 < ε/2, then by the L-smoothness of f there must exist some point x⋆ ∈
P(A, b) of bit complexity polynomial in the size of the input such that ‖∇ f (x⋆)‖2 < ε. On the

other hand, it is clear that no such point exists if for all x ∈ P(A, b), ‖∇ f (x)‖2 > ε. We note that

the looseness of the output requirement in our problem for functions f that do not have points

x ∈ P(A, b) such that ‖∇ f (x)‖2 < ε/2 but do have points x ∈ P(A, b) such that ‖∇ f (x)‖2 ≤ ε is

introduced for the sole purpose of making the problem lie in FNP, as otherwise we would not be

able to guarantee that the solutions to our search problem have polynomial bit complexity. As we

14

show in Section 4, StationaryPoint is also FNP-hard, even when ε is a constant, the constraint

set is very simple, namely P(A, b) = [0, 1]d, and G, L are both polynomial in d.

Next, we define the computational problems associated with local minimum and local min-

max equilibrium. Recall that the first is guaranteed to have a solution, because, in particular, a

global minimum exists due to the continuity of f and the compactness of P(A, b).

LocalMin.

Input: Scalars ε, δ, G, L, B > 0 and a polynomial-time Turing machine C f evaluating a G-

Lipschitz and L-smooth function f : [0, 1]d → [−B, B] and its gradient ∇ f : [0, 1]d → R
d; a

matrix A ∈ R
d×m and vector b ∈ R

m such that P(A, b) 6= ∅.

Output: A point x⋆ ∈ P(A, b) such that f (x⋆) < f (x) + ε for all x ∈ Bd(δ; x⋆) ∩ P(A, b).

LocalMinMax.

Input: Scalars ε, δ, G, L, B > 0; a polynomial-time Turing machine C f evaluating a G-Lipschitz

and L-smooth function f : [0, 1]d1 × [0, 1]d2 → [−B, B] and its gradient ∇ f : [0, 1]d1 × [0, 1]d2 →
R

d1+d2 ; a matrix A ∈ R
d×m and vector b ∈ R

m such that P(A, b) 6= ∅, where d = d1 + d2.

Output: A point (x⋆, y⋆) ∈ P(A, b) such that

⊲ f (x⋆, y⋆) < f (x, y⋆) + ε for all x ∈ Bd1
(δ; x⋆) with (x, y⋆) ∈ P(A, b) and

⊲ f (x⋆, y⋆) > f (x⋆, y)− ε for all y ∈ Bd2
(δ; y⋆) with (x⋆, y) ∈ P(A, b),

or ⊥ if no such point exists.

Unlike StationaryPoint the problems LocalMin and LocalMinMax exhibit vastly different

behavior, depending on the values of the inputs ε and δ in relationship to G, L and d, as we

will see in Section 4 where we summarize our computational complexity results. This range of

behaviors is rooted at our earlier remark that, depending on the value of δ provided in the input

to these problems, they capture the complexity of finding global minima/min-max equilibria, for

large values of δ, as well as finding local minima/min-max equilibria, for small values of δ.

3.3 Bonus Problems: Fixed Points of Gradient Descent/Gradient Descent-Ascent

Next we present a couple of bonus problems, GDFixedPoint and GDAFixedPoint, which re-

spectively capture the computation of fixed points of the (projected) gradient descent and the

(projected) gradient descent-ascent dynamics, with learning rate = 1. As we see in Section 5,

these problems are intimately related, indeed equivalent under polynomial-time reductions, to

problems LocalMin and LocalMinMax respectively, in certain regimes of the approximation

parameters. Before stating problems GDFixedPoint and GDAFixedPoint, we define the map-

pings FGD and FGDA whose fixed points these problems are targeting.

Definition 3.7 (Projected Gradient Descent). For a closed and convex K ⊆ R
d and some contin-

uously differentiable function f : K → R, we define the Projected Gradient Descent Dynamics with

learning rate 1 as the map FGD : K → K, where FGD(x) = ΠK(x−∇ f (x)).

Definition 3.8 (Projected Gradient Descent/Ascent). For a closed and convex K ⊆ R
d1 ×R

d2 and

some continuously differentiable function f : K → R, we define the Unsafe Projected Gradient

Descent/Ascent Dynamic with learning rate 1 as the map FGDA : K → R
d1 ×R

d2 defined as follows

FGDA(x, y) ,

[

ΠK(y)(x−∇x f (x, y))

ΠK(x)(y +∇y f (x, y))

]

,

[
FGDAx(x, y)

FGDAy(x, y)

]

for all (x, y) ∈ K, where K(y) = {x′ | (x′, y) ∈ K} and K(x) = {y′ | (x, y′) ∈ K}.

15

Note that FGDA is called “unsafe” because the projection happens individually for x−∇x f (x, y)

and y +∇y f (x, y), thus FGDA(x, y) may not lie in K. We also define the “safe” version FsGDA,

which projects the pair (x−∇x f (x, y), y +∇y f (x, y)) jointly onto K. As we show in Section 5

(in particular inside the proof of Theorem 5.2), computing fixed points of FGDA and FsGDA are

computationally equivalent so we stick to FGDA which makes the presentation slightly cleaner.

We are now ready to define GDFixedPoint and GDAFixedPoint. As per earlier discussions,

we define these computational problems as promise problems, the promise being that the Turing

machine provided in the input to these problems outputs function values and gradient values

that are consistent with a smooth and Lipschitz function with the prescribed, in the input to these

problems, smoothness and Lipschitzness.

GDFixedPoint.

Input: Scalars α, G, L, B > 0 and a polynomial-time Turing machine C f evaluating a G-Lipschitz

and L-smooth function f : [0, 1]d → [−B, B] and its gradient ∇ f : [0, 1]d → R
d; a matrix

A ∈ R
d×m and vector b ∈ R

m such that P(A, b) 6= ∅.

Output: A point x⋆ ∈ P(A, b) such that ‖x⋆ − FGD(x⋆)‖2 < α, where K = P(A, b) is the

projection set used in the definition of FGD.

GDAFixedPoint.

Input: Scalars α, G, L, B > 0 and a polynomial-time Turing machine C f evaluating a G-Lipschitz

and L-smooth function f : [0, 1]d1 × [0, 1]d2 → [−B, B] and its gradient ∇ f : [0, 1]d1 × [0, 1]d2 →
R

d1+d2 ; a matrix A ∈ R
d×m and vector b ∈ R

m such that P(A, b) 6= ∅, where d = d1 + d2.

Output: A point (x⋆, y⋆) ∈ P(A, b) such that ‖(x⋆, y⋆)− FGDA(x⋆, y⋆)‖2 < α, where K =

P(A, b) is the projection set used in the definition of FGDA.

In Section 5 we show that the problems GDFixedPoint and LocalMin are equivalent under

polynomial-time reductions, and the problems GDAFixedPoint and LocalMinMax are equiva-

lent under polynomial-time reductions, in certain regimes of the approximation parameters.

4 Summary of Results

In this section we summarize our results for the optimization problems that we defined in the

previous section. We start with our theorem about the complexity of finding approximate sta-

tionary points, which we show to be FNP-complete even for large values of the approximation.

Theorem 4.1 (Complexity of Finding Approximate Stationary Points). The computational problem

StationaryPoint is FNP-complete, even when ε is set to any value ≤ 1/24, and even when P(A, b) =

[0, 1]d, G =
√

d, L = d, and B = 1.

It is folklore and easy to verify that approximate stationary points always exist and can be

found in time poly(B, 1/ε, L) when the domain of f is unconstrained, i.e. it is the whole R
d, and

the range of f is bounded, i.e., when f (Rd) ⊆ [−B, B]. Theorem 4.1 implies that such a guar-

antee should not be expected in the bounded domain case, where the existence of approximate

stationary points is not guaranteed and must also be verified. In particular, it follows from our

theorem that any algorithm that verifies the existence of and computes approximate stationary

points in the constrained case should take time that is super-polynomial in at least one of G, L,

or d, unless P = NP. The proof of Theorem 4.1 is based on an elegant construction for converting

(real valued) stationary points of an appropriately constructed function to (binary) solutions of a

16

target Sat instance. This conversion involves the use of Lovász Local Lemma [EL73]. The details

of the proof can be found in Appendix A.

The complexity of LocalMin and LocalMinMax is more difficult to characterize, as the

nature of these problems changes drastically depending on the relationship of δ with with ε, G,

L and d, which determines whether these problems ask for a globally vs locally approximately

optimal solution. In particular, there are two regimes wherein the complexity of both problems

is simple to characterize.

⊲ Global Regime. When δ ≥
√

d then both LocalMin and LocalMinMax ask for a globally

optimal solution. In this regime it is not difficult to see that both problems are FNP-hard to

solve even when ε = Θ(1) and G, L are O(d) (see Section 10).

⊲ Trivial Regime. When δ satisfies δ < ε/G, then for every point z ∈ P(A, b) it holds that

| f (z)− f (z′)| < ε for every z′ ∈ Bd(δ; z) with z′ ∈ P(A, b). Thus, every point z in the

domain P(A, b) is a solution to both LocalMin and LocalMinMax.

It is clear from our discussion above, and in earlier sections, that, to really capture the complexity

of finding local as opposed to global minima/min-max equilibria, we should restrict the value

of δ. We identify the following regime, which we call the “local regime.” As we argue shortly,

this regime is markedly different from the global regime identified above in that (i) a solution is

guaranteed to exist for both our problems of interest, where in the global regime only LocalMin

is guaranteed to have a solution; and (ii) their computational complexity transitions to lower

complexity classes.

⊲ Local Regime. Our main focus in this paper is the regime defined by δ <
√

2ε/L. In

this regime it is well known that Projected Gradient Descent can solve LocalMin in

time O(B · L/ε) (see Appendix E). Our main interest is understanding the complexity of

LocalMinMax, which is not well understood in this regime. We note that the use of the

constant 2 in the constraint δ <
√

2ε/L which defines the local regime has a natural mo-

tivation: consider a point z where a L-smooth function f has ∇ f (z) = 0; it follows from

the definition of smoothness that z is both an (ε, δ)-local min and an (ε, δ)-local min-max

equilibrium, as long as δ <
√

2ε/L.

The following theorems provide tight upper and lower bounds on the computational complexity

of solving LocalMinMax in the local regime. For compactness, we define the following problem:

Definition 4.2 (Local Regime LocalMinMax). We define the local-regime local min-max equilib-

rium computation problem, in short LR-LocalMinMax, to be the search problem LocalMinMax

restricted to instances in the local regime, i.e. satisfying δ <
√

2ε/L.

Theorem 4.3 (Existence of Approximate Local Min-Max Equilibrium). The computational problem

LR-LocalMinMax belongs to PPAD. As a byproduct, if some function f is G-Lipschitz and L-smooth,

then an (ε, δ)-local min-max equilibrium is guaranteed to exist when δ <
√

2ε/L, i.e. in the local regime.

Theorem 4.4 (Hardness of Finding Approximate Local Min-Max Equilibrium). The search problem

LR-LocalMinMax is PPAD-hard, for any δ ≥
√

ε/L, and even when it holds that 1/ε = poly(d),

G = poly(d), L = poly(d), and B = d.

17

Theorem 4.4 implies that any algorithm that computes an (ε, δ)-local min-max equilibrium of a G-

Lipschitz and L-smooth function f in the local regime should take time that is super-polynomial

in at least one of 1/ε, G, L or d, unless FP = PPAD. As such, the complexity of computing local

min-max equilibria in the local regime is markedly different from the complexity of computing

local minima, which can be found using Projected Gradient Descent in poly(G, L, 1/ε, d) time

and function/gradient evaluations (see Appendix E).

An important property of our reduction in the proof of Theorem 4.4 is that it is a black-box

reduction. We can hence prove the following unconditional lower bound in the black-box model.

Theorem 4.5 (Black-Box Lower Bound for Finding Approximate Local Min-Max Equilibrium).

Suppose A ∈ R
d×m and b ∈ R

m are given together with an oracle O f that outputs a G-Lipschtz and

L-smooth function f : P(A, b) → [−1, 1] and its gradient ∇ f . Let also δ ≥
√

L/ε, ε ≤ G2/L, and let

all the parameters 1/ε, 1/δ, L, G be upper bounded by poly(d). Then any algorithm that has access to

f only through O f and computes an (ε, δ)-local min-max equilibrium has to make a number of queries to

O f that is exponential in at least one of the parameters: 1/ε, G, L or d even when P(A, b) ⊆ [0, 1]d.

Our main goal in the rest of the paper is to provide the proofs of Theorems 4.3, 4.4 and 4.5.

In Section 5, we show how to use Brouwer’s fixed point theorem to prove the existence of ap-

proximate local min-max equilibrium in the local regime. Moreover, we establish an equivalence

between LocalMinMax and GDAFixedPoint, in the local regime, and show that both belong

to PPAD. In Sections 6 and 7, we provide a detailed proof of our main result, i.e. Theorem 4.4.

Finally, in Section 9, we show how our proof from Section 7 produces as a byproduct the black-

box, unconditional lower bound of Theorem 4.5. In Section 8, we outline a useful interpolation

technique which allows as to interpolate a function given its values and the values of its gradient

on a hypergrid, so as to enforce the Lipschitzness and smoothness of the interpolating function.

We make heavy use of this technically involved result in all our hardness proofs.

5 Existence of Approximate Local Min-Max Equilibrium

In this section, we establish the totality of LR-LocalMinMax, i.e. LocalMinMax for instances

satisfying δ <
√

2ε/L as defined in Definition 4.2. In particular, we prove that every G-Lipschitz

and L-smooth function admits an (ε, δ)-local min-max equilibrium, as long as δ <
√

2ε/L. A

byproduct of our proof is in fact that LR-LocalMinMax lies inside PPAD. Specifically the main

tool that we use to prove our result is a computational equivalence between the problem of find-

ing fixed points of the Gradient Descent/Ascent dynamic, i.e. GDAFixedPoint, and the problem

LR-LocalMinMax. A similar equivalence between GDFixedPoint and LocalMin also holds,

but the details of that are left to the reader as a simple exercise. Next, we first present the equiva-

lence between GDAFixedPoint and LR-LocalMinMax, and we then show that GDAFixedPoint

is in PPAD, which then also establishes that LR-LocalMinMax is in PPAD.

Theorem 5.1. The search problems LR-LocalMinMax and GDAFixedPoint are equivalent under

polynomial-time reductions. That is, there is a polynomial-time reduction from LR-LocalMinMax to

GDAFixedPoint and vice versa. In particular, given some A ∈ R
d×m and b ∈ R

m such that P(A, b) 6=
∅, along with a G-Lipschitz and L-smooth function f : P(A, b)→ R:

1. For arbitrary ε > 0 and 0 < δ <
√

2ε/L, suppose that (x∗, y∗) ∈ P(A, b) is an α-approximate

fixed point of FGDA, i.e., ‖(x∗, y∗)− FGDA(x∗, y∗)‖2 < α, where α ≤
√

(G+δ)2+4(ε− L
2 δ2)−(G+δ)

2 .

Then (x∗, y∗) is also a (ε, δ)-local min-max equilibrium of f .

18

2. For arbitary α > 0, suppose that (x∗, y∗) is an (ε, δ)-local min-max equilibrium of f for ε = α2·L
(5L+2)2

and δ =
√

ε/L. Then (x∗, y∗) is also an α-approximate fixed point of FGDA.

The proof of Theorem 5.1 is presented in Appendix B.1. As already discussed, we use GDAFixed-

Point as an intermediate step to establish the totality of LR-LocalMinMax and to show its

inclusion in PPAD. This leads to the following theorem.

Theorem 5.2. The computational problems GDAFixedPoint and LR-LocalMinMax are both total

search problems and they both lie in PPAD.

Observe that Theorem 4.3 is implied by Theorem 5.2 whose proof is presented in Appendix B.2.

6 Hardness of Local Min-Max Equilibrium – Four-Dimensions

In Section 5, we established that LR-LocalMinMax belongs to PPAD. Our proof is via the

intermediate problem GDAFixedPoint which we showed that it is computationally equivalent

to LR-LocalMinMax. Our next step is to prove the PPAD-hardness of LR-LocalMinMax using

again GDAFixedPoint as an intermediate problem.

In this section we prove that GDAFixedPoint is PPAD-hard in four dimensions. To establish

this hardness result we introduce a variant of the classical 2D-Sperner problem which we call

2D-BiSperner which we show is PPAD-hard. The main technical part of our proof is to show

that 2D-BiSperner with input size n reduces to GDAFixedPoint, with input size poly(n), α =

exp(−poly(n)), G = L = exp(poly(n)), and B = 2. This reduction proves the hardness of

GDAFixedPoint. Formally, our main result of this section is the following theorem.

Theorem 6.1. The problem GDAFixedPoint is PPAD-complete even in dimension d = 4 and B = 2.

Therefore, LR-LocalMinMax is PPAD-complete even in dimension d = 4 and B = 2.

The above result excludes the existence of an algorithm for GDAFixedPoint whose running

time is poly(log G, log L, log(1/α), B) and, equivalently, the existence of an algorithm for the

problem LR-LocalMinMax with running time poly(log G, log L, log(1/ε), log(1/δ), B), unless

FP = PPAD. Observe that it would not be possible to get a stronger hardness result for the four

dimensional GDAFixedPoint problem since it is simple to construct brute-force search algo-

rithms with running time poly(1/α, G, L, B). We elaborate more on such algorithms towards the

end of this section. In order to prove the hardness of GDAFixedPoint for polynomially (rather

than exponentially) bounded (in the size of the input) values of 1/α, G, and L (See Theorem 4.4)

we need to consider optimization problems in higher dimensions. This is the problem that we

explore in Section 7. Beyond establishing the hardness of the problem for d = 4 dimensions, the

purpose of this section is to provide a simpler reduction that helps in the understanding of our

main result in the next section.

6.1 The 2D Bi-Sperner Problem

We start by introducing the 2D-BiSperner problem. Consider a coloring of the N × N, 2-

dimensional grid, where instead of coloring each vertex of the grid with a single color (as in

Sperner’s lemma), each vertex is colored via a combination of two out of four available colors.

The four available colors are 1−, 1+, 2−, 2+. The five rules that define a proper coloring of the

N × N grid are the following.

19

In order to formally define the computational problem 2D-BiSperner in a way that is useful

for our reductions we need to allow for colorings of the N × N grid described in a succinct

way, where the value N can be exponentially large compared to the size of the input to the

problem. A standard way to do this, introduced by [Pap94b] in defining the computational

version of Sperner’s lemma, is to describe a coloring via a binary circuit Cl that takes as input

the coordinates of a vertex in the grid and outputs the combination of colors that is used to color

this vertex. In the input, each one of the two coordinates of the input vertex is given via the

binary representation of a number in [N]− 1. Setting N = 2n we have that the representation of

each coordinate belongs to {0, 1}n. In the rest of the section we abuse the notation and we use a

coordinate i ∈ {0, 1}n both as a binary string and as a number in [2n]− 1 and it is clear from the

context which of the two we use. The output of Cl should be a combination of one of the colors

{1−, 1+} and one of the colors {2−, 2+}. We represent this combination as a pair of {−1, 1}2. The

first coordinate of this pair refers to the choice of 1− or 1+ and the second coordinate refers to

the choice of 2− or 2+.

In the definition of the computational problem 2D-BiSperner the input is a circuit Cl , as de-

scribed above. One type of possible solutions to 2D-BiSperner is providing a pair of coordinates

(i, j) ∈ {0, 1}n × {0, 1}n indexing a cell of the grid whose bottom left vertex is (i, j). For this

type of solution to be valid it must be that the output of Cl when evaluated on all the vertices of

this square contains at least one negative and one positive value for each one of the two output

coordinates of Cl , i.e. the cell must be panchromatic. Another type of possible solution to 2D-

BiSperner is a vertex whose coloring violates the proper coloring conditions for the boundary,

namely 2–5 above. For notational convenience we refer to the first coordinate of the output of Cl

by C1
l and to the second coordinate by C2

l . The formal definition of the computational problem

2D-BiSperner is then the following.

2D-BiSperner.

Input: A boolean circuit Cl : {0, 1}n × {0, 1}n → {−1, 1}2.

Output: A vertex (i, j) ∈ {0, 1}n × {0, 1}n such that one of the following holds

1. i 6= 1, j 6= 1, and

⋃

i′−i∈{0,1}
j′−j∈{0,1}

C1
l (i
′, j′) = {−1, 1} and

⋃

i′−i∈{0,1}
j′−j∈{0,1}

C2
l (i
′, j′) = {−1, 1}, or

2. i = 0 and C1
l (i, j) = −1, or

3. i = 1 and C1
l (i, j) = +1, or

4. j = 0 and C2
l (i, j) = −1, or

5. j = 1 and C2
l (i, j) = +1.

Our next step is to show that the problem 2D-BiSperner is PPAD-hard. Thus our reduction

from 2D-BiSperner to GDAFixedPoint in the next section establishes both the PPAD-hardness

of GDAFixedPoint and the inclusion of 2D-BiSperner to PPAD.

Lemma 6.2. The problem 2D-BiSperner is PPAD-hard.

Proof. To prove this Lemma we will use Lemma 2.5. Let CM be a polynomial-time Turing machine

that computes a function M : [0, 1]2 → [0, 1]2 that is L-Lipschitz. We know from Lemma 2.5 that

21

finding γ-approximate fixed points of M is PPAD-hard. We will use CM to define a circuit Cl such

that a solution of 2D-BiSperner with input Cl will give us a γ-approximate fixed point of M.

Consider the function g(x) = M(x) − x. Since M is L-Lipschitz, the function g : [0, 1]2 →
[−1, 1]2 is also (L + 1)-Lipschitz. Additionally g can be easily computed via a polynomial-time

Turing machine Cg that uses CM as a subroutine. We construct a proper coloring of a fine grid of

[0, 1]2 using the signs of the outputs of g. Namely we set n = ⌈log(L/γ) + 2⌉ and this defines

a 2n × 2n grid over [0, 1]2 that is indexed by {0, 1}n × {0, 1}n. Let gη : [0, 1]2 → [−1, 1]2 be the

function that the Turing Machine Cg evaluate when the requested accuracy is η > 0. Now we can

define the circuit Cl as follows, 5

C1
l (i, j) =







1 i = 0

−1 i = 2n − 1

1 gη,1

(
i

2n−1 ,
j

2n−1

)

≥ 0 and i 6= −1

−1 gη,1

(
i

2n−1 ,
j

2n−1

)

< 0 and i 6= 0

,

C2
l (i, j) =







1 i = 0

−1 i = 2n − 1

1 gη,2

(
i

2n−2 ,
j

2n−1

)

≥ 0 and i 6= −1

−1 gη,2

(
i

2n−2 ,
j

2n−1

)

< 0 and i 6= 0

,

where gi is the ith output coordinate of g. It is not hard then to observe that the coloring Cl is

proper, i.e. it satisfies the boundary conditions due to the fact that the image of M is always

inside [0, 1]2. Therefore the only possible solution to 2D-BiSperner with input Cl is a cell that

contains all the colors {1−, 1+, 2−, 2+}. Let (i, j) be the bottom-left vertex of this cell which we

denote by R, namely

R =

{

x ∈ [0, 1]2 | x1 ∈
[

i

2n − 1
,

i + 1

2n − 1

]

, x2 ∈
[

j

2n − 1
,

j + 1

2n − 1

]}

.

Claim 6.3. Let η = γ

2
√

2
, there exists x ∈ R such that |g1(x)| ≤ γ

2
√

2
and y ∈ R such that |g2(y)| ≤ γ

2
√

2
.

Proof of Claim 6.3. We will prove the existence of x and the existence of y follows using an identi-

cal argument. If there exists a corner x of R such that g1(x) is in the range [−η, η] then the claim

follows. Suppose not. Using this together with the fact that the first color of one of the corners of

R is 1− and also the first color of one of the corners of R is 1+ we conclude that there exist points

x, x′ such that gη,1(x) ≥ 0 and gη,1(x′) ≤ 0 6. But we have that
∥
∥gη − g

∥
∥

2
≤ η. This together with

the fact that g1(x) 6∈ [−η, η] and g1(x′) 6∈ [−η, η] implies that g1(x) ≥ 0 and also g1(x′) ≤ 0. But

because of the L-Lipschitzness of g and because the distance between x and x′ is at most
√

2 γ
4L

we conclude that |g1(x)− g1(x′)| ≤ γ

2
√

2
. Hence due to the signs of g1(x) and g1(x′) we conclude

that |g1(x)| ≤ γ

2
√

2
. The same way we can prove that |g1(y)| ≤ γ

2
√

2
and the claim follows.

5We remind that we abuse the notation and we use a coordinate i ∈ {0, 1}n both as a binary string and as a number

in ([2n − 1]− 1) and it is clear from the context which of the two we use.
6 The latter is inaccurate for the cases where the vertex (0, j) belongs to either facets i = 0 or i = 2n − 1. Notice that

the coloring in such vertices does not depend on the value of gη . However in case where the color of such a corner is

not consistent with the value of gη , i.e. gη,1(0, j) < 0 and C1
l (0, j) = 1 then this means that |g1(0, j)| ≤ η. This is due

to the fact that g1(0, j) ≥ 0 and |g1(0, j)− g1,η(0, j)| ≤ η.

22

Using the Claim 6.3 and the L-Lipschitzness of g we get that for every z ∈ R

|g1(z)− g1(x)| ≤ L ‖x− z‖2 ≤
√

2 · L · γ

4L
=⇒ |g1(z)| ≤

γ√
2

, and

|g2(z)− g2(y)| ≤ L ‖y− z‖2 ≤
√

2 · L · γ

4L
=⇒ |g2(z)| ≤

γ√
2

where we have used also the fact that for any two points z, w it holds that ‖z−w‖2 ≤
√

2 γ
4L

which follows from the definition of the size of the grid. Therefore we have that ‖g(z)‖2 ≤ γ and

hence ‖M(z)− z‖2 ≤ γ which implies that any point z ∈ R is a γ-approximate fixed point of M

and the lemma follows.

Now that we have established the PPAD-hardness of 2D-BiSperner we are ready to present our

main result of this section which is a reduction from 2D-BiSperner to GDAFixedPoint.

6.2 From 2D Bi-Sperner to Fixed Points of Gradient Descent/Ascent

We start with presenting a construction of a Lipschitz and smooth real-valued function f :

[0, 1]2 × [0, 1]2 → R based on a given coloring circuit Cl : {0, 1}n × {0, 1}n → {−1, 1}2. Then

in Section 6.2.1 we will show that any solution to GDAFixedPoint with input the representation

C f of f is also a solution to the 2D-BiSperner problem with input Cl . Constructing Lipschitz

and smooth functions based on only local information is a surprisingly challenging task in high-

dimensions as we will explain in detail in Section 7. Fortunately in the low-dimensional case

that we consider in this section the construction is much more simple and the main ideas of our

reduction are more clear.

The basic idea of the construction of f consists in interpreting the coloring of a given point

in the grid as the directions of the gradient of f (x, y) with respect to the variables x1, y1 and

x2, y2 respectively. More precisely, following the ideas in the proof of Lemma 6.2, we divide the

[0, 1]2 square in square-cells of length 1/(N − 1) = 1/(2n − 1) where the corners of these cells

correspond to vertices of the N × N grid of the 2D-BiSperner instance described by Cl . When x

is on a vertex of this grid, the first color of this vertex determines the direction of gradient with

respect to the variables x1 and y1, while the second color of this vertex determines the direction

of the gradient of the variables x2 and y2. As an example, if x = (x1, x2) is on a vertex of the

N × N grid, and the coloring of this vertex is (1−, 2+), i.e. the output of Cl on this vertex is

(−1,+1), then we would like to have

∂ f

∂x1
(x, y) ≥ 0,

∂ f

∂y1
(x, y) ≤ 0,

∂ f

∂x2
(x, y) ≤ 0,

∂ f

∂y2
(x, y) ≥ 0.

The simplest way to achieve this is to define the function f locally close to (x, y) to be equal to

f (x, y) = (x1 − y1)− (x2 − y2).

Similarly, if x is on a vertex of the N × N grid, and the coloring of this vertex is (1−, 2−), i.e. the

output of Cl on this vertex is (−1,−1), then we would like to have

∂ f

∂x1
(x, y) ≥ 0,

∂ f

∂y1
(x, y) ≤ 0,

∂ f

∂x2
(x, y) ≥ 0,

∂ f

∂y2
(x, y) ≤ 0.

The simplest way to achieve this is to define the function f locally close to (x, y) to be equal to

f (x, y) = (x1 − y1) + (x2 − y2).

23

function is both Lipschitz and smooth. In order to satisfy this, we need to choose appropriate

coefficients of the interpolation that interpolate smoothly not only the value of the function but

also its derivatives. For this purpose we use the following smooth step function of order 1.

Definition 6.4 (Smooth Step Function of Order 1). We define S1 : [0, 1] → [0, 1] to be the smooth

step function of order 1 that is equal to S1(x) = 3x2− 2x3. Observe that the following hold S1(0) =

0, S1(1) = 1, S′1(0) = 0, and S′1(1) = 0.

As we have discussed, another issue is that since the interpolation coefficients depend on

the value of x it could be that the derivatives of these coefficients overpower the derivatives of

the functions that we interpolate. In this case we could be potentially creating fixed points of

Gradient Descent/Ascent even in non panchromatic squares. As we will see later the magnitude

of the derivatives from the interpolation coefficients depends on the differences x1 − y1 and x2 −
y2. Hence if we ensure that these differences are small then the derivatives of the interpolation

coefficients will have to remain small and hence they can never overpower the derivatives from

the corners of every cell. This is the place in our reduction where we add the constraints A ·
(x, y) ≤ b that define the domain of the function f as we describe in Section 3.

Now that we have summarized the main ideas of our construction we are ready for the formal

definition of f based on the coloring circuit Cl .

Definition 6.5 (Continuous and Smooth Function from Colorings of 2D-Bi-Sperner). Given a

binary circuit Cl : {0, 1}n × {0, 1}n → {−1, 1}2, we define the function fCl
: [0, 1]2× [0, 1]2 → R as

follows. For any x ∈ [0, 1]2, let A = (iA, jA), B = (iB, jB), C = (iC, jC), D = (iD, jD) be the vertices

of the cell of the N(= 2n)× N grid which contains x and xA, xB, xC and xC the corresponding

points in the unit square [0, 1]2, i.e. xA
1 = iA/(2n − 1), xA

2 = jA/(2n − 1) etc. Let also A be

down-left corner of this cell and B, C, D be the rest of the vertices in clockwise order, then we

define

fCl
(x, y) = α1(x) · (y1 − x1) + α2(x) · (y2 − x2)

where the coefficients α1(x), α2(x) ∈ [−1, 1] are defined as follows

αi(x) = S1

(

xC
1 − x1

δ

)

· S1

(

xC
2 − x2

δ

)

· C i
l (A) + S1

(
xD

1 − x1

δ

)

· S1

(
x2 − xD

2

δ

)

· C i
l (B)

+S1

(

x1 − xA
1

δ

)

· S1

(
x2 − xA

2

δ

)

· C i
l (C) + S1

(
x1 − xB

1

δ

)

· S1

(
xB

2 − x2

δ

)

· C i
l (D)

where δ , 1/(N − 1) = 1/(2n − 1).

In Figure 6 we present an example of the application of Definition 6.5 to a specific cell with some

given coloring on the corners.

An important property of the definition of the function fCl
is that the coefficients used in the

definition of αi have the following two properties

S1

(

xC
1 − x1

δ

)

· S1

(

xC
2 − x2

δ

)

≥ 0, S1

(
xD

1 − x1

δ

)

· S1

(
x2 − xD

2

δ

)

≥ 0,

S1

(

x1 − xA
1

δ

)

· S1

(
x2 − xA

2

δ

)

≥ 0, S1

(
x1 − xB

1

δ

)

· S1

(
xB

2 − x2

δ

)

≥ 0, and

25

Now since maxz∈[0,1] |S′1(z)| ≤ 6, we can conclude that
∣
∣
∣

∂α1(x)
∂x1

∣
∣
∣ ≤ 24/δ. Similarly we can prove

that
∣
∣
∣

∂α2(x)
∂x1

∣
∣
∣ ≤ 24/δ, which combined with |α1(x)| ≤ 1 implies

∣
∣
∣

∂ fCl (x,y)

∂x1

∣
∣
∣ ≤ O(1/δ). Using similar

reasoning we can prove that
∣
∣
∣

∂ fCl (x,y)

∂x2

∣
∣
∣ ≤ O(1/δ) and that

∣
∣
∣

∂ fCl
(x,y)

∂yi

∣
∣
∣ ≤ 1 for i = 1, 2. Hence

∥
∥∇ fCl

(x, y)
∥
∥

2
≤ O(1/δ).

The only thing we are missing to prove the Lipschitzness of fCl
is to prove its continuity on the

boundaries of the cells of our subdivision. Suppose x lies on the boundary of some cell, e.g. let

x lie on edge (C, D) of one cell that is the same as the edge (A′, B′) of the cell to the right of that

cell. Since S1(0) = 0, S′1(0) = 0 and S′1(1) = 0 it holds that ∂α1(x)/∂x1 = 0 and the same for α2.

Therefore the value of ∂ fCl
/∂x1 remains the same no matter the cell according to which it was

calculated. As a result, fCl
is differentiable with respect to x1 even if x belongs in the boundary

of its cell. Using the exact same reasoning for the rest of the variables, one can show that the

function fCl
is differentiable at any point (x, y) ∈ [0, 1]4 and because of the aforementioned bound

on the gradient ∇ fCl
we can conclude that fCl

is O(1/δ)-Lipschitz.

Using very similar calculations, we can compute the closed formulas of the second derivatives

of fCl
and using the bounds

∣
∣ fCl

(·)
∣
∣ ≤ 2, |S1(·)| ≤ 1, |S′1(·)| ≤ 6, and |S′′1 (·)| ≤ 6, we can prove

that each entry of the Hessian ∇2 fCl
(x, y) is bounded by O(1/δ2) and thus

∥
∥∇2 fCl

(x, y)
∥
∥

2
≤ O(1/δ2)

which implies the Θ(1/δ2)-smoothness of fCl
.

6.2.1 Description and Correctness of the Reduction – Proof of Theorem 6.1

In this section, we present and prove the exact polynomial-time construction of the instance of

the problem GDAFixedPoint from an instance Cl of the problem 2D-BiSperner.

(+) Construction of Instance for Fixed Points of Gradient Descent/Ascent.

Our construction can be described via the following properties.

◮ The payoff function is the real-valued function fCl
(x, y) from the Definition 6.5.

◮ The domain is the polytope P(A, b) that we described in Section 3. The matrix A and the

vector b have constant size and they are computed so that the following inequalities hold

x1 − y1 ≤ ∆, y1 − x1 ≤ ∆, x2 − y2 ≤ ∆, and y2 − x2 ≤ ∆ (6.1)

where ∆ = δ/12 and δ = 1/(N − 1) = 1/(2n − 1).

◮ The parameter α is set to be equal to ∆/3.

◮ The parameters G and L are set to be equal to the upper bounds on the Lipschitzness and

the smoothness of fCl
respectively that we derived in Lemma 6.6. Namely we have that

G = O(1/δ) = O(2n) and L = O(1/δ2) = O(22n).

The first thing that is simple to observe in the above reduction is that it runs in polynomial

time with respect to the size of the the circuit Cl which is the input to the 2D-BiSperner problem

that we started with. To see this, recall from the definition of GDAFixedPoint that our reduction

27

needs to output: (1) a Turing machine C fCl
that computes the value and the gradient of the

function fCl
in time polynomial in the number of requested bits of accuracy; (2) the required

scalars α, G, and L. For the first, we observe from the definition of fCl
that it is actually a piece-

wise polynomial function with a closed form that only depends on the values of the circuit Cl on

the corners of the corresponding cell. Since the size of Cl is the size of the input to 2D-BiSperner

we can easily construct a polynomial-time Turing machine that computes both function value and

the gradient of the piecewise polynomial function fCl
. Also, from the aforementioned description

of the reduction we have that log(G), log(L) and log(1/α) are linear in n and hence we can

construct the binary representation of all this scalars in time O(n). The same is true for the

coefficients of A and b as we can see from their definition in (+). Hence we conclude that our

reduction runs in time that is polynomial in the size of the circuit Cl .

The next thing to observe is that, according to Lemma 6.6, the function fCl
is both G-Lipschitz

and L-smooth and hence the output of our reduction is a valid input for the promise problem

GDAFixedPoint. So the last step to complete the proof of Theorem 6.1 is to prove that the vec-

tor x⋆ of every solution (x⋆, y⋆) of GDAFixedPoint with input C fCl
, lies in a cell that is either

panchromatic or violates the rules for proper coloring, in any of these cases we can find a solu-

tion to the 2D-BiSperner problem. This proves that our construction reduces 2D-BiSperner to

GDAFixedPoint.

We prove this last statement in Lemma 6.8, but before that we need the following technical

lemma that will be useful to argue about solution on the boundary of P(A, b).

Lemma 6.7. Let Cl be an input to the 2D-BiSperner problem, let fCl
be the corresponding G-Lipschitz

and L-smooth function defined in Definition 6.5, and let P(A, b) be the polytope defined by (6.1). If

(x⋆, y⋆) is any solution to the GDAFixedPoint problem with inputs α, G, L, C fCl
, A, and b, defined in

(+) then the following statements hold, where recall that ∆ = δ/12. For i ∈ {1, 2}:

⋄ If x⋆i ∈ (α, 1− α) and x⋆i ∈ (y⋆i − ∆ + α, y⋆i + ∆− α) then
∣
∣
∣

∂ fCl (x⋆,y⋆)

∂xi

∣
∣
∣ ≤ α.

⋄ If x⋆i ≤ α or x⋆i ≤ y⋆i − ∆ + α then
∂ fCl

(x⋆,y⋆)

∂xi
≥ −α.

⋄ If x⋆i ≥ 1− α or x⋆i ≥ y⋆i + ∆− α then
∂ fCl (x⋆,y⋆)

∂xi
≤ α.

The symmetric statements for y⋆i hold. For i ∈ {1, 2}:

⋄ If y⋆i ∈ (α, 1− α) and y⋆i ∈ (x⋆i − ∆ + α, x⋆i + ∆− α) then
∣
∣
∣

∂ fCl (x⋆,y⋆)

∂yi

∣
∣
∣ ≤ α.

⋄ If y⋆i ≤ α or y⋆i ≤ x⋆i − ∆ + α then
∂ fCl (x⋆,y⋆)

∂yi
≤ α.

⋄ If y⋆i ≥ 1− α or y⋆i ≥ x⋆i + ∆− α then
∂ fCl (x⋆,y⋆)

∂yi
≥ −α.

Proof. For this proof it is convenient to define x̂ = x⋆ − ∇x fCl
(x⋆, y⋆), K(y⋆) = {x | (x, y⋆) ∈

P(A, b))}, and z = ΠK(y⋆) x̂.

We first consider the first statement, so for the sake of contradiction let’s assume that x⋆i ∈
(α, 1 − α), that x⋆i ∈ (y⋆i − ∆ + α, y⋆i + ∆ − α), and that

∣
∣
∣

∂ fCl (x⋆,y⋆)

∂xi

∣
∣
∣ > α. Due to the defini-

tion of P(A, b) in (6.1) the set K(y⋆) is an axes aligned box of R
2 and hence the projection

of any vector x onto K(y⋆) can be implemented independently for every coordinate xi of x.

28

Therefore if it happens that x̂i ∈ (0, 1) ∩ (y⋆i − ∆, y⋆i + ∆), then it holds that x̂i = zi. Now

from the definition of x̂i and zi, and the fact that K(y⋆) is an axes aligned box, we get that

|x⋆i − zi| = |x⋆i − x̂i| =
∣
∣
∣

∂ fCl (x⋆,y⋆)

∂xi

∣
∣
∣ > α which contradicts the fact that (x⋆, y⋆) is a solution to the

problem GDAFixedPoint. On the other hand if x̂i 6∈ (y⋆i − ∆, y⋆i + ∆) ∩ (0, 1) then zi has to be on

the boundary of K(y⋆) and hence zi has to be equal to either 0, or 1, or y⋆i − ∆, or y⋆i + ∆. In any

of these cases since we assumed that x⋆i ∈ (α, 1− α) and that x⋆i ∈ (y⋆i − ∆ + α, y⋆i + ∆− α) we

conclude that |x⋆i − zi| > α and hence we get again a contradiction with the fact that (x⋆, y⋆) is a

solution to the problem GDAFixedPoint. Hence we have that
∣
∣
∣

∂ fCl (x⋆,y⋆)

∂xi

∣
∣
∣ ≤ α.

For the second case, we assume for the sake of contradiction that x⋆i ≤ α and
∂ fCl

(x⋆,y⋆)

∂xi
< −α.

These imply that x̂i > x⋆i + α and that zi = min(y⋆i + ∆, x̂i, 1) > min(∆, x̂i, 1) ≥ min(3α, x⋆i + α).

As a result, |x⋆i − zi| = zi − x⋆i > min(3α, x̂i + α) − x⋆i which is greater than α. The latter is a

contradiction with the assumption that (x⋆, y⋆) is a solution to the GDAFixedPoint problem.

Also if we assume that x⋆i ≤ y⋆i − ∆ + α using the same reasoning we get that zi = min(x̂i, y⋆i +

∆− α, 1). From this we can again prove that |x⋆i − zi| > α which contradicts the fact that (x⋆, y⋆)

is a solution to GDAFixedPoint.

The third case can be proved using the same arguments as the second case. Then using the

corresponding arguments we can prove the corresponding statements for the y variables.

We are now ready to prove that solutions of GDAFixedPoint can only occur in cells that are

either panchromatic or violate the boundary conditions of a proper coloring. For convenience in

the rest of this section we define R(x) to be the cell of the 2n × 2n grid that contains x.

R(x) =

[
i

2n − 1
,

i + 1

2n − 1

]

×
[

j

2n − 1
,

j + 1

2n − 1

]

, (6.2)

for i, j such that x1 ∈
[

i
2n−1 , i+1

2n−1

]
and x2 ∈

[
j

2n−1 ,
j+1

2n−1

]

if there are multiple i, j that satisfy the

above condition then we choose R(x) to be the cell that corresponds to the i, j such that the pair

(i, j) it the lexicographically first such that i, j satisfy the above condition. We also define the

corners Rc(x) of R(x) as

Rc(x) = {(i, j), (i, j + 1), (i + 1, j), (i + 1), (j + 1)} (6.3)

where R(x) =
[

i
2n−1 , i+1

2n−1

]
×
[

j
2n−1 ,

j+1
2n−1

]

.

Lemma 6.8. Let Cl be an input to the 2D-BiSperner problem, let fCl
be the corresponding G-Lipschitz

and L-smooth function defined in Definition 6.5, and let P(A, b) be the polytope defined by (6.1). If

(x⋆, y⋆) is any solution to the GDAFixedPoint problem with inputs α, G, L, C fCl
, A, and b defined in

(+) then none of the following statements hold for the cell R(x⋆).

1. x⋆1 ≥ 1/(2n − 1) and, for all v ∈ Rc(x⋆), it holds that C1
l (v) = −1.

2. x⋆1 ≤ (2n − 2)/(2n − 1) and, for all v ∈ Rc(x⋆), it holds that C1
l (v) = +1.

3. x⋆2 ≥ 1/(2n − 1) and, for all v ∈ Rc(x⋆), it holds that C2
l (v) = −1.

4. x⋆2 ≤ (2n − 2)/(2n − 1) and, for all v ∈ Rc(x⋆), it holds that C2
l (v) = +1.

29

Proof. We prove that there is no solution (x⋆, y⋆) of GDAFixedPoint that satisfies the statement

1. and the fact that (x⋆, y⋆) cannot satisfy the other statements follows similarly. It is convenient

for us to define x̂ = x⋆ − ∇x fCl
(x⋆, y⋆), K(y⋆) = {x | (x, y⋆) ∈ P(A, b))}, z = ΠK(y⋆) x̂, and

ŷ = y⋆ +∇y fCl
(x⋆, y⋆), K(x⋆) = {y | (x⋆, y) ∈ P(A, b))}, w = ΠK(x⋆)ŷ.

For the sake of contradiction we assume that there exists a solution of (x⋆, y⋆) such that

x⋆1 ≥ 1/(2n− 1) and for all v ∈ Rc(x⋆) it holds that C1
l (v) = −1. Using the fact that the first color

of all the corners of R(x⋆) is 1−, we will prove that (1)
∂ fCl (x⋆,y⋆)

∂x1
≥ 1/2, and (2)

∂ fCl (x⋆,y⋆)

∂y1
= −1.

Let R(x⋆) =
[

i
2n−1 , i+1

2n−1

]
×
[

j
2n−1 ,

j+1
2n−1

]

, then since all the corners v ∈ Rc(x⋆) have C1
l (v) =

−1, from the Definition 6.5 we have that

fCl
(x⋆, y⋆) = (x⋆1 − y⋆1)− (x⋆2 − y⋆2) · S1

(

xC
1 − x⋆1

δ

)

· S1

(

xC
2 − x⋆2

δ

)

· C2
l (i, j)

− (x⋆2 − y⋆2) · S1

(
xD

1 − x⋆1
δ

)

· S1

(
x⋆2 − xD

2

δ

)

· C2
l (i, j + 1)

− (x⋆2 − y⋆2) · S1

(

x⋆1 − xA
1

δ

)

· S1

(
x⋆2 − xA

2

δ

)

· C2
l (i + 1, j + 1)

− (x⋆2 − y⋆2) · S1

(
x⋆1 − xB

1

δ

)

· S1

(
xB

2 − x⋆2
δ

)

· C2
l (i + 1, j)

where (xA
1 , xA

2) = (i/(2n − 1), j/(2n − 1)), (xB
1 , xB

2) = (i/(2n − 1), (j + 1)/(2n − 1)), (xC
1 , xC

2) =

((i + 1)/(2n − 1), (j + 1)/(2n − 1)), and (xD
1 , xD

2) = ((i + 1)/(2n − 1), j/(2n − 1)). If we differen-

tiate this with respect to y1 we immediately get that
∂ fCl

(x⋆,y⋆)

∂y1
= −1. On the other hand if we

differentiate with respect to x1 we get

∂ fCl
(x⋆, y⋆)

∂x1
= 1 + (x⋆2 − y⋆2) ·

1

δ
· S′1

(

1− x⋆1 − xA
1

δ

)

· S1

(

1− x⋆2 − xA
2

δ

)

· C2
l (i, j)

+ (x⋆2 − y⋆2) ·
1

δ
· S′1

(

1− x⋆1 − xA
1

δ

)

· S1

(
x⋆2 − xA

2

δ

)

· C2
l (i, j + 1)

− (x⋆2 − y⋆2) ·
1

δ
· S′1

(

x⋆1 − xA
1

δ

)

· S1

(
x⋆2 − xA

2

δ

)

· C2
l (i + 1, j + 1)

− (x⋆2 − y⋆2) ·
1

δ
· S′1

(

x⋆1 − xA
1

δ

)

· S1

(

1− x⋆2 − xA
2

δ

)

· C2
l (i + 1, j)

≥1− 4 |x⋆2 − y⋆2 | ·
3

2δ

≥1− 6 · ∆

δ
≥ 1/2 (6.4)

where the last inequality follows from the fact that |S′1(·)| ≤ 3/2 and the fact that, due to the

constraints that define the polytope P(A, b), it holds that |x2 − y2| ≤ ∆.

Hence we have established that if x⋆1 ≥ 1/(2n − 1) and for all v ∈ Rc(x⋆) it holds that

C1
l (v) = −1 then it holds that that (1)

∂ fCl (x⋆,y⋆)

∂x1
≥ 1/2, and (2)

∂ fCl (x⋆,y⋆)

∂y1
= −1. Now it is easy to

see that the only way to satisfy both
∂ fCl (x⋆,y⋆)

∂x1
≥ 1/2 and |z1 − x⋆1 | ≤ α is that either x⋆1 ≤ α or

30

x⋆1 ≤ y⋆1 − ∆ + α. The first case is excluded by the assumption in the first statement of our lemma

and our choice of α = ∆/3 = 1/(36 · (2n − 1)) thus it holds that x⋆1 ≤ y⋆1 − ∆ + α. But then we

can use the case 3 for the y variables of Lemma 6.7 and we get that
∂ fCl (x⋆,y⋆)

∂y1
≥ −α, which cannot

be true since we proved that
∂ fCl (x⋆,y⋆)

∂y1
= −1. Therefore we have a contradiction and the first

statement of the lemma holds. Using the same reasoning we prove the rest of the statements.

Remark 6.9. The computations presented in (6.4) is the precise point where an attempt to prove

the hardness of minimization problems would fail. In particular, if our goal was to construct a

hard minimization instance then the function fCl
would need to have the terms xi + yi instead of

xi − yi so that the fixed points of gradient descent coincide with approximate local minimum of

fCl
. In that case we cannot lower bound the gradient of (6.4) below from 1/2 because the term

|x⋆2 + y⋆2 | will be the dominant one and hence the sign of the derivative can change depending on

the value |x⋆2 + y⋆2 |. For a more intuitive explanation of the reason why we cannot prove hardness

of minimization problems we refer to the Introduction, at Section 1.2.

We have now all the ingredients to prove Theorem 6.1.

Proof of Theorem 6.1. Let (x⋆, y⋆) be a solution to the GDAFixedPoint instance that we construct

based on the instance Cl of 2D-BiSperner. Let also R(x⋆) be the cell that contains x⋆. If the

corners Rc(x⋆) contain all the colors 1−, 1+, 2−, 2+ then we have a solution to the 2D-BiSperner

instance and the Theorem 6.1 follows. Otherwise there is at least one color missing from Rc(x⋆),

let’s assume without loss of generality that one of the missing colors is 1−, hence for every

v ∈ Rc(x⋆) it holds that Cl(v) = +1. Now from Lemma 6.8 the only way for this to happen

is that x⋆1 > (2n − 2)/(2n − 1) which implies that in Rc(x⋆) there is at least one corner of the

form v = (2n − 1, j). But we have assumed that Cl(v) = +1, hence v is a violation of the

proper coloring rules and hence a solution to the 2D-BiSperner instance. We can prove the

corresponding statement if any other color from 1+, 2−, 2+ is missing. Finally, we observe that

the function that we define has range [−2, 2] and hence the Theorem 6.1 follows.

7 Hardness of Local Min-Max Equilibrium – High-Dimensions

Although the results of Section 6 are quite indicative about the computational complexity of

GDAFixedPoint and LR-LocalMinMax, we have not yet excluded the possibility of the exis-

tence of algorithms running in poly(d, G, L, 1/ε) time. In this section we present a, significantly

more challenging, high dimensional version of the reduction that we presented in Section 6.

The advantage of this reduction is that it rules out the existence even of algorithms running in

poly(d, G, L, 1/ε) steps unless FP = PPAD, for details see Theorem 4.4. An easy consequence

of our result is an unconditional lower bound on the black-box model that states that the running

time of any algorithm for LR-LocalMinMax that has only oracle access to f and ∇ f has to be

exponential in d, or G, or L, or 1/ε, for details we refer to the Theorem 4.5 and Section 9.

The main reduction that we use to prove Theorem 4.4 is from the high dimensional gener-

alization of the problem 2D-BiSperner, which we call HighD-BiSperner, to GDAFixedPoint.

Our reduction in this section resembles some of the ideas of the reductions of Section 6 but it has

many additional significant technical difficulties. The main difficulty that we face is how to de-

fine a function on a d-dimensional simplex that is: (1) both Lipschitz and smooth, (2) interpolated

between some fixed functions at the d + 1 corners of the simplex, and (3) remains Lipschitz and

31

smooth even if we glue together different simplices. It is well understood from previous works

how to construct such a function if we are interested only in achieving the Lipschitz continuity.

Surprisingly adding the smoothness requirement makes the problem very different and signif-

icantly more difficult. Our proof overcomes this technical difficulty by introducing a novel but

very technically involved way to define interpolation within a simplex of some fixed functions

on the corners of the simplex. We believe that our novel interpolation technique is of indepen-

dent interest and we hope that it will be at the heart of other computational hardness results of

optimization problems in continuous optimization.

7.1 The High Dimensional Bi-Sperner Problem

We start by presenting the HighD-BiSperner problem. The HighD-BiSperner is a straightfor-

ward d-dimensional generalization of the 2D-BiSperner that we defined in the Section 6. Assume

that we have a d-dimensional grid N × · · · (d times) · · · × N. We assign to every vertex of this

grid a sequence of d colors and we say that a coloring is proper if the following rules are satisfied.

1. The ith color of every vertex is either the color i+ or the color i−.

2. All the vertices whose ith coordinate is 0, i.e. they are at the lower boundary of the ith

direction, should have the ith color equal to i+.

3. All the vertices whose ith coordinate is 1, i.e. they are at the higher boundary of the ith

direction, should have the ith color equal to i−.

Using proof ideas similar to the proof of the original Sperner’s Lemma it is not hard to prove

via a combinatorial argument that in every proper coloring of a d-dimensional grid, there exists

a cubelet of the grid where all the 2 · d colors {1−, 1+, . . . , d−, d+} appear in some of its vertices,

we call such a cubelet panchromatic. In the HighD-BiSperner problem we are asked to find such

a cubelet, or a violation of the rules of proper coloring. As in Section 6.1 we do not present this

combinatorial argument in this paper since the totality of the HighD-BiSperner problem will

follow from our reduction from HighD-BiSperner to GDAFixedPoint and our proofs in Section

5 that establish the totality of GDAFixedPoint.

As in the case of 2D-BiSperner, in order to formally define the computational problem

HighD-BiSperner we need to define the coloring of the d-dimensional grid N × · · · × N in a

succinct way. The fundamental difference compared to the definition of 2D-BiSperner is that for

the HighD-BiSperner we assume that N is only polynomially large. This difference will enable

us to exclude algorithms for GDAFixedPoint that run in time poly(d, 1/α, G, L). The input to

HighD-BiSperner is a coloring via a binary circuit Cl that takes as input the coordinates of a

vertex of the grid and outputs the sequence of colors that are used to color this vertex. Each one

of d coordinates is given via the binary representation of a number in [N]− 1. Setting N = 2ℓ,

where here ℓ is a logarithmically in d small number, we have that the representation of each

coordinate is a member of {0, 1}ℓ. In the rest of the section we abuse the notation and we use

a coordinate i ∈ {0, 1}ℓ both as a binary string and as a number in
[
2ℓ
]
− 1 and which of the

two we use it is clear from the context. The output of Cl should be a sequence of d colors, where

the ith member of this sequence is one of the colors {i−, i+}. We represent this sequence as a

member of {−1,+1}d, where the ith coordinate refers to the choice of i− or i+.

In the definition of the computational problem HighD-BiSperner the input is a circuit Cl , as

we described above. As we discussed above in the HighD-BiSperner problem we are asking for

32

a panchromatic cubelet of the grid. One issue with this high-dimensional setting is that in order

to check whether a cubelet is panchromatic or not we have to query all the 2d corners of this

cubelet which makes the verification problem inefficient and hence a containment to the PPAD

class cannot be proved. For this reason as a solution to the HighD-BiSperner we ask not just

for a cubelet but for 2 · d vertices v(1), . . . , v(d) u(1), . . . , u(d), not necessarily different, such that

they all belong to the same cubelet and the ith output of Cl with input vi is −1, i.e. corresponds

to the color i−, whereas the ith output of Cl with input ui is +1, i.e. corresponds to the color

i+. This way we have a certificate of size 2 · d that can be checked in polynomial time. Another

possible solution of HighD-BiSperner is a vertex whose coloring violates the aforementioned

boundary conditions 2. and 3.. of a proper coloring. For notational convenience we refer to the

ith coordinate of Cl by C i
l . The formal definition of HighD-BiSperner is then the following.

HighD-BiSperner.

Input: A boolean circuit Cl : {0, 1}ℓ × · · · × {0, 1}ℓ
︸ ︷︷ ︸

d times

→ {−1, 1}d

Output: One of the following:

1. Two sequences of d vertices v(1), . . . , v(d) an u(1), . . . , u(d) with v(i), u(i) ∈
(
{0, 1}ℓ

)d
such

that C i
l (v

(i)) = −1 and C i
l (u

(i)) = +1.

2. A vertex v ∈
(
{0, 1}ℓ

)d
with vi = 0 such that C i

l (v) = −1.

3. A vertex v ∈
(
{0, 1}ℓ

)d
with vi = 1 such that C i

l (v) = +1.

Our first step is to establish the PPAD-hardness of HighD-BiSperner in Theorem 7.2. To prove

this we use a stronger version of the Brouwer problem that is called γ-SuccinctBrouwer and

was first introduced in [Rub16].

γ-SuccinctBrouwer.

Input: A polynomial-time Turing machine CM evaluating a 1/γ-Lipschitz continuous vector-

valued function M : [0, 1]d → [0, 1]d.

Output: A point x⋆ ∈ [0, 1]d such that ‖M(x⋆)− x⋆‖2 ≤ γ.

Theorem 7.1 ([Rub16]). γ-SuccinctBrouwer is PPAD-complete for any fixed constant γ > 0.

Theorem 7.2. There is a polynomial time reducton from any instance of the γ-SuccinctBrouwer prob-

lem to an instance of HighD-BiSperner with N = Θ(d/γ2).

Proof. Consider the function g(x) = M(x)− x. Since M is 1/γ-Lipschitz, g : [0, 1]d → [−1, 1]d is

also (1 + 1/γ)-Lipschitz. Additionally g can be easily computed via a polynomial-time Turing

machine Cg that uses CM as a subroutine. We construct the coloring sequences of every vertex of a

d-dimensional grid with N = Θ(d/γ2) points in every direction using g. Let gη : [0, 1]2 → [−1, 1]2

be the function that the Turing Machine Cg evaluate when the requested accuracy is η > 0.

For each vertex v = (v1, . . . , vn) ∈ ([N]− 1)d of the d-dimensional grid its coloring sequence

Cl(v) ∈ {−1, 1}d is constructed as follows: For each coordinate j = 1, . . . , d,

C j
l (v) =







1 vj = 0

−1 vj = 2n − 1

sign
(

gj

(v1
N−1 , . . . , vn

N−1

))
otherwise

,

33

where sign : [−1, 1] 7→ {−1, 1} is the sign function and gη,j(·) is the j-th coordinate of gη .

Observe that since M : [0, 1]d → [0, 1]d, for any vertex v with vj = 0 it holds that C j
l (v) = +1 and

respectively for any vertex v with vj = N − 1 it holds that C j
l (v) = −1 due to the fact that the

value of M is always in [0, 1]d and hence there are no vertices in the grid satisfying the possible

outputs 2. or 3. of the HighD-BiSperner problem. Thus the only possible solution of the above

HighD-BiSperner instance is a sequence of 2d vertices v(1), . . ., v(d), u(1), . . ., u(d) on the same

cubelet that certify that the corresponding cubelet is panchromatic, as per possible output 1. of

the HighD-BiSperner problem. We next prove that any vertex v of that cubelet it holds that
∣
∣
∣
∣
gj

(
v

N − 1

)∣
∣
∣
∣
≤ 2
√

d

γN
for all coordinates j = 1, . . . , d.

Let v be any vertex on the same cubelet with the output vertices v(1), . . ., v(d), u(1), . . ., u(d).

From the guarantees of colors of the sequences v(1), . . ., v(d), u(1), . . ., u(d) we have that either

C j
l (v) · C

j
l (v

(j)) = −1 or C j
l (v) · C

j
l (u

(j)) = −1, let v(j) be the vertex v(j) or u(j) depending on which

one the jth color has product equal to −1 with C j
l (v). Now let η = 2

√
d

γN if gj

(
v

N−1

)
∈ [−η, η]

then the wanted inequality follows. On the other hand if gj

(
v

N−1

)
∈ [−η, η] then using the fact

that
∥
∥g
(

v
N−1

)
− gη

(
v

N−1

)∥
∥

∞
≤ η and that from the definition of the colors we have that either

gη,j

(
v

N−1

)
≥ 0, gη,j

(
v(j)

N−1

)

< 0 or gη,j

(
v

N−1

)
< 0, gη,j

(
v̂(j)

N−1

)

≥ 0 we conclude that gj

(
v

N−1

)
≥ 0,

gj

(
v(j)

N−1

)

< 0 or gj

(
v

N−1

)
< 0, gj

(
v̂(j)

N−1

)

≥ 0 and thus,

∣
∣
∣
∣
gj

(
v

N − 1

)∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
gj

(
v

N − 1

)

− gj

(

v(j)

N − 1

)∣
∣
∣
∣
∣
≤
(

1 +
1

γ

)

·
∥
∥
∥
∥
∥

v

N − 1
− v(j)

N − 1

∥
∥
∥
∥
∥

2

≤ 2
√

d

γN

where in the second inequality we have used the (1 + 1/γ)-Lipschitzness of g. As a result, the

point v̂ = v/(N − 1) ∈ [0, 1]d satisfies ‖M(v̂)− v̂‖2 ≤ 2d/(γN) and thus for if we pick N =

Θ(d/γ2) then any vertex v of the panchromatic cell is a solution for γ-SuccinctBrouwer.

Now that we have established the PPAD-hardness of HighD-BiSperner we are ready to present

our main result of this section which is a reduction from the problem HighD-BiSperner to the

problem GDAFixedPoint with the additional constraints that the scalars α, G, L in the input

satisfy 1/α = poly(d), G = poly(d), and L = poly(d).

7.2 From High Dimensional Bi-Sperner to Fixed Points of Gradient Descent/Ascent

Given the binary circuit Cl : ([N]− 1)d → {−1,+1}d that is an instance of HighD-BiSperner,

we construct a G-Lipschitz and L-smooth function fCl
: [0, 1]d × [0, 1]d → R. To do so, we divide

the [0, 1]d hypercube into cubelets of length δ = 1/(N − 1). The corners of such cubelets have

coordinates that are integer multiples of δ = 1/(N − 1) and we call them vertices. Each vertex

can be represented by the vector v = (v1, . . . , vd) ∈ ([N]− 1)d and admits a coloring sequence

defined by the boolean circuit Cl : ([N]− 1)d → {−1,+1}d. For every x ∈ [0, 1]d, we use R(x) to

denote the cubelet that contains x, formally

R(x) =

[
c1

N − 1
,

c1 + 1

N − 1

]

× · · · ×
[

cd

N − 1
,

cd + 1

N − 1

]

where c ∈ ([N − 1]− 1)d such that x ∈
[

c1
N−1 , c1+1

N−1

]

× · · · ×
[

cd
N−1 , cd+1

N−1

]

and if there are multiple

corners c that satisfy this condition then we choose R(x) to be the cell that corresponds to the c

34

that is lexicographically first among those that satisfy the condition. We also define Rc(x) to be

the set of vertices that are corners of the cublet R(x), namely

Rc(x) = {c1, c1 + 1} × · · · × {cd, cd + 1}

where c ∈ ([N − 1]− 1)d such that R(x) =
[

c1
N−1 , c1+1

N−1

]

× · · · ×
[

cd
N−1 , cd+1

N−1

]

Every y that belongs

to the cubelet R(x) can be written as a convex combination of the vectors v/(N − 1) where

v ∈ Rc(x). The value of the function fCl
(x, y) that we construct in this section is determined

by the coloring sequences Cl(v) of the vertices v ∈ Rc(x). One of the main challenges that we

face though is that the size of Rc(x) is 2d and hence if we want to be able to compute the value

of fCl
(x, y) efficiently then we have to find a consistent rule to pick a subset of the vertices of

Rc(x) whose coloring sequence we need to define the function value fCl
(x, y). Although there

are traditional ways to overcome this difficulty using the canonical simplicization of the cubelet

R(x), these technique leads only to functions that are continuous and Lipschitz but they are not

enough to guarantee continuity of the gradient and hence the resulting functions are not smooth.

7.2.1 Smooth and Efficient Interpolation Coefficients

The problem of finding a computationally efficient way to define a continuous function as an

interpolation of some fixed function in the corners of a cubelet so that the resulting function

is both Lischitz and smooth is surprisingly difficult to solve. For this reason we introduce in

this section the smooth and efficient interpolation coefficients (SEIC) that as we will see in Section

7.2.2, is the main technical tool to implement such an interpolation. Our novel interpolation

coefficients are of independent interest and we believe that they will serve as a main technical

tool for proving other hardness results in continuous optimization in the future.

In this section we only give a high level description of the smooth and efficient interpolation

coefficients via their properties that we use in Section 7.2.2 to define the function fCl
. The actual

construction of the coefficients is very challenging and technical and hence we postpone a detail

exposition for Section 8.

Definition 7.3 (Smooth and Efficient Interpolation Coefficients). For every N ∈ N we define the

set of smooth and efficient interpolation coefficients (SEIC) as the family of functions, called coefficients,

Id,N =
{

Pv : [0, 1]d → R | v ∈ ([N]− 1)d
}

with the following properties.

(A) For all vertices v ∈ ([N]− 1)d, the coefficient Pv(x) is a twice-differentiable function and

satisfies

◮
∣
∣
∣

∂Pv(x)
∂xi

∣
∣
∣ ≤ Θ(d12/δ).

◮
∣
∣
∣

∂2Pv(x)
∂xi ∂xℓ

∣
∣
∣ ≤ Θ(d24/δ2).

(B) For all v ∈ ([N]− 1)d, it holds that Pv(x) ≥ 0 and ∑v∈([N]−1)d Pv(x) = ∑v∈Rc(x) Pv(x) = 1.

(C) For all x ∈ [0, 1]d, it holds that all but d + 1 of the coefficients Pv ∈ Id,N satisfy Pv(x) = 0,

∇Pv(x) = 0 and ∇2
Pv(x) = 0. We denote this set of d + 1 vertices by R+(x). Furthermore,

it holds that R+(x) ⊆ Rc(x) and given x we can compute the set R+(x) it time poly(d).

(D) For all x ∈ [0, 1]d, if xi ≤ 1/(N − 1) for some i ∈ [d] then there exists v ∈ R+(x) such that

vi = 0. Respectively, if xi ≥ 1− 1/(N − 1) then there exists v ∈ R+(x) such that vi = 1.

35

An intuitive explanation of the properties of the SEIC coefficients is the following

(A) – The coefficients Pv are both Lipschitz and smooth with Lipschitzness and smoothness

parameters that depends polynomially in d and N = 1/δ + 1.

(B) – The coefficients Pv(x) define a convex combination of the vertices Rc(x).

(C) – For every x ∈ [0, 1]d, out of the Nd coefficients Pv only d + 1 have non-zero value, or

non-zero gradient or non-zero Hessian when evaluated at the point x. Moreover, given

x ∈ [0, 1]d we can identify these d + 1 coefficients efficiently.

(D) – For every x ∈ [0, 1]d that is in a cubelet that touches the boundary there is at least one of

the vertices in R+(x) that is on the boundary of the continuous hypercube [0, 1]d.

In Section 10 in the proof of Theorem 10.4 we present a simple application of the existence

of the SEIC coefficients for proving very simple black box oracle lower bounds for the global

minimization problem.

Based on the existence of these coefficients we are now ready to define the function fCl
which

is the main construction of our reduction.

7.2.2 Definition of a Lipschitz and Smooth Function Based on a BiSperner Instance

In this section our goal is to formally define the function fCl
and prove its Lipschitzness and

smoothness properties in Lemma 7.5.

Definition 7.4 (Continuous and Smooth Function from Colorings of Bi-Sperner). Given a binary

circuit Cl : ([N]− 1)d → {−1, 1}d, we define the function fCl
: [0, 1]d × [0, 1]d → R as follows

fCl
(x, y) =

d

∑
j=1

(xj − yj) · αj(x)

where αj(x) = −∑v∈([N]−1)d Pv(x) · C j
l (v), and Pv are the coefficients defined in Definition 7.3.

We first prove that the function fCl
constructed in Definition 7.4 is G-Lipschitz and L-smooth

for some appropriately selected parameters G, L that are polynomial in the dimension d and in

the discretization parameter N. We use this property to establish that fCl
is a valid input to the

promise problem GDAFixedPoint.

Lemma 7.5. The function fCl
of Definition 7.4 is O(d15/δ)-Lipschitz and O(d27/δ2)-smooth.

Proof. If we take the derivative with respect to xi and yi and using property (B) of the coefficients

Pv we get the following relations,

∂ fCl
(x, y)

∂xi
=

d

∑
j=1

(xj − yj) ·
∂αj(x)

∂xi
+ αi(x) and

∂ fCl
(x, y)

∂yi
= −αi(x)

where

αi(x) = − ∑
v∈([N]−1)d

Pv(x) and
∂αj(x)

∂xi
= − ∑

v∈([N]−1)d

∂Pv(x)

∂xi
· C j

l (v).

36

Now by the property (C) of Definition 7.3 there are most d + 1 vertices v of Rc(x) with the

property ∇Pv(x) 6= 0. Then if we also use property (A) we get
∣
∣
∣

∂αj(x)
∂xi

∣
∣
∣ ≤ Θ(d13/δ) and using

the property (B) we get |αi(x)| ≤ 1. Thus
∣
∣
∣

∂ fCl (x,y)

∂xi

∣
∣
∣ ≤ Θ(d14/δ) and

∣
∣
∣

∂ fCl (x,y)

∂yi

∣
∣
∣ ≤ Θ(d). Therefore

we can conclude that
∥
∥∇ fCl

(x, y)
∥
∥

2
≤ Θ(d15/δ) and hence this proves that the function fCl

is

Lipschitz continuous with Lipschitz constant Θ(d15/δ).

To prove the smoothness of fCl
, we use the property (B) of the Definition 7.3 and we have

∂2 fCl
(x, y)

∂xi ∂xℓ
=

d

∑
j=1

(xj − yj) ·
∂2αj(x)

∂xi ∂xℓ
+

∂αℓ(x)

∂xi
+

∂αi(x)

∂xℓ
,

∂2 fCl
(x, y)

∂xi ∂yℓ
= −∂αℓ(x)

∂xi
, and

∂2 fCl
(x, y)

∂yi ∂yℓ
= 0

where
∂2αj(x)

∂xi ∂xℓ
= − ∑

v∈([N]−1)d

∂2
Pv(x)

∂xi ∂xℓ
· C j

l (v)

Again using the property (C) of Definition 7.3 we get that there are most d + 1 vertices v of Rc(x)

such that ∇2
Pv(x) 6= 0. This together with the property (A) of Definition 7.3 leads to the fact that

∣
∣
∣

∂2αj(x)
∂xi ∂xℓ

∣
∣
∣ ≤ Θ(d25/δ2). Using the later together with the bounds that we obtained for

∣
∣
∣

∂αj(x)
∂xi

∣
∣
∣ in

the beginning of the proof we get that
∥
∥∇2 fCl

(x, y)
∥
∥

F
≤ Θ(d27/δ2), where with ‖·‖F we denote

the Frobenious norm. Since the bound on the Frobenious norm is a bound to the spectral norm

too, we get that the function fCl
is Θ(d27/δ2)-smooth.

7.2.3 Description and Correctness of the Reduction – Proof of Theorem 4.4

We start with a description of the reduction from HighD-BiSperner to GDAFixedPoint. Sup-

pose we have an instance of HighD-BiSperner given by boolean circuit Cl : ([N]− 1)d →
{−1, 1}d, we construct an instance of GDAFixedPoint according to the following set of rules.

(⋆) Construction of Instance for Fixed Points of Gradient Descent/Ascent.

◮ The payoff function is the real-valued function fCl
(x, y) from the Definition 7.4.

◮ The domain is the polytope P(A, b) that we described in Section 3. The matrix A and the

vector b are computed so that the following inequalities hold

xi − yi ≤ ∆, yi − xi ≤ ∆ for all i ∈ [d] (7.1)

where ∆ = t · δ/d14, with t ∈ R+ be a constant such that
∣
∣
∣

∂Pv(x)
∂xi

∣
∣
∣ · δ

d12 t ≤ 1
2 , for all v ∈

([N]− 1)d and x ∈ [0, 1]d. The fact that such a constant t exists follows from the property

(A) of the smooth and efficient coefficients.

◮ The parameter α is set to be equal to ∆/3.

◮ The parameters G and L are set to be equal to the upper bounds on the Lipschitzness and

the smoothness of fCl
respectively that we derived in Lemma 7.5. Namely we have that

G = O(d15/δ) and L = O(d27/δ2).

37

The first thing to observe is that the afore-described reduction is polynomial-time. For this

observe that all of α, G, L, A, and b have representation that is polynomial in d even if we use

unary instead of binary representation. So the only thing that remains is the existence of a Turing

machine C fCl
that computes the function and the gradient value of fCl

in time polynomial to the

size of Cl and the requested accuracy. To prove this we need a detailed description of the SEIC

coefficients and for this reason we postpone the proof of this to the Appendix D. Here we state

the formally the result that we prove in the Appendix D which together with the discussion

above proves that our reduction is indeed polynomial-time.

Theorem 7.6. Given a binary circuit Cl : ([N]− 1)d → {−1, 1}d that is an input to the HighD-

BiSperner problem. Then, there exists a polynomial-time Turing machine C fCl
, that can be constructed

in polynomial-time from the circuit Cl such that for all vector x, y ∈ [0, 1]d and accuracy ε > 0, C fCl

computes both z ∈ R and w ∈ R
d such that

∣
∣z− fCl

(x, y)
∣
∣ ≤ ε,

∥
∥w−∇ fCl

(x, y)
∥
∥

2
≤ ε.

Moreover the running time of C fCl
is polynomial in the binary representation of x, y, and log(1/ε).

We also observe that according to Lemma 7.5, the function fCl
is both G-Lipschitz and L-

smooth and hence the output of our reduction is a valid input for the constructed instance of

the promise problem GDAFixedPoint. The next step is to prove that the vector x⋆ of every

solution (x⋆, y⋆) of GDAFixedPoint with input as we described above, lies in a cubelet that

is either panchromatic according to Cl or is a violation of the rules for proper coloring of the

HighD-BiSperner problem.

Lemma 7.7. Let Cl be an input to the HighD-BiSperner problem, let fCl
be the corresponding G-

Lipschitz and L-smooth function defined in Definition 7.4, and let P(A, b) be the polytope defined by

(7.1). If (x⋆, y⋆) is any solution to the GDAFixedPoint problem with input α, G, L, C fCl
, A, and b,

defined in (⋆) then the following statements hold, where we remind that ∆ = t · δ/d14.

⋄ If x⋆i ∈ (α, 1− α) and x⋆i ∈ (y⋆i − ∆ + α, y⋆i + ∆− α) then
∣
∣
∣

∂ fCl
(x⋆,y⋆)

∂xi

∣
∣
∣ ≤ α.

⋄ If x⋆i ≤ α or x⋆i ≤ y⋆i − ∆ + α then
∂ fCl

(x⋆,y⋆)

∂xi
≥ −α.

⋄ If x⋆i ≥ 1− α or x⋆i ≥ y⋆i + ∆− α then
∂ fCl (x⋆,y⋆)

∂xi
≤ α.

The symmetric statements for y⋆i hold.

⋄ If y⋆i ∈ (α, 1− α) and y⋆i ∈ (x⋆i − ∆ + α, x⋆i + ∆− α) then
∣
∣
∣

∂ fCl (x⋆,y⋆)

∂yi

∣
∣
∣ ≤ α.

⋄ If y⋆i ≤ α or y⋆i ≤ x⋆i − ∆ + α then
∂ fCl (x⋆,y⋆)

∂yi
≤ α.

⋄ If y⋆i ≥ 1− α or y⋆i ≥ x⋆i + ∆− α then
∂ fCl (x⋆,y⋆)

∂yi
≥ −α.

Proof. The proof of this lemma is identical to the proof of Lemma 6.7 and for this reason we skip

the details of the proof here.

38

Lemma 7.8. Let Cl be an input to the HighD-BiSperner problem, let fCl
be the corresponding G-

Lipschitz and L-smooth function defined in Definition 7.4, and let P(A, b) be the polytope defined by

(7.1). If (x⋆, y⋆) is any solution to the GDAFixedPoint problem with input α, G, L, C fCl
, A, and b,

defined in (⋆), then none of the following statements hold for the cubelet R(x⋆).

1. x⋆i ≥ 1/(N − 1) and for any v ∈ R+(x⋆), it holds that C i
l (v) = −1.

2. x⋆i ≤ 1− 1/(N − 1) and for any v ∈ R+(x⋆), it holds that C1
l (v) = +1.

Proof. We prove that there is no solution (x⋆, y⋆) of GDAFixedPoint that satisfies the statement

1. and the fact that (x⋆, y⋆) cannot satisfy the statement 2. follows similarly. It is convenient

for us to define x̂ = x⋆ − ∇x fCl
(x⋆, y⋆), K(y⋆) = {x | (x, y⋆) ∈ P(A, b))}, z = ΠK(y⋆) x̂, and

ŷ = y⋆ −∇y fCl
(x⋆, y⋆), K(x⋆) = {y | (x⋆, y) ∈ P(A, b))}, w = ΠK(x⋆)ŷ.

For the sake of contradiction we assume that there exists a solution of (x⋆, y⋆) such that

x⋆1 ≥ 1/(N − 1) and for any v ∈ R+(x⋆) it holds that C i
l (v) = −1. Using this fact, we will prove

that (1)
∂ fCl

(x⋆,y⋆)

∂xi
≥ 1/2, and (2)

∂ fCl (x⋆,y⋆)

∂yi
= −1.

Let R(x⋆) =
[

c1
N−1 , c1+1

N−1

]

× · · · ×
[

cd
N−1 , cd+1

N−1

]

, then since all the corners v ∈ R+(x⋆) have

C i
l (v) = −1, from the Definition 7.4 we have that

fCl
(x⋆, y⋆) = (x⋆i − y⋆i) +

d

∑
j=1,j 6=i

(x⋆j − y⋆j) · αj(x)

If we differentiate this with respect to yi we immediately get that
∂ fCl (x⋆,y⋆)

∂yi
= −1. On the other

hand if we differentiate with respect to xi we get

∂ fCl
(x⋆, y⋆)

∂xi
= 1 +

d

∑
j=1,j 6=i

(xj − yj) ·
∂αj(x)

∂xi

≥ 1−∑
j 6=i

∣
∣xj − yj

∣
∣ ·
∣
∣
∣
∣

∂αj(x)

∂xi

∣
∣
∣
∣

≥ 1− ∆ · d ·Θ
(

d13

δ

)

≥ 1/2

where the above follows from the following facts: (1) that
∣
∣
∣

∂αj(x)
∂xl

∣
∣
∣ ≤ Θ(d13/δ), which is proved in

the proof of Lemma 7.5, (2)
∣
∣xj − yj

∣
∣ ≤ ∆, and (3) the definition of ∆. Now it is easy to see that the

only way to satisfy both
∂ fCl (x⋆,y⋆)

∂xi
≥ 1/2 and |zi − x⋆i | ≤ α is that either x⋆i ≤ α or x⋆i ≤ y⋆i −∆+ α.

The first case is excluded by the assumption of the first statement of our lemma and our choice

of α = ∆/3 < 1/(N − 1), thus it holds that x⋆i ≤ y⋆i − ∆ + α. But then we can use the case 3.

for the y variables of Lemma 6.7 and we get that
∂ fCl (x⋆,y⋆)

∂y1
≥ −α, which cannot be true since

we proved that
∂ fCl

(x⋆,y⋆)

∂yi
= −1. Therefore we have a contradiction and the first statement of the

lemma holds. Using the same reasoning we prove the second statement too.

We are now ready to complete the proof that the our reduction from HighD-BiSperner to

GDAFixedPoint is correct and hence we can prove Theorem 4.4.

39

Proof of Theorem 4.4. Let (x⋆, y⋆) be a solution to the GDAFixedPoint problem with input a Tur-

ing machine that represents the function fCl
, α = ∆/3, where ∆ = t · δ/d14, G = Θ(d15/δ),

L = Θ(d27/δ2), and A, b as described in (⋆).

For each coordinate i, there exist the following three mutually exclusive cases,

⊲
1

N−1 ≤ x⋆i ≤ 1 − 1
N−1 : Since |R+(x⋆)| ≥ 1, it follows directly from Lemma 7.8 that there

exists v ∈ R+(x⋆) such that C i
l (v) = −1 and v′ ∈ R+(x⋆) such that C i

l (v) = +1.

⊲ 0 ≤ x⋆i <
1

N−1 : Let C i
l (v) = −1 for all v ∈ R+(x⋆). By the property (D) of the SEIC

coefficients, we have that there exists v ∈ R+(x⋆) with vi = 0. This node is hence a solution

of type 2. for the HighD-BiSperner problem.

⊲ 1 − 1
N−1 < x⋆i ≤ 1: Let C i

l (v) = +1 for all v ∈ R+(x⋆). By the property (D) of the SEIC

coefficients, we have that there exists v ∈ R+(x⋆) with vi = 1. This node is hence a solution

of type 3. for the HighD-BiSperner problem.

Since R+(x⋆) computable in polynomial time given x⋆, we can easily check for every i ∈ [d]

whether any of the above cases hold. If at least for some i ∈ [d] the 2nd or the 3rd case from

above hold, then the corresponding vertex gives a solution to the HighD-BiSperner problem

and therefore our reduction is correct. Hence we may assume that for every i ∈ [d] the 1st of

the above cases holds. This implies that the cubelet R(x⋆) is pachromatic and therefore it is a

solution to the problem HighD-BiSperner. Finally, we observe that the function that we define

has range [−d, d] and hence the Theorem 4.4 follows using Theorem 5.1.

8 Smooth and Efficient Interpolation Coefficients

In this section we describe the construction of the smooth and efficient interpolation coefficients

(SEIC) that we introduced in Section 7.2.1. After the description of the construction we present

the statements of the lemmas that prove the properties (A) - (D) of their Definition 7.3 and we

refer to the Appendix C. We first remind the definition of the SEIC coefficients.

Definition 7.3 (Smooth and Efficient Interpolation Coefficients). For every N ∈ N we define the

set of smooth and efficient interpolation coefficients (SEIC) as the family of functions, called coefficients,

Id,N =
{

Pv : [0, 1]d → R | v ∈ ([N]− 1)d
}

with the following properties.

(A) For all vertices v ∈ ([N]− 1)d, the coefficient Pv(x) is a twice-differentiable function and

satisfies

◮
∣
∣
∣

∂Pv(x)
∂xi

∣
∣
∣ ≤ Θ(d12/δ).

◮
∣
∣
∣

∂2Pv(x)
∂xi ∂xℓ

∣
∣
∣ ≤ Θ(d24/δ2).

(B) For all v ∈ ([N]− 1)d, it holds that Pv(x) ≥ 0 and ∑v∈([N]−1)d Pv(x) = ∑v∈Rc(x) Pv(x) = 1.

(C) For all x ∈ [0, 1]d, it holds that all but d + 1 of the coefficients Pv ∈ Id,N satisfy Pv(x) = 0,

∇Pv(x) = 0 and ∇2
Pv(x) = 0. We denote this set of d + 1 vertices by R+(x). Furthermore,

it holds that R+(x) ⊆ Rc(x) and given x we can compute the set R+(x) it time poly(d).

(D) For all x ∈ [0, 1]d, if xi ≤ 1/(N − 1) for some i ∈ [d] then there exists v ∈ R+(x) such that

vi = 0. Respectively, if xi ≥ 1− 1/(N − 1) then there exists v ∈ R+(x) such that vi = 1.

40

Our main goal in this section is to prove the following theorem.

Theorem 8.1. For every d ∈ N and every N = poly(d) there exist a family of functions Id,N that

satisfies the properties (A) - (D) of Definition 7.3.

One important component of the construction of the SEIC coefficients is the smooth-step func-

tions which we introduce in Section 8.1. These functions also provide a toy example of smooth

and efficient interpolation coefficients in 1 dimension. Then in Section 8.2 we present the con-

struction of the SEIC coefficients in multiple dimensions and in Section 8.3 we state the main

lemmas that lead to the proof of Theorem 8.1.

8.1 Smooth Step Functions – Toy Single Dimensional Example

Smooth step functions are real-valued function g : R → R of a single real variable with the

following properties

Step Value. For every x ≤ 0 it holds that g(x) = 0, for every x ≥ 1 it holds that g(x) = 1 and for

every x ∈ [0, 1] it holds that S(x) ∈ [0, 1].

Smoothness. For some k it holds that g is k times continuously differentiable and its kth deriva-

tive satisfies g(k)(0) = 0 and g(k)(1) = 0.

The largest number k such that the smoothness property from above holds is characterizes the

order of smoothness of the smooth step function g.

In Section 6 we have already defined and used the smooth step function of order 1. For the

construction of the SEIC coefficients we use the smooth step function of order 2 and the smooth

step function of order ∞ defined as follows.

Definition 8.2. We define the smooth step function S : R → R of order 2 as the following function

S(x) =







6x5 − 15x4 + 10x3 x ∈ (0, 1)

0 x ≤ 0

1 x ≥ 1

.

We also define the smooth step function S∞ : R → R of order ∞ as the following function

S∞(x) =







2−1/x

2−1/x+2−1/(1−x) x ∈ (0, 1)

0 x ≤ 0

1 x ≥ 1

.

We note that we use the notation S instead of S2 for the smooth step function of order 2 for

simplicitly of the exposition of the paper.

We present a plot of these step function in Figure 7, and we summarize some of their prop-

erties in Lemma 8.3. A more detailed lemma with additional properties of S∞ that are useful for

the proof of Theorem 8.1 is presented in Lemma C.5 in the Appendix C.

Lemma 8.3. Let S and S∞ be the smooth step functions defined in Definition 8.2. It holds both S and

S∞ are monotone increasing functions and that S(0) = 0, S(1) = 1 and also S′(0) = S′(1) = S′′(0) =

S′′(1) = 0. It also holds that S∞(0) = 0, S∞(1) = 1 and also S
(k)
∞ (0) = S

(k)
∞ (1) = 0 for every

k ∈ N. Additionally it holds for every x that |S′(x)| ≤ 2, and |S′′(x)| ≤ 6 whereas |S′∞(x)| ≤ 16, and

|S′′∞(x)| ≤ 32.

41

S S

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a) Functions S and S∞.

P

(b) The function P3 from Example 8.4.

Figure 7: (a) The smooth step function S of order 1 and the smooth step function S∞ of order ∞.

As we can see both S and S∞ are continuous and continuously differentiable functions but S∞ is

much more flat around 0 and 1 since it has all its derivatives equal to 0 both at the point 0 and at

the point 1. This makes the S∞ function infinitely many times differentiable. (b) The constructed

P3 function of the family of SEIC coefficients for single dimensional case with N = 5. For details

we refer to the Example 8.4.

Proof. For the function S we compute S′(x) = 30x4 − 60x3 + 30x2 for x ∈ [0, 1] and S′(x) = 0

for x 6∈ [0, 1]. Therefore we can easily get that |S′(x)| ≤ 2 for all x ∈ R. We also have that

S′′(x) = 120x3 − 180x2 + 60x for x ∈ (0, 1) and S′′(x) = 0 for x 6∈ [0, 1] hence we can conclude

that |S′′(x)| ≤ 6.

The calculations for S∞ are more complicated. We have that

S′∞(x) = ln(2)
exp

(
ln(2)

x(1−x)

)

(1− 2x(1− x))
(

exp
(

ln(2)
x

)

+ exp
(

ln(2)
1−x

))2
(1− x)2 x2

.

We set h(x) ,
(

exp
(

ln(2)
x

)

+ exp
(

ln(2)
1−x

))

(1− x)2 x2 for x ∈ [0, 1] and doing simple calculations

we get that for x ≤ 1/2 it holds that h(x) ≥ 1
4 exp

(
ln(2)

x

)

x2. But the later can be easily lower

bounded by 1/4. Applying the same argument for x ≥ 1/2 we get that in general h(x) ≥ 1/4.

Also it is not hard to see that for x ≤ 1/2 it holds that exp
(

ln(2)
x(1−x)

)

≤ 4 exp
(

ln(2)
x

)

, whereas for

x ≥ 1/2 it holds that exp
(

ln(2)
x(1−x)

)

≤ 4 exp
(

ln(2)
1−x

)

. Combining all these we can conclude that

|S′∞(x)| ≤ 16. Using similar argument we can prove that |S′′∞(x)| ≤ 32. For all the derivatives of

S∞ we can inductively prove that

S
(k)
∞ (x) =

k−1

∑
i=0

hi(x) · S(i)
∞ (x),

where h0(1) = 0 and all the functions hi(x) are bounded. Then the fact that all the derivatives of

S∞ vanish at 0 and at 1 follows by a simple inductive argument.

Example 8.4 (Single Dimensional Smooth and Efficient Interpolation Coefficients). Using the

smooth step functions that we described above we can get a construction of SEIC coefficients for

42

the single dimensional case. Unfortunately the extension to multiple dimensions is substantially

harder and invokes new ideas that we explore later in this section. For the single dimensional

problem of this example we have the interval [0, 1] divided with N discrete points and our goal

is to design N functions P1 - PN that satisfy the properties (A) - (D) of Definition 7.3. A simple

construction of such functions is the following

Pi(x) =

{

S∞ (N · x− (i− 1)) x ≤ i
N−1

S∞ (i + 1− N · x) x >
i

N−1

.

Based on Lemma 8.3 it is not hard then to see that Pi is twice differentiable and it has bounded

first and second derivatives, hence it satisfies property (A) of Definition 8. Using the fact that

1− S∞(x) = S∞(1− x) we can also prove property (B). Finally properties (C) and (D) can be

proved via the definition of the coefficient Pi from above. In Figure 7 we can see the plot of P3

for N = 5. We leave the exact proofs of this example as an exercise for the reader.

8.2 Construction of SEIC Coefficients in High-Dimensions

The goal of this section is to present the construction of the family Id,N of smooth and efficient

interpolation coefficients for every number of dimensions d and any discretization parameter N.

Before diving into the details of our construction observe that even the 2-dimensional case with

N = 2 is not trivial. In particular, the first attempt would be to define the SEIC coefficients based

on the simple split of the square [0, 1]2 to two triangles divided by the diagonal of [0, 1]2. Then

using any soft-max function that is twice continuously differentiable we define a convex combi-

nation at every triangle. Unfortunately this approach cannot work since the resulting coefficients

have discontinuous gradients along the diagonal of [0, 1]2. We leave the presice calculations of

this example as an exercise to the reader.

We start with some definitions about the orientation and the representation of the cubelets of

the grid ([N]− 1)d. Then we proceed with the definition of the Qv functions in Definition 8.7.

Finally using Qv we can proceed with the construction of the SEIC coefficients.

Definition 8.5 (Source and Target of Cubelets). Each cubelet
[

c1
N−1 , c1+1

N−1

]

× · · · ×
[

cd
N−1 , cd+1

N−1

]

,

where c ∈ ([N − 1]− 1)d admits a source vertex sc = (s1, . . . , sd) ∈ ([N]− 1)d and a target vertex

tc = (t1, . . . , td) ∈ ([N]− 1)d defined as follows,

sj =

{
cj + 1 cj is odd

cj cj is even
and tj =

{
cj cj is odd

cj + 1 cj is even

Notice that the source sc and the target tc are vertices of the cubelet whose down-left corner is c.

Definition 8.6. (Canonical Representation) Let x ∈ [0, 1]d and R(x) =
[

c1
N−1 , c1+1

N−1

]

×· · ·×
[

cd
N−1 , cd+1

N−1

]

where c ∈ ([N − 1]− 1)d. The canonical representation of x under cubelet with down-left cor-

ner c, denoted by pc
x = (p1, . . . , pd) is defined as follows,

pj =
xj − sj

tj − sj

where tc = (t1, . . . , td) and sc = (s1, . . . , sd) are respectively the target and the source of R(x).

43

Definition 8.7 (Defining the functions Qv(x)). Let x ∈ [0, 1]d lying in the cublet

R(x) =

[
c1

N − 1
,

c1 + 1

N − 1

]

× · · · ×
[

cd

N − 1
,

cd + 1

N − 1

]

,

with corners Rc(x) = {c1, c1 + 1} × · · · × {cd, cd + 1}, where c ∈ ([N − 1]− 1)d. Let also sc =

(s1, . . . , sd) be the source vertex of R(x) and pc
x = (p1, . . . , pd) be the canonical representation of

x. Then for each vertex v ∈ Rc(x) we define the following partition of the set of coordinates [d],

Ac
v = {j : |vj − sj| = 0} and Bc

v = {j : |vj − sj| = 1}

If there exist j ∈ Ac
v and ℓ ∈ Bc

v such that pj ≥ pℓ then Qc
v(x) = 0. Otherwise we define7

Qc
v(x) =







∏j∈Ac
v

∏ℓ∈Bc
v

S∞(S(pℓ)− S(pj)) Ac
v, Bc

v 6= ∅

∏
d
ℓ=1 S∞(1− S(pℓ)) Bc

v = ∅

∏
d
j=1 S∞(S(pj)) Ac

v = ∅

where S∞(x) and S(x) are the smooth step function defined in Definition 8.2.

To provide a better understanding of the Definitions 8.5, 8.6, and 8.7 we present the following

3-dimensional example.

Example 8.8. We consider a case where d = 3 and N = 3. Let x = (1.3/3, 2.5/3, 0.3/3) lying

in the cubelet R(x) =
[

1
3 , 2

3

]
×
[

2
3 , 1
]
×
[
0, 1

3

]
, and let c = (1, 2, 0). Then the source of R(x) is

sc = (2, 2, 0) and the target tc = (1, 3, 1) (Definition 8.5). The canonical representation of x is

pc
x = (0.7, 0.5, 0.3) (Definition 8.6). The only vertices with no-zero coefficients Qc

v(x) are those

belonging in the set R+(x) = {(1, 3, 1), (1, 3, 0), (1, 2, 0), (2, 2, 0)} and again by Definition 8.7 we

have that

⊲ Q(1,3,1)(x) = S∞(S(0.3)) · S∞(S(0.5)) · S∞(S(0.7)),

⊲ Q(1,3,0)(x) = S∞(S(0.5)− S(0.3)) · S∞(S(0.7)− S(0.3)),

⊲ Q(1,2,0)(x) = S∞(S(0.7)− S(0.3)) · S∞(S(0.7)− S(0.5)),

⊲ Q(2,2,0)(x) = S∞(1− S(0.3)) · S∞(1− S(0.5)) · S∞(1− S(0.7)).

Now based on the Definitions 8.5, 8.6, and 8.7 we are ready to present the construction of the

smooth and efficient interpolation coefficients.

Definition 8.9 (Construction of SEIC Coefficients). Let x ∈ [0, 1]d lying in the cubelet R(x) =
[

c1
N−1 , c1+1

N−1

]

× · · · ×
[

cd
N−1 , cd+1

N−1

]

. Then for each vertex v ∈ ([N]− 1)d the coefficient Pv(x) is

defined as follows,

Pv(x) =

{

Qc
v(x)/(∑v∈Rc(x) Qc

v(x)) if v ∈ Rc(x)

0 if v /∈ Rc(x)

where the functions Qc
v(x) ≥ 0 are defined in Definition 8.7 for any v ∈ Rc(x).

7We note that in the following expression ∏ denotes the product symbol and should not be confused with the

projection operator used in the previous sections.

44

8.3 Sketch of the Proof of Theorem 8.1

First it is necessary to argue that Pv(x) is a continuous function since it could be the case that

Qc
v(x)/(∑v∈Rc(x) Qc

v(x)) 6= Qc′
v (x)/(∑v∈Vc′

Qc′
v (x)) for some point x that lies in the boundary of

two adjacent cubelets with down-left corners c and c′ respectively. We specifically design the

coefficients Qc
v(x) such as the latter does not occur and this is the main reason that the definition

of the function Qc
v(x) is slightly complicated. For this reason we prove the following lemma.

Lemma 8.10. For any vertex v ∈ ([N]− 1)d, Pv(x) is a continuous and twice differentiable function

and for any v /∈ Rc(x) it holds that Pv(x) = ∇Pv(x) = ∇2
Pv(x) = 0. Moreover, for every x ∈ [0, 1]d

the set R+(x) of vertices v ∈ ([N]− 1)d such that Pv(x) > 0 satisfies |R+(x)| = d + 1.

Based on Lemma 8.10 and the expression of Pv we can prove that the Pv coefficients defined in

Definition 8.9 satisfy the properties (B) and (C) of the definition 7.3. To prove the properties (A)

and (D) we also need the following two lemmas.

Lemma 8.11. For any vertex v ∈ ([N]− 1)d, it holds that

1.
∣
∣
∣

∂Pv(x)
∂xi

∣
∣
∣ ≤ Θ(d12/δ),

2.
∣
∣
∣

∂2Pv(x)
∂xi ∂xj

∣
∣
∣ ≤ Θ(d24/δ2).

Lemma 8.12. Let a point x ∈ [0, 1]d and R+(x) the set of vertices with Pv(x) > 0, then we have that

1. If 0 ≤ xi < 1/(N − 1) then there always exists a vertex v ∈ R+(x) such that vi = 0.

2. If 1− 1/(N − 1) < xi ≤ 1 then there always exists a vertex v ∈ R+(x) such that vi = 1.

The proofs of Lemmas 8.10, 8.11, and 8.12 can be found in Appendix C. Based on Lemmas 8.10,

8.11, and 8.12 we are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. The fact that the coefficients Pv satisfy the property (A) follows directly

from Lemma 8.11. Property (B) follows directly from the definition of Pv in Definition 8.9 and

the simple fact that Qc
v(x) ≥ 0. Property (C) follows from the second part of Lemma 8.10. Finally

Property (D) follows directly from Lemma 8.12.

9 Unconditional Black-Box Lower Bounds

In this section our goal is to prove Theorem 4.5 based on the Theorem 4.4 that we proved in

Section 7 and the known black box lower bounds that we know for PPAD by [HPV89]. In this

section we assume that all the real number operation are performed with infinite precision.

Theorem 9.1 ([HPV89]). Assume that there exists an algorithm A that has black-box oracle access to the

value of a function M : [0, 1]d → [0, 1]d and outputs w⋆ ∈ [0, 1]d. There exists a universal constant c > 0

such that if M is 2-Lipschitz and ‖M(w⋆)−w⋆‖2 ≤ 1/(2c), then A has to make at least 2d different

oracle calls to the function value of M.

It is easy to observe in the reduction in the proof of Theorem 7.2 is a black-box reduction and

in every evaluation of the constructed circuit Cl only requires one evaluation of the input function

M. Therefore the proof of Theorem 7.2 together with the Theorem 9.1 imply the following

corollary.

45

Definition 7.4 with a scaling factor to make sure that the range of the function is [−1, 1]

fCl
(x, y) =

1

d
·

d

∑
j=1

(xj − yj) · αj(x)

where αj(x) = −∑v∈([N]−1)d Pv(x) · C j
l (v), and Pv are the coefficients defined in Definition 7.3.

From the property (C) of the coefficients Pv we have that to evaluate aj(x) we only need the

values C j
l (v) for d + 1 coefficients v and the same coefficients are needed to evaluate aj(x) for

every j. This implies that for every (x, y) we need d + 1 oracle calls to the instance Cl of HighD-

BiSperner so that O f returns the value of fCl
(x, y). If we take the gradient of fCl

with respect to

(x, y) then an identical argument implies that the same set of d + 1 queries to HighD-BiSperner

are needed so that O f returns the value of ∇ fCl
(x, y) too. Therefore every query to the oracle O f

can be implemented via d + 1 queries to Cl . Now we can use Corollary 9.2 to get that the number

of queries that we need in order to solve the GDAFixedPoint with oracle access O f to f and ∇ f

is at least 2d/(d+ 1). Finally observe that the proof of the Theorem 5.1 applies in th the black box

model too. Hence finding solution of GDAFixedPoint in when we have black box access O f to f

and ∇ f is equivalent to finding solutions of LR-LocalMinMax when we have exactly the same

black box access O f to f and ∇ f . Therefore to find solutions of LR-LocalMinMax with black

box access O f to f and ∇ f we need at least 2d/(d + 1) queries to O f and the theorem follows by

observing that in our proof the only parameters that depend on d are L, G, ε, and possibly δ but

1/δ = O(
√

L/ε) and hence the dependence of δ can be replaced by dependence on L and ε.

10 Hardness in the Global Regime

In this section our goal is to prove that the complexity of the problems LocalMinMax and

LocalMin is significantly increased when ε, δ lie outside the local regime, in the global regime.

We start with the following theorem where we show that FNP-hardness of LocalMinMax.

Theorem 10.1. LocalMinMax is FNP-hard even when ε is set to any value ≤ 1/384, δ is set to any

value ≥ 1, and even when P(A, b) = [0, 1]d, G =
√

d, L = d, and B = d.

Proof. We now present a reduction from 3-SAT(3) to LocalMinMax that proves Theorem 10.1.

First we remind the definition of the problem 3-SAT(3).

3-SAT(3).

Input: A boolean CNF-formula φ with boolean variables x1, . . . , xn such that every clause of φ

has at most 3 boolean variables and every boolean variable appears to at most 3 clauses.

Output: An assignment x ∈ {0, 1}n that satisfies φ, or ⊥ if no such assignment exists.

Given an instance of 3-SAT(3) we first construct a polynomial Pj(x) for each clause φj as

follows: for each boolean variable xi (there are n boolean variables xi) we correspond a respective

real-valued variable xi. Then for each clause φj (there are m such clauses), let ℓi, ℓk, ℓm denote the

literals participating in φj, Pj(x) = Pji(x) · Pjk(x) · Pjm(x) where

Pji(x) =

{
1− xi if ℓi = xi

xi if ℓi = xi

47

Then the overall constructed function is

f (x, w, z) =
m

∑
j=1

Pj(x) · (wj − zj)
2

where each wj, zj are additional variables associated with clause φj. The player that wants to

minimize f controls x, w vectors while the maximizing player controls the z variables.

Lemma 10.2. The formula φ admits a satisfying assignment if and only if there exist an (ε, δ)-local

min-max equilibrium of f (x, w) with ε ≤ 1/384, δ = 1 and (x, w) ∈ [0, 1]n+2m.

Proof. Let us assume that there exists a satisfying assignment. Given such a satisfying assignment

we will construct ((x⋆, w⋆), z⋆) that is a (0, 1)-local min-max equilibrium of f . We set each

variable x⋆i , 1 if and only if the respective boolean variable is true. Observe that this implies that

Pj(x⋆) = 0 for all j, meaning that the strategy profile ((x⋆, w⋆), z⋆) is a global Nash equilibrium

no matter the values of w⋆, z⋆.

On the opposite direction, let us assume that there exists an (ε, δ)-local min-max equilibrium

of f with ε = 1/384 and δ = 1. In this case we first prove that for each j = 1, . . . , m

Pj(x⋆) ≤ 16 · ε.

Fix any clause j. In case
∣
∣
∣w⋆

j − z⋆j

∣
∣
∣ ≥ 1/4 then the minimizing player can further decrease f by at

least Pj(x)/16 by setting w⋆
j , z⋆j . On the other hand in case

∣
∣
∣w⋆

j − z⋆j

∣
∣
∣ ≤ 1/4 then the maximizing

player can increase f by at least Pj(x⋆)/16 by moving z⋆j either to 0 or to 1. We remark that both

of the options are feasible since δ = 1.

Now consider the probability distribution over the boolean assignments where each boolean

variable xi is independently selected to be true with probability x⋆i . Then,

P
(
clause φj is not satisfied

)
= Pj(x⋆) ≤ 16 · ε = 1/24

Since each φj shares variables with at most 6 other clauses, the event of φj not being satisfied

is dependent with at most 6 other events. By the Lovász Local Lemma [EL73], we get that the

probability none of these events occur is positive. As a result, there exists a satisfying assignment.

Hence the formula φ is satisfiable if and only if f has a (1/384, 1)-local min-max equilibrium

point. What is left to prove the FNP-hardness is to show how we can find a satisfying assign-

ment of φ given an approximate stationary point of f . This can be done using the celebrated

results that provide constructive proofs of the Lovász Local Lemma [Mos09, MT10]. Finally

to conclude the proof observe that since the f that we construct is a polynomial of degree 6

which can efficiently be described as a sum of monomials, we can trivially construct a Turing

machine that computes the values of both f and ∇ f in the polynomial time in the requested

number of bits accuracy. The constructed function f is
√

d-Lipschitz and d-smooth, where d is

the number of variables that is equal to n + 2m. More precisely since each variable xi partici-

pates in at most 3 clauses, the real-valued variable xi appears in at most 3 monomials Pj. Thus

−3 ≤ ∂ f (x,w,x)
∂xi

≤ 3. Similarly it is not hard to see that −2 ≤ ∂ f (x,w,x)
∂wj

,
∂ f (x,w,x)

∂zj
≤ 2. All the

latter imply that ‖∇ f (x, w, z)‖2 ≤ Θ(
√

n + m), meaning that f (x, w, z) is Θ(n + m)-Lipschitz.

48

Using again the fact that each xi participates in at most 3 monomials Pj(x), we get that all

the terms
∂2 f (x,w,z)

∂2xi
,

∂2 f (x,w,z)
∂2wj

,
∂2 f (x,w,z)

∂2zj
,

∂2 f (x,w,z)
∂xi ∂wj

,
∂2 f (x,w,z)

∂xi ∂zj
,

∂2 f (x,w,z)
∂wj ∂zj

∈ [−6, 6]. Thus the absolute

value of each entry of ∇2 f (x, w, z) is bounded by 6 and thus
∥
∥∇2 f (x, w, z)

∥
∥

2
≤ Θ(n + m),

which implies the Θ(n + m)-smoothness. Therefore our reduction produces a valid instance of

LocalMinMax and hence the theorem follows.

Next we show the FNP-hardness of LocalMin. As we can see there is a gap between Theorem

10.1 and Theorem 10.3. In particular, the FNP-hardness result of LocalMinMax is stronger since

it holds for any δ ≥ 1 whereas for the FNP-hardness of LocalMin our proof needs δ ≥
√

d when

the rest of the parameters remain the same.

Theorem 10.3. LocalMin is FNP-hard even when ε is set to any value ≤ 1/24, δ is set to any value

≥
√

d, and even when P(A, b) = [0, 1]d, G =
√

d, L = d, and B = d.

Proof. We follow the same proof as in the proof of Theorem 10.1 but we instead set f (x) =

∑
m
j=1 Pj(x) where x ∈ [0, 1]n (the number of variables is d := n). We then get that if the initial

formula is satisfiable then there exist x ∈ P(A, b), such that f (x) = 0. On the other hand if there

exist x ∈ P(A, b) such that f (x) ≤ 1/24 then the formula is satisfiable due to the Lovász Local

Lemma [EL73]. Therefore the FNP-hardness follows again from the constructive proof of the

Lovász Local Lemma [Mos09, MT10]. Setting δ ≥ √n which equals the diameter of the feasibility

set implies that in case there exists x̂ with f (x̂) = 0 then all (ε, δ)-LocalMin x∗ must admit value

f (x∗) ≤ 1/24 and thus a satisfying assignment is implied.

Next we prove a black box lower bound for minimization in the global regime. The proof

of following lower bound illustrates the strength of the SEIC coefficients presented in Section 8.

The next Theorem can also be used to prove the FNP-hardness of LocalMin in the global regime

but with worse Lipschitzness and smoothness parameters than the once at Theorem 10.3 and for

this reason we present both of them.

Theorem 10.4. In the worst case, Ω
(
2d/d

)
value/gradient black-box queries are needed to determine a

(ε, δ)-LocalMin for functions f (x) : [0, 1]d → [0, 1] with G = Θ(d15), L = Θ(d22), ε < 1, δ =
√

d.

Proof. The proof is based on the fact that given just black-box access to a boolean formula φ :

{0, 1}d 7→ {0, 1}, at least Ω(2d) queries are needed in order to determine whether φ admits a

satisfying assignment. The term black-box access refers to the fact that the clauses of the formula

are not given and the only way to determine whether a specific boolean assignment is satisfying

is by quering the specific binary string.

Given such a black-box oracle for a satisfying assignment d, we construct the function fφ(x) :

[0, 1]d 7→ [0, 1] as follows:

1. for each corner v ∈ V of the [0, 1]d hypercube, i.e. v ∈ {0, 1}d, we set fφ(v) := 1− φ(v).

2. for the rest of the points x ∈ [0, 1]d/V, fφ(x) := ∑v∈V Pv(x) · fφ(v) where Pv are the coeffi-

cients of Definition 8.9.

We remind that by Lemma 8.11, we get that
∥
∥∇ fφ(x)

∥
∥

2
≤ Θ(d12) and

∥
∥∇2 fφ(x)

∥
∥

2
≤ Θ(d25),

meaning that fφ(·) is Θ(d12)-Lipschitz and Θ(d25)-smooth. Moreover by Lemma 8.7 , for any

49

x ∈ [0, 1]n the set V(x) = {v ∈ V : Pv(x) 6= 0} has cardinality at most d + 1, while at the same

time ∑v∈V Pv(x) = 1.

In case φ is not satisfiable then fφ(x) = 1 for all x ∈ [0, 1]d since fφ(v) = 1 for all v ∈ V. In

case there exists a satisfying assignment v∗ then fφ(v∗) = 0. Since δ ≥
√

d that is the diameter

of [0, 1]d, any (ε, δ)-LocalMin x∗ must have fφ(x) ≤ ε < 1. Since fφ(x∗) , ∑v∈V(x∗) Pv(x∗) ·
fφ(v∗) < 1, there exists at least one vertex v̂ ∈ V(x) with fφ(v̂) = 0, meaning that φ(v∗) = 1.

As a result, given an (ε, δ)-LocalMin x∗ with fφ(x∗) < 1, we can find a satisfying v̂ by querying

φ(v) for each vertex v ∈ V(x∗). Since |V(x∗)| ≤ d + 1, this will take at most d + 1 additional

queries.

Up next, we argue that in case an (ε, δ)-LocalMin could be determined with less than

O(2d/d) value/gradient queries, then determining whether φ admits a satisfying assignment

could be done with less that O(2d) queries on φ (the latter is obviously impossible). Notice that

any value/gradient query both fφ(x) and ∇ fφ(x) can be computed by querying the value fφ(v)

of the vertices v ∈ V(x). Since |V(x)| ≤ d + 1, any value/gradient query of fφ can be simulated

by d + 1 queries on φ.

Acknowledgements

This work was supported by NSF Awards IIS-1741137, CCF-1617730 and CCF-1901292, by a

Simons Investigator Award, by the DOE PhILMs project (No. DE-AC05-76RL01830), and by the

DARPA award HR00111990021. M.Z. was also supported by Google Ph.D. Fellowship. S.S. was

supported by NRF 2018 Fellowship NRF-NRFF2018-07.

References

[AAZB+17] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma.

Finding approximate local minima faster than gradient descent. In Proceedings of

the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 1195–1199,

2017.

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative ad-

versarial networks. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 214–223, 2017.

[Adl13] Ilan Adler. The equivalence of linear programs and zero-sum games. International

Journal of Game Theory, 42(1):165–177, 2013.

[ADLH19] Leonard Adolphs, Hadi Daneshmand, Aurelien Lucchi, and Thomas Hofmann. Lo-

cal saddle point optimization: A curvature exploitation approach. In The 22nd

International Conference on Artificial Intelligence and Statistics, pages 486–495, 2019.

[ADSG19] Mohammad Alkousa, Darina Dvinskikh, Fedor Stonyakin, and Alexander Gas-

nikov. Accelerated methods for composite non-bilinear saddle point problem. arXiv

preprint arXiv:1906.03620, 2019.

[ALW19] Jacob Abernethy, Kevin A Lai, and Andre Wibisono. Last-iterate convergence rates

for min-max optimization. arXiv preprint arXiv:1906.02027, 2019.

50

[AMLJG20] Waïss Azizian, Ioannis Mitliagkas, Simon Lacoste-Julien, and Gauthier Gidel. A

tight and unified analysis of extragradient for a whole spectrum of differentiable

games. In Proceedings of the 23rd International Conference on Artificial Intelligence and

Statistics (AISTATS), 2020.

[BCB12] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and non-

stochastic multi-armed bandit problems. Foundations and Trends in Machine Learning,

5(1):1–122, 2012.

[BCE+95] Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann

Pitassi. The relative complexity of NP search problems. In Proceedings of the Twenty-

Seventh Annual ACM Symposium on Theory of Computing, 29 May-1 June 1995, Las

Vegas, Nevada, USA, pages 303–314, 1995.

[BIQ+17] Aleksandrs Belovs, Gábor Ivanyos, Youming Qiao, Miklos Santha, and Siyi Yang.

On the polynomial parity argument complexity of the combinatorial nullstellensatz.

In Proceedings of the 32nd Computational Complexity Conference, pages 1–24, 2017.

[Bla56] David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific J.

Math., 6(1):1–8, 1956.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of

finding a nash equilibrium. In Proceedings of the 56th Annual Symposium on Founda-

tions of Computer Science, (FOCS), 2015.

[Bre76] Richard P Brent. Fast multiple-precision evaluation of elementary functions. Journal

of the ACM (JACM), 23(2):242–251, 1976.

[CBL06] Nikolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge

University Press, 2006.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing

two-player nash equilibria. Journal of the ACM (JACM), 56(3):1–57, 2009.

[CPY17] Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of non-

monotone markets. J. ACM, 64(3):20:1–20:56, 2017.

[Dan51] George B. Dantzig. A proof of the equivalence of the programming problem and

the game problem. In Koopmans, T. C., editor(s), Activity Analysis of Production and

Allocation. Wiley, New York, 1951.

[Das13] Constantinos Daskalakis. On the complexity of approximating a nash equilibrium.

ACM Transactions on Algorithms (TALG), 9(3):1–35, 2013.

[Das18] Constantinos Daskalakis. Equilibria, Fixed Points, and Computational Complexity

- Nevanlinna Prize Lecture. Proceedings of the International Congress of Mathematicians

(ICM), 1:147–209, 2018.

[DFS20] Argyrios Deligkas, John Fearnley, and Rahul Savani. Tree polymatrix games are

ppad-hard. CoRR, abs/2002.12119, 2020.

51

[DGP09] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The

complexity of computing a nash equilibrium. SIAM Journal on Computing, 39(1):195–

259, 2009.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. Journal of machine learning research,

12(Jul):2121–2159, 2011.

[DISZ18] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng.

Training gans with optimism. In International Conference on Learning Representations

(ICLR 2018), 2018.

[DP11] Constantinos Daskalakis and Christos Papadimitriou. Continuous local search. In

Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms,

pages 790–804. SIAM, 2011.

[DP18] Constantinos Daskalakis and Ioannis Panageas. The limit points of (optimistic) gra-

dient descent in min-max optimization. In Advances in Neural Information Processing

Systems, pages 9236–9246, 2018.

[DP19] Constantinos Daskalakis and Ioannis Panageas. Last-iterate convergence: Zero-sum

games and constrained min-max optimization. Innovations in Theoretical Computer

Science, 2019.

[DTZ18] Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. A converse

to banach’s fixed point theorem and its CLS-completeness. In Proceedings of the 50th

Annual ACM SIGACT Symposium on Theory of Computing (STOC), 2018.

[EL73] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs

and some related questions. In Colloquia Mathematica Societatis Janos Bolyai 10. Infinite

and Finite Sets, Keszthely (Hungary). Citeseer, 1973.

[EY10] Kousha Etessami and Mihalis Yannakakis. On the complexity of nash equilibria

and other fixed points. SIAM Journal on Computing, 39(6):2531–2597, 2010.

[FG18] Aris Filos-Ratsikas and Paul W. Goldberg. Consensus halving is ppa-complete.

In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing

(STOC), 2018.

[FG19] Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces

and bisecting ham sandwiches. In Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing (STOC), 2019.

[FP07] Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and

complementarity problems. Springer Science & Business Media, 2007.

[FPT04] Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. The complexity of

pure nash equilibria. In Proceedings of the 36th Annual ACM Symposium on Theory of

Computing (STOC), 2004.

52

[FRHSZ20a] Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zam-

petakis. Consenus-halving: Does it ever get easier? arXiv preprint arXiv:2002.11437,

2020.

[FRHSZ20b] Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zam-

petakis. A topological characterization of modulo-p arguments and implications

for necklace splitting. arXiv preprint arXiv:2003.11974, 2020.

[GH19] Paul W. Goldberg and Alexandros Hollender. The hairy ball problem is ppad-

complete. In Proceedings of the 46th International Colloquium on Automata, Languages,

and Programming (ICALP), 2019.

[GHP+19] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol,

Gabriel Huang, Simon Lacoste-Julien, and Ioannis Mitliagkas. Negative momen-

tum for improved game dynamics. In The 22nd International Conference on Artificial

Intelligence and Statistics, pages 1802–1811, 2019.

[GKSZ19] Mika Göös, Pritish Kamath, Katerina Sotiraki, and Manolis Zampetakis. On the

complexity of modulo-q arguments and the chevalley-warning theorem. arXiv

preprint arXiv:1912.04467, 2019.

[Goo16] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint

arXiv:1701.00160, 2016.

[GPDO20] Noah Golowich, Sarath Pattathil, Constantinos Daskalakis, and Asuman E.

Ozdaglar. Last iterate is slower than averaged iterate in smooth convex-concave

saddle point problems. CoRR, abs/2002.00057, 2020.

[GPM+14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative Adversarial Nets.

In Advances in Neural Information Processing Systems 27: Annual Conference on Neural

Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,

pages 2672–2680, 2014.

[HA18] Erfan Yazdandoost Hamedani and Necdet Serhat Aybat. A primal-dual algorithm

for general convex-concave saddle point problems. arXiv preprint arXiv:1803.01401,

2018.

[Haz16] Elad Hazan. Introduction to online convex optimization. Foundations and Trends in

Optimization, 2(3-4):157–325, 2016.

[HPV89] M. D. Hirsch, C. H. Papadimitriou, and S. A. Vavasis. Exponential lower bounds

for finding brouwer fixed points. Journal of Complexity, 5:379–416, 1989.

[Jeř16] Emil Jeřábek. Integer factoring and modular square roots. Journal of Computer and

System Sciences, 82(2):380–394, 2016.

[JGN+17] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How

to escape saddle points efficiently. In Proceedings of the 34th International Conference

on Machine Learning-Volume 70, pages 1724–1732. JMLR. org, 2017.

53

[JNJ19] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. What is local optimality in

nonconvex-nonconcave minimax optimization? arXiv preprint arXiv:1902.00618,

2019.

[JPY88] David S Johnson, Christos H Papadimitriou, and Mihalis Yannakakis. How easy is

local search? Journal of computer and system sciences, 37(1):79–100, 1988.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[KM18] Pravesh K. Kothari and Ruta Mehta. Sum-of-squares meets Nash: lower bounds for

finding any equilibrium. In Proceedings of the 50th Annual ACM SIGACT Symposium

on Theory of Computing (STOC), 2018.

[KM19] Weiwei Kong and Renato DC Monteiro. An accelerated inexact proximal

point method for solving nonconvex-concave min-max problems. arXiv preprint

arXiv:1905.13433, 2019.

[Kor76] GM Korpelevich. The extragradient method for finding saddle points and other

problems. Matecon, 12:747–756, 1976.

[LJJ19] Tianyi Lin, Chi Jin, and Michael I Jordan. On gradient descent ascent for nonconvex-

concave minimax problems. arXiv preprint arXiv:1906.00331, 2019.

[LJJ20] Tianyi Lin, Chi Jin, and Michael Jordan. Near-optimal algorithms for minimax

optimization. arXiv preprint arXiv:2002.02417, 2020.

[LPP+19] Jason D. Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I.

Jordan, and Benjamin Recht. First-order methods almost always avoid strict saddle

points. Math. Program., 176(1-2):311–337, 2019.

[LS19] Tengyuan Liang and James Stokes. Interaction matters: A note on non-asymptotic

local convergence of generative adversarial networks. In The 22nd International Con-

ference on Artificial Intelligence and Statistics, pages 907–915, 2019.

[LTHC19] Songtao Lu, Ioannis Tsaknakis, Mingyi Hong, and Yongxin Chen. Hybrid block

successive approximation for one-sided non-convex min-max problems: algorithms

and applications. arXiv preprint arXiv:1902.08294, 2019.

[Meh14] Ruta Mehta. Constant rank bimatrix games are ppad-hard. In Proceedings of the 46th

Symposium on Theory of Computing (STOC), 2014.

[MGN18] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods

for gans do actually converge? In International Conference on Machine Learning, pages

3481–3490, 2018.

[MMS+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In

International Conference on Learning Representations, 2018.

54

[MOP19] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of

extra-gradient and optimistic gradient methods for saddle point problems: Proxi-

mal point approach. arXiv preprint arXiv:1901.08511, 2019.

[Mos09] Robin A Moser. A constructive proof of the lovász local lemma. In Proceedings of the

forty-first annual ACM symposium on Theory of computing, pages 343–350, 2009.

[MP89] N Meggido and CH Papadimitriou. A note on total functions, existence theorems,

and computational complexity. Technical report, Tech. report, IBM, 1989.

[MPP18] Panayotis Mertikopoulos, Christos H. Papadimitriou, and Georgios Piliouras. Cy-

cles in adversarial regularized learning. In Proceedings of the Twenty-Ninth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018.

[MPPSD16] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative

adversarial networks. arXiv preprint arXiv:1611.02163, 2016.

[MR18] Eric Mazumdar and Lillian J Ratliff. On the convergence of gradient-based learning

in continuous games. arXiv preprint arXiv:1804.05464, 2018.

[MSV20] Oren Mangoubi, Sushant Sachdeva, and Nisheeth K Vishnoi. A provably conver-

gent and practical algorithm for min-max optimization with applications to gans.

arXiv preprint arXiv:2006.12376, 2020.

[MT10] Robin A Moser and Gábor Tardos. A constructive proof of the general lovász local

lemma. Journal of the ACM (JACM), 57(2):1–15, 2010.

[MV20] Oren Mangoubi and Nisheeth K Vishnoi. A second-order equilibrium in

nonconvex-nonconcave min-max optimization: Existence and algorithm. arXiv

preprint arXiv:2006.12363, 2020.

[Nem04] Arkadi Nemirovski. Interior point polynomial time methods in convex program-

ming. Lecture notes, 2004.

[NSH+19] Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Raza-

viyayn. Solving a class of non-convex min-max games using iterative first order

methods. In Advances in Neural Information Processing Systems, pages 14905–14916,

2019.

[NY83] Arkadiı̆ Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity

and method efficiency in optimization. Chichester: Wiley, 1983.

[OX19] Yuyuan Ouyang and Yangyang Xu. Lower complexity bounds of first-order meth-

ods for convex-concave bilinear saddle-point problems. Mathematical Programming,

pages 1–35, 2019.

[Pap94a] C Papadimitriou. Computational Complexity. Addison Welsey, 1994.

[Pap94b] Christos H Papadimitriou. On the complexity of the parity argument and other

inefficient proofs of existence. Journal of Computer and system Sciences, 48(3):498–532,

1994.

55

[RKK18] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and

beyond. In Proceedings of the 6th International Conference on Learning Representations

(ICLR), 2018.

[RLLY18] Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Non-convex min-

max optimization: Provable algorithms and applications in machine learning. arXiv

preprint arXiv:1810.02060, 2018.

[Ros65] J Ben Rosen. Existence and uniqueness of equilibrium points for concave n-person

games. Econometrica: Journal of the Econometric Society, pages 520–534, 1965.

[Rub15] Aviad Rubinstein. Inapproximability of nash equilibrium. In Proceedings of the Forty-

Seventh Annual ACM on Symposium on Theory of Computing (STOC), 2015.

[Rub16] Aviad Rubinstein. Settling the complexity of computing approximate two-player

nash equilibria. In 2016 IEEE 57th Annual Symposium on Foundations of Computer

Science (FOCS), pages 258–265. IEEE, 2016.

[SS12] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations

and Trends in Machine Learning, 4(2):107–194, 2012.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From

theory to algorithms. Cambridge university press, 2014.

[SY91] Alejandro A. Schäffer and Mihalis Yannakakis. Simple local search problems that

are hard to solve. SIAM J. Comput., 20(1):56–87, 1991.

[SZZ18] Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. Ppp-completeness

with connections to cryptography. In Proceddings of the 59th IEEE Annual Symposium

on Foundations of Computer Science (FOCS), 2018.

[TJNO19] Kiran K Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Effi-

cient algorithms for smooth minimax optimization. In Advances in Neural Information

Processing Systems, pages 12659–12670, 2019.

[vN28] John von Neumann. Zur Theorie der Gesellschaftsspiele. In Math. Ann., pages

295–320, 1928.

[VY11] Vijay V. Vazirani and Mihalis Yannakakis. Market equilibrium under separable,

piecewise-linear, concave utilities. J. ACM, 58(3):10:1–10:25, 2011.

[WZB19] Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax optimiza-

tion locally: A follow-the-ridge approach. In International Conference on Learning

Representations, 2019.

[Zha19] Renbo Zhao. Optimal algorithms for stochastic three-composite convex-concave

saddle point problems. arXiv preprint arXiv:1903.01687, 2019.

56

A Proof of Theorem 4.1

We first remind the definition of the 3-SAT(3) problem that we will use for our reduction.

3-SAT(3).

Input: A boolean CNF-formula φ with boolean variables x1, . . . , xn such that every clause of φ

has at most 3 boolean variables and every boolean variable appears to at most 3 clauses.

Output: An assignment x ∈ {0, 1}n that satisfies φ, or ⊥ if no such assignment exists.

It is well known that 3-SAT(3) is FNP-complete, for details see §9.2 of [Pap94a]. To prove

Theorem 4.1, we reduce 3-SAT(3) to ε-StationaryPoint.

Given an instance of 3-SAT(3) we construct the function f : [0, 1]n+m → [0, 1], where m is the

number of clauses of φ. For each literal xi we assign a real-valued variable which by abuse of

notation we also denote xi and it would be clear from the context whether we refer to the literal

or the real-valued variable. Then for each clause φj of φ, we construct a polynomial Pj(x) as

follows: if ℓi, ℓk, ℓm are the literals participating in φj, then Pj(x) = Pji(x) · Pjk(x) · Pjm(x) where

Pji(x) =

{
1− xi if ℓi = xi

xi if ℓi = xi

The overall constructed function is f (x, w) = ∑
m
j=1 wj · Pj(x), where each wj is an additional

variable associated with clause φj. Notice that 0 ≤ ∂ f (x,w)
∂wj

≤ 1 and −3 ≤ ∂ f (x,w)
∂xi

≤ 3 since the

boolean variable xi participates in at most 3 clauses. As a result, ‖∇ f (x, w)‖2 ≤ Θ(
√

n + m),

meaning that f (x, w) is G-Lipschitz with G = Θ(
√

n + m). Also notice that all the entries of

∇2 f (x, w), i.e.
∂2 f (x,w)

∂2xi
= ∂2 f (x,w)

∂2wj
,

∂2 f (x,w)
∂xi ∂wj

,
∂2 f (x,w)
∂xi ∂xm

,
∂2 f (x,w)
∂wk ∂wj

∈ [−3, 3]. As a result,
∥
∥∇2 f (x, w)

∥
∥

2
≤

Θ(n + m), meaning that f (x, w) is L-smooth with L = Θ(n + m).

Lemma A.1. There exists a satisfying assignment for the clauses φ1, . . . , φm if and only if there solution

of the constructed StationaryPoint with ε = 1/24 a admits solution (x⋆, w⋆) ∈ [0, 1]n+m such that

‖∇ f (x⋆, w⋆)‖2 < 1/24.

Proof. By the definition of StationaryPoint, in case there exists a pair of points (x̂, ŵ) ∈ [0, 1]n+m

with ‖∇ f (x̂, ŵ)‖2 < ε/2 = 1/48, then a pair of points (x⋆, w⋆) with ‖∇ f (x⋆, w⋆)‖2 < ε = 1/24

must be returned. In case ‖∇ f (x, w)‖2 > ε = 1/24 for all (x, w) ∈ [0, 1]n+m, the null symbol ⊥
is returned.

Let us assume that there exists a satisfying assignment of φ. Consider the solution (x̂, ŵ)

constructed as follows: each variable x̂i is set to 1 iff the respective boolean variable is true and

ŵj = 0 for all j = 1, . . . , m. Since the assignment satisfies the CNF-formula φ, there exists at

least one true literal in each clause φj which means that Pj(x) = 0 for all j = 1, . . . , m. As a

result
∂ f (x̂,ŵ)

∂wj
= Pj(x̂) = 0 for all j = 1, . . . , m. At the same time,

∂ f (x̂,ŵ)
∂xi

= 0 since ŵj = 0 for

all j = 1, . . . , m. Overall we have that ∇ f (x̂, ŵ) = 0 < 1/48 = ε/2. As a result, the constructed

StationaryPoint instance must return a solution (x⋆, w⋆) with ‖∇ f (x⋆, w⋆)‖2 <
1
24 = ε.

On the opposite direction, the existence of a pair of points (x⋆, w⋆) with ‖∇ f (x⋆, w⋆)‖2 <

1/24 implies Pj(x∗) < 1/24 for all j = 1 . . . m. Consider the probability distribution over the

boolean assignments in which each boolean variable xi is independently selected to be true with proba-

bility x⋆i . Then,

P
(
clause φj is not satisfied

)
= Pj(x⋆) < 1/24

57

Since φj shares variables with at most 6 other clauses, the bad event of φj not being satisfied is

dependent with at most 6 other bad events. By Lovász Local Lemma [EL73], we get that the

probability none of the events occurs is positive. As a result, there exists a satisfying assignment.

Using Lemma A.1 we can conclude that φ is satisfiable if and only if f has a 1/24-approximate

stationary point. What is left to prove the FNP-hardness is to show how we can find a satis-

fying assignment of φ given an approximate stationary point of f . This can be done using the

celebrated results that provide constructive proofs of the Lovász Local Lemma [Mos09, MT10].

Finally, we remind that the constructed function f is Θ
(√

d
)

-Lipschitz and Θ (d)-smooth, where

d is the number of variables that is equal to n + m.

B Missing Proofs from Section 5

In this section we give proofs for the statements presented in Section 5. These statements establish

the totality and inclusion to PPAD of LR-LocalMinMax and GDAFixedPoint.

B.1 Proof of Theorem 5.1

We start with establishing claim “1.” in the statement of the theorem. It will be clear that our

proof will provide a polynomial-time reduction from LR-LocalMinMax to GDAFixedPoint.

Suppose that (x⋆, y⋆) is an α-approximate fixed point of FGDA, where α is the specified in the

theorem statement function of δ, G and L. To simplify our proof, we abuse notation and define

f (x) , f (x, y⋆), ∇ f (x) , ∇x f (x, y⋆), K , {x | (x, y⋆) ∈ P(A, b)} and x̂ , ΠK(x⋆ −∇ f (x⋆)).

Because (x⋆, y⋆) is an α-approximate fixed point of FFDA, it follows that ‖x̂− x⋆‖2 < α.

Claim B.1. 〈∇ f (x⋆), x⋆ − x〉 < (G + δ + α) · α, for all x ∈ K ∩ Bd1
(δ; x⋆).

Proof. Using the fact that x̂ = ΠK(x⋆−∇ f (x⋆)) and that K is a convex set we can apply Theorem

1.5.5 (b) of [FP07] to get that

〈x⋆ −∇ f (x⋆)− x̂, x− x̂〉 ≤ 0, ∀x ∈ K. (B.1)

Next, we do some simple algebra to get that, for all x ∈ K ∩ Bd1
(δ; x⋆),

〈∇ f (x⋆), x⋆ − x〉 = 〈x⋆ −∇ f (x⋆)− x̂, x− x̂〉+ 〈x− x̂−∇ f (x⋆), x̂− x⋆〉
(B.1)

≤ 〈x− x̂−∇ f (x⋆), x̂− x⋆〉
≤ (‖x− x̂‖2 + ‖∇ f (x⋆)‖2) ‖x̂− x⋆‖2 < (G + δ + α) · α,

where the second to last inequality follows from Cauchy–Schwarz inequality and the triangle

inequality, and the last inequality follows from the triangle inequality and the following facts: (1)

‖x⋆ − x̂‖2 < α, (2) x ∈ Bd1
(δ; x⋆), and (3) ‖∇ f (x, y)‖2 ≤ G for all (x, y) ∈ P(A, b).

For all x ∈ K ∩ Bd1
(δ; x⋆), from the L-smoothness of f we have that

| f (x)− (f (x⋆) + 〈∇ f (x∗), x− x⋆〉)| ≤ L

2
‖x− x⋆‖2

2 . (B.2)

We distinguish two cases:

58

1. f (x⋆) ≤ f (x): In this case we stop, remembering that

f (x⋆) ≤ f (x). (B.3)

2. f (x⋆) > f (x): In this case, we consider two further sub-cases:

(a) 〈∇ f (x∗), x− x⋆〉 ≥ 0: in this sub-case, Eq (B.2) gives

f (x⋆)− f (x) + 〈∇ f (x∗), x− x⋆〉 ≤ L

2
‖x− x⋆‖2

2

Thus

f (x⋆) ≤ f (x) +
L

2
‖x− x⋆‖2

2 ≤ f (x) +
L

2
δ2

< f (x) + ε, (B.4)

where for the last inequality we used that x ∈ Bd1
(δ; x⋆), and that δ <

√
2ε/L.

(b) 〈∇ f (x∗), x− x⋆〉 < 0: in this sub-case, Eq (B.2) gives

f (x⋆)− f (x)− 〈∇ f (x∗), x⋆ − x〉 ≤ L

2
‖x− x⋆‖2

2 .

Thus

f (x⋆) ≤ f (x) + 〈∇ f (x∗), x⋆ − x〉+ L

2
‖x− x⋆‖2

2

≤ f (x) + 〈∇ f (x∗), x⋆ − x〉+ L

2
· δ2

< f (x) + (G + δ + α) · α +
L

2
· δ2

≤ f (x) + ε, (B.5)

where the second inequality follows from the fact that x ∈ Bd1
(δ; x⋆), the third in-

equality follows from Claim B.1, and the last inequality follows from the constraints

δ <
√

2ε/L and α ≤
√

(G+δ)2+4(ε− L
2 δ2)−(G+δ)

2 .

In all cases, we get from (B.3), (B.4) and (B.5) that f (x⋆) < f (x) + ε, for all x ∈ K ∩ Bd1
(δ; x⋆).

Thus, lifting our abuse of notation, we get that f (x⋆, y⋆) < f (x, y⋆) + ε, for all x ∈ {x | x ∈
Bd1

(δ; x⋆) and (x, y⋆) ∈ P(A, b)}. Using an identical argument we can also show that f (x⋆, y⋆) >

f (x⋆, y)− ε for all y ∈ {y | y ∈ Bd2
(δ; y⋆) and (x⋆, y) ∈ P(A, b)}. The first part of the theorem

follows.

Now let us establish claim “2.” in the theorem statement. It will be clear that our proof will

provide a polynomial-time reduction from GDAFixedPoint to LR-LocalMinMax. For the choice

of parameters ε and δ described in the theorem statement, we will show that, if (x⋆, y⋆) is an (ε, δ)-

local min-max equilibrium of f , then ‖FGDAx(x⋆, y⋆)− x⋆‖2 < α/2 and
∥
∥FGDAy(x⋆, y⋆)− y⋆

∥
∥

2
<

α/2. The second part of the theorem will then follow. We only prove that ‖FGDAx(x⋆, y⋆)− x⋆‖2 <

α/2, as the argument for y⋆ is identical. In the argument below we abuse notation in the same

way we described earlier. With that notation we will show that ‖x̂− x⋆‖2 < α/2.

Proof that ‖x̂ − x⋆‖ < α/2. From our choice of ε and δ, it is easy to see that δ = α/(5L + 2) <

α/2. Thus, if ‖x̂− x⋆‖ < δ, then we automatically get ‖x̂− x⋆‖ < α/2. So it remains to handle

59

the case ‖x̂− x⋆‖ ≥ δ. We choose xc , x⋆ + δ x̂−x⋆

‖x̂−x⋆‖2
. It is easy to see that xc ∈ Bd1

(δ; x⋆) and

hence we get that

f (x⋆)− ε < f (xc) ≤ f (x⋆) + 〈∇ f (x⋆), xc − x⋆〉+ L

2
‖xc − x⋆‖2

≤ f (x⋆) + 〈∇ f (x⋆), xc − x⋆〉+ ε

2
,

where the first inequality follows from the fact that (x⋆, y⋆) is an (ε, δ)-local min-max equilibrium,

the second inequality follows from the L-smoothness of f , and the third inequality follows from

‖xc − x⋆‖ ≤ δ and our choice of δ =
√

ε/L. The above implies:

〈∇ f (x⋆), x⋆ − xc〉 < 3ε/2.

Since x̂− x⋆ = (xc − x⋆) · ‖x̂− x⋆‖2 /δ we get that 〈∇ f (x⋆), x⋆ − x̂〉 < 3ε
2δ ‖x⋆ − x̂‖2. Therefore

‖x⋆ − x̂‖2
2 = 〈x⋆ −∇ f (x⋆)− x̂, x⋆ − x̂〉+ 〈∇ f (x⋆), x⋆ − x̂〉

<
3ε

2δ
‖x⋆ − x̂‖2

where in the above inequality we have also used (B.1). As a result, ‖x⋆ − x̂‖2 <
3ε
2δ < α/2.

B.2 Proof of Theorem 5.2

We provide a polynomial-time reduction from GDAFixedPoint to Brouwer. This establishes

both the totality of GDAFixedPoint and its inclusion to PPAD, since Brouwer is both total

and lies in PPAD, as per Lemma 2.5. It also establishes the totality and inclusion to PPAD of

LR-LocalMinMax, since LR-LocalMinMax is polynomial-time reducible to GDAFixedPoint,

as shown in Theorem 5.1.

We proceed to describe our reduction. Suppose that f is the G-Lipschitz and L-smooth func-

tion provided as input to GDAFixedPoint. Suppose also that α is the approximation parameter

provided as input to GDAFixedPoint. Given f and α, we define function M : P(A, b)→ P(A, b),

which serves as input to Brouwer, as follows:

M(x, y) = ΠP(A,b)

[
(x−∇x f (x, y), y +∇y f (x, y))

]
.

Given that f is L-smooth, it follows that M is (L + 1)-Lipschitz. We set the approximation

parameter provided as input to Brouwer be γ = α2/4(G + 2
√

d).

To show the validity of the afore-described reduction, we prove that every feasible point

(x⋆, y⋆) ∈ P(A, b) that is a γ-approximate fixed point of M, i.e. ‖M(x⋆, y⋆)− (x⋆, y⋆)‖2 < γ is

also an α-approximate fixed point of FGDA. Observe that since P(A, b) ⊆ [0, 1]d it holds that

‖(x, y)− (x′, y′)‖2 ≤
√

d for all (x, y), (x′, y′) ∈ P(A, b). Hence, if γ >
√

d, then finding γ-

approximate fixed points of M is trivial and the same is true for fiding α-approximate fixed

points of FGDA, since γ = α2/4(G + 2
√

d) which implies that, if γ >
√

d, then α >
√

d. Thus, we

may assume that γ ≤
√

d.

Next, to simplify notation we define (x∆, y∆) = (x⋆ − ∇x f (x⋆, y⋆), y⋆ + ∇y f (x⋆, y⋆)) and

(x̂, ŷ) = argmin(x,y)∈P(A,b) ‖(x∆, y∆)− (x, y)‖2. Given that (x⋆, y⋆) is a γ-approximate fixed point

of M, we have that

‖(x⋆, y⋆)− (x̂, ŷ)‖2 < γ. (B.6)

60

Using Theorem 1.5.5 (b) of [FP07], we get that

〈(x∆, y∆)− (x̂, ŷ), (x, y)− (x̂, ŷ)〉 ≤ 0 for all (x, y) ∈ P(A, b). (B.7)

Next we show the following:

Claim B.2. For all (x, y) ∈ P(A, b), 〈(x∆, y∆)− (x⋆, y⋆), (x, y)− (x⋆, y⋆)〉 < (G + 2
√

d) · γ.

Proof. We have that:

〈(x∆, y∆)− (x⋆, y⋆), (x, y)− (x⋆, y⋆)〉 = 〈(x∆, y∆)− (x̂, ŷ), (x, y)− (x⋆, y⋆)〉
+ 〈(x̂, ŷ)− (x⋆, y⋆), (x, y)− (x⋆, y⋆)〉

= 〈(x∆, y∆)− (x̂, ŷ), (x, y)− (x̂, ŷ)〉
+ 〈(x∆, y∆)− (x̂, ŷ), (x̂, ŷ)− (x⋆, y⋆)〉
+ 〈(x̂, ŷ)− (x⋆, y⋆), (x, y)− (x⋆, y⋆)〉

< ‖(x∆, y∆)− (x̂, ŷ)‖2 γ + γ ·
√

d

≤ ‖(x∆, y∆)− (x⋆, y⋆)‖2 γ + γ2 + γ ·
√

d

= ‖∇ f (x⋆, y⋆)‖2 γ + γ2 + γ ·
√

d

≤ (G + 2
√

d) · γ,

where (1) for the first inequality we use (B.6), (B.7), the Cauchy-Schwarz inequality, and the fact

that the ℓ2 diameter of P(A, b) is at most
√

d; (2) for the second inquality we use the triangle

inequality and (B.6); (3) for the equality that follows we use the definition of (x∆, y∆); and (4) for

the last inequality we use that G, the Lipschitzness of f , bounds the magnitude of its gradient,

and that γ ≤
√

d.

Now let x′ = argminx∈K(y⋆) ‖x− x∆‖2 where K(y⋆) = {x | (x, y⋆) ∈ P(A, b))}. Using Theorem

1.5.5 (b) of [FP07] for x′ we get that 〈x∆ − x′, x⋆ − x′〉 ≤ 0. Using Claim B.2 for vector (x′, y⋆) ∈
P(A, b) we get that 〈x⋆ − x∆, x⋆ − x′〉 < (G + 2

√
d)γ. Adding the last two inequalities and using

the fact that γ = α2/4(G + 2
√

d) we get the following
∥
∥
∥x⋆ −ΠK(y⋆)(x⋆ −∇x f (x⋆, y⋆))

∥
∥
∥

2
<

√

(G + 2
√

d) · γ = α/2.

Using the exact same reasoning we can also prove that
∥
∥
∥y⋆ −ΠK(x⋆)(y

⋆ −∇y f (x⋆, y⋆))
∥
∥
∥

2
< α/2

where K(x⋆) = {y | (x⋆, y) ∈ P(A, b))}. Combining the last two inequalities we get that (x⋆, y⋆)

is an α-approximate fixed point of FGDA.

C Missing Proofs from Section 8

In this section we present the missing proofs from Section 8 and more precisely in the following

sections we prove the Lemmas 8.10, 8.11, and 8.12. For the rest of the proofs in this section we

define L(c) to be the cubelet which has the down-left corner equal to c, formaly

L(c) =

[
c1

N − 1
,

c1 + 1

N − 1

]

× · · · ×
[

cd

N − 1
,

cd + 1

N − 1

]

and we also define Lc(c) to be the set of corners of the cubelet L(c), or more formally

Lc(c) = {c1, c1 + 1} × · · · × {cd, cd + 1}.

61

C.1 Proof of Lemma 8.10

We start with a lemma about the differentiability properties of the functions Qc
v which we defined

in Definition 8.7.

Lemma C.1. Let x ∈ [0, 1]d lying in cublet R(x) =
[

c1
N−1 , c1+1

N−1

]

× · · · ×
[

cd
N−1 , cd+1

N−1

]

, where c ∈
([N]− 1)d. Then for any vertex v ∈ Rc(x), the function Qc

v(x) is continuous and twice differentiable.

Moreover if Qc
v(x) = 0 then also dQc

v(x)
dxi

= 0 and d2Qc
v(x)

dxi dxj
= 0.

Proof. 1st order differentiability: We remind from the Definition 8.7 that if we let sc = (s1, . . . , sd)

be the source vertex of R(x) and pc
x = (p1, . . . , pd) be the canonical representation of x. Then for

each vertex v ∈ Rc(x) we define the following partition of the set of coordinates [d],

Ac
v = {j : |vj − sj| = 0} and Bc

v = {j : |vj − sj| = 1}.

Now in case Bc
v = ∅, which corresponds to v being the source node sc then Qc

v(x) = ∏
d
j=1 S∞(1−

S(pj)) which is clearly differentiable as product of compositions of differentiable functions. The

exact same holds for Ac
v = ∅ which corresponds to v being the target vertex tc of the cubelet

R(x). We thus focus on the case where Ac
v, Bc

v 6= ∅. To simplify notation we denote Qc
v(x) by

Q(x), Ac
v by A and Bc

v by B for the rest of this proof. We prove that in case i ∈ B then ∂Q(x)
∂xi

always exits. The case i ∈ A follows then symmetrically. We have the following cases

◮ Let j ∈ A and ℓ ∈ B \ {i} such that pj ≥ pℓ. By Definition 8.7, if ε is sufficiently small then

Q(xi − ε, x−i) = Q(xi + ε, x−i) = Q(xi, x−i) = 0. Thus ∂Q(x)
∂xi

exists and equals 0.

◮ Let pℓ > pj for all ℓ ∈ B \ {i} and j ∈ A. In this case we have the following subcases.

⊲ pi > pj for all j ∈ A: Then ∂Q(x)
∂xi

exists since both S∞(·) and S(·) are differentiable.

⊲ pi < pj for some j ∈ A: By Definition 8.7, if ε is sufficiently small then Q(xi − ε, x−i) =

Q(xi + ε, x−i) = Q(xi, x−i) = 0. Thus ∂Q(x)
∂xi

exists and equals 0.

⊲ pi = pj for some j ∈ A and pi ≥ pj′ for all j′ ∈ A \ {j}: By Definition 8.7, if ε is

sufficiently small then Q(xi − ε, x−i) = 0 and also Q(xi, x−i) = 0, thus

lim
ε→0+

Q(xi, x−i)−Q(xi − ε, x−i)

ε
= 0.

At the same time

lim
ε→0+

Q(xi + ε, x−i)−Q(xi, x−i)

ε
= 0

since both S∞(·) and S(·) are differentiable functions, S∞(S(pi)− S(pj)) = S∞(0) = 0,

and S′∞(S(pi)− S(pj)) = S′∞(0) = 0.

2nd order differentiability: Let Q′(x) be equal to ∂Q(x)
∂xk

for convenience. As in the previous

analysis in case Ac
v = ∅ or Bc

v = ∅ then Q′(x) is differentiable with respect to xi since S(·), S∞(·)
are twice differentiable. Thus we again focus in the case where A, B 6= ∅. Notice that by the

previous analysis Q′(x) = 0 if there exists ℓ ∈ B and j ∈ A such that pℓ ≥ pj. Without loss of

generality we assume that i ∈ B and we prove that ∂Q′(x)
∂xi

,
∂2Q(x)
∂xi∂xk

always exists.

62

◮ Let j ∈ A and ℓ ∈ B \ {i} such that pj ≥ pℓ. By Definition 8.7, Q′(xi − ε, x−i) = Q′(xi +

ε, x−i) = Q′(xi, x−i) = 0. Thus ∂Q′(x)
∂xi

,
∂2Q′(x)
∂xi∂xk

exists and equals 0.

◮ Let pℓ > pj for all ℓ ∈ B \ {i} and j ∈ A.

⊲ pi > pj for all j ∈ A: Then ∂Q′(x)
∂xi

,
∂2Q(x)
∂xi∂xk

exists since both S∞(·) and S(·) are twice

differentiable.

⊲ pi < pj for some j ∈ A. By Definition 8.7, Q′(xi − ε, x−i) = Q′(xi + ε, x−i) =

Q′(xi, x−i) = 0. Thus ∂Q′(x)
∂xi

,
∂2Q(x)
∂xi∂xk

exists and equals 0.

⊲ pi = pj for some j ∈ A and pi > pj′ for all j′ ∈ A \ {j}. By Definition 8.7, if ε is

sufficiently small then Q′(xi − ε, x−i) = 0 and thus

lim
ε→0+

Q′(xi, x−i)−Q′(xi − ε, x−i)

ε
= 0.

At the same time limε→0+
Q′(xi+ε,x−i)−Q′(xi ,x−i)

ε exists since both S∞(·) and S(·) are twice

differentiable. Moreover equals 0 since S∞(S(pi)− S(pj)) = S∞(0) = 0 and S′∞(S(pi)−
S(pj)) = S′∞(0) = S′′∞(0) = S(0) = 0.

In every step of the above proof where we use properties of S∞ and S we use Lemma 8.3.

So far we have established the fact that the functions Qc
v(x) are twice differentiable when x moves

within the same cubelet. Next we will show that when x moves from one cubelet to another then

the corresponding Qc
v functions changes value smoothly.

Lemma C.2. Let x ∈ [0, 1]d such that there exists a coordinate i ∈ [d] with the property R(xi + ε, x−i) =[
c1

N−1 , c1+1
N−1

]

× · · · ×
[

cd
N−1 , cd+1

N−1

]

and R(xi − ε, x−i) =
[

c′1
N−1 ,

c′1+1
N−1

]

× · · · ×
[

c′d
N−1 ,

c′d+1
N−1

]

, with c, c′ ∈
([N − 1]− 1)d and ε sufficiently small, i.e. x lies in the boundary of two cubelets. Then the following

statements hold.

1. For all vertices v ∈ Rc(xi + ε, x−i) ∩ Rc(xi − ε, x−i), it holds that

(a) Qc
v(x) = Qc′

v (x),

(b) ∂Qc
v(x)

∂xj
= ∂Qc′

v (x)
∂xi

for all i ∈ [d], and

(c) ∂2Qc
v(x)

∂xi ∂xj
= ∂Qc′

v (x)
∂xi ∂xj

for all i, j ∈ [d].

2. For all vertices v ∈ Rc(xi + ε, x−i) \ Rc(xi − ε, x−i), it holds that Qc
v(x) = ∂Qc

v(x)
∂xi

= ∂2Qc
v(x)

∂xi ∂xj
= 0.

3. for all vertices v ∈ Rc(xi − ε, x−i) \ Rc(xi + ε, x−i), it holds that Qc′
v (x) = ∂Qc′

v (x)
∂xi

= ∂2Qc′
v (x)

∂xi ∂xj
= 0.

Lemma C.2 is crucial since it establishes that Pv(x) is a continuous and twice differentiable even

when x moves from one cubelet to another. Since the proof of Lemma C.2 is very long and

contains the proof of some sublemmas, we postpone it for the end of this section in Section C.1.1.

We now proceed with the proof of Lemma 8.10.

63

Proof of Lemma 8.10. We first prove that Pv(x) is a continuous function. Let x ∈ [0, 1]d lying on

the boundary of the following cubelets

[

c
(1)
1

N − 1
,

c
(1)
1 + 1

N − 1

]

× · · · ×
[

c
(1)
d

N − 1
,

c
(1)
d + 1

N − 1

]

· · ·
[

c
(i)
1

N − 1
,

c
(i)
1 + 1

N − 1

]

× · · · ×
[

c
(i)
d

N − 1
,

c
(i)
d + 1

N − 1

]

· · ·
[

c
(m)
1

N − 1
,

c
(m)
1 + 1

N − 1

]

× · · · ×
[

c
(m)
d

N − 1
,

c
(m)
d + 1

N − 1

]

.

where c(1), . . . , c(m) ∈ ([N − 1]− 1)d. This means that for every i ∈ [m] there exists a coordinate

ji ∈ [d] and a value ηi ∈ R with sufficiently small absolute value such that

R(xji + ηi, x−ji) =

[

c
(i)
1

N − 1
,

c
(i)
1 + 1

N − 1

]

× · · · ×
[

c
(i)
d

N − 1
,

c
(i)
d + 1

N − 1

]

.

We then consider the following cases.

◮ v /∈ ∪m
i=1Rc(xji + ηi, x−ji). By Definition 8.9, in all the m aforementioned cubelets, the

coefficient Pv takes value 0 and hence it is continuous in this part of the space.

◮ v ∈ ∩j∈U Rc(xji + ηi, x−ji) and v /∈ ∪i∈U Rc(xji + ηi, x−ji), for some U ⊆ [m] with U = [m] \U.

In this case Pv(xji + ηi, xji) was computed according to a cubelet with v ∈ Rc(xji + ηi, x−ji).

Then Lemma C.2 implies that Qc(i)
v (x) = 0 since v ∈ Rc(xji + ηi, x−ji) \ Rc(xji′ + ηi′ , x−ji′)

where i′ ∈ [m] and i 6= i′. Therefore we conclude that Pv(x) = 0 and

lim
ηi→0

Pv(xji + ηi, x−i) = 0.

◮ v ∈ ∩m
i=1Rc(xji + ηi, x−ji). By Lemma C.2 for all i ∈ [m] it holds that

Qc(i)
v (x)

∑v∈Rc(xji
+ηi ,x−ji

) Qc(i)
v (x)

=
Qc(i)

v (x)

∑v∈∩m
i=1Rc(xji

+ηi ,x−ji
) Qc(i)

v (x)

=
Qc(i

′)
v (x)

∑v∈∩m
i=1Rc(xji

+ηi ,x−ji
) Qc(i

′)
v (x)

=
Qc(i

′)
v (x)

∑v∈Rc(xji
+ηi ,x−ji

) Qc(i
′)

v (x)

which again implies the continuity of Pv(x) at x.

Next we prove that Pv(x) is differentiable for all v ∈ ([N]− 1)d. Fix some i ∈ [d] we will

prove that ∂P(x)
∂xi

always exists. Let C+ be the set of down-left corners of the cubelets in which

limε→0+(xi + ε, x−i) belongs to and C− be the set of down-left corners of the cubelets in which

limε→0+(xi − ε, x−i) belongs to. It easy to see that C+ and C− are non-empty and fixed for ε > 0

and sufficiently small.

To prove that ∂Pv(x)
∂xi

always exists, we consider the following 3 mutually exclusive cases.

64

◮ v ∈ Lc(c(1)) for c(1) ∈ C+ and v ∈ Lc(c(2)) for c(2) ∈ C−. Since the coefficient Pv(x) is a con-

tinuous function, we have that

⊲ limε→0+
Pv(xi+ε,x−i)−Pv(xi ,x−i)

ε =
∂Qc(1)

v (x)
∂xi

∑
v′∈Lc(c(1))

Qc(1)

v′ (x)−Qc(1)
v (x)∑

v′∈Lc(c(1))

∂Qc(1)

v′ (x)

∂xi
(

∑
v′∈Lc(c(1))

Qc(1)

v′ (x)
)2

⊲ limε→0+
Pv(xi ,x−i)−Pv(xi−ε,x−i)

ε =
∂Qc(2)

v (x)
∂xi

∑
v′∈Lc(c(2))

Qc(2)

v′ (x)−Qc(2)
v (x)∑

v′∈Lc(c(2))

∂Qc(2)

v′ (x)

∂xi
(

∑
v′∈Lc(c(2))

Qc(2)

v′ (x)
)2

Both of the above limits exists due to the fact that Qc
v(x) is differentiable (Lemma C.1).

Moreover, since v ∈ Lc(c(1)) ∩ Lc(c(2)), Case 1 of Lemma C.2 implies that the two limits

above have exactly the same value and hence Pv is differentiable at x.

◮ v /∈ Lc(c(1)) for all c(1) ∈ C+. In the case where v /∈ Lc(c) for all the down-left corners

c of the cubelets at which x lies, then by Definition 8.9 Pv(xi, x−i) = Pv(xi + ε, x−i) =

Pv(xi− ε, x−i) = 0. Thus ∂Pv(x)
∂xi

exists and equals 0. Therefore we may assume that v ∈ Lc(c)

for some down-left corner c of a cubelet at which x lies. Due to the fact that Pv(x) is a

continuous function and that v /∈ Lc(c(1)) for all c(1) ∈ C+, we get that

Pv(xi + ε, x−i) = 0 and Pv(xi, x−i) = 0.

We also have that v ∈ Lc(c)/Lcc(1) where c, c(1) are down-left corners of cubelets at which

x lies and (xi + ε, x−i) lies respectively. Therefore we get by Case 1 of Lemma C.2 that

Qc
v(x) = 0 implying that Pv(xi, x−i) = 0. As a result,

lim
ε→0+

Pv(xi + ε, x−i)− Pv(xi, x−i)

ε
= 0

We now need to argue that limε→0+
Pv(xi ,x−i)−Pv(xi−ε,x−i)

ε exists and equals 0. At first observe

that 0 ≤ xi − ci ≤ δ since x lies in the cubelet with down-left corner c. In case xi − ci < δ

then (xi + ε, x−i) lies in c for arbitrarily small ε, meaning that c ∈ C+. The latter contradicts

the fact that v /∈ Lcc(1) for all c(1) ∈ C+. As a result, xi − ci = δ which implies that c ∈ C−

and hence

lim
ε→0+

Pv(xi, x−i)− Pv(xi − ε, x−i)

ε
=

∂Qc
v(x)

∂xi
∑v′∈Lc(c) Qc

v′(x)−Qc
v(x)∑v′∈Lc(c)

∂Qc
v′ (x)

∂xi
(

∑v′∈Lc(c) Qc
v′(x)

)2
.

The above limit equals to 0 since Qc
v(x) = ∂Qc

v(x)
∂xi

= 0 by applying Lemma C.2 due to the

fact that v ∈ Lc(c) \ Lc(c(1)).

◮ v /∈ Lc(c(2)) for all c(2) ∈ C−. Symmetrically with the previous case.

The second order differentiability of Pv(x) can be established using exactly the same arguments

for computing the following limit

lim
ε,ε′→0

Pv(xi + ε, xj + ε′, x−i,j)− Pv(x)

ε2
.

65

The last thing that we need to show to prove Lemma 8.10 is that the set R+(x) has cardinality

at most d + 1 and that it can be computed in poly(d) time. Let pc
x ∈ [0, 1]d be the canonical

representation of x with the respect to a cubelet L(c) in which x belongs to. We define the source

vertex sc = (s1, . . . , sd) and the target vertex tc = (t1, . . . , td) of L(c). Once this is done the vertices

in R+(v) are exactly the vertices of Lc(c) for which it holds that

pℓ > pj for all ℓ ∈ Ac
v, j ∈ Bc

v

since for all the others v ∈ ([N]− 1)d it holds that Qc
v(x) = 0, ∇Qc

v(x) = 0, and ∇2Qc
v(x) = 0.

These vertices v ∈ R+(x) can be computed in polynomial time as follows: i) the coordinates

p1, . . . , pd are sorted in increasing order, and ii) for each m = 0, . . . , d compute the vertex v(m) ∈
Lc(c),

vm
j =

{
sj if coordinate j belongs in the first m coordinates wrt the order of pc

x

tj if coordinate j belongs in the last d−m coordinates wrt the order of pc
x

By Definition 8.7 it immediately follows that R+(x) ⊆ {v(1), . . . , v(m)} from which we get that

|R+(x)| ≤ d + 1 and also they can be computed in poly(d) time.

To finish the proof of Lemma 8.10 we only need the proof of Lemma C.2 which we present in the

following section.

C.1.1 Proof of Lemma C.2

Lemma C.3. Let a point x ∈ [0, 1]d lying in the boundary of the cubelets with down-left corners

c = (c1, . . . , cm−1, cm, cm+1, . . . , cd) and c′ = (c1, . . . , cm−1, cm + 1, cm+1, . . . , cd). Then the canoni-

cal representation of x in the cubelet L(c) is the same with the the canonical representation of x in the

cubelet L(c′). More precisely, pc
x = pc′

x .

Proof. Let cm be even. By the definition of the canonical representation in Definition 8.6, the

source and target of the cubelets L(c) and L(c′) are respectively,

⋄ sc = (s1, . . . , sm−1, cm, sm+1, . . . , sd),

⋄ tc = (t1, . . . , sm−1, cm + 1, tm+1, . . . , td),

⋄ sc′ = (s1, . . . , sm−1, cm + 2, sm+1, . . . , sd),

⋄ tc′ = (t1, . . . , tm−1, cm + 1, tm+1, . . . , td).

Hence we get that pj = p′j for j 6= m. Since x belongs to the boundary of both cublets L(c) and

L(c′) we get that xm = cm + 1 which implies that pm = p′m = 1. In case cm is odd we get that

pc
x = pc′

x but with pm = p′m = 0.

Lemma C.4. Let x ∈ [0, 1]d lying at the intersection of the cubelets L(c), L(c′) with down-left corners

c = (c1, . . . , cm−1, cm, cm+1, . . . , cd), and c′ = (c1, . . . , cm−1, cm + 1, cm+1, . . . , cd). Then the following

statements are true.

1. For all vertices v ∈ Lc(c) ∩ Lc(c′) it holds that

(a) Qc
v(x) = Qc′

v (x),

66

(b) ∂Qc
v(x)

∂xi
= ∂Qc′

v (x)
∂xi

,

(c) ∂2Qc
v(x)

∂xi ∂xj
= ∂2Qc′

v (x)
∂xi ∂xj

.

2. For all vertices v ∈ Lc(c) \ Lc(c′) it holds that Qc
v(x) = ∂Qc

v(x)
∂xi

= ∂2Qc
v(x)

∂xi ∂xj
= 0.

3. For all vertices v ∈ Lc(c′)/Lc(c) it holds that Qc′
v (x) = ∂Qc′

v (x)
∂xi

= ∂2Qc′
v (x)

∂xi ∂xj
= 0.

Proof. 1. Let v ∈ Lc(c) ∩ Lc(c′) then we have that

(a) Qc
v(x) = Qc′

v (x). By Lemma C.3 we get that the canonical representation pc
x = pc′

x .

Since Qc
v(x) is a function of the canonical representation pc

x (see Definition 8.9), it

holds that Qc
v(x) = Qc′

v (x) for all vertices v ∈ Lc(c) ∩ Lc(c′).

(b) ∂Qc
v(x)

∂xi
= ∂Qc′

v (x)
∂xi

. For i 6= m, we get that ∂Qc
v(x)

∂xi
= 1

ti−si

∂Qc
v(x)

∂pi
= 1

t′i−s′i

∂Qc′
v (x)

∂p′i
= ∂Qc′

v (x)
∂xi

since

ti = t′i and si = s′i for all i 6= m. The latter argument cannot be applied for the m-th

coordinate since tm − sm = −(t′m − s′m). However since x belongs to the boundary of

both the cubelets L(c) and L(c′) it is implied that pm = p′m is either 0 or 1, meaning

that ∂Qc
v(x)

∂xm
= ∂Qc′

v (x)
∂xm

= 0 since S′(0) = S′(1) = 0 from Lemma 8.3.

(c) ∂2Qc
v(x)

∂xi ∂xj
= ∂2Qc′

v (x)
∂xi ∂xj

. For i, j 6= m, we get that ∂2Qc
v(x)

∂xi ∂xj
= 1

ti−si

1
tj−sj

∂2Qc
v(x)

∂pi ∂pj
= 1

t′i−s′i
1

t′j−s′j

∂Qc′
v (x)

∂p′i ∂p′j
=

∂2Qc′
v (x)

∂xi ∂xj
since ti = t′i and si = s′i for all i 6= m. As in the previous case, pm = p′m equals

either 0 or 1. As a result, ∂2Qc
v(x)

∂xm ∂xj
= ∂2Qc′

v (x)
∂xm ∂xj

= 0 since S′(0) = S′(1) = S′′(0) = S′′(1) = 0

by Lemma 8.3.

2. Since v ∈ Lc(c) \ Lc(c′), we get that vm = cm. In case cm is even, we get that sm = cm = vm

and thus the coordinate the coordinate m belongs in the set Ac
v. Since x coincides with one

of the corners in Lc(c) \ Lc(c′) we get that pm = 1 which combined with the fact that m ∈ Ac
v

implies that Qc
v(x) = 0 (see Definition 8.7). Then by Lemma C.1, ∂Qc′

v (x)
∂xi

= ∂2Qc′
v (x)

∂xi ∂xj
= 0. In

case is odd, we get that sm = cm + 1. The latter combined with the fact that vm = cm implies

that the m-th coordinate belongs in Bc
v. Now pm = 0 and by Definition 8.7, Qc

v(x) = 0. Then

again by Lemma C.1, ∂Qc′
v (x)

∂xi
= ∂2Qc′

v (x)
∂xi ∂xj

= 0.

3. This case follows with the same reasoning with previous case 2.

We are now ready to prove Lemma C.2.

Proof of Lemma C.2. 1. Let v ∈ Lc(c) ∩ Lc(c′). There exists a sequence of corners

c = c(1), . . . , c(m) = c′

such that
∥
∥
∥c(j) − c(j+1)

∥
∥
∥

1
= 1 and v ∈ Lc(cj) for all j ∈ [m]. By Lemma C.4 we get that,

(a) Qc(j)

v (x) = Qc(j+1)

v (x).

(b) ∂Qc(j)
v (x)
∂xi

= ∂Qc(j+1)
v (x)

∂xi
.

67

(c) ∂2Qc(j)
v (x)

∂xi ∂xj
= ∂Qc(j+1)

v (x)
∂xi ∂xj

.

which implies Case 1 of Lemma C.2.

2. Let v ∈ Lc(c) \ Lc(c′). There exists a sequence of corners c = c(1) . . . , c(i) such that
∥
∥
∥c(j) − c(j+1)

∥
∥
∥

1
= 1 and v /∈ Lcc(i) and v ∈ Lc(c(j)) for all j < i. By case 2 of Lemma

C.4 we get that Qc(i−1)

v (x) = ∂Qc(i−1)
v (x)

∂xi
= ∂2Qc(i−1)

v (x)
∂xi ∂xj

= 0. Then case 2 of Lemma C.2 follows

by case 1 of Lemma C.4.

3. Similarly with case 2.

C.2 Proof of Lemma 8.11

We start this section with some fundamental properties of the smooth step function S∞ that are

more fine-grained than the properties we presented in Lemma 8.3.

Lemma C.5. For d ≥ 10 there exists a universal constant c > 0 such that the following statements hold.

1. If x ≥ 1/d then S∞(x) ≥ c · 2−d.

2. If x ≤ 1/d then S′∞(x) ≤ c · d2 · 2−d.

3. If x ≥ 1/d then S′∞(x)
S∞(x)

≤ c · d2.

4. If x ≤ 1/d then |S′′∞(x)| ≤ c · d4 · 2−d.

5. If x ≥ 1/d then |S
′′
∞(x)|

S∞(x)
≤ c · d4.

Proof. We compute the derivative of S∞ and we have that

S′∞(x) = ln(2)S∞(x)S∞(1− x)

(
1

x2
+

1

(1− x)2

)

from which we immediately get S′∞(x) ≥ 0. Then we can compute the second derivative of S∞

as follows

S′′∞(x) = ln(2)S∞(x)S∞(1− x)·

·
(

ln(2) (S∞(1− x)− S∞(x))

(
1

x2
+

1

(1− x)2

)2

− 2

(

1

x3
− 1

(1− x)3

))

.

We next want to prove that S′′∞(x) ≥ 0 for x ≤ 1/10. To see this observe that 1− 2 · S∞(x) ≥ 1/2

for x ≤ 1/d and therefore

S′′∞(x) ≥ ln(2)

x3
S∞(x)S∞(1− x)

(
ln(2)

2x
− 2

)

hence for x ≤ 4/ ln(2) it holds that S′′∞(x) ≥ 0. By similar but more tedious calculations we can

conclude that S′′′∞(x) ≥ 0 for x ≤ 1/10. Hence in the interval x ∈ [0, 1/10] all the functions S∞,

S′∞, S′′∞ are all increasing functions of x.

68

Next we show that the function h(x) = 2−1/x + 2−1/(1−x) is upper and lower bounded. First

observe that h(x) ≥ max{2−1/x, 2−1/(1−x)}. Now if we set t(x) = 2−1/x then t′(x) = ln(2)t(x)/x2

and hence t(x) ≥ t(1/2) = 1/4 for x ≥ 1/2. The same way we can prove that 2−1/(1−x) ≥ 1/4

for x ≤ 1/2. Therefore h(x) ≥ 1/4 for all x ∈ [0, 1]. Also it is not hard to see that 2−1/x ≤ 1/2

and 2−1/(1−x) ≤ 1/2 which implies h(x) ≤ 1. Hence overall we have that h(x) ∈ [1/4, 1] for all

x ∈ [0, 1]. We are now ready to prove the statements.

1. We have shown that S′∞(x) ≥ 0 for all x ∈ [0, 1]. Hence S∞ is an increasing function and

therefore S∞(x) ≥ S∞(1/d) for x ≥ 1/d. Now we have that S∞(1/d) = 2−d/h(1/d) ≥ 2−d.

2. Since S′∞(x) is increasing for x ∈ [0, 1/10], we have that S′∞(x) ≤ S′∞(1/d) for x ≤ 1/d and

therefore

S′∞(x) ≤ ln(2)S∞(1− 1/d)S∞(1/d)

(

d2 +
1

(
1− 1

d

)2

)

≤ 2 ln(2)
2−d

h(1/d)
≤ 8 ln(2)2−d.

3. We have that for x ≤ 1/d

S′∞(x)

S∞(x)
= ln(2)S∞(1− x)

(
1

x2
+

1

(1− x)2

)

≤ 2 ln(2)
1

x2
≤ 2 ln(2)d2.

4. Follows directly from the statement 1., the fact that S′′∞(x) is increasing for x ∈ [0, 1/10] and

the above expression of S′′∞ this statement follows.

5. This statement follows using the same reasoning with statement 3.

In this section we establish the bounds on the gradient and the hessian of Pv(x). These

bounds are formally stated in Lemma 8.11 the proof of which is the main goal of the section.

Lemma 8.11. For any vertex v ∈ ([N]− 1)d, it holds that

1.
∣
∣
∣

∂Pv(x)
∂xi

∣
∣
∣ ≤ Θ(d12/δ),

2.
∣
∣
∣

∂2Pv(x)
∂xi ∂xj

∣
∣
∣ ≤ Θ(d24/δ2).

In order to prove Lemma 8.11. We first introduce several technical lemmas.

Lemma C.6. Let x ∈ [0, 1]d lying in cublet L(c), with c ∈ ([N]− 1)d and let pc
x = (p1, . . . , pd) be the

canonical representation of x. Then for all vertices v ∈ Lc(c), it holds that

∣
∣
∣
∣

∂Qc
v(x)

∂pi

∣
∣
∣
∣
≤ Θ(d11) · ∑

v∈Vc

Qc
v(x).

69

Proof. To simplify notation we use Qv(x) instead of Qc
v(x), A instead of Ac

v and B instead of Bc
v

for the rest of the proof. Without loss of generality we assume that for all j ∈ A and ℓ ∈ B,

pℓ > pj since otherwise ∂Qc
v(x)

∂pi
= 0 trivially by the Definition 8.7. Let i ∈ B (symmetrically for

i ∈ A) then,
∣
∣
∣
∣

∂Qc
v(x)

∂pi

∣
∣
∣
∣
=

= ∏
ℓ 6=i

∏
j∈A

S∞(S(pℓ)− S(pj)) ·



∑
j∈A

∣
∣S′∞(S(pi)− S(pj))

∣
∣ ∏

j′∈A/{j}
S∞(S(pi)− S(pj′))



 S′(pi)

≤ 6 ∑
j∈A

∣
∣S′∞(S(pi)− S(pj))

∣
∣ · ∏

(j′,ℓ) 6=(j,i)

S∞(S(pℓ)− S(pj′))

where the last inequality follows by the fact that |S′(·)| ≤ 6. Since |A| ≤ d the proof of the lemma

will be completed if we are able to show that for any j ∈ A, it holds that
∣
∣S′∞(S(pi)− S(pj))

∣
∣ · ∏

(j′,ℓ) 6=(j,i)

S∞(S(pℓ)− S(pj′)) ≤ Θ(d10) · ∑
v′∈Lc(c)

Qv′(x)

In case S(pi) − S(pj) ≥ 1/d5 then by case 3. of Lemma C.5 we get that
∣
∣S′∞(S(pi)− S(pj))

∣
∣ ≤

c · d10 · S∞(S(pi)− S(pj)), which implies gthe following
∣
∣S′∞(S(pi)− S(pj))

∣
∣ · ∏

(j′,ℓ) 6=(j,i)

S∞(S(pℓ)− S(pj′)) ≤

≤ c · d10 · S∞(S(pi)− S(pj)) · ∏
(j′,ℓ) 6=(j,i)

S∞(S(pℓ)− S(pj′))

= c · d10 ·Qv(x)

≤ c · d10 · ∑
v′∈Lc(c)

Qv′(x)

Now consider the case where S(pi)− S(pj) ≤ 1/d5. Using case 2. of Lemma C.5, we have that

∣
∣S′∞(S(pi)− S(pj))

∣
∣ · ∏

(j′,ℓ) 6=(j,i)

S∞(S(pℓ)− S(pj′)) ≤
∣
∣S′∞(S(pi)− S(pj))

∣
∣ ≤ Θ(d10 · 2−d5

)

Consider the sequence of points in the [0, 1] interval 0, p1, . . . , pd, 1. There always exist two con-

secutive points with distance greater that 1/(d + 1). As a result, there exists v∗ ∈ Lc(c) such that

pℓ − pj ≥ 1/(d + 1) for all ℓ ∈ Bv∗ and j ∈ Av∗ . Then S(pℓ)− S(pj) ≥ 1/(d + 1)2 and by case 1.

of Lemma C.5, S∞(S(pℓ)− S(pj)) ≥ c2−(d+1)2
. If we also use the fact that |Av∗ | · |Bv∗ | ≤ d2, we

get that

Qv∗(x) ≥ (c · 2−(d+1)2
)d2

= cd2
2−(d+1)2·d2

.

Then it holds that

1

Qv∗(x)
·
∣
∣S′∞(S(pi)− S(pj))

∣
∣ · ∏

(j′,ℓ) 6=(j,i)

S∞(S(pℓ)− S(pj′)) ≤

≤ Θ

(

d10 ·
(

(1/c) · 2−d3+(d+1)2
)d2
)

≤ Θ(d10).

Combining the later with the discussion in the rest of the proof the lemma follows.

70

Lemma C.7. For any vertex v ∈ ([N]− 1)d it holds that
∣
∣
∣

∂Pv(x)
∂xi

∣
∣
∣ ≤ Θ

(
d12/δ

)
.

Proof. To simplify notation we use Qv(x) instead of Qc
v(x) for the rest of the proof. Without loss

of generality we assume that x lies on a cubelet L(c) with c ∈ ([N]− 1)d and v ∈ Lc(c), since

otherwise ∂Pv(x)
∂xi

= 0. Let pc
x = (p1, . . . , pd) be the canonical representation of x in the cubelet

L(c). Then it holds that

∣
∣
∣
∣

∂Pv(x)

∂pi

∣
∣
∣
∣

=

∣
∣
∣

∂Qv(x)
∂pi
·
[

∑v′∈Lc(c) Qv′(x)
]

−Qv(x) ·
[

∑v′∈Lc(c)
∂Qv′ (x)

∂pi

]∣
∣
∣

(∑v′∈Lc(c) Qv′(x))2

≤

∣
∣
∣

∂Qv(x)
∂pi

∣
∣
∣

∑v′∈Lc(c) Qv′(x)
+

∑v′∈Lc(c)

∣
∣
∣

∂Qv′ (x)
∂pi

∣
∣
∣

∑v′∈Lc(c) Qv′(x)

≤ (d + 2) ·Θ(d11) = Θ(d12)

where the last inequality follows by Lemma C.6 and the fact that at most d + 1 vertices v of Lc(c)

have non-zero gradient as we have proved in Lemma 8.10. Then the proof of Lemma C.7 follows

by the fact that pi =
xi−si
ti−si

.

Lemma C.8. Let c ∈ ([N]− 1)d and v ∈ Lc(c) then it holds that
∣
∣
∣

∂2Qc
v(x)

∂pi ∂pj

∣
∣
∣ ≤ Θ(d22) ·∑v∈Rc(x) Qc

v(x).

Proof. To simplify the notation we use CS(pℓ − pm) to denote S∞(S(pℓ)− S(pm)), CS′(pℓ − pm)

to denote |S′∞(S(pℓ)− S(pm))|, A to denote Ac
v and B to denote Bc

v for the rest of the proof. As

in Lemma C.7, we assume that pℓ > pm for all ℓ ∈ B and m ∈ A since otherwise ∂2Qv(x)
∂pi ∂pj

= 0. We

have the following cases for the indices i and j

◮ If i, j ∈ B then

∣
∣
∣
∣

∂2Qv(x)

∂pi ∂pj

∣
∣
∣
∣
=

= ∑
m1,m2∈A

CS′(pi − pm1
)CS′(pj − pm2) · ∏

(m,ℓ) 6={(m1,i),(m2,j)}
CS(pℓ − pm) · S′(pi)S

′(pj)

≤ 36 ∑
m1,m2∈A

CS′(pi − pm1
)CS′(pj − pm2) · ∏

(m,ℓ) 6={(m1,i),(m2,j)}
CS(pℓ − pm)

︸ ︷︷ ︸

,U(i,j)

.

If additionally it holds that S(pi)− S(pm1
) ≤ 1/d5 or S(pj)− S(pm2) ≤ 1/d5, then by the

case 2. of Lemma C.5, we have that

U(i, j) ≤ CS′(pi − pm1
) · CS′(pj − pm2) ≤ Θ(d10e−d5

).

The latter follows from the fact that the function S′∞(·) is bounded in the [0, 1] interval and

that CS(pℓ − pm) ≤ 1. With the exact same arguments as in Lemma C.6, we hence get that

CS′(pi − pm1
)CS′(pj − pm2) ·Π(m,ℓ) 6={(m1,i),(m2,j)}CS(pℓ − pm) ≤ Θ(d10) ∑

v′∈Lc(c)

Qc
v′(x).

Thus
∣
∣
∣

∂2Qv(x)
∂pi ∂pj

∣
∣
∣ ≤ Θ(d12)∑v′∈Lc(c) Qc

v′(x).

71

On the other hand if S(pi)− S(pm1
) ≥ 1/d5 and S(pj)− S(pm2) ≥ 1/d5 then by case 1. of

Lemma C.5, CS′(pi − pm1
) ≤ c · d10 · CS(pi − pm1

) and CS′(pj − pm2) ≤ c · d10 · CS(pj − pm2)

and thus U(i, j) ≤ Θ(d20) ·Qc
v(x). Overall we get that

∣
∣
∣

∂2Qv(x)
∂pi ∂pj

∣
∣
∣ ≤ Θ(d22) ·∑v′∈Rc(x) Qc

v′(x).

◮ If i ∈ B and j ∈ A then

∣
∣
∣
∣

∂2Qv(x)

∂pi ∂pj

∣
∣
∣
∣
≤

≤ ∑
m1∈A,ℓ2∈B

CS′(pi − pm1
)CS′(pℓ2

− pj) · ∏
(m,ℓ) 6={(i,m1),(ℓ2,j)}

CS(pℓ − pm) · S′(pi)S
′(pj)

+

∣
∣
∣
∣
∣
∣

CS
′′
(pi − pj) · ∏

(m,ℓ) 6=(i,j)

CS(pℓ − pm) · S′(pi)S
′(pj)

∣
∣
∣
∣
∣
∣

≤ Θ(d22) ∑
v∈Lc(c)

Qc
v(x) + 36

∣
∣
∣
∣
∣
∣

CS
′′
(pi − pj) · ∏

(m,ℓ) 6=(i,j)

CS(pℓ − pm)

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

Q
′′ (x)

.

In case S(pi)− S(pj) ≥ 1/d5 then by case 4. of Lemma C.5, we get that
∣
∣
∣CS

′′
(pi − pj)

∣
∣
∣ ≤

cd20 · CS(pi − pj) which implies that Q
′′ ≤ Θ(d20) ·Qc

v(x).

On the other hand if S(pi) − S(pj) ≤ 1/d5 then by case 5. of Lemma C.5, we get that

Q
′′ ≤

∣
∣
∣CS

′′
(pi − pj)

∣
∣
∣ ≤ c · d20e−d5

. As in the proof of Lemma C.6, there exists a vertex

v∗ ∈ Rc(x) such that Qc
v∗(x) ≥ cd2

e−(d+1)2d2
and thus Q

′′ ≤ Θ(d20)∑v∈Lc(c) Qc
v(x). Overall

we get that
∣
∣
∣
∣

∂2Qv(x)

∂pi ∂pj

∣
∣
∣
∣
≤ Θ(d22) ∑

v∈Lc(c)

Qc
v(x).

◮ If i = j ∈ B then

∣
∣
∣
∣

∂2Qv(x)

∂2 pi

∣
∣
∣
∣
≤

≤ ∑
m1,m2∈A

∣
∣
∣
∣
∣
CS′(pi − pm1

)CS′(pi − pm2) · ∏
(m,ℓ) 6={(m1,i),(m2,i)}

CS(pℓ − pm) · S′(pi)S
′(pi)

∣
∣
∣
∣
∣

+ ∑
m1∈A

∣
∣
∣
∣
∣
CS′′(pi − pm1

) · ∏
(m,ℓ) 6=(m1,ℓ)

CS(pℓ − pm)S
′(pi)S

′(pi)

∣
∣
∣
∣
∣

≤ Θ(d22 + d · d20) · ∑
v∈Lc(c)

Qc
v(x).

If we combine all the above cases then the Lemma follows.

Lemma C.9. For any vertex v ∈ ([N]− 1)d, it holds that
∣
∣
∣

∂2
Pv(x)

∂xi ∂xj

∣
∣
∣ ≤ Θ(d24/δ2).

72

Proof. Without loss of generality we assume that v ∈ Lc(c), where c ∈ ([N − 1]− 1)d such that

x ∈ L(c), since otherwise ∂2
Pv(x)

∂xi ∂xj
= 0.

∂2Pv(x)

∂pi ∂pj
=

∂2Qv(x)

∂pi ∂pj

(

∑
v′∈Lc(c)

Qv′(x)

)3

· 1
(

∑v′∈Lc(c) Qv′(x)
)4

+
∂Qv(x)

∂pi
∑

v′∈Lc(c)

∂Qv′(x)

∂pj

(

∑
v′∈Lc(c)

Qv′(x)

)2

· 1
(

∑v′∈Lc(c) Qv′(x)
)4

− ∂Qv′(x)

∂pj
∑

v′∈Lc(c)

∂Qv′(x)

∂pi

(

∑
v′∈Lc(c)

Qv′(x)

)2

· 1
(

∑v′∈Lc(c) Qv′(x)
)4

− Qv(x) ∑
v′∈Lc(c)

∂2Qv′(x)

∂pi ∂pj

(

∑
v′∈Lc(c)

Qv′(x)

)2

· 1
(

∑v′∈Lc(c) Qv′(x)
)4

− ∂Qv(x)

∂pi
∑

v′∈Lc(c)

Qv′(x) · 2 ∑
v′∈Lc(c)

Qv′(x) ∑
v′∈Lc(c)

∂Qv′(x)

∂pj
· 1
(

∑v′∈Lc(c) Qv′(x)
)4

+ Qv(x) ∑
v′∈Lc(c)

∂Qv′(x)

∂pi
· 2 ∑

v′∈Lc(c)

Qv′(x) ∑
v′∈Lc(c)

∂Qv′(x)

∂pj
· 1
(

∑v′∈Lc(c) Qv′(x)
)4

Using Lemma C.8 and Lemma C.6 we can bound every term in the above expression and hence

we get that
∣
∣
∣

∂2Pv(x)
∂pi ∂pj

∣
∣
∣ ≤ Θ(d24). Then the lemma follows from the fact that

∂pi

∂xi
= 1/δ.

Finally using Lemma C.7 and Lemma C.9 we get the proof of Lemma 8.11.

C.3 Proof of Lemma 8.12

Let 0 ≤ xi < 1/(N − 1) and c = (c1, . . . , ci, . . . , cd) denote down-left corner of the cubelet R(x)

at which x ∈ [0, 1]d lies, i.e. x ∈ L(c). Since x ≤ 1/(N − 1), this means that ci = 0. By the

definition of sources and targets in Definition 8.6, we have that si = 0 and ti = 1/(N− 1), where si,

ti are respectively the i-th coordinate of the source sc and the target tc vertex. Let the canonical

representation pc
x = (p1, . . . , pd) of x in the cubelet L(c). Now partition the coordinates [d] in the

following sets

A =
{

j | pj ≤ pi

}
and B =

{
j | pi < pj

}
.

If B = ∅ then notice that Psc(x) > 0, since pi < 1, by the fact that xi < 1/(N − 1). Thus the

lemma follows since si = 0. So we may assume that B 6= ∅. In this case consider the corner

v = (v1, . . . , vd) defined as follows

vj =

{
sj j ∈ A

tj j ∈ B
.

Observe that Qc
v(x) > 0 and thus v ∈ R+(x). Moreover the coordinate i ∈ A and therefore it

holds that vi = si = 0. This proves the first statement of the Lemma.

For the second statement let 1 − 1/(N − 1) ≤ xi ≤ 1/(N − 1) and c = (c1, . . . , ci, . . . , cd)

denote down-left corner of the cubelet R(x) at which x ∈ [0, 1]d lies, i.e. x ∈ L(c). This means

that ci =
N−2
N−1 .

73

◮ Let N be odd. In this case by the definition of sources and targets in Definition 8.6, we have

that si = 1− 1/(N − 1) and ti = 1, where si, ti are respectively the i-th coordinate of the

source and target vertex. Let pc
x = (p1, . . . , pd) be the canonical representation of x under

in the cubelet L(c). Now partition the coordinates [d] as follows,

A =
{

j | pj < pi

}
and B =

{
j | pi ≤ pj

}

If A = ∅ then notice that for the target vertex tc, Ptc(x) > 0, since pi > 0, by the fact that

xi > 1− 1/(N − 1). Thus the lemma follows since ti = 1. So we may assume that A 6= ∅.

In this case consider the corner v = (v1, . . . , vd) defined as follows,

vj =

{
sj j ∈ A

tj j ∈ B

Observe that Qc
v(x) > 0 and thus v ∈ R+(x). Moreover the coordinate i ∈ B and thus

vi = ti = 1.

◮ Let N be even. In this case we have that ti = 1− 1/(N − 1) and si = 1. Now partition the

coordinates [d] as follows,

A =
{

j | pj ≤ pi

}
and B =

{
j | pi < pj

}

If B = ∅ then notice that for the source vertex sc, Psc(x) > 0, since pi < 1, by the fact that

xi > 1− 1/(N − 1). Thus the lemma follows since si = 1. In case B 6= ∅ consider the

corner v = (v1, . . . , vd) defined as follows,

vj =

{
sj j ∈ A

tj j ∈ B

Observe that Qc
v(x) > 0 and thus v ∈ R+(x). Moreover the coordinate i ∈ A and thus

vi = si = 1.

If we put together the last two cases then this implies the second statement of the lemma.

D Constructing the Turing Machine – Proof of Theorem 7.6

In this section we prove Theorem 7.6 establishing that both the function fCl
(x, y) of Definition 7.4

and its gradient, is computable by a polynomial-time Turing Machine. We prove Theorem 7.6

through a series of Lemmas. To simplify notation we set b , log 1/ε.

Definition D.1. For a x ∈ R, we denote by [x]b ∈ R, a value represented by the b bits such that

|[x]b − x| ≤ 2−b.

Lemma D.2. There exist Turing Machines MS∞
, MS′∞ that given input x ∈ [0, 1] and ε in binary form,

compute [S∞(x)]b and [S′∞(x)]b in time polynomial in b = log(1/ε) and the binary representation of x.

Proof. The Turing Machine MS∞
outputs the fist b bits of the following quantity,

W(x) =






1

1 +
[

2[−
1
x +

1
x−1]b′

]

b′






b′

74

where b′ will be selected sufficiently large. Notice it is possible to compute the above quantity

due to the fact that all functions 1
γ + 1

γ−1 , 2γ and 1
1+γ can be computed with accuracy 2−b′ in

polynomial time with respect to b′ and the binary representation of γ [Bre76]. Moreover,

∣
∣
∣
∣
∣
∣
∣






1

1 +
[

2[−
1
x +

1
x−1]b′

]

b′






b′

− 1

1 + 2−
1
x +

1
x−1

∣
∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣






1

1 +
[

2[−
1
x +

1
x−1]b′

]

b′






b′

− 1

1 +
[

2[−
1
x +

1
x−1]b′

]

b′

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

1

1 +
[

2[−
1
x +

1
x−1]b′

]

b′

− 1

1 + 2[−
1
x +

1
x−1]b′

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1

1 + 2[−
1
x +

1
x−1]b′

− 1

1 + 2−
1
x +

1
x−1

∣
∣
∣
∣
∣

≤ 2−b′ +
∣
∣
∣

[

2[−
1
x +

1
x−1]b′

]

b′
− 2[−

1
x +

1
x−1]b′

∣
∣
∣

+ ln 2

∣
∣
∣
∣

[

−1

x
+

1

x− 1

]

b′
−
(

−1

x
+

1

x− 1

)∣
∣
∣
∣

≤ 4 · 2−b′

where the first inequality follows from triangle inequality and the second follows from the facts

that 1/(1 + γ) is a 1-Lipschitz function of γ for γ ≥ 0, and 1/(1 + 2γ) is an ln(2)-Lipschitz

function of γ for γ ≥ 0. The last inequality follows from the definition of [·]b′ . Hence W(x) is

indeed equal to [S∞(x)]b if we choose b′ = b + 2.

Next we explain how MS′∞ computes [S′∞(x)]b. First notice that S′∞(x) is equal to

S′∞(x) = ln 2 ·
1
x2 2−

1
x +

1
x−1 − 1

(x−1)2 2−
1
x +

1
x−1

(

2−
1
x + 2

1
x−1

)2
.

To describe how to compute S′∞(x) we first assume that we have computed the following quan-

tities. Then based on these quantities we show how S′∞(x) can be computed and finally we

consider the computation of these quantities.

⊲ [ln 2]b′ ,

⊲ A←
[

1
x2 2−

1
x +

1
x−1

]

b′
,

⊲ B←
[

1
(x−1)2 2−

1
x +

1
x−1

]

b′
,

⊲ C ←
[(

2−
1
x + 2

1
x−1

)2
]

b′
.

75

Then MS′∞ outputs the fist b bits of the quantity
[
[ln 2]b′ ·

[
A+B

C

]

b′
]

b′
. We now prove that

∣
∣
∣
∣
∣
∣
∣
∣

[ln 2]b′

[
A + B

C

]

b′
− ln 2

A + B

C
︸ ︷︷ ︸

S′∞(x)

∣
∣
∣
∣
∣
∣
∣
∣

≤ Θ
(

2−b′
)

Consider the function g(α, β, γ) = α+β
γ where |α| , |β| ≤ c1 and |γ| ≥ c2 where c1, c2 are universal

constants. Notice that g(α, β, γ) is c-Lipschitz for c =
√

2
c2

2
+ 2c1

c2
2

. Since for sufficiently large b′

all the quantities |A| , |B| ,
∣
∣
∣

1
x2 2−

1
x +

1
x−1

∣
∣
∣ ,
∣
∣
∣

1
(x−1)2 2−

1
x +

1
x−1

∣
∣
∣ ≤ c1 and |C| ,

(

2−
1
x + 2

1
x−1

)2
≥ c2 where

c1, c2 are universal constants we get that
∣
∣
∣
∣

[
A + B

C

]

b′
− A + B

C

∣
∣
∣
∣
≤ Θ

(

2−b′
)

.

Now consider the function g(α, β) = α · β where |α| , |β| ≤ c where c is a universal constant.

In this case g(α, β) is
√

2c-Lipschitz continuous. Since for b′ sufficiently large all the quantities

|[ln 2]b′ | ,
∣
∣
[

A+B
C

]

b′
∣
∣ , ln 2,

∣
∣ A+B

C

∣
∣ are bounded by a universal constant c, we have that,

∣
∣
∣
∣
[ln 2]b′

[
A + B

C

]

b′
− ln 2

A + B

C

∣
∣
∣
∣
≤ Θ

(

2−b′
)

Next we explain how the values A, B and C are computed while [ln(2)]′b can easily be computed

via standard techniques [Bre76].

◮ Computation of A. The Turing Machine MS′∞ will compute A by taking the first b′ bits of

the following quantity,
[

2[−
1
x +

1
x−1+2 ln x/ ln 2]

b′′
]

b′′

where b′′ will be taken sufficiently large. We remark that both where both the exponenti-

ation and the natural logarithm can be computed in polynomial-time with respect to the

number of accuracy bits and the binary representation of the input [Bre76]. The function
1
x2 2−

1
x +

1
x−1 = 2−

1
x +

1
x−1+2 ln x/ ln 2 is c-Lipschitz where c is a universal constant. Thus,
∣
∣
∣
∣

[

2[−
1
x +

1
x−1+2 ln x/ ln 2]

b′′
]

b′′
− 1

x2
2−

1
x +

1
x−1

∣
∣
∣
∣
≤ Θ(2−b′′).

◮ Computation of B. Using the same arguments as for A.

◮ Computation of C. To compute C we first compute b′′ bits of the following quantity,





1
[

2−[
1
x]b′′
]

b′′
+
[

2[
1

x−1]b′′
]

b′′






2

b′′

We first argue that
∣
∣
∣
∣
∣
∣
∣






1
[

2−[
1
x]b′′
]

b′′
+
[

2[
1

x−1]b′′
]

b′′






2

b′′

−
(

1

2−
1
x + 2

1
x−1

)2

∣
∣
∣
∣
∣
∣
∣

≤ Θ
(

2−b′′
)

The latter follows by applying the triangle inequality and the following 3 inequalities.

76

1.

∣
∣
∣
∣
∣
∣
∣






1
[

2−[
1
x]b′′
]

b′′
+
[

2[
1

x−1]b′′
]

b′′






2

b′′

−






1
[

2−[
1
x]b′′
]

b′′
+
[

2[
1

x−1]b′′
]

b′′






2∣∣
∣
∣
∣
∣
∣

≤ Θ(2−b′′)

this holds since for b′′ > 1 we have





1
([

2−[
1
x]b′′
]

b′′
+
[

2[
1

x−1]b′′
]

b′′

)






b′′

and
1

([

2−[
1
x]b′′
]

b′′
+
[

2[
1

x−1]b′′
]

b′′

)

are both upper-bounded by 2 while the function g(α) = α2 is 4-Lipschitz for |α| ≤ 2.

2.

∣
∣
∣
∣
∣
∣
∣






1
[

2−[
1
x]b′′
]

b′′
+
[

2[
1

x−1]b′′
]

b′′






2

−
(

1

2−[
1
x]b′′ + 2[

1
x−1]b′′

)2
∣
∣
∣
∣
∣
∣
∣

≤ Θ
(

2−b′′
)

The latter follows since for b′′ larger than a universal constant, both
[

2−[
1
x]b′′
]

b′′
+

[

2[
1

x−1]b′′
]

b′′
and 2−[

1
x]b′′ + 2[

1
x−1]b′′ are greater than a universal constant c, while the

function g(α, β) = 1/(α + β)2 is Θ
(
c3
)
-Lipschitz for α + β ≥ c.

3.
∣
∣
∣
∣
∣
∣

(

1

2−[
1
x]b′′ + 2[

1
x−1]b′′

)2

−
(

1

2−
1
x + 2

1
x−1

)2
∣
∣
∣
∣
∣
∣

≤ Θ
(

2−b′′
)

The latter follows since for b′′ larger than a universal constant it holds that both the

quantities in the left hand side are greater than a positive universal constant c, while

the function g(α, β) = 1/(2−α + 2β) for 2−α + 2β ≥ c, α ≥ 0, and β ≤ 0 is Θ
(
1/c3

)
-

Lipschitz.

This concludes the proof of the lemma.

Lemma D.3. There exist Turing Machines MQ and MQ′ that given x ∈ [0, 1]d and ε > 0 in binary form,

respectively compute [Qc
v(x)]b and [∇Qc

v(x)]b for all vertices v ∈ ([N]− 1)d with Qc
v(x) > 0, where

b = log(1/ε). These vertices are most d + 1. Moreover both MQ and MQ′ run in polynomial time with

respect to b, d and the binary representation of x.

Proof. Both MQ, MQ′ firsts compute the canonical representation pc
x ∈ [0, 1]d with the respect to

the cell R(x) in which x lies. Such a cell R(x) can be computed by taking the first (log N + 1)-bits

at each coordinate of x. The source vertex sc = (s1, . . . , sd) and the target vertex tc = (t1, . . . , td)

with respect to R(x) are also computed. Once this is done we are only interested in vertices

v ∈ Rc(x) for which

pℓ > pj for all ℓ ∈ Ac
v, j ∈ Bc

v

77

since for all the other v ∈ ([N]− 1)d both Qc
v(x) = 0 and ∇Qc

v(x) = 0. These vertices, that are

denoted by R+(x), are at most d + 1 and can be computed in polynomial time.

The vertices v ∈ R+(x) can be computed in polynomial time as follows: (i) the coordinates

p1, . . . , pd are sorted in increasing order ii) for each m = 0, . . . , d compute the vertex vm ∈ Rc(x),

vm
j =

{
sj if coordinate j belongs in the first m coordinates wrt the order of pc

x

tj if coordinate j belongs in the last d−m coordinates wrt the order of pc
x

By Definition 8.7 it immediately follows that R+(x) ⊆ ⋃d
m=0{vm} which also establish that

|R+(x)| ≤ d + 1.

Once R+(x) is computed, MQ computes for each pair (ℓ, j) ∈ Bc
v× Ac

v the value of the number
[
S∞(S(pℓ)− S(pj))

]

b′ for some accuracy b′ that we determine later but depends polynomially on

b, d and the input accuracy of x. Then each v ∈ R+(x), MQ outputs as [Qc
v(x)]b the fist b bits of

the following quantity
[

∏
ℓ∈Bc

v,j∈Ac
v

[
S∞(S(pℓ)− S(pj))

]

b′

]

b′

where b′ is selected sufficiently large. We next prove that this computation indeed outputs

[Qc
v(x)]b accurately.

To simplify notation let S∞(S(pℓ)− S(pj)) be denoted by Sℓj, Ac
v denoted by A and Bc

v denoted

by B. Then,

∣
∣
∣

[

Πℓ∈B,j∈A

[
Sℓj

]

b′

]

b′
−Πℓ∈B,j∈ASℓj

∣
∣
∣ ≤

∣
∣
∣

[

Πℓ∈B,j∈A

[
Sℓj

]

b′

]

b′
−Πℓ∈B,j∈A

[
Sℓj

]

b′

∣
∣
∣

+
∣
∣
∣Πℓ∈B,j∈A

[
Sℓj

]

b′ −Πℓ∈B,j∈ASℓj

∣
∣
∣

≤ 2−b′ +
∣
∣
∣Πℓ∈B,j∈A

[
Sℓj

]

b′ −Πℓ∈B,j∈ASℓj

∣
∣
∣

Consider the function g(y) = ∏ℓ∈B,j∈A yℓj. For y ∈ [0, 1 + 1/d2]|A|×|B|, ‖∇g(y)‖2 ≤ Θ(d). As a

result, for all y, z ∈ [0, 1 + 1/d2]|A|×|B|,

|g(y)− g(z)| ≤ Θ(d) ·
[

∑
ℓ∈B,j∈A

(yℓj − zℓj)

]1/2

In case the accuracy b′ ≥ Θ(log d) then
[
Sℓj

]

b′ ≤ Sℓj + 1/d2 ≤ 1 + 1/d2 and the above inequality

applies. Thus,

∣
∣
∣
∣
∣

∏
ℓ∈B,j∈A

[
Sℓj

]

B′ −Πℓ∈B,j∈ASℓj

∣
∣
∣
∣
∣
≤ Θ(d)

[

∑
ℓ∈B,j∈A

([
Sℓj

]

B′ − Sℓj

)
]1/2

≤ Θ(d2) · 2−b′

Overall,
∣
∣
∣

[

Πℓ∈B,j∈A

[
Sℓj

]

b′

]

b′
−Πℓ∈B,j∈ASℓj

∣
∣
∣ ≤ Θ(d2) · 2−b′ which concludes the proofof the cor-

rected of [Qc
v(x)]b by selecting b′ = b + Θ(log d).

78

In order to compute ∂Qc
v(x)

∂xℓ
where ℓ ∈ Bc

v (symmetrically for j ∈ Ac
v), MQ′ additionally

computes the
[
S′∞(S(pℓ)− S(pj))

]

b′ with accuracy b′. To simplify notation we denote with

S′∞(S(pℓ)− S(pj)) with S′
ℓj and S′(pi) by S′i . Then MQ′ outputs,

[
∂Qc

v(x)

∂xi

]

b′
←
[

1

ti − si
·
[

∂Qc
v(x)

∂pi

]

b′

]

b′

where

[
∂Qc

v(x)

∂pi

]

b′
←
[

∑
j∈A

[

S′ij
]

b′
·
[
S′i
]

b′ Πm∈A/j,ℓ∈B [Sℓm]b′

]

b′

Observe that ti − si =
sign(ti−si)

N−1 and thus 1
ti−si
·
[

∂Qc
v(x)

∂pi

]

b′
can be exactly computed. We next prove

that these computations of
[

∂Qc
v(x)

∂xi

]

b′
and

[
∂Qc

v(x)
∂pi

]

b′
are correct.

We first bound
∣
∣
∣

[

S′ij
]

b′
· [S′i]b′ ·Πm∈A/{j},ℓ∈B [Sℓm]b′ − S′ij · S′i ·Πm∈A/{j},ℓ∈BSℓm

∣
∣
∣.

Consider the function g(y1, y2, y) = y1 · y2 ·∏m∈A/{j},ℓ∈B yℓm. As previously done, for y1, y2 ∈
[0, 6] and y ∈ [0, 1 + 1/d2]|A|×|B|−1 we have that, ‖∇g(y1, y2, y)‖2 ≤ Θ(d). If b′ ≤ Θ(log d) then
∣
∣
∣S′ij

∣
∣
∣ , S′i ≤ 6 and Sℓm ∈ [0, 1 + 1/d2]. As a result,

∣
∣
∣

[

S′ij
]

b′
·
[
S′i
]

b′ ·Πm∈A/{j},ℓ∈B [Sℓm]b′ − S′ij · S′i ·Πm∈A/{j},ℓ∈BSℓm

∣
∣
∣ ≤ Θ(d2) · 2−b′ .

We can now use the above inequality to bound
∣
∣
∣

[
∂Qc

v(x)
∂pi

]

b′
− ∂Qc

v(x)
∂pi

∣
∣
∣. More precisely,

∣
∣
∣
∣

[
∂Qc

v(x)

∂pi

]

b′
− ∂Qc

v(x)

∂pi

∣
∣
∣
∣

≤ 2−b +

∣
∣
∣
∣
∣
∣
∑
j∈A

[

S′ij
]

b′
·
[
S′i
]

b′ · ∏
m∈A/{j},ℓ∈B

[Sℓm]b′ − ∑
j∈A

S′ij · S′i · ∏
m∈A/{j},ℓ∈B

Sℓm

∣
∣
∣
∣
∣
∣

≤ Θ(d3) · 2−b′

We finally get that
∣
∣
∣
∣

[
∂Qc

v(x)

∂xi

]

b′
− ∂Qc

v(x)

∂xi

∣
∣
∣
∣
≤ 2−b′ + N

∣
∣
∣
∣

[
∂Qc

v(x)

∂pi

]

b′
− ∂Qc

v(x)

∂pi

∣
∣
∣
∣
≤ Θ(Nd3) · 2−b′ .

Thus the analysis is completed by selecting b′ = b + Θ(log d) + Θ(log N).

Lemma D.4. There exist Turing Machines MP and MP′ that given x ∈ [0, 1]d and ε > 0 in binary form

compute [Pv(x)]b and [∇Pv(x)]b respectively for all vertices v ∈ ([N]− 1)d with Pv(x) > 0, where

b = log(1/ε). These vertices are most d + 1. Moreover both MP and MP′ run in polynomial time with

respect to b, d and the binary representation of x.

Proof. MP first runs MQ of Lemma D.3 to find the coefficients Qc
v(x) > 0. We remind that these

vertices are denoted with R+(x) and |R+(x)| ≤ d + 1. Then for each v ∈ R+(x), MP outputs as

[Pv(x)]b the fist b bits of the quantity,

[

[Qc
v(x)]b′

∑v′∈R+(x)

[
Qc

v′(x)
]

b′

]

b′

79

where we determine the value of b′ later in the proof but it is chosen to be polynomial in b and

d. We next present the proof that the above expression correctly computes [Pv(x)]b.

For accuracy b′ ≥ Θ(d2 log d) we get that,

∑
v′∈R+(x)

[Qc
v′(x)]b′ ≥ ∑

v′∈R+(x)

Qc
v′(x)−Θ(d) · 2−b′

= ∑
v′∈Rc(x)

Qc
v′(x)−Θ(d) · 2−b′

≥ Θ
(

1/d)d2
)

−Θ(d) · 2−b′

≥ Θ
(

(1/d)d2
)

Consider the function g(y) = yi/(∑
d+1
j=1 yj). Notice that for y ∈ [0, 1]d+1 and ∑

d+1
j=1 yj ≥ µ then

‖∇g(y)‖2 ≤ Θ(d3/2/µ2). The latter implies that for y, z ∈ [0, 1]d+1 such that ∑
d+1
j=1 yj ≥ µ and

that ∑
d+1
j=1 zj ≥ µ, it holds that

∣
∣
∣
∣
∣

yi

∑
d+1
j=1 yj

− zi

∑
d+1
j=1 zj

∣
∣
∣
∣
∣
≤ Θ

(
d3/2

µ2

)

· ‖y− z‖2 .

Since there are at most d + 1 vertices v′ ∈ R+(x) while both the term ∑v′∈R+(x)

[
Qc

v′(x)
]

b′ and

the term ∑v′∈R+(x) Qc
v′(x) are greater than Θ

(

(1/d)d2
)

, we can apply the above inequality with

µ = Θ
(

(1/d)d2
)

and we get the following

∣
∣
∣
∣
∣

[Qc
v(x)]b′

∑v′∈R+(x)

[
Qc

v′(x)
]

b′
− Qc

v(x)

∑v′∈R+(x) Qc
v′(x)

∣
∣
∣
∣
∣

≤ Θ
(

d2d2+3/2
)

·
[

∑
v′∈R+(x)

(
[Qc

v′(x)]b′ −Qc
v′(x)

)2

]1/2

≤ Θ
(

d2d2+2
)

· 2−b′

Overall, we have that
∣
∣
∣
∣
∣

[

[Qc
v(x)]b′

∑v′∈R+(x)

[
Qc

v′(x)
]

b′

]

b′

− Qc
v(x)

∑v′∈Rc(x) Qc
v′(x)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

[

[Qc
v(x)]b′

∑v′∈R+(x)

[
Qc

v′(x)
]

b′

]

b′

− [Qc
v(x)]b′

∑v′∈R+(x)

[
Qc

v′(x)
]

b′

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

[Qc
v(x)]b′

∑v′∈R+(x)

[
Qc

v′(x)
]

b′
− Qc

v(x)

∑v′∈R+(x) Qc
v′(x)

∣
∣
∣
∣
∣

≤ Θ
(

d2d2+1
)

2−b′

The proof is completed via selecting b′ = b + Θ(d2 log d).

80

In order to compute ∂Pv(x)
∂xi

the Turing machine MP′ computes all vertices R+(x) the coefficients
∂Qc

v(x)
∂xi

with accuracy b′. Then for each v ∈ R+(x) the Turing Machine MP′ outputs,

[
∂Pv(x)

∂xi

]

b′
←
[

1

ti − si
·
[

∂Pv(x)

∂pi

]

b′

]

b′

where

[
∂Pv(x)

∂pi

]

b′
←






[
∂Qv(x)

∂pi

]

b′
·∑v′∈R+(x) [Qv′(x)]b′ − [Qv(x)]b′ ·∑v′∈R+(x)

[
∂Qv′ (x)

∂pi

]

b′
(

∑v′∈R+(x) [Qv′(x)]b′
)2






b′

Similarly as above and as in Lemma D.3 we can prove that if b′ ≥ b + Θ(d2 log d) + Θ(log N),
∣
∣
∣

[
∂Pv(x)

∂pi

]

b′
− ∂Pv(x)

∂pi

∣
∣
∣ ≤ 2−b.

Proof of Theorem 7.6. Let R(x) be the cell at which x lies. The Turing Machine M fCl
initially cal-

culates the vertices v ∈ Rc(x) with coefficient Pv(x) > 0. We remind that this set is denoted by

R+(x) and |R+(x)| ≤ d + 1. Then M fCl
outputs the first b bits of the following quantity,

[

fCl(x,y)

]

b′
=

d

∑
j=1

[α(x, j)]b′ · (xj − yj) where [α(x, j)]b′ = ∑
v′∈R+(x)

Cl(v, j) · [Pv(x)]b′

we next prove that the above computation is correct.

∣
∣
∣

[

fCl(x,y)

]

b′
− fCl(x,y)

∣
∣
∣ =

∣
∣
∣
∣
∣

d

∑
j=1

[α(x, j)]b′ · (xj − yj)−
d

∑
j=1

α(x, j) · (xj − yj)

∣
∣
∣
∣
∣

≤
d

∑
j=1

|[α(x, j)]− α(x, j)|

=
d

∑
j=1

∣
∣
∣
∣
∣

∑
v′∈R+(x)

Cl(v, j) · [Pv(x)]b′ − ∑
v′∈R+(x)

Cl(v, j) · Pv(x)

∣
∣
∣
∣
∣

≤
d

∑
j=1

∑
v′∈R+(x)

|[Pv(x)]b′ − Pv(x)|

≤ d · (d + 1) · 2−b′

Setting b′ = b + Θ (log d) we get the desired result. Similarly for
∂ fCl (x,y)

∂xi
and

∂ fCl (x,y)

∂yi
.

E Convergence of PGD to Approximate Local Minimum

In this section we present for completeness the folklore result that the Projected Gradient Descent

with convex projection set converges fast to a first order stationary point. Using the same ideas

that we presented in Section 5 this result implies that Projected Gradient Descent solves the

LocalMin problem in time poly(1/ε, L, G, d) when (ε, δ) in the input are in the local regime.

Also observe that although the following proof assumes access to the exact value of the gradient

∇ f it is very simple to adapt the proof to the case where we only have access to∇ f with accuracy

ε3. We leave this as an exercise to the reader.

81

Theorem E.1. Let f : K → R be an L-smooth function and K ⊆ R
d be a convex set. The projected

gradient descent algorithm started at x0, with step size η, after at most T ≥ 2L(f (x0)− f (x⋆))
ε2 steps outputs

a point x̂ such that

‖x̂−ΠK (x̂− η∇ f (x̂))‖2 ≤ η · ε
where η = 1/L and x⋆ is a global minimum of f .

Proof. If we run the Projected Gradient Descent algorithm on f then we have

xt+1 ← ΠK (xt − η∇ f (xt))

then due to the L-smoothness of f we have that

f (xt+1) ≤ f (xt) + 〈∇ f (xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

2 .

We can now apply Theorem 1.5.5 (b) of [FP07] to get that

〈η · ∇ f (xt), xt+1 − xt〉 ≤ − ‖xt+1 − xt‖2
2 =⇒

〈∇ f (xt), xt+1 − xt〉 ≤ −
1

η
· ‖xt+1 − xt‖2

2

If we combine these then we have that

f (xt+1) ≤ f (xt)−
(

1

η
− L

2

)

‖xt+1 − xt‖2
2 .

So if we pick η = 1/L then we get

f (xt+1) ≤ f (xt)−
L

2
‖xt+1 − xt‖2

2 .

If sum all the above inequalities and divide by T then we get

1

T

T−1

∑
t=0

‖xt+1 − xt‖2
2 ≤

2

T · L (f (x0)− f (xT))

which implies that

min
0≤t≤T−1

‖xt+1 − xt‖2 ≤
√

2

T · L (f (x0)− f (xT))

Therefore for T ≥ 2L(f (x0)− f (x⋆))
ε2 we have that

min
0≤t≤T−1

‖xt+1 − xt‖2 ≤ η · ε = ε/L.

82

