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1. Introduction

We provide a family of model structures on the category of multicomplexes of R-modules, for R a
commutative unital ring. A multicomplex is an algebraic structure generalizing the notion of a (graded)
chain complex and that of a bicomplex. The structure involves a family of higher “differentials” indexed by
the non-negative integers. The terms twisted chain complex and D,,-module are also used. Multicomplexes
have arisen in many different places and play an important role in homotopical and homological algebra.
A multicomplex has an associated total complex, with filtration, and thus an associated spectral sequence.

For each r > 0, we show that there is a cofibrantly generated model structure on the category of
multicomplexes in which the weak equivalences are the morphisms inducing an isomorphism at the (r +1)-
th page of the spectral sequence. The fibrations are explicitly specified via surjectivity conditions.
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We also provide such models for certain truncated versions of these structures, the n-multicomplexes.
We write n-mCp for the category of n-multicomplexes. The case n = 2 gives the category of bicomplexes
and the results here recover those of [2]. Multicomplexes can be thought of as the case n = co and we make
frequent use of this notational device.

A key ingredient of the model structures is the explicit description of the spectral sequence associated
to a multicomplex in [8]. The main techniques imitate the work of [2], using representable versions of r-
cycles and r-boundaries to provide generating (trivial) cofibrations for the model structures. One difference,
however, is that we describe the representing objects for cycles via an iterated pushout process, as a direct
description would be cumbersome. The model structures appear in Theorems 3.28 and 3.30, the latter being
a minor variant of the former.

We introduce a graded associative algebra C,, in the category of vertical bicomplexes such that n-
multicomplexes can be viewed as C,-modules in vertical bicomplexes. This allows us to set up, for fixed
r, Quillen adjunctions relating the model structures of Theorem 3.30 on n-multicomplexes as n varies. In-
deed, the functors can be viewed as restriction and extension of scalars. We show that these adjunctions
are Quillen equivalences for n > 2. Multicomplexes can be viewed as the homotopy-coherent version of
bicomplexes [9,7], so that one would expect co-mCpr and 2-mCpg to have equivalent homotopy theories. Our
work confirms that this is the case for the r-model structure for each r and that the same is true for all the
intermediate categories of n-multicomplexes.

Our results can be summarized as follows. We have a chain of adjunctions:
1-mCR AN 2—mCR NN 3—mCR AR AN n—mCR AN NI OO-mCR.

Apart from at the far left, we may fix any r > 0 and endow the categories with the r-model structure
of Theorem 3.30. Equipped with these model structures, each adjoint pair, apart from the leftmost one,
gives a Quillen equivalence. The category 1-mCp is the category of vertical bicomplexes, where the objects
have only one non-trivial structure map, a vertical differential. In this case, we only have the r = 0 model
structure, corresponding to the usual projective model structure on cochain complexes. Indeed, in this case
the associated spectral sequence degenerates at the F; page and the notions of equivalence in our hierarchy
all coincide. The leftmost adjoint pair gives a Quillen adjunction for » = 0, but it is not a Quillen equivalence.

In the category of n-multicomplexes with the r-model structure of Theorem 3.30, let the weak equivalences
be denoted &7, the fibrations F'ib; and the cofibrations Cof}'. Then for all n > 2 and r > 0 we have

&S &, Fiby, C Fib,, Fib? N E! C Fibyy NEN, Cof'11 € Cof .

The paper is arranged as follows. In Section 2 we give the necessary background on multicomplexes and
related categories. Section 3 presents the r-model category structure on these categories for each » > 0. In
Section 4 we describe the relationships between these model structures, setting up the Quillen adjunctions
and equivalences. Section 5 considers analogues of the previously obtained model category structures for
bounded multicomplexes. Section 6 gives various examples of cofibrations and cofibrant replacements for
our model category structures, in both the bounded and unbounded cases.
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2. Notations and preliminaries

In this section, we summarize the definitions and results on multicomplexes that are required for the rest
of the paper, and fix sign and grading conventions. Throughout this paper, R will denote a commutative
unital ground ring and R-Mod will denote the category of R-modules.

Definition 2.1. A multicomplex or oco-multicomplex A is a (Z,Z)-bigraded R-module A = {AP9}, c7 en-
dowed with a family of maps {d;: A — A};>¢ of bidegree (—i,1 — i) satisfying for all [ > 0,

> (=1)'did; =0. (1)

i+ji=l

Let n > 1 be an integer. An n-multicomplez is a multicomplex with d; = 0 for all ¢ > n.

For 1 <n < oo, a (strict) morphism of n-multicomplexes is a map f of bigraded R-modules of bidegree
(0,0) satisfying d; f = fd; for all i > 0. We denote by n-mCpg the category of n-multicomplexes and strict
morphisms.

For example, a 1-multicomplex is a vertical bicomplex, as defined in [7, Section 2.1], that is, a (Z,Z)-
bigraded R-module endowed with a differential dy of bidegree (0,1). The category 1-mCpg will also be
denoted by vbCg when we need to emphasize vertical bicomplexes.

A 2-multicomplex is a bicomplex, with the convention dogd; = didp; thus the chosen sign convention
agrees with [2, Definition 2.10].

As observed in [8, Remark 2.2], the above choice of sign convention for multicomplexes gives an isomorphic
category to the version without signs in the relations.

By [3, Lemma 3.3], the category of multicomplexes is symmetric monoidal, where the monoidal structure
is given by the bifunctor

®: co-mCpr X co-mCgr — co-mCg

which on objects is given by ((A,d#), (B,dP)) — (A® B,d{ ® 1+ 1®d?) and on strict morphisms is given
by (f,g9) — f ® g. The symmetry isomorphism is given by the morphism of multicomplexes

TARB : A®B—>B®A
defined by
a®@br (1) a.
Here for a, b of bidegree (a1,as), (b1, ba) respectively, we let (a,b) = a1b; + azbs.
This functor also describes a symmetric monoidal structure on n-mCpg for each n > 1 by restriction.
For the rest of this section, let » > 0 be an integer. We consider the spectral sequence E*(A) associated

to the multicomplex A as described in [8, Proposition 2.8]. The following is a reformulation of the description
in [8, Definition 2.6] to make the notation consistent with [2] in the case of bicomplexes.

Proposition 2.2 (/2, Lemma 2.13]). Let (A,do,d1,...,dy,...) be a multicomplex. Then
BPI(A) = Z09(4)/BL(4)

where the cycles are Z5(A) := AP4 and for all r > 1,
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ZP(A) == {apg € AP | for all 0 <1 <7 —1,
Zi-‘,—j:l(il)idiaj = O fOT‘ some a’j c Ap*j,qu} 1 S j S r— 1}7

and the boundaries are BY'?(A) := 0, BY""(A) = AP? Nimdy, and for all r > 2,

BPY(A) = {x € AP | there exist b, € AP 1704270 for 0 < < — 1 such that

r—1

T = —1)'d;br—i_1,

!
and Z(fl)idibl_i =0for0<i<r-— 2}.
i=0

The differential A,.: ZP9(A)/BP9(A) — ZP~9T1=T(A)/BP=m9T1="(A) is given by

A ([ao]) = [Z(—l)idiari] . O

i=1

Definition 2.3. Let 2 < n < oco. A morphism of n-multicomplexes f: A — B is said to be an FE,.-quasi-
isomorphism if the morphism E,.(f): E.(A) — E,.(B) at the r-stage of the associated spectral sequence is
a quasi-isomorphism of r-bigraded complexes (that is, E,11(f) is an isomorphism).

Denote by &£ the class of E,-quasi-isomorphisms of n-mCpr. This class contains all isomorphisms of
n-mCpg, satisfies the two-out-of-three property and is closed under retracts.

Finally, we recall from [3] the definition of r-homotopies of multicomplexes in the context of strict
morphisms.

Definition 2.4. [3, Proposition 3.18] Let f,g: A — B be two strict morphisms of multicomplexes. An -
homotopy h from f to g is a collection of maps h,,: A — B of bidegree (—m + r, —m +r — 1) satisfying for
all m >0,

Y ()Fdihy 4 (<1)'hid; =

1+j=m

g—f ifm=r,

0 if m #r.
We write f ~,. g if there is an r-homotopy from f to g. A morphism f: A — B is an r-homotopy equivalence
if there exists a morphism g: B — A such that fog ~, 1g and gof ~, 14. A multicomplex A is r-contractible
if 14 ~,. 0.

Any r-homotopy equivalence is an E,-quasi-isomorphism by [3, Proposition 3.24].
3. Model structures on multicomplexes and n-multicomplexes, for n > 2

We now describe our model category structures on n-multicomplexes, for 2 < n < co. In the case n = 2,
the model category structures here are precisely those of bicomplexes obtained in [2], and indeed, the proofs
for general n-multicomplexes are essentially the same. Just like for bicomplexes, a key idea in the proof
is to show that the spectral sequence admits a description in terms of certain witness functors that have
the advantage of being representable. Our presentation here differs from [2, Sections 4.1-4.2] in that we
show the representing objects for the witness functors can be defined recursively; this is helpful for avoiding
notational difficulties in the general multicomplex case.
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3.1. Cofibrantly generated model categories
We collect some definitions and results on cofibrantly generated model categories from [6].

Definition 3.1. Let C be a category with all small colimits and limits and I be a class of maps in C.

(1) A morphism is called I-injective (resp. I-projective) if it has the right (resp. left) lifting property with
respect to morphisms in I. We write

I-inj := RLP(]) and I-proj := LLP(I).

(2) A morphism is called an I-fibration (resp. I-cofibration) if it has the right (resp. left) lifting property
with respect to I-projective (resp. I-injective) morphisms. We write

I-fib := RLP(I-proj) and I-cof := LLP(I-inj).

(3) A map is a relative T-cell complex if it is a transfinite composition of pushouts of elements of I. We
denote by I-cell the class of relative I-cell complexes.

Definition 3.2. A model category C is said to be cofibrantly generated if there are sets I and J of maps such
that the following conditions hold.

1

(1) The domains of the maps of I are small relative to I-cell.
(2) The domains of the maps of J are small relative to J-cell.
(3)
(4)

3
4

The class of fibrations is J-inj.
The class of trivial fibrations is I-inj.

The set I is called the set of generating cofibrations, and J the set of generating trivial cofibrations.
The following is a consequence of Kan’s Theorem (cf. [5, Theorem 11.3.1] or [6, Theorem 2.1.19]).

Theorem 3.3 (D. M. Kan). Suppose C is a category with all small colimits and limits. Let W be a subcategory
of C and I and J be sets of maps in C. Then there is a cofibrantly generated model structure on C with I as
the set of generating cofibrations, J as the set of generating trivial cofibrations, and W as the subcategory
of weak equivalences if and only if the following conditions are satisfied.

(1) The subcategory W satisfies the two-out-of-three property and is closed under retracts.
(2) The domains of I are small relative to I-cell.

(3) The domains of J are small relative to J-cell.

(4) J-cof CW.

(5) I-inj = Wn J-inj.

Note that the categories of n-multicomplexes we will consider satisfy the assumptions of this theorem as
well as conditions (1), (2) and (3).

3.2. Witness cycles and witness boundaries in multicomplezes

We begin by defining the witness cycles and witness boundaries functors and showing that they can be
used to describe the spectral sequence of a multicomplex.
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Definition 3.4. Let A be a multicomplex and r > 0.
Define the witness r-cycles ZWP-1(A) to be the bigraded R-modules ZW["?(A) = AP¢ and for r > 1,

ZWPYA) = {(ag,a1,...,a,_1) | a; € AP77% for 0 < i < r — 1 such that

Z (=1)'d;a; =0 for 0 <1 <r—1}.
i+j=l

There is a natural map of bigraded R-modules
zr: ZWPA(A) — ZP9(A)
given by 2o = 14, and for r > 1,

zr(ag,...,ar—1) = ayp.

Define the witness r-boundaries to be the bigraded R-modules BW}"(A) = 0, BW!9(A) = AP? and for
r>2,

BWPITH(A) = ZWPH T2 (A) @ AP @ ZWPTTH(A).

Writing elements of BW;>*(A) as (bo, . ..,br—2;a;5¢0,...,cr—2) witha€ A** and (bo, ..., br—2), (coy. .-, Cr—2)
€ ZW, (A), there is a natural bidegree (0,1) map of bigraded R-modules

Br: BWP41(A) — BP9(A)

given by By =0, 61 = dp and for r > 2,

r—1

(bOa s 7b7"—2; a;Co, - - -, CT—Q) — doa’ + Z(_l)idibT—i—l-

=1

We note that the maps z, and (3, are surjective.

The final ingredient we need here is a map from witness boundaries to witness cycles. The following
lemma is a check necessary for the definition of this map.

Lemma 3.5. For r > 2, the map of bigraded R-modules specified by

r—1 r 2r—2
(bos ..., bp—2) — (Z(_l)idibr—l—i, - Z(_l)idibr—ia (=t Z (=1)'dibar—2-),
=1 i—2 i=r

gives a map from ZWEHT=LITTT2(A) o ZWPA(A).
Proof. Let b= (bo,...,by_o) € ZWPT 19T 2(A) and for 0 < j <7 —1 let
Ar+j71
a; = (*l)j Z (71)kdkbr+j_1_k.

k=j+1

Proving that (ag,...,ar—1) € ZWP(A) amounts to computing, for 0 <1 <r —1:
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r—2 l
Z (—1)'dia; = Z(—l)rflft (Z(—l)ididwllti) by

i+i=l =0 i=0
r—2 r+l—1—t
=) (=) ( Z (_1)Zdidr+l—1—t—i> bt
t=0 i=l+1

by the multicomplex relations

I+r—1 r4+l—1—1 ]
Z (—1)l_1di< Z (_1)l+r—1—t—zdr+lltibt>

i=l+1 t=0

=0  since be ZWPThItr2(4),
Thus the image of (by, . ..,by—_2) lies in ZWP(A), as required. O
Definition 3.6. The bidegree (0,1) map of bigraded R-modules
wy: BWPI™HA) = ZWPI(A)

is given by wg = 0, w1 = dy and for r > 2,

(b07 MR} bT—Z; a; CO’ ce CT‘—Q)
r—1 ) T ) r+1 ,
Ty (d()a + Z(—l)zdibrflfi, dia — Z(—l)zdibrfi + ¢g, doa + Z(—l)zdibr+1,i +c1,...,
=1 =2 =3
2r—2 )
dr_ya+ (—=1)"1 Z (=1)'dibar—2—; + cr—2).

This is well-defined as it is the sum of the map defined in Lemma 3.5 and the maps
APt s ZWPA(A), a— (doa,dia,dsa, ..., d._1a)
and
ZWPTHHA) — ZWPI(A), (coy. .. cr2) — (0,¢0,. .., Crs)
which are well-defined due to the definition of multicomplexes and of ZW,..
All these definitions extend naturally to functors from multicomplexes to R-modules and natural trans-
formations. By abuse of notation we will also denote by ZWP4 BWP4 the restriction of these functors to

the category of n-multicomplexes.

Proposition 3.7 (/2, Proposition 4.3]). For every r > 0, for every p,q € Z, and for 2 < n < oo there is a
commutative diagram of natural transformations of functors n-mCgr — R-Mod

_ Wy
BWpa—l My zyypa

Brl lz

g ‘" 7Dq Ul D,q
B zZp1 —— EP
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and the natural transformation m, = mo z.: ZWP9 — EP9 induced by the above diagram satisfies
ker 7w, (A) = imw,(A)

for every n-multicomplex A. In particular, EP-9(A) =2 ZWP9(A)/w,(BWPI71(A)).
Under this isomorphism, the differential on the r-page of the spectral sequence

0r: ZWPU(A) Jw, (BWEITHA)) — ZWETTITT(A) fw, (BWET177(A))

is given by

I I T

[(ao, a1, ar—1)] = | (=D'diar—i, > (=1)'digrar—i,..., > (=1)'digr_10,_;)

i=1 i=1 =1

Proof. The result is trivial for r = 0 and r = 1, so we consider r > 2. It is straightforward to check that
the diagram commutes. We next show that ker 7, C imw,. If a = (ag,a1,...,a,-1) € ZWP9(A) satisfies
7r(a) = 0, this means that z,(a) € BP1(A), i.e., ap € BP'9(A). By (2), there exists (bg,b1,...,br—2;b._1) €
ZWPH=hIHT=2(A) @ AP4=1 such that ag = 31— (—1)idib,—i 1.

Let us compute

(ag;- -, ar—1) —wp(bo, -, br—2;0,-150,...,0) =

r r+1 2r—2
0,a1 + Z(*l)zdibr—ia az — Z(*l)ldibrﬂ—i, R o ) L Z (—1)'d;bar—2—;).
i—1 i—2 i=r—1

=:(0,c0,C1,--+,Cr—2)
A computation shows that (co,c1,...,¢—2) € ZWP7771(A) so that
a=wq(bo,.-,br—2;br_1;C05--.,Cr_2) € IMw,.
Conversely we have
T O Wy :Wozrowr:WOLroﬁr =0,

so that im w, C ker ,..
Another calculation shows that the claimed differential 0, gives a well-defined map on ZW,(A)/
wyr(BW,.(A)). Indeed, if a = w,(bg, ...,br—2;br_1;¢0,...,Cr_2), then

67’(@) = wr<COa ceey Cr—2; 57”71;'707 o 7’7r72)7

where 8,1 = 320 (=1)"dyr 1 by and v; = 327 Sy (~ 1) didrg gk —ibpg, for 0<j < —2.
It is straightforward to check that ¢, corresponds to the differential A, under the isomorphism. 0O

Lemma 3.8. Let A € n-mCg. Forr > 1, the kernel of the map w,: BWP4=Y(A) — ZWP1(A) is isomorphic
to ZWPtr=Latr=2(A) wia the map (b;a;c) — (b, a).

Proof. This is clear from the definition of w,.: the element (b; a; ¢) being in ker w,. means that ¢ is completely
determined in terms of (b, a) and that doa = — 37—, (—1)?d;b,_1_;. Together with b € ZWPH/~Ht72(4),
this gives exactly that (b,a) € ZWpPFTr—Latr=2(4). 0O
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The following result is straightforward.

Lemma 3.9. The following commutative diagrams are pullback squares in the category of R-modules for every
r > 2 and every n-multicomplex A.

ZWPUA) —— ZWPI(A) ZWPa(A) — ZWETTHHITTH(4)
l J{do Pvi ldo
0 ——— ZWPeti(4) ZWP9 (A) 2 Zwp LT (4)

Here m,. is the projection onto the last coordinate, p, is the projection onto the first r — 1 components, and

r—1 r—1
D, 1= Z(—l)iﬂdii (ag, ... ar_2) — Z(_l)i+1diar—l—i- 0
i=1 i=1

The maps 7., pr, do and D,_; define natural transformations between the functors ZWpF 9, and as a
consequence we obtain the following proposition.

Proposition 3.10. The following commutative diagrams are pullback squares in the functor category
Fun(n-mCgr, R-Mod) for every r > 2.

ZWPT ——— ZWPe ZWpa Ty ZwprthaTrt
| | .| |«
p,q+1 pg Dr-1 p—r+1,q—r+2
0 — ZW} ZWra = Zwi

Proof. Since R-Mod is complete, limits in the functor category exist and they are computed objectwise, so
the result follows directly from Lemma 3.9. O

Remark 3.11. Similarly to [2, Remark 4.5], for 2 <n < oo, if f: A — B is a morphism of n-multicomplexes
and r > 1, then the following are equivalent.

(1) The maps ZW,.(f), ZW,_1(f) and f are surjective.
(2) The maps E,(f) and ZW,_1(f) and f are surjective.

3.3. Representing elements
We now describe suitable representing objects for the witness cycles and boundaries previously defined.

Definition 3.12. Let 2 < n < oo. The n-disk at place (p,q), denoted D"(p, q), is the n-multicomplex freely
generated by a single element x in bidegree (p, q), in the sense of satisfying the following universal construc-
tion. For any n-multicomplex A, every map of bigraded sets {x} — A extends uniquely to an n-multicomplex
morphism D"(p, ¢) — A such that the following diagram commutes:

{z} = D"(p,q)

o —
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By definition the n-multicomplex D™ (p, q) freely generated by x in bidegree (p, q) is the quotient of the
free bigraded R-module generated by all finite words d;, d, ...d;, (z), & > 0,0 <iy,...,i <n—1, by the

relations

> (~1)'did;(x) = 0 for 1 >0,
i+j=l

with differential

Remark 3.13. Using the relations, one can rewrite any word d;, d,, ... d;, () by swapping any occurrence of
do with all the higher structure maps to its left. The rewriting process and the relation d3 = 0 ensure that
every word is a linear combination of words of the form

did; dy, ... d;, (), for i € {0,1}, k>0, 0 <iy,...,ip <n— 1. (3)

It is clear from this description that the dg-homology of an n-disk is 0.

The words listed in (3) above form a basis for the oo-disk; see [10, Definition 5.4] for an explicit description
of the oo-disk for multicomplexes concentrated in the right half-plane. For n finite, the words listed in (3)
are not necessarily distinct or nonzero, so do not form a basis for the n-disk.

Example 3.14. The 3-multicomplex D3(p, q) can be depicted as follows.

iosEs

Here each vertex marked e represents the ring R, each vertex marked ee represents R&® R, the vertex marked

* represents R in bidegree (p,q) and the arrows are

0
do; 0—1)07 oﬁ)oo’ ooﬂ)o,
1 1) (6%)
dlj o—)o7 o—)oo’ oo—)oo’
(o) (01)

d2: ai)-’ .HCC’ e — S o,

Definition 3.15. Let 2 < n < co. Define the n-multicomplex ZWy (p,q) = D"(p, q), define ZW7 (p, q) to be
the pushout

n dg n
ZW4(p,q+1) —— Z2Wq(p, q)

| b

0 ——— ZWi(p.9)

in the category of n-multicomplexes, and for r > 2, define ZW;!(p, q) recursively to be the pushout
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"
ZWgp—r+1,q—r+2) —— ZWg(p—r+1,q—r+1)

D;k-flj/ ljr—l

ZW; 1 (p.q) R 2ZW!(p,q)

in the category of n-multicomplexes. Here, for all » > 1, writing = and a,_y for the generators of ZWg (p —
r+1,g—r+2)and Z2W((p —r+1,q — r + 1) respectively, the morphism df is

dz;((ﬂ) = doar_l.

By abuse of notation, we also denote the element jo(ag) in ZW7(p,q) by ag. For r > 2, we recursively
define the morphism D} _; to be

r—1
r—1(2) = Z(_l)iﬂdiar—pi,

i=1

and again by abuse of notation, we denote the elements i,_1(as) (0 < s < r—2) and jr_1(a,—1) in ZW (p, q)
by as (0 < s <r —2) and a,_; respectively.

Example 3.16. The 3-multicomplex ZW3(p, q) can be depicted as:

Tz
The 3-multicomplex ZW3(p, q) can be depicted as:

Definition 3.17. Define the n-multicomplexes
BWg(p,g—1) =0, BWi(p,g—1)=D"(p,¢ 1)
and for r > 2, define the n-multicomplex BW) (p,q — 1) to be
BWi(p,q—=1)=ZW] (p+r—Lq+r=2)&D"(pq-1) & ZW (p—1,94—1).
Lemma 3.18. Let 7 > 0 and let p,q € Z and 2 < n < co.

(1) Giving a morphism of n-multicomplezes ZW; (p, q) — A is equivalent to giving an element in ZWP(A).
(2) Giving a morphism of n-multicomplexes BW;. (p,q) — A is equivalent to giving an element in BWP1(A).

Furthermore, these statements are functorial, so that ZW, (p,q), BW, (p,q) are representing n-multi-
complezes for the functors ZWP94, BWP1: n-mCr — R-Mod respectively.

Proof. The case r = 0 in part (1) is immediate from the definition of ZW{(p,q) = D"(p,q). For r > 1
we proceed inductively: assume ZWP% = n-mCgr(ZW;_,(p,q), —) as functors n-mCpr — R-Mod. It is
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an easy check that the n-multicomplex morphisms dj and D}_; correspond to the natural transforma-
tions dp and D,._; in Proposition 3.10 under the Yoneda embedding Y: n-mCgr — Fun(n-mCg, R-Mod)°P.
Furthermore, ) takes pushout squares in n-mCpg to pullback squares in Fun(n-mCg, R-Mod), hence
ZWPr1 = n-mCgr(ZW) (p,q),—) by Proposition 3.10. Part (2) is now immediate from the definition of
BWPi(A). O

Lastly, for > 0, define ¢,.: ZW. (p,q) — BW:(p,q— 1) to be the n-multicomplex morphism correspond-
ing to the natural transformation w,: BWP4=1 — ZWP4 under the Yoneda embedding ). Under these
correspondences, a commutative diagram of n-multicomplexes of the form

ZW(pg) —— A
L,.l Jf

corresponds to a pair (a,b), a € ZWP4(A), b € BWP9~1(B) such that ZW,.(f)(a) = w,(b).

The following two results will be useful for constructing our model category structures.

Lemma 3.19. Let 2 < n < co. For r > 1 the n-multicomplex ZWg(p,q — 1) is a retract of BW. (p,q — 1)
and for r > 2 the n-multicomplex ZW,'_1(p — 1,q — 1) is a retract of BW) (p,q — 1).

Proof. Immediate from the definition of BWE?. O
Lemma 3.20. Let 2 < n < oco. Forr > 1, the diagram

ZW;(p,q) > 0

BW!(p,q—1) —— ZW (p+r—1,q+1 —2)

is a pushout diagram in n-multicomplezes.

Proof. By Lemma 3.8, the following diagram is a pullback square in the functor category Fun(n-mCg,
R-Mod) for r > 1.

ZWptr—latr=2 __, Byypa-1

| b

0 ——— ZWpa

The result now follows by Yoneda’s lemma. 0O
3.4. Model category structures

In this section, we present the model structures on n-multicomplexes. We are able to exploit the r-cone
defined for the case of bicomplexes.

We denote by C, the bicomplex ZW?2(0,0). We recall from [2] that for r = 0 it is depicted as a square,
and for r > 1, it is depicted as a staircase graph with r horizontal steps as follows, where each vertex marked
« represents R, each arrow represents the identity map and the vertex marked * represents R in bidegree
(0,0).
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o — %

T

e {— o

We may write C,. = Z;é RB_k.—k @@Z;é RB_k—1,—k with the differentials do, d; indicated by the graph,
and f3; j a generator of bidegree (i, j). Since C, is a bicomplex, we may also view it as an n-multicomplex, for
2 <n < oo. Then for any n-multicomplex A, with 2 < n < oo, we have that C, ® A is an n-multicomplex,
using the symmetric monoidal structure on n-mCg.

Proposition 3.21. Let 2 < n < co. Let A be an n-multicomplex and r > 0. Then E,11(C, ® A) = 0.

Proof. Proposition 4.29 of [2] proves that C, is r-contractible in the sense that the identity map of C, is
r-homotopic (in the category of bicomplexes but also in that of multicomplexes) to 0. As a corollary, for
any multicomplex (and thus for any n-multicomplex A), C,. ® A is r-contractible, hence by [3, Proposition
3.24], B11(Cr,® A)=0. O

Proposition 3.22. Let p,g € Z and 2 < n < co. Let A be an n-multicomplexr and r > 0. The projection
morphism ¢, : C,. ® A — A has the property that ZW,f’q(d)r) is surjective for 0 < k <r.

Proof. The case r = 0 is trivial. Let us assume r > 1. Let (ag,a1,...,a,—1) be an element of ZWP1(A),
with a; € AP~597% We have

Z (=1)'d;a; =0 for 0<1<r—1.
i+j=1

For 0 < k <r — 1, we define the element

k
X = Zﬁﬂ-,,i R ar_; € (CT ® A)p—k,q—k.
i=0

Let us prove that (Xo,...,X,_1) is an element of ZW,.(C, ® A). Fix 0 <1 < r — 1 and compute

! I 1—i
Z(—l)idin,i = Z(—l)idi(z Bj—j ® ar—i—j)
i=0 i=0 j=0
! -1
= (dof—j—j) @ ar—j — Y (dif—j—j) ®ar-1-;

=0

<.
o

I—

+ Z (18— ® ( (_l)idial—i—j)

j ;

<.

Il
=]

i
-1

Bojjri®aj—Y Bj1-j®a ;=0
1 j=0

<.
Il

Hence, the induced map ZW,.(¢,) on ZW,.(C, ® A) satisfies
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ZWT(¢T)(X07 ce ;Xr—l) = (ao, .. .,ar_l).

Note that since (X, ..., Xx) € ZWi(C, ® A) is defined from the data (ao,. .., ax), the same proof applies
to ZWi(¢y), for 0 < k <r. O

Remark 3.23. Let C>° be the multicomplex Reg o @ Re_, 1—, with only non trivial differential d,(ego) =
e_r1—r. We have that C2° is an r-contractible multicomplex, with ho(e_,1-,) = e o satisfying d,ho+hod, =
1ces. Hence, for any multicomplex Y, C2°®Y is r-contractible. In addition the projection 7: C2*®Y — Y
induced by the projection of C2° onto Reg o satisfies ZW, () is surjective for all 0 < s < r: it is easy to see
that if (ag,...,as—1) € ZW,(Y) then (eg o ® ag, ..., €00 Q@ as—1) € ZW,(CX QY).

Definition 3.24. Let 2 < n < oco. For r > 0, consider the sets of morphisms of n-multicomplexes

n L1 n n n
= { EWIL A (pq) — BW (g — 1) } and J = { 0 —— 2W}(p,q) |

p.g€Z P,q€Z

Proposition 3.25. For each r > 0, a map f is J*-injective if and only if ZW,.(f) is surjective.
Proof. This follows from (1) of Lemma 3.18. O
Proposition 3.26. For all r > 0 and 2 < n < oo, we have I'-inj = £ N J§-inj N J;*-inj.

Proof. The proof proceeds exactly like that of [2, Proposition 4.35], the corresponding result in the bicomplex
case n = 2, using Lemmas 3.8, 3.18, 3.19, 3.20 and Remark 3.11. O

Proposition 3.27. For allr >0, 2 <n < oo and all 0 < k < r we have JJ'-cof C &,

Proof. Let r > 0and 0 <k <rand f: X — Y € J}'-cof. Consider the following diagram.

(%)

X — X3 ((,QY)

1 Jow
Y

—FY

From Propositions 3.22 and 3.25 the right-hand vertical map is Jj-injective so there is a lift in the
diagram. From Proposition 3.21 one has E,1(C, ® Y) = 0. Applying the functor E, 1 to the diagram, we
see that E,y1(f) is an isomorphism. Note that in the case n = oo the proof also holds using C2° (instead
of Cy) and Remark 3.23. O

Theorem 3.28. For every r > 0 and 2 < n < oo, the category n-mCpr admits a right proper cofibrantly
generated model structure, where:

(1) weak equivalences are E,.-quasi-isomorphisms,

(2) fibrations are morphisms of n-multicomplexes f: A — B such that f and ZW,.(f) are bidegree-wise
surjective, and

(3) I and JJ U JY are the sets of generating cofibrations and generating trivial cofibrations respectively.

Proof. The proof is standard (see, for example, the proof of [2, Theorem 3.14]) and uses Proposition 3.25,
Proposition 3.27 and Proposition 3.26. 0O
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As in the bicomplex case, in certain situations it may be easier to characterize fibrations if they are
described in terms of surjectivity of E; instead of ZW,..

Definition 3.29. Let (I*)" and (J*)’ be the sets of morphisms of n-mCp given by
(I2) i= GZhJp U I amd (J2) = Up_ g Ji
The proof of the following result is analogous to that for bicomplexes [2, Theorem 4.39].

Theorem 3.30. For every r > 0 and 2 < n < oo, the category n-mCpr admits a right proper cofibrantly
generated model structure, denoted (n-mCg),, where:

(1) weak equivalences are E.,.-quasi-isomorphisms,

(2) fibrations are morphisms of n-multicomplezes f: A — B such that E;(f) is bidegree-wise surjective for
every 0 <i <r, and

(3) (I) and (JI)" are the sets of generating cofibrations and generating trivial cofibrations respectively. 0O

Definition 3.31. We refer to the model structure (n-mCpg), of Theorem 3.30 as the r-model structure. The
terms r-fibrant, r-cofibrant and r-trivial all refer to the corresponding notions in this model structure.

Remark 3.32. Note that the generating (trivial) cofibrations of the model structure of Theorem 3.28 form
a subclass of the generating (trivial) cofibrations of the model structure of Theorem 3.30. Moreover, these
two model structures have the same weak equivalences. Thus, for each n with 2 < n < oo and each r > 0,
the identity functors give a Quillen equivalence between (n-mCg), and n-mCpg with the model structure of
Theorem 3.28.

4. Relationships between model category structures

In order to compare our model structures on n-multicomplexes as n varies, in this section we reinterpret
n-multicomplexes as modules over a graded associative algebra in the category of vertical bicomplexes.

4.1. Monoids in vertical bicomplexes

Recall from Section 2 that the category 1-mCpr = vbCpg has as objects vertical bicomplexes, and that it
is a symmetric monoidal category. A monoid (M, dy) in this category is a vertical bicomplex endowed with
a unital and associative multiplication M ® M — M compatible with the differential dy. In other words,
it is a unital bigraded (associative, not necessarily commutative) R-algebra, endowed with a derivation of
algebras g of bidegree (0,1) such that 62 = 0. For simplicity, we call such an object a dg algebra. This is
only a slight abuse of terminology — this differs from the usual notion just by having an extra grading.

Consider R(dy,ds,...,d;,...), the free bigraded associative R-algebra generated by the bigraded set
{d;,i > 1}, with d; of bidegree (—i,1 — 7).

For k > 1, we consider the following element of R{d,ds,...,d;,...):

Se= > (=1)"'d;d;,
B
in bidegree (—k, 2 — k), with the convention that S; = 0.
Since R{dy,ds,...,d;,...) is a free associative algebra, a derivation dy on R(dy,da,...,d;,...) is deter-
mined by its values on the generators d;. Set, for ¢ > 1,
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So(d;) = S;.

Proving that 63 = 0 amounts to proving that Jo(S;) = 0, which is standard.
For n > 1, let I,, be the two sided ideal of R{dy,ds,...,d;,...) generated by the elements S; and dj, for
k > n. The definition of §y shows that this ideal is compatible with the differential. By convention I, = {0}.

Definition 4.1. Let Co, be the dg algebra R{(d;,ds,...,d;,...) endowed with differential dy as above. And
for n > 1, let C,, be the dg algebra

Crn = (Coo /I, d0).
For 1 <n <1 < 00, we have I; C I, and thus a surjective morphism of dg algebras
D ,:C— Cp.
Proposition 4.2. If 2 <n <1 < oo, then ®;,,: C; — Cy, is a quasi-isomorphism of vertical bicomplezes.

Proof. For 2 < m < n <[ < oo we have ®;,, = ®,,, 0 ®;,. By the two-out-of-three property of
quasi-isomorphisms, it is enough to prove that the maps ®, ,: Coc — C, are quasi-isomorphisms for all
2 <n < oo.

For n = 2, we have C2 = R(d1)/(d%) with 6y(d1) = 0. Hence it is enough to prove that the induced map
on the homology with respect to dg, H**(Pso,2): H**(Coo) — H**(C2) is an isomorphism. In order to do
so we build a homotopy h: Coo — Coo. Any element in Co, is a linear combination with coefficients in R of
words of the form d;, ...d;, with ¢; > 1. The empty word corresponds to 1z and we define h(1g) = 0. Let
h be the R-linear map determined by

0, ifk=1ori >1,
di2+1~-~dik; if k> 1and iy = 1.

h(d;, ... ds,) :{

Note that for any word w we have h(S;w) = d;w for i > 2. Let us compute:

(50}1 + h(so)(lR) =0, (50}1 + h(so)(dl) =0,
((Soh + héo)(dz) = h(S,) =d;, for i > 2.

For k > 2,

((5()h + h(S())(dldlz e dzk)

k
= 50(di2+1d1‘3 R dzk) + Z(71)i2+1+m+i7‘71+1h(d1d1‘2 . 50(d17) e dlk)

=2
k k
= Z(_1)z2+2+...+1j—1+1di2+1 R SzJ cod, + Z(—1)12+1+...+1j—1+1di2+1 o Sij dy,
j=3 Jj=3
+ Sipgadiy .o dig + Y (=1 dypaduds, . d;,
u+v=1q
u,v>1

= dyd;,d;, ... d;,,

and for i; > 1
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((50]1 + héo)(dildiQ e d,k) = h(Sildiz L. de) = di1di2 - dik~
So HP9(Cog) = 0 for every (p,q) ¢ {(0,0), (~1,0)}. In addition
(Coo)™* =R, €M = Rdy, €371 =C 7 =0,

hence @ 2 is a quasi-isomorphism.

Let us prove that for any n > 3 we have h(I,) C I,,. Any element in I, is a sum of elements of the form
abe, with a,c € C, and b= Sy, or b = d, for some k > n. If a # 1g and a # d; then h(abe) = h(a)be € I,,.
Assume a = 1g and let &k > n > 3.

o If b = dj then h(dkc) =0.
o If b= Sy then h(Skc) = dpc € I,,.

Assume a = d;.

o If b =dj, then h(didyc) = dgy1c € I, since k+1>n+1>n.
o If b =S5} then

h(diSke) = Y (1) h(didudye) = Y (1) dyyrdye = —Spirc+ didyyac € I,

utv=~k utv=k
u,v>1 u,v>1

The quotient map ® ,: Coxc — C,, has kernel I,, and h: I, = I,, is a homotopy from the identity of I,, to
0. Hence I, is contractible and the morphism is a quasi-isomorphism. O

Remark 4.3. The morphism ® 2: Cc — C2 corresponds to the Koszul resolution of the operad of dual
numbers Co (see for example [9, 10.3.16]), hence it is a quasi-isomorphism. The proof given here via the
homotopy A is not a consequence of this result, however, and this method has been chosen because it allows
us to treat the case of general n.

4.2. Quillen equivalences

Proposition 4.4. For 1 < n < oo, the category of C,-modules in vertical bicomplexes is isomorphic to the
category of n-multicomplexes.

Proof. In the category of vertical bicomplexes a (left) Coo-module is a bigraded R-module M endowed with
a differential d)! of bidegree (0, 1) together with an action \: Coo ® M — M compatible with the differentials
8o and d}!. Since C, is free as a bigraded R-algebra the action is determined by its values on d;,i > 1. We
denote by dM: M — M the map that associates A(d; ® m) to m. The compatibility with the differentials
gives that

dyfdl = > (=paYa) + (-1t d) dg,
i+j=n,i,j>1

that is, M is a multicomplex. In addition morphisms of C..-modules are morphisms of multicomplexes. This
completes the proof for n = co. A (left) C,-module is a (left) Co-module M such that dM =0 for all i > n,
hence an n-multicomplex. 0O

As a corollary, the dg algebra morphisms ®;,,: C; = Cp, for 1 < n <[ < oo induce pairs of adjoint
functors
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n-mCgr = C,-Mod % Ci-Mod = I-mCg
iLn
where the right adjoint ¢;,, is the restriction of scalars functor and the left adjoint p; ,(M) = C,, ®¢, M is
the extension of scalars functor. Note that if M is an n-multicomplex, then i; ,, (M) is the [-multicomplex
M withd, =...=d;_1 =0.
Recall that we write (n-mCpg), for the category of m-multicomplexes with the r-model structure of
Theorem 3.30.

Theorem 4.5. For 2 <n <1< oo and r > 0 the adjunction

(n-mCRg), L (I-mCg),
,n

is a Quillen equivalence.

Proof. It is a Quillen adjunction from Theorem 3.30, for the right adjoint preserves fibrations and trivial
fibrations. Note that the right adjoint reflects weak equivalences and that all objects are fibrant. Hence to
establish a Quillen equivalence it is enough to prove that for any r-cofibrant object M in I-mCpg, the unit
of the adjunction M — 4 ,p;, M is an E,-quasi-isomorphism (see [6, Corollary 1.3.16]).

Recall that any r-cofibrant object is O-cofibrant. Thus, if the unit of the adjunction is an FEy-quasi-
isomorphism for any 0-cofibrant object, then it is an E,-quasi-isomorphism for any r-cofibrant object, and
it is enough to treat the case r = 0.

Let us prove that the adjunction is a Quillen equivalence for » = 0. The model category structure
(n-mCgr)o corresponds to the transferred model category structure along the adjunction

n-mCpr = C,-Mod Cn% vbCpg,

where the right adjoint U, is the forgetful functor and the model category structure on vbCpg coin-
cides with the projective model structure on Z-graded cochain complexes, that is, weak equivalences are
quasi-isomorphisms with respect to the bidegree (0,1) differential dy, fibrations are bidegreewise surjec-
tive morphisms. A standard result (see [4, Proposition 11.2.10]) states that a morphism of dg algebras
a: R — S induces a Quillen adjunction between the categories of R-modules and S-modules (with the
transferred model structure from vbCp as seen above) through the restriction and extension of scalars
functors, and this is a Quillen equivalence if (and only if) « is a quasi-isomorphism. Hence, Proposition 4.2
implies that the Quillen adjunction

Pi,n
(n-mCr)o =—= (I-mCgr)o
in
is a Quillen equivalence, that is, M — 4; ,p;.n M is an Eyp-quasi-isomorphism for every 0-cofibrant object M
inl-mCg. O

Remark 4.6. In the previous proof the model category structure considered in vbCp is precisely (1-mCg)g.
The adjunction
2,1

p
(1—mCR)0 - (2—11103)0

12,1

is a Quillen adjunction, however it is not a Quillen equivalence. Indeed, ZW% (0,0) is O-cofibrant in 2-mCp
and the unit of the adjunction for this object is the projection onto the (0, 0)-coordinate
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ZW3(0,0) — R™®
which is not an Ey-quasi-isomorphism.
5. Model structures on bounded multicomplexes

In this section, we will apply the transfer theorem to give model structures on certain categories
of bounded n-multicomplexes. We obtain such transferred model structures on (—N,Z)-graded n-
multicomplexes for all » > 0 and on (Z,N)-graded multicomplexes for » = 0. Our exposition of the
transfer principle follows [1, Sections 2.5-2.6].

Theorem. Let M be a model category cofibrantly generated by the sets I and J of generating cofibrations
and generating trivial cofibrations respectively. Let C be a category with finite limits and small colimits. Let
L
M ? C

be a pair of adjoint functors. Define a map f in C to be a weak equivalence (respectively fibration) if R(f)
is a weak equivalence (respectively fibration). These two classes determine a model category structure on C
cofibrantly generated by L(I) and L(J) provided that:

(1) The sets L(I) and L(J) permit the small object argument.
(2) C has a functorial fibrant replacement and a functorial path object for fibrant objects.

Furthermore, with this model structure on C, the adjunction L 4 R becomes a Quillen adjunction.

Recall that a path object for X is a factorisation of the diagonal map X — X x X into a weak equivalence
followed by a fibration X — P(X) — X x X. To apply the transfer theorem, we first need to show the
existence of r-path objects for n-multicomplexes. For this, we adapt [3, Section 5] to our context.

5.1. Path objects for n-multicomplezes

As with the r-cone, we start with constructions for bicomplexes and then extend to n-multicomplexes
using the tensor product.

Definition 5.1 (/2]). For r = 0, we define the 0-path Ay as the bicomplex

RO,l

T

(R® R)0.

For r > 1, define the r-path A, as the bicomplex whose underlying bigraded module is R%? @ ZW%(O, 0)
and whose differentials coincide with those of Z2W?2(0,0) except for d)"° which is:

(-11)
ZW?(0,0)" 10 = R—1.0

(R® 2W2(0,0))°° = (R® R)*V .
Example 5.2. The 1-path A; is the bicomplex given by

R0 (R R)OC.
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The 2-path A, is given by

(-11)

R0 «— (R® R)*"
R—Q,—l <17 R_l’_l

More generally, we write

r—1 r—1
A =RB_ @ @ RB_; @ RB ;1
=0 i=0

where /3, , has bidegree (u,v) and S_ has bidegree (0,0), with nonzero differentials given by

di(Boo) = —di(B=) = B-1,0, do(B—i,—i) = B—i,1i—i, d1(B—i,—i) = B—i—1,—4;
forl1<i<pr-—1.

Lemma 5.3. For r > 1, there is an isomorphism of bicomplezes p,: A, — R*9 @& C, where C,. = ZW?3(0,0)
has been defined in Section 3.4.

Proof. Let us keep the notation 3, , for both the generators of A, and C. and let e be a generator of RY0,
The map of bigraded modules ¢,: A, — R%? & C, which associates e — By to S and By, t0 By, for
(u,v) € {(=i,—1),(—=i —1,—10),0 < ¢ < r — 1} is an isomorphism of bicomplexes since ¢,do(-) = 0 =
do(e — o) and @,di(B-) = —f_10 =di(e — fop). O

Let us consider the following morphisms of bicomplexes

T=0_+04

ROO Ly A, (R&® R)*°

where ¢ sends e to B + (o0 and J_ is the projection onto RB_ and 04 is the projection onto RS 0.
Proposition 5.4. Forr > 0,
t: R%° — A,
is an r-homotopy equivalence.
Proof. If » > 1, since an isomorphism is an r-homotopy equivalence, it is enough to prove that the composite

ot =1p®0: R 30 — R @ C, is a r-homotopy equivalence, which is a direct consequence of the r-
contractibility of C,. proven in Proposition 4.29 of [2]. Similarly, if = 0, then the bicomplex

RO,l

is 0-contractible and the proof follows. O
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Definition 5.5. For A an n-multicomplex, the r-path object P.(A) is the n-multicomplex A, ® A. We denote
by t4 and w4 the maps ¢t ® 14 and m ® 14 so that the diagonal of A factors as

A5 PA) 2 Ad A .

This construction is functorial, with P.(f) = 15, ® f: P.(A) — P.(B), for f: A — B a morphism of
n-multicomplexes.

Remark 5.6. As a bigraded module we have

pO(A)p,q =AP1 @ Ap-a—1 @ AP

r—1 r—1
P.(A)P? =AP? g @ APTLatt g @AP"'HI"’H, for r > 1.
=0 =0

Proposition 5.7. Let A be an n-multicomplex and r > 0. The path object P.(A) is an r-path object for A.
Indeed, the map ta: A — P.(A) is an r-homotopy equivalence, hence an E,.-quasi-isomorphism and the
map wa: P.(A) = A® A is an r-fibration in the model structure of Theorem 3.30.

Proof. That ¢4 is an r-homotopy equivalence is a direct consequence of Proposition 5.4. For the second
assertion, the case r = 0 is trivial and for » > 1, we consider the following commutative diagram of
n-multicomplexes

P(A) —™ 5 Aa A

14 0
[ [0

Ao (CroA) “8% Aq 4

The vertical maps are isomorphisms, hence 74 is an r-fibration if and only if 14 & ¢, is an r-fibration,
which is so by Proposition 3.22 together with Remark 3.11. O

Remark 5.8. A path object for n-multicomplexes when n = oo is given in [3, Section 3.4].
5.2. Model structures on bounded n-multicomplezes

For 2 < n < oo, recall that n-mCg denotes the category of (Z, Z)-graded n-multicomplexes of R-modules.
The categories of (=N, Z)-graded (left half-plane) and (Z, N)-graded (upper half-plane) n-multicomplexes
of R-modules will be denoted by n-mC_y 7z and n-mCgz y, respectively.

By Proposition 4.4, the category of n-multicomplexes is isomorphic to the category of C,-modules in
vertical bicomplexes, previously denoted C,-Mod. In this section, we will write (C,-Mod)z 7z when we want
to emphasize the (Z,Z)-grading.

Similarly, the category n-mC_y z is isomorphic to the category of C,,-modules M in vertical bicomplexes
concentrated in bidegrees lying in the left half-plane (i.e., with M?? = 0 if p > 0), where the latter is
denoted by (C,-Mod).N z.

We show that the inclusion functor from n-mC.y 7z to n-mCg has a left adjoint by showing that the
corresponding inclusion functor from (C,-Mod).,z to (C,-Mod)z 7z has a left adjoint.

Let 2 <n < oo and let (M, d}*, \) be a C,,-module, where \: C,, ® M — M denotes the module action.
Let M<o and M~ denote the vertical bicomplexes given by
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0 ifp>0
M2 = { np and  MP{ =

MPe ifp>0
MPa if p <0,

0 if p<0.

It is clear that M<q is a C,-submodule of M, that M~ is not, but A(C,, ® M=) is. Hence the intersection
ACr, ® M=) N M<g is a Cp-submodule of M<y.

Lemma 5.9. The projection m: M — M<o/(AC,, ® Mso) N M<o) which maps m to 0 if m € M~ and to its
class if m € M<q is a morphism of C,,-modules.

Proof. For m € M and z € C,, let us write z - m for A(x @ m).

Assume m € Mso. If - m € My, then n(x - m) =0 =2 -7(m). If - m € M<g, then z-m €
ACp, ® M=) N M<g, hence 7(z-m) =0 =z - m(m).

Assume m € M<g. Since M<q is a Cp-submodule of M, 7(x-m) =z -m(m). O

Proposition 5.10. The natural inclusion functori: (C,-Mod) n z — (C,-Mod)z z has o left adjoint t given
on objects by

t(M) = M<o/(MCpr, ® M=) N M<g) for a C,-module M,
and on morphisms by sending a map of C,-modules to the induced map on the subquotient.

Proof. Let M € (C,-Mod)z, z and N € (C,-Mod).n,z. Given a morphism f: t(M) — N in (C,-Mod).N z,
consider the composite

f:Mint(M)im'(N):N,

where 7 is the morphism of C,,-modules defined in Lemma 5.9, so that f is a morphism of C,,-modules. On the
other hand, if f: M — #(N) = N is a morphism of C,,-modules, then M~ C ker f and A\(C,,@ M=o)NM<o C
ker f. Hence, f induces a morphism f: t(M) — N such that f = fr. O

Theorem 3.30 shows that for each r > 0, there is a cofibrantly generated model structure on n-mCgz z
where a map f is a weak equivalence if it is an E,-quasi-isomorphism, and a fibration if E;(f) is surjective
for 0 < i < r. The generating cofibrations and generating trivial cofibrations are denoted (I*)" and (J)
respectively. An application of the transfer theorem gives the following.

Proposition 5.11. For each r > 0, there is a cofibrantly generated model structure on n-mC.N,z, where

(1) weak equivalences are E,.-quasi-isomorphisms,

(2) fibrations are morphisms of n-multicomplexes f: A — B such that E;(f) is bidegree-wise surjective for
every 0 <1¢ <r, and

(3) the generating cofibrations and generating trivial cofibrations are t(I™) and t(J*) respectively.

Proof. We apply the transfer theorem to the adjunction ¢ - ¢ of Proposition 5.10. The descriptions of
the weak equivalences and fibrations are immediate as long as the transfer theorem holds. We check the
conditions (1) and (2) in the transfer theorem. Every n-multicomplex is r-fibrant, so the first part of (2)
trivially holds. Condition (1) holds as the functor ¢ preserves small objects. It remains to find functorial path
objects for (—N, Z)-graded n-multicomplexes. These exist because if A € n-mC_y z, then P.(A) € n-mC.n 7
by Remark 5.6. O
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It is also possible to transfer the model category structure to the upper half-plane in the case r = 0.
Similarly to above, we prove that the inclusion functor from n-mCgz n to n-mCgr has a left adjoint.

Proposition 5.12. For A € n-mCpg, there is a (Z,N)-graded n-multicomplex given by

AP qg>0
(H'A)PT = ¢ APO/dy(AP—1) ¢ =0
0 q <0,

with structure maps d; induced from those of A. Furthermore, this construction is functorial and there exists
an adjunction

’

t
n-mCr —/— n-mCz N
K3
where i is the natural inclusion functor and the functor t' is its left adjoint.

Proof. We check that for any A € n-mCg, t'(A) is an n-multicomplex. Consider A as a C,,-module (A4, dg, \)
in a natural way (see Proposition 4.4). Let A, _1 and Ao denote the following bigraded R-modules

,—1 ; — ) ;
Ap’q = AP lf q = ]. and Ap7q0 _ AP q lf q < 0
T 0 otherwise = 0 otherwise.

These are not vertical bicomplexes in general, but A,<o @ do(Ax« —1) is. Furthermore, this is a C,-submodule
of A and the quotient A/(Ag<o @ do(A« 1)) is a Cp-module which corresponds to ¢'(A). Hence t'(A) is an
n-multicomplex.

The functor t’ is a left adjoint. Let m: A — t/(A) be the projection in n-mCpg. For B € n-mCz n, a
morphism f: A — ¢(B) in n-mCpg satisfies do f(A«—1) = fdo(As,—1) = 0 and f(Ag<o) = 0. Hence Agco @
do(A,—1) is contained in ker f which implies that f corresponds to a well defined morphism f:t'(A) — B
such that f = fr. O

Proposition 5.13. For r = 0, there is a cofibrantly generated model structure on n-mCg N, where

(1) weak equivalences are Ey-quasi-isomorphisms,
(2) fibrations are morphisms of n-multicomplezes f: A — B such that f is bidegreewise surjective, and
(3) the generating cofibrations and generating trivial cofibrations are t'If and t' J' respectively.

Proof. The proof proceeds in the same way as that of Proposition 5.11, using the existence of a functorial
path object Py(A) for the category n-mCyz n when r = 0 (see Remark 5.6). O

6. Examples of cofibrancy and cofibrant replacement

In this section we give some examples of cofibrant and non-cofibrant objects. We will see that all the
objects appearing in our generating (trivial) cofibrations for the model structures of Theorem 3.30 have
trivial total homology. This leads naturally to the question of how one can build cofibrant objects with non-
trivial total homology and we explore this here. In particular, we note that the ground ring R concentrated
in a single bidegree is not a cofibrant object and we describe a cofibrant replacement in n-multicomplexes.
For example, in the case of bicomplexes, this is an “infinite staircase”. We also consider briefly what happens
under transfer of model structures to bounded versions.
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Example 6.1. For any p,q € Z, the n-multicomplex RP-? is not cofibrant in (n-mCpg), for 2 < n < oo and
r > 0. Consider the “corner” bicomplex, C(p, q), pictured below.

Rr—La <1_ RP:4

|

Rp—1.q-1

We can view this as an n-multicomplex for 2 < n < co. Define the map of n-multicomplexes 7: C(p,q) —
RP1 to be the identity on R in bidegree (p, q) and zero in all other bidegrees. Then 7 is clearly bidegreewise
surjective, so a O-fibration. Also, E1(C(p,q)) = RP? and E;(rw) is the identity map of RP*?. Thus 7 is a
trivial O-fibration.

Now we can test against this trivial O-fibration to see that RP'? is not 0-cofibrant. Indeed we find that
there is no lift R? — C(p, q) in the diagram of n-multicomplexes

C(p,q)

I l

RP4 — RP4

Any such lift f would have to take the generator 1g to the generator 1g in bidegree (p,q) in C(p,q),
but then for f to be a map of bicomplexes it would have to satisfy 0 = f(di11g) = d1 f(1r) = 1g, giving a
contradiction.

Since RP'4 is not O-cofibrant, it is not r-cofibrant for any 7.

Proposition 6.2. For p,q € Z, r,s >0 and 2 < n < 0o, ZW?%(p,q) is cofibrant in (n-mCg),.
Proof. Fixp,q € Z,r,s > 0and n with 2 < n < co. Note that a lift exists in the diagram of n-multicomplexes

A

= J

ZWMp,q) —— B

if and only if ZW;(f) is surjective in bidegree (p,q). Now suppose that f is an r-trivial r-fibration. Then
E;(f) is surjective for all ¢ > 0. Using Remark 3.11, it follows that ZW,(f) is surjective for all s. So the
required lift exists. O

Remark 6.3. If we use the r-model structure of Theorem 3.28 instead, the same line of argument shows that
ZW?2(p,q) is r-cofibrant for s > r.

Corollary 6.4. For every p,q € Z, s > 0 and 2 < n < oo, we have

RP9 @ Rp—s:q—s+1 ifl <i<s

Ei(ZWS(p,q)){O ifi>s+ 1.

Proof. The n-multicomplex ZW?Z (p,q) is r-cofibrant for any r > 0 by Proposition 6.2. We claim that
Pr2(ZW(p,q)) = ZW23(p,q) (see Section 4.2 for the definition of p, ). This follows from the defini-
tion of ZW7 (p, q) via successive pushout (Definition 3.15) and the fact that p, o is a left adjoint and so
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preserves pushouts, together with the initial cases p, 2(ZWy(p,q)) = ZW3(p,q) and Pn2(df) = d§. By
Theorem 4.5, since ZW"(p,q) is r-cofibrant, the unit of the adjunction ZW"(p,q) — ZW?(p,q) is an
FE.-quasi-isomorphism, for each r > 0, in particular an Ey-quasi-isomorphism. For the staircase bicomplex
ZWE (p, q) it is easy to read off the pages of the spectral sequence directly:

E(2W2(p.0) =

RPa @ RP—S:4—5FtL  if 1 <<
0 ifi>s4+1,

as required. 0O

Definition 6.5. Let p,q € Z and 2 < n < oco. We define ZW7,_(p,q) = lim ZW?2(p, q), where the colimit is
taken over the maps ZWy (p,q) = ZW{,(p, q) representing the projection maps ZWy, , — ZW}.

Example 6.6. When n = 2, the map Z2W?2(p,q) — ZW?> ,(p,q) is the inclusion of a staircase with s-
horizontal steps into a staircase with s 4 1-horizontal steps and ZW?2 (p, q) is the infinite (downwards to
the left) staircase bicomplex, with top right entry in bidegree (p, q):

.%f—*
L]

Proposition 6.7. Let p,q € Z and 2 < n < co. Then ZW?._ (p,q) — RP'? given by projection to RPY is an
r-cofibrant replacement of RP'? for all r > 0.

Proof. First we check that ZW?7, (p, q) is r-cofibrant for all » > 0. The relevant lift exists for ZW7_ (p, q) if
and only if compatible lifts exist for each ZWY (p, ¢). Such lifts do exist for each ZW? (p, q) by Proposition 6.2
and it is straightforward to check that they are compatible.

The map E.(ZWy (p,q) = ZW4,1(p,q)) is the projection to RP? if 1 <r < s and 0 otherwise, so we see
that E,.(ZWy, (p,q)) = RP? for all » > 1. And the projection ZW7 (p,q) — RP'? induces an isomorphism
on F, for all r > 1, that is, it is an E,-quasi-isomorphism for all » > 0. O

6.1. Upper half-plane versions
We consider the r = 0 model structure on upper half-plane n-multicomplexes from Proposition 5.13. The
generating cofibrations and generating trivial cofibrations are given by ¢'Iy and t'Jy. The interesting new

thing that appears is the cotruncation of ¢1: ZW;(p,0) — BW;(p, —1), which is t't; = 0: ZW;(p,0) — 0.
This allows one to see that RP'? is O-cofibrant, since we have a pushout diagram

ZWi(p—-1,00 —— 0

|

ZWi(p,0) —— RPO
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where the top horizontal map is a cofibration and ZW;(p, 0) is cofibrant. On the other hand, RP? for ¢ > 0
is not O-cofibrant, just as in Example 6.1. This shows (unsurprisingly) that in the 0-model structure on
upper half-plane n-multicomplexes, cofibrancy is not preserved under vertical shift.
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