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We present a family of model structures on the category of multicomplexes. There 
is a cofibrantly generated model structure in which the weak equivalences are the 
morphisms inducing an isomorphism at a fixed stage of an associated spectral 
sequence. Corresponding model structures are given for truncated versions of 
multicomplexes, interpolating between bicomplexes and multicomplexes. For a fixed 
stage of the spectral sequence, the model structures on all these categories are shown 
to be Quillen equivalent.
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1. Introduction

We provide a family of model structures on the category of multicomplexes of R-modules, for R a 
commutative unital ring. A multicomplex is an algebraic structure generalizing the notion of a (graded) 
chain complex and that of a bicomplex. The structure involves a family of higher “differentials” indexed by 
the non-negative integers. The terms twisted chain complex and D∞-module are also used. Multicomplexes 
have arisen in many different places and play an important role in homotopical and homological algebra. 
A multicomplex has an associated total complex, with filtration, and thus an associated spectral sequence.

For each r ≥ 0, we show that there is a cofibrantly generated model structure on the category of 
multicomplexes in which the weak equivalences are the morphisms inducing an isomorphism at the (r+ 1)-
th page of the spectral sequence. The fibrations are explicitly specified via surjectivity conditions.
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We also provide such models for certain truncated versions of these structures, the n-multicomplexes. 
We write n-mCR for the category of n-multicomplexes. The case n = 2 gives the category of bicomplexes 
and the results here recover those of [2]. Multicomplexes can be thought of as the case n = ∞ and we make 
frequent use of this notational device.

A key ingredient of the model structures is the explicit description of the spectral sequence associated 
to a multicomplex in [8]. The main techniques imitate the work of [2], using representable versions of r-
cycles and r-boundaries to provide generating (trivial) cofibrations for the model structures. One difference, 
however, is that we describe the representing objects for cycles via an iterated pushout process, as a direct 
description would be cumbersome. The model structures appear in Theorems 3.28 and 3.30, the latter being 
a minor variant of the former.

We introduce a graded associative algebra Cn in the category of vertical bicomplexes such that n-
multicomplexes can be viewed as Cn-modules in vertical bicomplexes. This allows us to set up, for fixed 
r, Quillen adjunctions relating the model structures of Theorem 3.30 on n-multicomplexes as n varies. In-
deed, the functors can be viewed as restriction and extension of scalars. We show that these adjunctions 
are Quillen equivalences for n ≥ 2. Multicomplexes can be viewed as the homotopy-coherent version of 
bicomplexes [9,7], so that one would expect ∞-mCR and 2-mCR to have equivalent homotopy theories. Our 
work confirms that this is the case for the r-model structure for each r and that the same is true for all the 
intermediate categories of n-multicomplexes.

Our results can be summarized as follows. We have a chain of adjunctions:

1-mCR 2-mCR 3-mCR · · · n-mCR · · · ∞-mCR.

Apart from at the far left, we may fix any r ≥ 0 and endow the categories with the r-model structure 
of Theorem 3.30. Equipped with these model structures, each adjoint pair, apart from the leftmost one, 
gives a Quillen equivalence. The category 1-mCR is the category of vertical bicomplexes, where the objects 
have only one non-trivial structure map, a vertical differential. In this case, we only have the r = 0 model 
structure, corresponding to the usual projective model structure on cochain complexes. Indeed, in this case 
the associated spectral sequence degenerates at the E1 page and the notions of equivalence in our hierarchy 
all coincide. The leftmost adjoint pair gives a Quillen adjunction for r = 0, but it is not a Quillen equivalence.

In the category of n-multicomplexes with the r-model structure of Theorem 3.30, let the weak equivalences 
be denoted En

r , the fibrations Fibn
r and the cofibrations Cof n

r . Then for all n ≥ 2 and r ≥ 0 we have

En
r ⊆ En

r+1, Fibnr+1 ⊆ Fibnr , Fibnr ∩ En
r ⊆ Fibnr+1 ∩ En

r+1, Cof nr+1 ⊆ Cof nr .

The paper is arranged as follows. In Section 2 we give the necessary background on multicomplexes and 
related categories. Section 3 presents the r-model category structure on these categories for each r ≥ 0. In 
Section 4 we describe the relationships between these model structures, setting up the Quillen adjunctions 
and equivalences. Section 5 considers analogues of the previously obtained model category structures for 
bounded multicomplexes. Section 6 gives various examples of cofibrations and cofibrant replacements for 
our model category structures, in both the bounded and unbounded cases.
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2. Notations and preliminaries

In this section, we summarize the definitions and results on multicomplexes that are required for the rest 
of the paper, and fix sign and grading conventions. Throughout this paper, R will denote a commutative 
unital ground ring and R-Mod will denote the category of R-modules.

Definition 2.1. A multicomplex or ∞-multicomplex A is a (Z, Z)-bigraded R-module A = {Ap,q}p,q∈Z en-
dowed with a family of maps {di : A → A}i≥0 of bidegree (−i, 1 − i) satisfying for all l ≥ 0,

∑
i+j=l

(−1)ididj = 0. (1)

Let n ≥ 1 be an integer. An n-multicomplex is a multicomplex with di = 0 for all i ≥ n.
For 1 ≤ n ≤ ∞, a (strict) morphism of n-multicomplexes is a map f of bigraded R-modules of bidegree 

(0, 0) satisfying dif = fdi for all i ≥ 0. We denote by n-mCR the category of n-multicomplexes and strict 
morphisms.

For example, a 1-multicomplex is a vertical bicomplex, as defined in [7, Section 2.1], that is, a (Z, Z)-
bigraded R-module endowed with a differential d0 of bidegree (0, 1). The category 1-mCR will also be 
denoted by vbCR when we need to emphasize vertical bicomplexes.

A 2-multicomplex is a bicomplex, with the convention d0d1 = d1d0; thus the chosen sign convention 
agrees with [2, Definition 2.10].

As observed in [8, Remark 2.2], the above choice of sign convention for multicomplexes gives an isomorphic 
category to the version without signs in the relations.

By [3, Lemma 3.3], the category of multicomplexes is symmetric monoidal, where the monoidal structure 
is given by the bifunctor

⊗ : ∞-mCR ×∞-mCR → ∞-mCR

which on objects is given by ((A, dAi ), (B, dBi )) 	→ (A ⊗B, dAi ⊗ 1 +1 ⊗ dBi ) and on strict morphisms is given 
by (f, g) 	→ f ⊗ g. The symmetry isomorphism is given by the morphism of multicomplexes

τA⊗B : A⊗B → B ⊗A

defined by

a⊗ b 	→ (−1)〈a,b〉b⊗ a.

Here for a, b of bidegree (a1, a2), (b1, b2) respectively, we let 〈a, b〉 = a1b1 + a2b2.
This functor also describes a symmetric monoidal structure on n-mCR for each n ≥ 1 by restriction.
For the rest of this section, let r ≥ 0 be an integer. We consider the spectral sequence E∗,∗

r (A) associated 
to the multicomplex A as described in [8, Proposition 2.8]. The following is a reformulation of the description 
in [8, Definition 2.6] to make the notation consistent with [2] in the case of bicomplexes.

Proposition 2.2 ([2, Lemma 2.13]). Let (A, d0, d1, . . . , dn, . . . ) be a multicomplex. Then

Ep,q
r (A) ∼= Zp,q

r (A)/Bp,q
r (A)

where the cycles are Zp,q
0 (A) := Ap,q and for all r ≥ 1,
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Zp,q
r (A) :=

{
a0 ∈ Ap,q | for all 0 ≤ l ≤ r − 1,∑

i+j=l(−1)idiaj = 0 for some aj ∈ Ap−j,q−j, 1 ≤ j ≤ r − 1
}
,

and the boundaries are Bp,q
0 (A) := 0, Bp,q

1 (A) = Ap,q ∩ im d0, and for all r ≥ 2,

Bp,q
r (A) :=

{
x ∈ Ap,q | there exist bi ∈ Ap+r−1−i,q+r−2−i for 0 ≤ i ≤ r − 1 such that

x =
r−1∑
i=0

(−1)idibr−i−1,

and
l∑

i=0
(−1)idibl−i = 0 for 0 ≤ l ≤ r − 2

}
.

(2)

The differential Δr : Zp,q
r (A)/Bp,q

r (A) → Zp−r,q+1−r
r (A)/Bp−r,q+1−r

r (A) is given by

Δr([a0]) =
[

r∑
i=1

(−1)idiar−i

]
. �

Definition 2.3. Let 2 ≤ n ≤ ∞. A morphism of n-multicomplexes f : A → B is said to be an Er-quasi-
isomorphism if the morphism Er(f) : Er(A) → Er(B) at the r-stage of the associated spectral sequence is 
a quasi-isomorphism of r-bigraded complexes (that is, Er+1(f) is an isomorphism).

Denote by En
r the class of Er-quasi-isomorphisms of n-mCR. This class contains all isomorphisms of 

n-mCR, satisfies the two-out-of-three property and is closed under retracts.

Finally, we recall from [3] the definition of r-homotopies of multicomplexes in the context of strict 
morphisms.

Definition 2.4. [3, Proposition 3.18] Let f, g : A → B be two strict morphisms of multicomplexes. An r-
homotopy h from f to g is a collection of maps hm : A → B of bidegree (−m + r, −m + r− 1) satisfying for 
all m ≥ 0,

∑
i+j=m

(−1)i+rdihj + (−1)ihidj =
{
g − f if m = r,

0 if m �= r.

We write f �r g if there is an r-homotopy from f to g. A morphism f : A → B is an r-homotopy equivalence
if there exists a morphism g : B → A such that f◦g �r 1B and g◦f �r 1A. A multicomplex A is r-contractible
if 1A �r 0.

Any r-homotopy equivalence is an Er-quasi-isomorphism by [3, Proposition 3.24].

3. Model structures on multicomplexes and n-multicomplexes, for n ≥ 2

We now describe our model category structures on n-multicomplexes, for 2 ≤ n ≤ ∞. In the case n = 2, 
the model category structures here are precisely those of bicomplexes obtained in [2], and indeed, the proofs 
for general n-multicomplexes are essentially the same. Just like for bicomplexes, a key idea in the proof 
is to show that the spectral sequence admits a description in terms of certain witness functors that have 
the advantage of being representable. Our presentation here differs from [2, Sections 4.1–4.2] in that we 
show the representing objects for the witness functors can be defined recursively; this is helpful for avoiding 
notational difficulties in the general multicomplex case.
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3.1. Cofibrantly generated model categories

We collect some definitions and results on cofibrantly generated model categories from [6].

Definition 3.1. Let C be a category with all small colimits and limits and I be a class of maps in C.

(1) A morphism is called I-injective (resp. I-projective) if it has the right (resp. left) lifting property with 
respect to morphisms in I. We write

I-inj := RLP(I) and I-proj := LLP(I).

(2) A morphism is called an I-fibration (resp. I-cofibration) if it has the right (resp. left) lifting property 
with respect to I-projective (resp. I-injective) morphisms. We write

I-fib := RLP(I-proj) and I-cof := LLP(I-inj).

(3) A map is a relative I-cell complex if it is a transfinite composition of pushouts of elements of I. We 
denote by I-cell the class of relative I-cell complexes.

Definition 3.2. A model category C is said to be cofibrantly generated if there are sets I and J of maps such 
that the following conditions hold.

(1) The domains of the maps of I are small relative to I-cell.
(2) The domains of the maps of J are small relative to J-cell.
(3) The class of fibrations is J-inj.
(4) The class of trivial fibrations is I-inj.

The set I is called the set of generating cofibrations, and J the set of generating trivial cofibrations.

The following is a consequence of Kan’s Theorem (cf. [5, Theorem 11.3.1] or [6, Theorem 2.1.19]).

Theorem 3.3 (D. M. Kan). Suppose C is a category with all small colimits and limits. Let W be a subcategory 
of C and I and J be sets of maps in C. Then there is a cofibrantly generated model structure on C with I as 
the set of generating cofibrations, J as the set of generating trivial cofibrations, and W as the subcategory 
of weak equivalences if and only if the following conditions are satisfied.

(1) The subcategory W satisfies the two-out-of-three property and is closed under retracts.
(2) The domains of I are small relative to I-cell.
(3) The domains of J are small relative to J-cell.
(4) J-cof ⊆ W.
(5) I-inj = W ∩ J-inj.

Note that the categories of n-multicomplexes we will consider satisfy the assumptions of this theorem as 
well as conditions (1), (2) and (3).

3.2. Witness cycles and witness boundaries in multicomplexes

We begin by defining the witness cycles and witness boundaries functors and showing that they can be 
used to describe the spectral sequence of a multicomplex.
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Definition 3.4. Let A be a multicomplex and r ≥ 0.
Define the witness r-cycles ZW p,q

r (A) to be the bigraded R-modules ZW p,q
0 (A) = Ap,q and for r ≥ 1,

ZW p,q
r (A) = {(a0, a1, . . . , ar−1) | ai ∈ Ap−i,q−i for 0 ≤ i ≤ r − 1 such that∑

i+j=l

(−1)idiaj = 0 for 0 ≤ l ≤ r − 1}.

There is a natural map of bigraded R-modules

zr : ZW p,q
r (A) → Zp,q

r (A)

given by z0 = 1A, and for r ≥ 1,

zr(a0, . . . , ar−1) = a0.

Define the witness r-boundaries to be the bigraded R-modules BW p,q
0 (A) = 0, BW p,q

1 (A) = Ap,q and for 
r ≥ 2,

BW p,q−1
r (A) = ZW p+r−1,q+r−2

r−1 (A) ⊕Ap,q−1 ⊕ ZW p−1,q−1
r−1 (A).

Writing elements of BW ∗,∗
r (A) as (b0, . . . , br−2; a; c0, . . . , cr−2) with a ∈A∗,∗ and (b0, . . . , br−2), (c0, . . . , cr−2)

∈ ZW ∗,∗
r−1(A), there is a natural bidegree (0, 1) map of bigraded R-modules

βr : BW p,q−1
r (A) → Bp,q

r (A)

given by β0 = 0, β1 = d0 and for r ≥ 2,

(b0, . . . , br−2; a; c0, . . . , cr−2) 	−→ d0a +
r−1∑
i=1

(−1)idibr−i−1.

We note that the maps zr and βr are surjective.
The final ingredient we need here is a map from witness boundaries to witness cycles. The following 

lemma is a check necessary for the definition of this map.

Lemma 3.5. For r ≥ 2, the map of bigraded R-modules specified by

(b0, . . . , br−2) 	−→
( r−1∑

i=1
(−1)idibr−1−i,−

r∑
i=2

(−1)idibr−i, . . . , (−1)r−1
2r−2∑
i=r

(−1)idib2r−2−i

)
,

gives a map from ZW p+r−1,q+r−2
r−1 (A) to ZW p,q

r (A).

Proof. Let b = (b0, . . . , br−2) ∈ ZW p+r−1,q+r−2
r−1 (A) and for 0 ≤ j ≤ r − 1 let

αj = (−1)j
r+j−1∑
k=j+1

(−1)kdkbr+j−1−k.

Proving that (α0, . . . , αr−1) ∈ ZW p,q
r (A) amounts to computing, for 0 ≤ l ≤ r − 1:
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∑
i+j=l

(−1)idiαj =
r−2∑
t=0

(−1)r−1−t

(
l∑

i=0
(−1)ididr+l−1−t−i

)
bt

=
r−2∑
t=0

(−1)r−t

(
r+l−1−t∑
i=l+1

(−1)ididr+l−1−t−i

)
bt

by the multicomplex relations

=
l+r−1∑
i=l+1

(−1)l−1di

(
r+l−1−i∑

t=0
(−1)l+r−1−t−idr+l−1−t−ibt

)

= 0 since b ∈ ZW p+r−1,q+r−2
r−1 (A).

Thus the image of (b0, . . . , br−2) lies in ZW p,q
r (A), as required. �

Definition 3.6. The bidegree (0, 1) map of bigraded R-modules

wr : BW p,q−1
r (A) → ZW p,q

r (A)

is given by w0 = 0, w1 = d0 and for r ≥ 2,

(b0, . . . , br−2; a; c0, . . . , cr−2)

wr	−→
(
d0a +

r−1∑
i=1

(−1)idibr−1−i, d1a−
r∑

i=2
(−1)idibr−i + c0, d2a +

r+1∑
i=3

(−1)idibr+1−i + c1, . . . ,

dr−1a + (−1)r−1
2r−2∑
i=r

(−1)idib2r−2−i + cr−2
)
.

This is well-defined as it is the sum of the map defined in Lemma 3.5 and the maps

Ap,q−1 −→ ZW p,q
r (A), a 	−→ (d0a, d1a, d2a, . . . , dr−1a)

and

ZW p−1,q−1
r−1 (A) −→ ZW p,q

r (A), (c0, . . . , cr−2) 	−→ (0, c0, . . . , cr−2)

which are well-defined due to the definition of multicomplexes and of ZWr.

All these definitions extend naturally to functors from multicomplexes to R-modules and natural trans-
formations. By abuse of notation we will also denote by ZW p,q

r , BW p,q
r the restriction of these functors to 

the category of n-multicomplexes.

Proposition 3.7 ([2, Proposition 4.3]). For every r ≥ 0, for every p, q ∈ Z, and for 2 ≤ n ≤ ∞ there is a 
commutative diagram of natural transformations of functors n-mCR → R-Mod

BW p,q−1
r ZW p,q

r

Bp,q Zp,q Ep,q

wr

βr zr

ιr π

r r r
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and the natural transformation πr = π ◦ zr : ZW p,q
r → Ep,q

r induced by the above diagram satisfies

kerπr(A) = imwr(A)

for every n-multicomplex A. In particular, Ep,q
r (A) ∼= ZW p,q

r (A)/wr(BW p,q−1
r (A)).

Under this isomorphism, the differential on the r-page of the spectral sequence

δr : ZW p,q
r (A)/wr(BW p,q−1

r (A)) → ZW p−r,q+1−r
r (A)/wr(BW p−r,q−r

r (A))

is given by

[(a0, a1, . . . , ar−1)] 	→
[
(

r∑
i=1

(−1)idiar−i,

r∑
i=1

(−1)idi+1ar−i, . . . ,

r∑
i=1

(−1)idi+r−1ar−i)
]
.

Proof. The result is trivial for r = 0 and r = 1, so we consider r ≥ 2. It is straightforward to check that 
the diagram commutes. We next show that kerπr ⊆ imwr. If a = (a0, a1, . . . , ar−1) ∈ ZW p,q

r (A) satisfies 
πr(a) = 0, this means that zr(a) ∈ Bp,q

r (A), i.e., a0 ∈ Bp,q
r (A). By (2), there exists (b0, b1, . . . , br−2; br−1) ∈

ZW p+r−1,q+r−2
r−1 (A) ⊕Ap,q−1 such that a0 =

∑r−1
i=0 (−1)idibr−i−1.

Let us compute

(a0, . . . , ar−1) − wr(b0, . . . , br−2; br−1; 0, . . . , 0) =

(0, a1 +
r∑

i=1
(−1)idibr−i, a2 −

r+1∑
i=2

(−1)idibr+1−i, . . . , ar−1 − (−1)r−1
2r−2∑
i=r−1

(−1)idib2r−2−i︸ ︷︷ ︸
=:(0,c0,c1,...,cr−2)

).

A computation shows that (c0, c1, . . . , cr−2) ∈ ZW p−1,q−1
r−1 (A) so that

a = wr(b0, . . . , br−2; br−1; c0, . . . , cr−2) ∈ imwr.

Conversely we have

πr ◦ wr = π ◦ zr ◦ wr = π ◦ ιr ◦ βr = 0,

so that imwr ⊆ kerπr.
Another calculation shows that the claimed differential δr gives a well-defined map on ZWr(A)/

wr(BWr(A)). Indeed, if a = wr(b0, . . . , br−2; br−1; c0, . . . , cr−2), then

δr(a) = wr(c0, . . . , cr−2;βr−1; γ0, . . . , γr−2),

where βr−1 =
∑r−1

l=0 (−1)r+ld2r−1−lbl and γj =
∑j

i=0
∑r

k=1(−1)k+1didr+j+k−ibr−k, for 0 ≤ j ≤ r − 2.
It is straightforward to check that δr corresponds to the differential Δr under the isomorphism. �

Lemma 3.8. Let A ∈ n-mCR. For r ≥ 1, the kernel of the map wr : BW p,q−1
r (A) → ZW p,q

r (A) is isomorphic 
to ZW p+r−1,q+r−2

r (A), via the map (b; a; c) 	→ (b, a).

Proof. This is clear from the definition of wr: the element (b; a; c) being in kerwr means that c is completely 
determined in terms of (b, a) and that d0a = − 

∑r−1
i=1 (−1)idibr−1−i. Together with b ∈ ZW p+r−1,q+r−2

r−1 (A), 
this gives exactly that (b, a) ∈ ZW p+r−1,q+r−2

r (A). �
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The following result is straightforward.

Lemma 3.9. The following commutative diagrams are pullback squares in the category of R-modules for every 
r ≥ 2 and every n-multicomplex A.

ZW p,q
1 (A) ZW p,q

0 (A)

0 ZW p,q+1
0 (A)

d0

ZW p,q
r (A) ZW p−r+1,q−r+1

0 (A)

ZW p,q
r−1(A) ZW p−r+1,q−r+2

0 (A)

πr

ρr d0

Dr−1

Here πr is the projection onto the last coordinate, ρr is the projection onto the first r − 1 components, and

Dr−1 =
r−1∑
i=1

(−1)i+1di : (a0, . . . , ar−2) 	−→
r−1∑
i=1

(−1)i+1diar−1−i. �

The maps πr, ρr, d0 and Dr−1 define natural transformations between the functors ZW p,q
r , and as a 

consequence we obtain the following proposition.

Proposition 3.10. The following commutative diagrams are pullback squares in the functor category 
Fun(n-mCR, R-Mod) for every r ≥ 2.

ZW p,q
1 ZW p,q

0

0 ZW p,q+1
0

d0

ZW p,q
r ZW p−r+1,q−r+1

0

ZW p,q
r−1 ZW p−r+1,q−r+2

0

πr

ρr d0

Dr−1

Proof. Since R-Mod is complete, limits in the functor category exist and they are computed objectwise, so 
the result follows directly from Lemma 3.9. �
Remark 3.11. Similarly to [2, Remark 4.5], for 2 ≤ n ≤ ∞, if f : A → B is a morphism of n-multicomplexes 
and r ≥ 1, then the following are equivalent.

(1) The maps ZWr(f), ZWr−1(f) and f are surjective.
(2) The maps Er(f) and ZWr−1(f) and f are surjective.

3.3. Representing elements

We now describe suitable representing objects for the witness cycles and boundaries previously defined.

Definition 3.12. Let 2 ≤ n ≤ ∞. The n-disk at place (p, q), denoted Dn(p, q), is the n-multicomplex freely 
generated by a single element x in bidegree (p, q), in the sense of satisfying the following universal construc-
tion. For any n-multicomplex A, every map of bigraded sets {x} → A extends uniquely to an n-multicomplex 
morphism Dn(p, q) → A such that the following diagram commutes:

{x} Dn(p, q)
A
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By definition the n-multicomplex Dn(p, q) freely generated by x in bidegree (p, q) is the quotient of the 
free bigraded R-module generated by all finite words di1di2 . . . dik(x), k ≥ 0, 0 ≤ i1, . . . , ik ≤ n − 1, by the 
relations

∑
i+j=l

(−1)ididj(x) = 0 for l ≥ 0,

with differential

di(di1di2 . . . dik(x)) = didi1di2 . . . dik(x).

Remark 3.13. Using the relations, one can rewrite any word di1di2 . . . dik(x) by swapping any occurrence of 
d0 with all the higher structure maps to its left. The rewriting process and the relation d2

0 = 0 ensure that 
every word is a linear combination of words of the form

di0di1di2 . . . dik(x), for i ∈ {0, 1}, k ≥ 0, 0 < i1, . . . , ik ≤ n− 1. (3)

It is clear from this description that the d0-homology of an n-disk is 0.
The words listed in (3) above form a basis for the ∞-disk; see [10, Definition 5.4] for an explicit description 

of the ∞-disk for multicomplexes concentrated in the right half-plane. For n finite, the words listed in (3)
are not necessarily distinct or nonzero, so do not form a basis for the n-disk.

Example 3.14. The 3-multicomplex D3(p, q) can be depicted as follows.

· · · • • • • •

· · · •• •• •• • ∗

· · · • • •

Here each vertex marked • represents the ring R, each vertex marked •• represents R⊕R, the vertex marked 
∗ represents R in bidegree (p, q) and the arrows are

d0 : •
1−→ •, •

(0
1
)

−−→ ••, ••
( 1 0 )−−−→ •,

d1 : •
1−→ •, •

(1
1
)

−−→ ••, ••

(1 0
0 1

)
−−−−→ ••,

d2 : •
1−→ •, •

(1
0
)

−−→ ••, ••
( 0 1 )−−−→ •.

Definition 3.15. Let 2 ≤ n ≤ ∞. Define the n-multicomplex ZWn
0 (p, q) = Dn(p, q), define ZWn

1 (p, q) to be 
the pushout

ZWn
0 (p, q + 1) ZWn

0 (p, q)

0 ZWn
1 (p, q)

d∗
0

j0

in the category of n-multicomplexes, and for r ≥ 2, define ZWn
r (p, q) recursively to be the pushout
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ZWn
0 (p− r + 1, q − r + 2) ZWn

0 (p− r + 1, q − r + 1)

ZWn
r−1(p, q) ZWn

r (p, q)

d∗
0

D∗
r−1 jr−1

ir−1

in the category of n-multicomplexes. Here, for all r ≥ 1, writing x and ar−1 for the generators of ZWn
0 (p −

r + 1, q − r + 2) and ZWn
0 (p − r + 1, q − r + 1) respectively, the morphism d∗0 is

d∗0(x) = d0ar−1.

By abuse of notation, we also denote the element j0(a0) in ZWn
1 (p, q) by a0. For r ≥ 2, we recursively 

define the morphism D∗
r−1 to be

D∗
r−1(x) =

r−1∑
i=1

(−1)i+1diar−1−i,

and again by abuse of notation, we denote the elements ir−1(as) (0 ≤ s ≤ r−2) and jr−1(ar−1) in ZWn
r (p, q)

by as (0 ≤ s ≤ r − 2) and ar−1 respectively.

Example 3.16. The 3-multicomplex ZW3
1(p, q) can be depicted as:

· · · • • • • ∗

· · · • • •

The 3-multicomplex ZW3
2(p, q) can be depicted as:

· · · • • • • ∗

· · · •• •• •• •

· · · • •

Definition 3.17. Define the n-multicomplexes

BWn
0 (p, q − 1) = 0, BWn

1 (p, q − 1) = Dn(p, q − 1)

and for r ≥ 2, define the n-multicomplex BWn
r (p, q − 1) to be

BWn
r (p, q − 1) = ZWn

r−1(p + r − 1, q + r − 2) ⊕Dn(p, q − 1) ⊕ZWn
r−1(p− 1, q − 1).

Lemma 3.18. Let r ≥ 0 and let p, q ∈ Z and 2 ≤ n ≤ ∞.

(1) Giving a morphism of n-multicomplexes ZWn
r (p, q) → A is equivalent to giving an element in ZW p,q

r (A).
(2) Giving a morphism of n-multicomplexes BWn

r (p, q) → A is equivalent to giving an element in BW p,q
r (A).

Furthermore, these statements are functorial, so that ZWn
r (p, q), BWn

r (p, q) are representing n-multi-
complexes for the functors ZW p,q

r , BW p,q
r : n-mCR → R-Mod respectively.

Proof. The case r = 0 in part (1) is immediate from the definition of ZWn
0 (p, q) = Dn(p, q). For r ≥ 1

we proceed inductively: assume ZW p,q
r−1 = n-mCR(ZWn

r−1(p, q), −) as functors n-mCR → R-Mod. It is 
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an easy check that the n-multicomplex morphisms d∗0 and D∗
r−1 correspond to the natural transforma-

tions d0 and Dr−1 in Proposition 3.10 under the Yoneda embedding Y : n-mCR → Fun(n-mCR, R-Mod)op. 
Furthermore, Y takes pushout squares in n-mCR to pullback squares in Fun(n-mCR, R-Mod), hence 
ZW p,q

r = n-mCR(ZWn
r (p, q), −) by Proposition 3.10. Part (2) is now immediate from the definition of 

BW p,q
r (A). �

Lastly, for r ≥ 0, define ιr : ZWn
r (p, q) → BWn

r (p, q−1) to be the n-multicomplex morphism correspond-
ing to the natural transformation wr : BW p,q−1

r → ZW p,q
r under the Yoneda embedding Y. Under these 

correspondences, a commutative diagram of n-multicomplexes of the form

ZWn
r (p, q)

ιr

��

�� A

f

��

BWn
r (p, q − 1) �� B

corresponds to a pair (a, b), a ∈ ZW p,q
r (A), b ∈ BW p,q−1

r (B) such that ZWr(f)(a) = wr(b).

The following two results will be useful for constructing our model category structures.

Lemma 3.19. Let 2 ≤ n ≤ ∞. For r ≥ 1 the n-multicomplex ZWn
0 (p, q − 1) is a retract of BWn

r (p, q − 1)
and for r ≥ 2 the n-multicomplex ZWn

r−1(p − 1, q − 1) is a retract of BWn
r (p, q − 1).

Proof. Immediate from the definition of BWp,q
r . �

Lemma 3.20. Let 2 ≤ n ≤ ∞. For r ≥ 1, the diagram

ZWn
r (p, q)

ιr

��

�� 0

��

BWn
r (p, q − 1) �� ZWn

r (p + r − 1, q + r − 2)

is a pushout diagram in n-multicomplexes.

Proof. By Lemma 3.8, the following diagram is a pullback square in the functor category Fun(n-mCR,

R-Mod) for r ≥ 1.

ZW p+r−1,q+r−2
r BW p,q−1

r

0 ZW p,q
r

wr

The result now follows by Yoneda’s lemma. �
3.4. Model category structures

In this section, we present the model structures on n-multicomplexes. We are able to exploit the r-cone 
defined for the case of bicomplexes.

We denote by Cr the bicomplex ZW2
r(0, 0). We recall from [2] that for r = 0 it is depicted as a square, 

and for r ≥ 1, it is depicted as a staircase graph with r horizontal steps as follows, where each vertex marked 
• represents R, each arrow represents the identity map and the vertex marked ∗ represents R in bidegree 
(0, 0).
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• ∗

• •

•

• •

We may write Cr =
⊕r−1

k=0 Rβ−k,−k⊕
⊕r−1

k=0 Rβ−k−1,−k with the differentials d0, d1 indicated by the graph, 
and βi,j a generator of bidegree (i, j). Since Cr is a bicomplex, we may also view it as an n-multicomplex, for 
2 ≤ n ≤ ∞. Then for any n-multicomplex A, with 2 ≤ n ≤ ∞, we have that Cr ⊗ A is an n-multicomplex, 
using the symmetric monoidal structure on n-mCR.

Proposition 3.21. Let 2 ≤ n ≤ ∞. Let A be an n-multicomplex and r ≥ 0. Then Er+1(Cr ⊗A) = 0.

Proof. Proposition 4.29 of [2] proves that Cr is r-contractible in the sense that the identity map of Cr is 
r-homotopic (in the category of bicomplexes but also in that of multicomplexes) to 0. As a corollary, for 
any multicomplex (and thus for any n-multicomplex A), Cr ⊗A is r-contractible, hence by [3, Proposition 
3.24], Er+1(Cr ⊗A) = 0. �
Proposition 3.22. Let p, q ∈ Z and 2 ≤ n ≤ ∞. Let A be an n-multicomplex and r ≥ 0. The projection 
morphism φr : Cr ⊗A → A has the property that ZW p,q

k (φr) is surjective for 0 ≤ k ≤ r.

Proof. The case r = 0 is trivial. Let us assume r ≥ 1. Let (a0, a1, . . . , ar−1) be an element of ZW p,q
r (A), 

with ai ∈ Ap−i,q−i. We have

∑
i+j=l

(−1)idiaj = 0 for 0 ≤ l ≤ r − 1.

For 0 ≤ k ≤ r − 1, we define the element

Xk =
k∑

i=0
β−i,−i ⊗ ak−i ∈ (Cr ⊗A)p−k,q−k.

Let us prove that (X0, . . . , Xr−1) is an element of ZWr(Cr ⊗A). Fix 0 ≤ l ≤ r − 1 and compute

l∑
i=0

(−1)idiXl−i =
l∑

i=0
(−1)idi

( l−i∑
j=0

β−j,−j ⊗ al−i−j

)

=
l∑

j=0
(d0β−j,−j) ⊗ al−j −

l−1∑
j=0

(d1β−j,−j) ⊗ al−1−j

+
l∑

j=0
(−1)jβ−j,−j ⊗

( l−j∑
i=0

(−1)idial−i−j

)

=
l∑

j=1
β−j,−j+1 ⊗ al−j −

l−1∑
j=0

β−j−1,−j ⊗ al−1−j = 0.

Hence, the induced map ZWr(φr) on ZWr(Cr ⊗A) satisfies
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ZWr(φr)(X0, . . . , Xr−1) = (a0, . . . , ar−1).

Note that since (X0, . . . , Xk) ∈ ZWk(Cr ⊗A) is defined from the data (a0, . . . , ak), the same proof applies 
to ZWk(φr), for 0 ≤ k ≤ r. �
Remark 3.23. Let C∞

r be the multicomplex Re0,0 ⊕ Re−r,1−r with only non trivial differential dr(e0,0) =
e−r,1−r. We have that C∞

r is an r-contractible multicomplex, with h0(e−r,1−r) = e0,0 satisfying drh0+h0dr =
1C∞

r
. Hence, for any multicomplex Y , C∞

r ⊗Y is r-contractible. In addition the projection π : C∞
r ⊗Y → Y

induced by the projection of C∞
r onto Re0,0 satisfies ZWs(π) is surjective for all 0 ≤ s ≤ r: it is easy to see 

that if (a0, . . . , as−1) ∈ ZWs(Y ) then (e0,0 ⊗ a0, . . . , e0,0 ⊗ as−1) ∈ ZWs(C∞
r ⊗ Y ).

Definition 3.24. Let 2 ≤ n ≤ ∞. For r ≥ 0, consider the sets of morphisms of n-multicomplexes

Inr =
{

ZWn
r+1(p, q)

ιr+1
�� BWn

r+1(p, q − 1)
}

p,q∈Z
and Jn

r =
{

0 �� ZWn
r (p, q)

}
p,q∈Z

.

Proposition 3.25. For each r ≥ 0, a map f is Jn
r -injective if and only if ZWr(f) is surjective.

Proof. This follows from (1) of Lemma 3.18. �
Proposition 3.26. For all r ≥ 0 and 2 ≤ n ≤ ∞, we have Inr -inj = En

r ∩ Jn
0 -inj ∩ Jn

r -inj.

Proof. The proof proceeds exactly like that of [2, Proposition 4.35], the corresponding result in the bicomplex 
case n = 2, using Lemmas 3.8, 3.18, 3.19, 3.20 and Remark 3.11. �
Proposition 3.27. For all r ≥ 0, 2 ≤ n ≤ ∞ and all 0 ≤ k ≤ r we have Jn

k -cof ⊆ En
r .

Proof. Let r ≥ 0 and 0 ≤ k ≤ r and f : X → Y ∈ Jn
k -cof. Consider the following diagram.

X

(
1X

0

)
��

f

��

X ⊕ (Cr ⊗ Y )

(f φr )

��

Y
=

�� Y

From Propositions 3.22 and 3.25 the right-hand vertical map is Jn
k -injective so there is a lift in the 

diagram. From Proposition 3.21 one has Er+1(Cr ⊗ Y ) = 0. Applying the functor Er+1 to the diagram, we 
see that Er+1(f) is an isomorphism. Note that in the case n = ∞ the proof also holds using C∞

r (instead 
of Cr) and Remark 3.23. �
Theorem 3.28. For every r ≥ 0 and 2 ≤ n ≤ ∞, the category n-mCR admits a right proper cofibrantly 
generated model structure, where:

(1) weak equivalences are Er-quasi-isomorphisms,
(2) fibrations are morphisms of n-multicomplexes f : A → B such that f and ZWr(f) are bidegree-wise 

surjective, and
(3) Inr and Jn

0 ∪ Jn
r are the sets of generating cofibrations and generating trivial cofibrations respectively.

Proof. The proof is standard (see, for example, the proof of [2, Theorem 3.14]) and uses Proposition 3.25, 
Proposition 3.27 and Proposition 3.26. �
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As in the bicomplex case, in certain situations it may be easier to characterize fibrations if they are 
described in terms of surjectivity of Ei instead of ZWr.

Definition 3.29. Let (Inr )′ and (Jn
r )′ be the sets of morphisms of n-mCR given by

(Inr )′ := ∪r−1
k=1J

n
k ∪ Inr and (Jn

r )′ := ∪r
k=0J

n
k .

The proof of the following result is analogous to that for bicomplexes [2, Theorem 4.39].

Theorem 3.30. For every r ≥ 0 and 2 ≤ n ≤ ∞, the category n-mCR admits a right proper cofibrantly 
generated model structure, denoted (n-mCR)r, where:

(1) weak equivalences are Er-quasi-isomorphisms,
(2) fibrations are morphisms of n-multicomplexes f : A → B such that Ei(f) is bidegree-wise surjective for 

every 0 ≤ i ≤ r, and
(3) (Inr )′ and (Jn

r )′ are the sets of generating cofibrations and generating trivial cofibrations respectively. �
Definition 3.31. We refer to the model structure (n-mCR)r of Theorem 3.30 as the r-model structure. The 
terms r-fibrant, r-cofibrant and r-trivial all refer to the corresponding notions in this model structure.

Remark 3.32. Note that the generating (trivial) cofibrations of the model structure of Theorem 3.28 form 
a subclass of the generating (trivial) cofibrations of the model structure of Theorem 3.30. Moreover, these 
two model structures have the same weak equivalences. Thus, for each n with 2 ≤ n ≤ ∞ and each r ≥ 0, 
the identity functors give a Quillen equivalence between (n-mCR)r and n-mCR with the model structure of 
Theorem 3.28.

4. Relationships between model category structures

In order to compare our model structures on n-multicomplexes as n varies, in this section we reinterpret 
n-multicomplexes as modules over a graded associative algebra in the category of vertical bicomplexes.

4.1. Monoids in vertical bicomplexes

Recall from Section 2 that the category 1-mCR = vbCR has as objects vertical bicomplexes, and that it 
is a symmetric monoidal category. A monoid (M, δ0) in this category is a vertical bicomplex endowed with 
a unital and associative multiplication M ⊗ M → M compatible with the differential δ0. In other words, 
it is a unital bigraded (associative, not necessarily commutative) R-algebra, endowed with a derivation of 
algebras δ0 of bidegree (0,1) such that δ2

0 = 0. For simplicity, we call such an object a dg algebra. This is 
only a slight abuse of terminology – this differs from the usual notion just by having an extra grading.

Consider R〈d1, d2, . . . , di, . . .〉, the free bigraded associative R-algebra generated by the bigraded set 
{di, i ≥ 1}, with di of bidegree (−i, 1 − i).

For k ≥ 1, we consider the following element of R〈d1, d2, . . . , di, . . .〉:

Sk =
∑

i+j=k
i,j≥1

(−1)i+1didj ,

in bidegree (−k, 2 − k), with the convention that S1 = 0.
Since R〈d1, d2, . . . , di, . . .〉 is a free associative algebra, a derivation δ0 on R〈d1, d2, . . . , di, . . .〉 is deter-

mined by its values on the generators di. Set, for i ≥ 1,
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δ0(di) = Si.

Proving that δ2
0 = 0 amounts to proving that δ0(Si) = 0, which is standard.

For n ≥ 1, let In be the two sided ideal of R〈d1, d2, . . . , di, . . .〉 generated by the elements Sk and dk for 
k ≥ n. The definition of δ0 shows that this ideal is compatible with the differential. By convention I∞ = {0}.

Definition 4.1. Let C∞ be the dg algebra R〈d1, d2, . . . , di, . . .〉 endowed with differential δ0 as above. And 
for n ≥ 1, let Cn be the dg algebra

Cn = (C∞/In, δ0).

For 1 ≤ n ≤ l ≤ ∞, we have Il ⊂ In and thus a surjective morphism of dg algebras

Φl,n : Cl → Cn.

Proposition 4.2. If 2 ≤ n ≤ l ≤ ∞, then Φl,n : Cl → Cn is a quasi-isomorphism of vertical bicomplexes.

Proof. For 2 ≤ m ≤ n ≤ l ≤ ∞ we have Φl,m = Φn,m ◦ Φl,n. By the two-out-of-three property of 
quasi-isomorphisms, it is enough to prove that the maps Φ∞,n : C∞ → Cn are quasi-isomorphisms for all 
2 ≤ n < ∞.

For n = 2, we have C2 = R〈d1〉/(d2
1) with δ0(d1) = 0. Hence it is enough to prove that the induced map 

on the homology with respect to δ0, H∗,∗(Φ∞,2) : H∗,∗(C∞) → H∗,∗(C2) is an isomorphism. In order to do 
so we build a homotopy h : C∞ → C∞. Any element in C∞ is a linear combination with coefficients in R of 
words of the form di1 . . . dik with ij ≥ 1. The empty word corresponds to 1R and we define h(1R) = 0. Let 
h be the R-linear map determined by

h(di1 . . . dik) =
{

0, if k = 1 or i1 > 1,
di2+1 . . . dik , if k > 1 and i1 = 1.

Note that for any word w we have h(Siw) = diw for i ≥ 2. Let us compute:

(δ0h + hδ0)(1R) = 0, (δ0h + hδ0)(d1) = 0,

(δ0h + hδ0)(di) = h(Si) = di, for i ≥ 2.

For k ≥ 2,

(δ0h + hδ0)(d1di2 . . . dik)

= δ0(di2+1di3 . . . dik) +
k∑

j=2
(−1)i2+1+...+ij−1+1h(d1di2 . . . δ0(dij ) . . . dik)

=
k∑

j=3
(−1)i2+2+...+ij−1+1di2+1 . . . Sij . . . dik +

k∑
j=3

(−1)i2+1+...+ij−1+1di2+1 . . . Sij . . . dik

+ Si2+1di3 . . . dik +
∑

u+v=i2
u,v≥1

(−1)u+1du+1dvdi3 . . . dik

= d1di2di3 . . . dik ,

and for i1 > 1



X. Fu et al. / Topology and its Applications 316 (2022) 108104 17
(δ0h + hδ0)(di1di2 . . . dik) = h(Si1di2 . . . dik) = di1di2 . . . dik .

So Hp,q(C∞) = 0 for every (p, q) /∈ {(0, 0), (−1, 0)}. In addition

(C∞)0,0 = R, C−1,0
∞ = Rd1, C0,−1

∞ = C−1,−1
∞ = 0,

hence Φ∞,2 is a quasi-isomorphism.
Let us prove that for any n ≥ 3 we have h(In) ⊆ In. Any element in In is a sum of elements of the form 

abc, with a, c ∈ C∞ and b = Sk or b = dk for some k ≥ n. If a �= 1R and a �= d1 then h(abc) = h(a)bc ∈ In.
Assume a = 1R and let k ≥ n ≥ 3.

• If b = dk then h(dkc) = 0.
• If b = Sk then h(Skc) = dkc ∈ In.

Assume a = d1.

• If b = dk then h(d1dkc) = dk+1c ∈ In, since k + 1 ≥ n + 1 ≥ n.
• If b = Sk then

h(d1Skc) =
∑

u+v=k
u,v≥1

(−1)u+1h(d1dudvc) =
∑

u+v=k
u,v≥1

(−1)u+1du+1dvc = −Sk+1c + d1dk+1c ∈ In.

The quotient map Φ∞,n : C∞ → Cn has kernel In and h : In → In is a homotopy from the identity of In to 
0. Hence In is contractible and the morphism is a quasi-isomorphism. �
Remark 4.3. The morphism Φ∞,2 : C∞ → C2 corresponds to the Koszul resolution of the operad of dual 
numbers C2 (see for example [9, 10.3.16]), hence it is a quasi-isomorphism. The proof given here via the 
homotopy h is not a consequence of this result, however, and this method has been chosen because it allows 
us to treat the case of general n.

4.2. Quillen equivalences

Proposition 4.4. For 1 ≤ n ≤ ∞, the category of Cn-modules in vertical bicomplexes is isomorphic to the 
category of n-multicomplexes.

Proof. In the category of vertical bicomplexes a (left) C∞-module is a bigraded R-module M endowed with 
a differential dM0 of bidegree (0, 1) together with an action λ : C∞⊗M → M compatible with the differentials 
δ0 and dM0 . Since C∞ is free as a bigraded R-algebra the action is determined by its values on di, i ≥ 1. We 
denote by dMi : M → M the map that associates λ(di ⊗m) to m. The compatibility with the differentials 
gives that

dM0 dMn =
∑

i+j=n,i,j≥1
(−1)i+1dMi dMj + (−1)1−ndMn dM0 ,

that is, M is a multicomplex. In addition morphisms of C∞-modules are morphisms of multicomplexes. This 
completes the proof for n = ∞. A (left) Cn-module is a (left) C∞-module M such that dMi = 0 for all i ≥ n, 
hence an n-multicomplex. �

As a corollary, the dg algebra morphisms Φl,n : Cl → Cn, for 1 ≤ n ≤ l ≤ ∞ induce pairs of adjoint 
functors
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n-mCR = Cn-Mod Cl-Mod = l-mCR
il,n

pl,n

where the right adjoint il,n is the restriction of scalars functor and the left adjoint pl,n(M) = Cn ⊗Cl
M is 

the extension of scalars functor. Note that if M is an n-multicomplex, then il,n(M) is the l-multicomplex 
M with dn = . . . = dl−1 = 0.

Recall that we write (n-mCR)r for the category of n-multicomplexes with the r-model structure of 
Theorem 3.30.

Theorem 4.5. For 2 ≤ n ≤ l ≤ ∞ and r ≥ 0 the adjunction

(n-mCR)r (l-mCR)r
il,n

pl,n

is a Quillen equivalence.

Proof. It is a Quillen adjunction from Theorem 3.30, for the right adjoint preserves fibrations and trivial 
fibrations. Note that the right adjoint reflects weak equivalences and that all objects are fibrant. Hence to 
establish a Quillen equivalence it is enough to prove that for any r-cofibrant object M in l-mCR, the unit 
of the adjunction M → il,npl,nM is an Er-quasi-isomorphism (see [6, Corollary 1.3.16]).

Recall that any r-cofibrant object is 0-cofibrant. Thus, if the unit of the adjunction is an E0-quasi-
isomorphism for any 0-cofibrant object, then it is an Er-quasi-isomorphism for any r-cofibrant object, and 
it is enough to treat the case r = 0.

Let us prove that the adjunction is a Quillen equivalence for r = 0. The model category structure 
(n-mCR)0 corresponds to the transferred model category structure along the adjunction

n-mCR = Cn-Mod vbCR,
Un

Cn⊗−

where the right adjoint Un is the forgetful functor and the model category structure on vbCR coin-
cides with the projective model structure on Z-graded cochain complexes, that is, weak equivalences are 
quasi-isomorphisms with respect to the bidegree (0, 1) differential d0, fibrations are bidegreewise surjec-
tive morphisms. A standard result (see [4, Proposition 11.2.10]) states that a morphism of dg algebras 
α : R → S induces a Quillen adjunction between the categories of R-modules and S-modules (with the 
transferred model structure from vbCR as seen above) through the restriction and extension of scalars 
functors, and this is a Quillen equivalence if (and only if) α is a quasi-isomorphism. Hence, Proposition 4.2
implies that the Quillen adjunction

(n-mCR)0 (l-mCR)0
il,n

pl,n

is a Quillen equivalence, that is, M → il,npl,nM is an E0-quasi-isomorphism for every 0-cofibrant object M
in l-mCR. �
Remark 4.6. In the previous proof the model category structure considered in vbCR is precisely (1-mCR)0. 
The adjunction

(1-mCR)0 (2-mCR)0
i2,1

p2,1

is a Quillen adjunction, however it is not a Quillen equivalence. Indeed, ZW2
1(0, 0) is 0-cofibrant in 2-mCR

and the unit of the adjunction for this object is the projection onto the (0, 0)-coordinate
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ZW2
1(0, 0) → R0,0

which is not an E0-quasi-isomorphism.

5. Model structures on bounded multicomplexes

In this section, we will apply the transfer theorem to give model structures on certain categories 
of bounded n-multicomplexes. We obtain such transferred model structures on (−N, Z)-graded n-
multicomplexes for all r ≥ 0 and on (Z, N)-graded multicomplexes for r = 0. Our exposition of the 
transfer principle follows [1, Sections 2.5–2.6].

Theorem. Let M be a model category cofibrantly generated by the sets I and J of generating cofibrations 
and generating trivial cofibrations respectively. Let C be a category with finite limits and small colimits. Let

M CL

R

be a pair of adjoint functors. Define a map f in C to be a weak equivalence (respectively fibration) if R(f)
is a weak equivalence (respectively fibration). These two classes determine a model category structure on C
cofibrantly generated by L(I) and L(J) provided that:

(1) The sets L(I) and L(J) permit the small object argument.
(2) C has a functorial fibrant replacement and a functorial path object for fibrant objects.

Furthermore, with this model structure on C, the adjunction L � R becomes a Quillen adjunction.

Recall that a path object for X is a factorisation of the diagonal map X −→ X×X into a weak equivalence 
followed by a fibration X ∼−→ P (X) � X × X. To apply the transfer theorem, we first need to show the 
existence of r-path objects for n-multicomplexes. For this, we adapt [3, Section 5] to our context.

5.1. Path objects for n-multicomplexes

As with the r-cone, we start with constructions for bicomplexes and then extend to n-multicomplexes 
using the tensor product.

Definition 5.1 ([2]). For r = 0, we define the 0-path Λ0 as the bicomplex

R0,1

(R⊕R)0,0.

(−1 1 )

��

For r ≥ 1, define the r-path Λr as the bicomplex whose underlying bigraded module is R0,0 ⊕ ZW2
r(0, 0)

and whose differentials coincide with those of ZW2
r(0, 0) except for d0,0

1 which is:

ZW2
r(0, 0)−1,0 = R−1,0 (R⊕ZW2

r(0, 0))0,0 = (R⊕R)0,0
(−1 1 )

�� .

Example 5.2. The 1-path Λ1 is the bicomplex given by

R−1,0 (−1 1 )←− (R⊕R)0,0.
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The 2-path Λ2 is given by

R−1,0 (R⊕R)0,0

R−2,−1 R−1,−1

(−1 1 )

1

1

More generally, we write

Λr = Rβ− ⊕
r−1⊕
i=0

Rβ−i,−i

r−1⊕
i=0

Rβ−i−1,−i

where βu,v has bidegree (u, v) and β− has bidegree (0, 0), with nonzero differentials given by

d1(β0,0) = −d1(β−) = β−1,0, d0(β−i,−i) = β−i,1−i, d1(β−i,−i) = β−i−1,−i,

for 1 ≤ i ≤ r − 1.

Lemma 5.3. For r ≥ 1, there is an isomorphism of bicomplexes ϕr : Λr → R0,0 ⊕Cr where Cr = ZW2
r(0, 0)

has been defined in Section 3.4.

Proof. Let us keep the notation βu,v for both the generators of Λr and Cr and let e be a generator of R0,0. 
The map of bigraded modules ϕr : Λr → R0,0 ⊕ Cr which associates e − β0,0 to β− and βu,v to βu,v for 
(u, v) ∈ {(−i, −i), (−i − 1, −i), 0 ≤ i ≤ r − 1} is an isomorphism of bicomplexes since ϕrd0(β−) = 0 =
d0(e − β0,0) and ϕrd1(β−) = −β−1,0 = d1(e − β0,0). �

Let us consider the following morphisms of bicomplexes

R0,0 Λr (R⊕R)0,0ι π=∂−+∂+

where ι sends e to β− + β0,0 and ∂− is the projection onto Rβ− and ∂+ is the projection onto Rβ0,0.

Proposition 5.4. For r ≥ 0,

ι : R0,0 → Λr

is an r-homotopy equivalence.

Proof. If r ≥ 1, since an isomorphism is an r-homotopy equivalence, it is enough to prove that the composite 
ϕrι = 1R ⊕ 0: R0,0 ⊕ 0 → R0,0 ⊕ Cr is a r-homotopy equivalence, which is a direct consequence of the r-
contractibility of Cr proven in Proposition 4.29 of [2]. Similarly, if r = 0, then the bicomplex

R0,1

R0,0

1

��

is 0-contractible and the proof follows. �
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Definition 5.5. For A an n-multicomplex, the r-path object Pr(A) is the n-multicomplex Λr ⊗A. We denote 
by ιA and πA the maps ι ⊗ 1A and π ⊗ 1A so that the diagonal of A factors as

A
ιA

�� Pr(A)
πA

�� A⊕A .

This construction is functorial, with Pr(f) = 1Λr
⊗ f : Pr(A) → Pr(B), for f : A → B a morphism of 

n-multicomplexes.

Remark 5.6. As a bigraded module we have

P0(A)p,q =Ap,q ⊕Ap,q−1 ⊕Ap,q

Pr(A)p,q =Ap,q ⊕
r−1⊕
i=0

Ap+i,q+i ⊕
r−1⊕
i=0

Ap+i+1,q+i, for r ≥ 1.

Proposition 5.7. Let A be an n-multicomplex and r ≥ 0. The path object Pr(A) is an r-path object for A. 
Indeed, the map ιA : A −→ Pr(A) is an r-homotopy equivalence, hence an Er-quasi-isomorphism and the 
map πA : Pr(A) → A ⊕A is an r-fibration in the model structure of Theorem 3.30.

Proof. That ιA is an r-homotopy equivalence is a direct consequence of Proposition 5.4. For the second 
assertion, the case r = 0 is trivial and for r ≥ 1, we consider the following commutative diagram of 
n-multicomplexes

Pr(A) A⊕A

A⊕ (Cr ⊗A) A⊕A

ϕr⊗1A

πA

(
1A 0
−1A 1A

)
1A⊕φr

The vertical maps are isomorphisms, hence πA is an r-fibration if and only if 1A ⊕ φr is an r-fibration, 
which is so by Proposition 3.22 together with Remark 3.11. �
Remark 5.8. A path object for n-multicomplexes when n = ∞ is given in [3, Section 3.4].

5.2. Model structures on bounded n-multicomplexes

For 2 ≤ n ≤ ∞, recall that n-mCR denotes the category of (Z, Z)-graded n-multicomplexes of R-modules. 
The categories of (−N, Z)-graded (left half-plane) and (Z, N)-graded (upper half-plane) n-multicomplexes 
of R-modules will be denoted by n-mC-N,Z and n-mCZ,N , respectively.

By Proposition 4.4, the category of n-multicomplexes is isomorphic to the category of Cn-modules in 
vertical bicomplexes, previously denoted Cn-Mod. In this section, we will write (Cn-Mod)Z,Z when we want 
to emphasize the (Z, Z)-grading.

Similarly, the category n-mC-N,Z is isomorphic to the category of Cn-modules M in vertical bicomplexes 
concentrated in bidegrees lying in the left half-plane (i.e., with Mp,q = 0 if p > 0), where the latter is 
denoted by (Cn-Mod)-N,Z.

We show that the inclusion functor from n-mC-N,Z to n-mCR has a left adjoint by showing that the 
corresponding inclusion functor from (Cn-Mod)-N,Z to (Cn-Mod)Z,Z has a left adjoint.

Let 2 ≤ n ≤ ∞ and let (M, dM0 , λ) be a Cn-module, where λ : Cn ⊗M −→ M denotes the module action. 
Let M≤0 and M>0 denote the vertical bicomplexes given by
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Mp,q
≤0 =

{
0 if p > 0
Mp,q if p ≤ 0,

and Mp,q
>0 =

{
Mp,q if p > 0
0 if p ≤ 0.

It is clear that M≤0 is a Cn-submodule of M , that M>0 is not, but λ(Cn ⊗M>0) is. Hence the intersection 
λ(Cn ⊗M>0) ∩M≤0 is a Cn-submodule of M≤0.

Lemma 5.9. The projection π : M → M≤0/(λ(Cn ⊗M>0) ∩M≤0) which maps m to 0 if m ∈ M>0 and to its 
class if m ∈ M≤0 is a morphism of Cn-modules.

Proof. For m ∈ M and x ∈ Cn, let us write x ·m for λ(x ⊗m).
Assume m ∈ M>0. If x · m ∈ M>0, then π(x · m) = 0 = x · π(m). If x · m ∈ M≤0, then x · m ∈

λ(Cn ⊗M>0) ∩M≤0, hence π(x ·m) = 0 = x · π(m).
Assume m ∈ M≤0. Since M≤0 is a Cn-submodule of M , π(x ·m) = x · π(m). �

Proposition 5.10. The natural inclusion functor i : (Cn-Mod)-N,Z −→ (Cn-Mod)Z,Z has a left adjoint t given 
on objects by

t(M) = M≤0/(λ(Cn ⊗M>0) ∩M≤0) for a Cn-module M ,

and on morphisms by sending a map of Cn-modules to the induced map on the subquotient.

Proof. Let M ∈ (Cn-Mod)Z,Z and N ∈ (Cn-Mod)-N,Z. Given a morphism f̃ : t(M) −→ N in (Cn-Mod)-N,Z, 
consider the composite

f : M π−→ t(M) f̃−→ i(N) = N,

where π is the morphism of Cn-modules defined in Lemma 5.9, so that f is a morphism of Cn-modules. On the 
other hand, if f : M −→ i(N) = N is a morphism of Cn-modules, then M>0 ⊆ ker f and λ(Cn⊗M>0) ∩M≤0 ⊆
ker f . Hence, f induces a morphism f̃ : t(M) −→ N such that f = f̃π. �

Theorem 3.30 shows that for each r ≥ 0, there is a cofibrantly generated model structure on n-mCZ,Z

where a map f is a weak equivalence if it is an Er-quasi-isomorphism, and a fibration if Ei(f) is surjective 
for 0 ≤ i ≤ r. The generating cofibrations and generating trivial cofibrations are denoted (Inr )′ and (Jn

r )′
respectively. An application of the transfer theorem gives the following.

Proposition 5.11. For each r ≥ 0, there is a cofibrantly generated model structure on n-mC-N,Z, where

(1) weak equivalences are Er-quasi-isomorphisms,
(2) fibrations are morphisms of n-multicomplexes f : A → B such that Ei(f) is bidegree-wise surjective for 

every 0 ≤ i ≤ r, and
(3) the generating cofibrations and generating trivial cofibrations are t(Inr )′ and t(Jn

r )′ respectively.

Proof. We apply the transfer theorem to the adjunction t � i of Proposition 5.10. The descriptions of 
the weak equivalences and fibrations are immediate as long as the transfer theorem holds. We check the 
conditions (1) and (2) in the transfer theorem. Every n-multicomplex is r-fibrant, so the first part of (2) 
trivially holds. Condition (1) holds as the functor t preserves small objects. It remains to find functorial path 
objects for (−N, Z)-graded n-multicomplexes. These exist because if A ∈ n-mC-N,Z, then Pr(A) ∈ n-mC-N,Z

by Remark 5.6. �
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It is also possible to transfer the model category structure to the upper half-plane in the case r = 0. 
Similarly to above, we prove that the inclusion functor from n-mCZ,N to n-mCR has a left adjoint.

Proposition 5.12. For A ∈ n-mCR, there is a (Z, N)-graded n-multicomplex given by

(t′A)p,q =

⎧⎪⎪⎨
⎪⎪⎩
Ap,q q > 0
Ap,0/d0(Ap,−1) q = 0
0 q < 0,

with structure maps di induced from those of A. Furthermore, this construction is functorial and there exists 
an adjunction

n-mCR n-mCZ,N
t′

i

where i is the natural inclusion functor and the functor t′ is its left adjoint.

Proof. We check that for any A ∈ n-mCR, t′(A) is an n-multicomplex. Consider A as a Cn-module (A, d0, λ)
in a natural way (see Proposition 4.4). Let A∗,−1 and Aq<0 denote the following bigraded R-modules

Ap,q
∗,−1 =

{
Ap,−1 if q = −1
0 otherwise

and Ap,q
q<0 =

{
Ap,q if q < 0
0 otherwise.

These are not vertical bicomplexes in general, but Aq<0⊕d0(A∗,−1) is. Furthermore, this is a Cn-submodule 
of A and the quotient A/(Aq<0 ⊕ d0(A∗,−1)) is a Cn-module which corresponds to t′(A). Hence t′(A) is an 
n-multicomplex.

The functor t′ is a left adjoint. Let π : A −→ t′(A) be the projection in n-mCR. For B ∈ n-mCZ,N , a 
morphism f : A → i(B) in n-mCR satisfies d0f(A∗,−1) = fd0(A∗,−1) = 0 and f(Aq<0) = 0. Hence Aq<0 ⊕
d0(A∗,−1) is contained in ker f which implies that f corresponds to a well defined morphism f̃ : t′(A) −→ B

such that f = f̃π. �
Proposition 5.13. For r = 0, there is a cofibrantly generated model structure on n-mCZ,N , where

(1) weak equivalences are E0-quasi-isomorphisms,
(2) fibrations are morphisms of n-multicomplexes f : A → B such that f is bidegreewise surjective, and
(3) the generating cofibrations and generating trivial cofibrations are t′In0 and t′Jn

0 respectively.

Proof. The proof proceeds in the same way as that of Proposition 5.11, using the existence of a functorial 
path object P0(A) for the category n-mCZ,N when r = 0 (see Remark 5.6). �
6. Examples of cofibrancy and cofibrant replacement

In this section we give some examples of cofibrant and non-cofibrant objects. We will see that all the 
objects appearing in our generating (trivial) cofibrations for the model structures of Theorem 3.30 have 
trivial total homology. This leads naturally to the question of how one can build cofibrant objects with non-
trivial total homology and we explore this here. In particular, we note that the ground ring R concentrated 
in a single bidegree is not a cofibrant object and we describe a cofibrant replacement in n-multicomplexes. 
For example, in the case of bicomplexes, this is an “infinite staircase”. We also consider briefly what happens 
under transfer of model structures to bounded versions.
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Example 6.1. For any p, q ∈ Z, the n-multicomplex Rp,q is not cofibrant in (n-mCR)r for 2 ≤ n ≤ ∞ and 
r ≥ 0. Consider the “corner” bicomplex, C(p, q), pictured below.

Rp−1,q Rp,q1
��

Rp−1,q−1

1

��

We can view this as an n-multicomplex for 2 ≤ n ≤ ∞. Define the map of n-multicomplexes π : C(p, q) →
Rp,q to be the identity on R in bidegree (p, q) and zero in all other bidegrees. Then π is clearly bidegreewise 
surjective, so a 0-fibration. Also, E1(C(p, q)) = Rp,q and E1(π) is the identity map of Rp,q. Thus π is a 
trivial 0-fibration.

Now we can test against this trivial 0-fibration to see that Rp,q is not 0-cofibrant. Indeed we find that 
there is no lift Rp,q → C(p, q) in the diagram of n-multicomplexes

C(p, q)

π

��

Rp,q

1
��

�
��

Rp,q

Any such lift f would have to take the generator 1R to the generator 1R in bidegree (p, q) in C(p, q), 
but then for f to be a map of bicomplexes it would have to satisfy 0 = f(d11R) = d1f(1R) = 1R, giving a 
contradiction.

Since Rp,q is not 0-cofibrant, it is not r-cofibrant for any r.

Proposition 6.2. For p, q ∈ Z, r, s ≥ 0 and 2 ≤ n ≤ ∞, ZWn
s (p, q) is cofibrant in (n-mCR)r.

Proof. Fix p, q ∈ Z, r, s ≥ 0 and n with 2 ≤ n ≤ ∞. Note that a lift exists in the diagram of n-multicomplexes

A

f

��

ZWn
s (p, q) ��

��

B

if and only if ZWs(f) is surjective in bidegree (p, q). Now suppose that f is an r-trivial r-fibration. Then 
Ei(f) is surjective for all i ≥ 0. Using Remark 3.11, it follows that ZWs(f) is surjective for all s. So the 
required lift exists. �
Remark 6.3. If we use the r-model structure of Theorem 3.28 instead, the same line of argument shows that 
ZWn

s (p, q) is r-cofibrant for s ≥ r.

Corollary 6.4. For every p, q ∈ Z, s ≥ 0 and 2 ≤ n ≤ ∞, we have

Ei(ZWn
s (p, q)) =

{
Rp,q ⊕Rp−s,q−s+1 if 1 ≤ i ≤ s

0 if i ≥ s + 1.

Proof. The n-multicomplex ZWn
s (p, q) is r-cofibrant for any r ≥ 0 by Proposition 6.2. We claim that 

pn,2(ZWn
s (p, q)) = ZW2

s(p, q) (see Section 4.2 for the definition of pn,2). This follows from the defini-
tion of ZWn

s (p, q) via successive pushout (Definition 3.15) and the fact that pn,2 is a left adjoint and so 
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preserves pushouts, together with the initial cases pn,2(ZWn
0 (p, q)) = ZW2

0(p, q) and pn,2(d∗0) = d∗0. By 
Theorem 4.5, since ZWn

s (p, q) is r-cofibrant, the unit of the adjunction ZWn
s (p, q) → ZW2

s(p, q) is an 
Er-quasi-isomorphism, for each r ≥ 0, in particular an E0-quasi-isomorphism. For the staircase bicomplex 
ZW2

s(p, q) it is easy to read off the pages of the spectral sequence directly:

Ei(ZW2
s(p, q)) =

{
Rp,q ⊕Rp−s,q−s+1 if 1 ≤ i ≤ s

0 if i ≥ s + 1,

as required. �
Definition 6.5. Let p, q ∈ Z and 2 ≤ n ≤ ∞. We define ZWn

∞(p, q) = lim−−→s
ZWn

s (p, q), where the colimit is 
taken over the maps ZWn

s (p, q) → ZWn
s+1(p, q) representing the projection maps ZWn

s+1 → ZWn
s .

Example 6.6. When n = 2, the map ZW2
s(p, q) → ZW2

s+1(p, q) is the inclusion of a staircase with s-
horizontal steps into a staircase with s + 1-horizontal steps and ZW2

∞(p, q) is the infinite (downwards to 
the left) staircase bicomplex, with top right entry in bidegree (p, q):

• ∗

• •

• •

•

Proposition 6.7. Let p, q ∈ Z and 2 ≤ n ≤ ∞. Then ZWn
∞(p, q) → Rp,q given by projection to Rp,q is an 

r-cofibrant replacement of Rp,q for all r ≥ 0.

Proof. First we check that ZWn
∞(p, q) is r-cofibrant for all r ≥ 0. The relevant lift exists for ZWn

∞(p, q) if 
and only if compatible lifts exist for each ZWn

s (p, q). Such lifts do exist for each ZWn
s (p, q) by Proposition 6.2

and it is straightforward to check that they are compatible.
The map Er(ZWn

s (p, q) → ZWn
s+1(p, q)) is the projection to Rp,q if 1 ≤ r ≤ s and 0 otherwise, so we see 

that Er(ZWn
∞(p, q)) = Rp,q for all r ≥ 1. And the projection ZWn

∞(p, q) → Rp,q induces an isomorphism 
on Er for all r ≥ 1, that is, it is an Er-quasi-isomorphism for all r ≥ 0. �
6.1. Upper half-plane versions

We consider the r = 0 model structure on upper half-plane n-multicomplexes from Proposition 5.13. The 
generating cofibrations and generating trivial cofibrations are given by t′I0 and t′J0. The interesting new 
thing that appears is the cotruncation of ι1 : ZW1(p, 0) → BW1(p, −1), which is t′ι1 = 0: ZW1(p, 0) → 0. 
This allows one to see that Rp,0 is 0-cofibrant, since we have a pushout diagram

ZW1(p− 1, 0)

��

�� 0

��

ZW1(p, 0) �� Rp,0



26 X. Fu et al. / Topology and its Applications 316 (2022) 108104
where the top horizontal map is a cofibration and ZW1(p, 0) is cofibrant. On the other hand, Rp,q for q > 0
is not 0-cofibrant, just as in Example 6.1. This shows (unsurprisingly) that in the 0-model structure on 
upper half-plane n-multicomplexes, cofibrancy is not preserved under vertical shift.
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