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Abstract

We give two approximation algorithms solving the Stochastic Boolean Function Eval-
uation (SBFE) problem for symmetric Boolean functions. The first is an O(logn)-
approximation algorithm, based on the submodular goal-value approach of Deshpande,
Hellerstein and Kletenik. Our second algorithm, which is simple, is based on the al-
gorithm solving the SBFE problem for k-of-n functions, due to Salloum, Breuer, and
Ben-Dov. It achieves a (B — 1) approximation factor, where B is the number of blocks
of 0’s and 1’s in the standard vector representation of the symmetric Boolean function.
As part of the design of the first algorithm, we prove that the goal value of any sym-
metric Boolean function is less than n(n + 1) /2. Finally, we give an example showing
that for symmetric Boolean functions, minimum expected verification cost and mini-
mum expected evaluation cost are not necessarily equal. This contrasts with a previous
result, given by Das, Jafarpour, Orlitsky, Pan and Suresh, which showed that equality
holds in the unit-cost case.

Keywords: submodularity, Boolean functions, sequential testing, approximation
algorithms

1. Introduction

In the Stochastic Boolean Function Evaluation (SBFE) problem, we are given (the
representation of) a Boolean function f(z1,...,,) that must be evaluated on an ini-
tially unknown assignment to the variables x;. The value of z; in this assignment can
only be obtained by performing a test, which has an associated cost ¢; > 0. The prob-
ability that x; = 1 is p;, where 0 < p; < 1 and the n tests are independent. Testing
must continue until the outcomes of the performed tests are sufficient to determine the
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value of f. The problem is to determine the (adaptive) order in which to perform the
tests, so as to minimize expected testing cost. (See Section [2|for a formal definition.)

There is an elegant polynomial-time algorithm that solves the SBFE problem when
f is a k-of-n function, that is, a Boolean function whose output is 1 iff at least & of its
inputs xz; are equal to 1. The original version of the algorithm, with its analysis, is due
to Salloum, Breuer, and (independently) Ben-Dov [21} 14} 22} |6l 23]].

In this paper we consider the SBFE problem for a superclass of the k-of-n func-
tions, namely the class of symmetric Boolean functions. A Boolean function is sym-
metric if its output depends only on the number of its inputs x; that are equal to 1. A
symmetric Boolean function f is represented by a vector of length n + 1 indexed from
0 to n, which we call its value vector. Position j of the value vector contains the value
of f on input assignments x containing exactly j 1’s. For example, if f is the majority
function on n = 3 variables, then its value vector, indexed from 0 to 3, is [0, 0, 1, 1].

We note that Cicalese et al. previously presented a simple algorithm for symmetric
Boolean function evaluation in a deterministic, on-line setting, where the goal is to
minimize a worst-case competitive ratio [[7]. Their results do not apply to the SBFE
problem.

Approximation algorithms and open questions: We present two approximation
algorithms solving the SBFE problem for symmetric Boolean functions. The first uses
the goal value approach of Deshpande et al. [10] (Section[d). It achieves an O(log n)-
approximation. The second is a simple algorithm whose approximation factor is (B —
1), where B is the number of “blocks” of consecutive 0’s and consecutive 1’s in the
value vector for f. For example, the value vector [0, 0,1, 1,0] has two blocks of 0’s
and one block of 1’s, so B = 3. The (B — 1)-approximation algorithm uses the k-
of-n evaluation algorithm of Salloum, Breuer, and Ben-Dov as a subroutine. Which
approximation factor is smaller, (B — 1) or O(logn), depends on the relationship
between B and n for the function in question.

To achieve the approximation bound for the first algorithm, we prove a new struc-
tural result on symmetric Boolean functions: we show that the (submodular) goal value
of a symmetric Boolean function is upper bounded by n(n + 1)/2. This bound is al-
most tight, because for even n, the goal value of the k-of-n function for k = n/2 is
exactly (n/2)(n/2 + 1) [3].

It remains an open question whether the SBFE problem for symmetric Boolean
functions is NP-hard. It is also open whether there is a polynomial-time constant-factor
approximation algorithm.

We note that the SBFE problem is known to be NP-hard for certain classes of
Boolean formulas, including linear threshold formulas [8] and monotone DNF (or
CNF) formulas [2]. The SBFE problem for linear threshold formulas has a polynomial-
time constant-factor approximation algorithm, but if P # N P, the SBFE problem for
monotone DNF (CNF) formulas has no such approximation algorithm [[10} 2].

Any symmetric Boolean function with B = 2 must be either a k-of-n function or
the negation of a k-of-n function. Hence the SBFE problem for symmetric Boolean
functions with B = 2 can be solved exactly in polynomial time. As we discuss below,
there are polynomial-time exact algorithms solving the SBFE problem for some spe-
cific symmetric Boolean functions with B = 3. However, even in the unit-cost case,
it is an open question whether there is a polynomial-time algorithm solving the SBFE



problem for arbitrary symmetric Boolean functions with B = 3.

Evaluation vs. verification: The correctness of the algorithm solving the SBFE
problem for k-of-n functions, due to Salloum, Breuer, and Ben-Doyv, is based on a rela-
tionship between the evaluation problem and a related verification problem. Intuitively,
in the verification problem, you are given the same inputs as in the evaluation problem,
and you are also given the value of f(z). You need only perform enough tests to verify
that the given f(z) value is correct. The correctness of the Salloum-Breuer-Ben-Dov
algorithm for k-of-n functions is based on the fact that for k-of-n functions, optimal
expected evaluation cost is equal to optimal expected verification cost (cf. [3]).

Subsequently, Das et al. showed that, in the special case of unit-costs (i.e., ¢; = 1
for all ), equality of optimal evaluation and verification costs holds for a/l symmetric
Boolean functions [9]. (Their work was inspired by work of Kowchik and Kumar, who
re-discovered the unit-cost version of the Salloum-Breuer-Ben-Dov algorithm [19].)

The work of Das et al. did not address the question of whether equality of optimal
expected evaluation and verification costs holds for all symmetric Boolean functions
when costs are arbitrary. We give a counterexample showing that it does not hold.

Preliminary versions of the results in this paper appeared previously in a conference
paper [12]. That paper also contained results for the unit-cost version of the SBFE
problem, including a polynomial-time 4-approximation algorithm solving the SBFE
problem for arbitrary symmetric Boolean functions in the unit-cost case. Subsequent
analysis has shown that the algorithm actually achieves a 2-approximation [15]].

2. Preliminaries

An adaptive evaluation strategy for a Boolean function f(x1,...,x,) is a sequen-
tial order in which to “test” the variables z; of f, so as to determine the value of f on
an initially unknown assignment 2z € {0, 1}". Testing z; reveals its value. The choice
of the next test can depend on the outcomes of the previous tests.

An adaptive evaluation strategy for f corresponds to a Boolean decision tree com-
puting f. Each internal node of such a tree is labeled with a variable z; of f, and has
two children, one corresponding to x; = 1 and the other to x; = 0. Each leaf of the
tree is labeled either O or 1. An assignment x € {0, 1}" induces a root-leaf path in the
tree, determined by the values of the x; in x. The leaf at the end of that path is labeled
with the value of f(x).

We do not require an SBFE algorithm to output the entire decision tree correspond-
ing to the computed adaptive evaluation strategy, as that tree could be of exponential
size. It is sufficient for the algorithm to implement the strategy by sequentially com-
puting the next test to perform, in an on-line fashion, and finally outputting the value
of f(x).

Consider fixed values for the costs ¢; (where ¢; > 0) and probabilities p; (where
0 < p; < 1) for the n variables x;. We formally define the expected costs of adaptive
evaluation and verification strategies for f: {0,1}™ — {0,1} as follows. Given an
adaptive evaluation strategy A for f, and an assignment x € {0, 1}", we use C'(A, x) to
denote the sum of the costs ¢; of the tests performed in using A on . The expected cost
of Ais 30, cro.1yn C(A,2)p(x), where p(z) = [[;_; p;* (1—p;)' ~** is the probability



of x. We say that A is an optimal adaptive evaluation strategy for f if it has minimum
possible expected cost.

A partial assignment is a vector b € {0,1,}™. For £ € {0,1}, we use Ny(b) to
denote |{i | b; = £}|, the number of entries of b that are set to £. A partial assignment
represents the information that is known while performing tests. Specifically, for a
partial assignment b € {0, 1, *}", b; = * indicates that the value of ; is still unknown,
otherwise b; equals the outcome of the test on x;.

We use f° to denote the restriction of function f(z1,...,x,) to the bits i with
b; = *, produced by fixing the remaining bits i according to their values b;. We call f°
the function induced from f by partial assignment b.

An assignment b’ € {0,1}" is an extension of a partial assignment b € {0, 1, %}",
written b’ = b, if b} = b; for all 7 such that b; # x.

A partial assignment b € {0, 1, x}" is a certificate for a Boolean function f: {0,1}" —
{0, 1} if f(a) has the same value for all @ € {0,1}" such that a > b.

For ¢ € {0,1}, let X, = {z € {0,1}" | f(z) = ¢}. An adaptive verification
strategy for f consists of two adaptive evaluation strategies 4, for f, one for each ¢ €
{0, 1}. The expected cost of the verification strategy is } ¢ ¢ 1 (erxé C (A, z)p(z))
and it is optimal if it minimizes this expected cost.

If A is an evaluation strategy for f, we call ), C(A, x)p(z) the {-cost of A.
For ¢ € {0,1}, we say that A is ¢-optimal if it has minimum possible ¢-cost. In an
optimal verification strategy for f, each component evaluation strategy A, must be
{-optimal.

A Boolean function f: {0,1}" — {0, 1} is symmetric if its output on = € {0,1}"
depends only on N;(z), the number of 1’s in x. The value vector for such a function
f is the n + 1 dimensional vector R, indexed from 0 to n, whose jth entry R[j] is the
value of f on inputs x such that Ny (x) = j. We partition the value vector R into blocks.
A block is a maximal subvector of R such that entries of the subvector have the same
value. Using B to denote the number of blocks of the value vector, we define a4, ... ap
to be the minimum indices of each of the blocks, where 0 = a7 < as < ... < ap, and
we define ap;1 = n + 1. Block i is the subvector of R containing the entries indexed
by the elements in [a;, cviv1).

We say that an assignment x belongs to block j if a; < Ni(z) < ajq1. If @
belongs to block j, then f(x) is equal to R[a;] = Rlo; + 1] = ... = R[oyj41 — 1].

A function g: {0,1,*}" — Z>¢ is monotone if g(b') > g(b) whenever b’ > b.
It is submodular if for ¥ »= b, i such that b, = b; = *, and ¢ € {0,1}, we have
g(bi,_) —g(b') < g(bis) — g(b). Here b; ¢ denotes the partial assignment produced

from b by setting b; to ¢, and similarly for b/, .

3. Exact algorithms for special classes of symmetric functions

Before presenting our approximation algorithms, we describe exact algorithms
solving the SBFE problem for some special classes of symmetric functions.

It is well-known that if f is the Boolean OR function, then it is optimal to test the
variables x; in nondecreasing order of the ratio ¢; /p; (cf. [24])). Dually, if f is Boolean
AND, it is optimal to test in nondecreasing ¢; /(1 — p;) order.



The Salloum-Breuer-Ben-Dov algorithm solving the SBFE problem for k-of-n
functions is recursive and works as follows. Suppose 0 < k < n. Create two per-
mutations of the x;’s, one in nondecreasing order of the ratio ¢;/p;, and one in nonde-
creasing order of the ratio ¢; /(1 — p;). By the pigeonhole principle, there must exist a
variable x; that appears within the first k variables of the first permutation, and within
the first n — k 4 1 variables of the second permutation. Find such a variable z; and test
it. If z; = 1, this reduces the problem to a (k — 1)-of-(n — 1) evaluation problem, and if
x; = 0, it reduces the problem to a k-of-(n — 1) evaluation problem. Solve the reduced
problem recursively. Assuming 0 < k£ < n at the start, the base cases are where & = 0,
implying that the value of f must be 1, and where k£ > n, implying that the value of f
must be 0.

The correctness of this algorithm relies on the relationship between the verification
and evaluation problems for k-of-n functions (cf. [5])), as discussed in Section

We note here that an almost identical algorithm solves the SBFE problem for
exactly-k functions, which output 1 iff exactly k of their inputs are 1. The only real
difference in the algorithm is that instead of a base case for k = 0, there is a base case
for k = —1, implying that the value of f is 0. The correctness proof is nearly identical
to that for the k-of-n algorithm. The unit-cost version of the algorithm for exactly-k
functions was previously introduced by Acharya al. [L]. (They used the name “delta
functions” to refer to the exactly-k functions. A long, but more descriptive, name for
them would be “exactly-k-of-n functions.”)

The value vector for an exactly-k function contains exactly one 1, so B = 3 for any
exactly-k function where 1 < k <n — 1.

Another interesting example of a symmetric function with B = 3 is the consensus
function. The output of the consensus function is 1 iff all of its inputs are equal, so
its value vector has 1’s only in its first and last positions. There is a polynomial-time
exact algorithm that solves the SBFE problem for the consensus function, and for its
complement, the not-all-equal function. We presented the unit-cost version of the al-
gorithm in [15]; the extension to arbitrary costs (which we presented in our conference
paper [12]]) is straightforward.

4. Goal value and Adaptive Greedy

The first algorithm we present for evaluating arbitrary symmetric functions uses the
goal value approach of Deshpande et al. [10]. (They called it the )-value approach.)
The idea behind the approach is to solve the SBFE problem by reducing it to a (binary-
state) Stochastic Submodular Cover problem. The latter problem is similar to the SBFE
problem, with the following differences. Instead of being given a Boolean function
f to evaluate, you are given (an oracle for) a monotone, submodular utility function
g(x1,...,zy), where g : {0,1,%}" — R>¢. For simplicity, we will assume in what
follows that g is integer-valued, so in fact, g: {0,1,*}™ — Zx>,. The function g has
the property that for all a € {0, 1}™, the value of g(a) is equal to some common value
Q € Z>o. We call () the goal value of g. Instead of performing tests until the value
of a Boolean function f can be determined, tests must be performed until the partial
assignment b representing the test outcomes so far satisfies g(b) = Q. The problem is
then to compute an adaptive strategy that minimizes expected testing cost.



To reduce the SBFE problem to the Stochastic Submodular Cover problem, we take
the Boolean function f: {0,1}™ — {0, 1} that is to be evaluated in the SBFE problem
and use it to construct a utility function g: {0, 1, *}" — Zx>(. The function g must be
a goal function for f, meaning that it satisfies the following properties:

* g is submodular

* g is monotone
e g(x,...,%x)=0

* there exists a value () € Z>( such that for all b € {0,1,x}", g(b) = Q iff bis a
certificate for f.

For probabilities p; and costs ¢;, finding an adaptive strategy of minimum expected cost
for achieving goal utility () (as measured by g) is then equivalent to finding an optimal
adaptive evaluation strategy for f.

The Adaptive Greedy algorithm of Golovin and Krause [13]] is an approximation al-
gorithm for the Stochastic Submodular Cover problem. To choose the variable x; to test
next, it uses the following greedy rule: Choose the x; whose test outcome maximizes
the expected increase in utility, per unit cost (with respect to g, the p;, and the ¢;). There
are a number of different proofs showing that Adaptive Greedy achieves an O(log Q)
approximation bound for the Stochastic Submodular Cover problem [17, (10} 16} 18]{1_-]

Thus once a submodular goal function g is constructed for Boolean function f,
running Adaptive Greedy on ¢ results in an O(log Q)-approximation to the optimal
adaptive strategy for evaluating f. The challenge in the goal value approach is to
construct g so that its goal value () is small, resulting in a small approximation factor.
This is not possible for all classes of Boolean functions f. The goal value of a Boolean
function f is the minimum goal value of any submodular goal function g for f. The
goal value of every Boolean function is upper bounded by 2™ [3]. While we show
that symmetric functions have goal value polynomial in n, some classes of Boolean
functions have goal value exponential in n [10} 3].

5. An O(log n)-approximation algorithm based on goal value

We present the O(log n)-approximation algorithm for the SBFE problem for sym-
metric functions, using the goal value approach. To implement this approach, we con-
struct a submodular goal function g for f. The construction is in the proof of the
following theorem, which gives an upper bound on the goal value of any symmetric
function.

Theorem 1. The goal value of any symmetric Boolean function f(x1, ..., xy,) is strictly
less than n(n + 1) /2.

I'The tightest of these O(log Q) bounds is the (In Q + 1) bound due to Hellerstein et al. [I7]. An earlier
proof of a (In@ + 1) bound was found to have an error [13| 20} [14]]. A recent O(log Qn) bound, due to
Esfandiari et al. [11]], also applies to a generalization of the Stochastic Submodular Cover problem.



Proof. Let f(z1,...,z,) be a symmetric Boolean function. We construct a submodu-
lar goal function g for f using its value vector R. The construction is based on a graph
G, defined as follows. The graph has n + 1 vertices, vy, . . . , v,, Where v; corresponds
to position ¢ of R. Let B be the number of blocks in R. Partition the vertices into B
subsets, where each subset contains the vertices corresponding to the positions con-
tained in a single block. The graph G is the complete B-partite graph induced by this
partition, so there is an edge from v; to v; iff positions 4 and j are in different blocks
of R.

We construct a goal function g for f that assigns a value to each partial assignment
b € {0,1,%}™. Forb € {0,1,%}", let V(b) be the set of vertices v; of G such that
either i < Ny(b) ori > n — Ny(b). Say that b covers an edge of G if V'(b) contains at
least one of its endpoints. Let S(b) be the set of edges of G that are covered by b. We
define g(b) = |S(b)|.

We now argue that g is a goal function for f. Clearly g(*,...,x) = 0. If ' = b
then N1 (b)) > Ny(b) and No(b') > No(b). Thus S(b) C S(b'), so g is monotone.

Every partial assignment b € {0,1,*}" induces a function f® of f which is a
symmetric function on the variables x; for which b; = *. The value vector of fb is
produced from R by deleting its first Ny (b) entries and its last Ny(b) entries (which
are disjoint, since No(b) + N1 (b) < n). The function f? is constant iff all entries in its
value vector are equal. That is, b is a certificate for f iff removing the first N (b) and
last Ny (b) entries from R results in the remaining entries all being members of a single
block of R. This latter property holds iff S(b) is the set of all edges of G. Thus g(b) is
equal to the total number of edges of G iff b is a certificate of f.

Finally, we show that g is submodular. Consider some b € {0,1,*}" and i €
{1,...,n} such that b, = *. Let £ = 1; an analogous argument holds for £ = 0.
Consider g(b;«¢)—g(b), whichis equal to |S(b;«¢)\S(b)|. Let s = Ny (b). Vertex v, is
the only vertex in V' (b;.¢) thatis notin V'(b). It follows that the edges in S(b;¢)\S(b)
are precisely the pairs {vs, v;} where t isin the set I(b) := {N1(b)+1,...,n—Ny(b)},
and s and ¢ are in different blocks of R.

Now consider b’ € {0, 1, *}"™ such that ¥’ > b and b, = x. Let s’ = Ny (V).

Consider an edge {vy, v} in S(b;,_,)\S(V'). Clearly t € I(b"). Since Ny(b) <
N1(b') and Ny(b) < No(b'), we have t € I(b) as well. Since s’ and ¢ are in different
blocks of R, and s < s, it follows that s and ¢ are also in different blocks of R.
Thus for each edge {v,/,v:} in S(b],_,)\S(') there is a corresponding edge {v,, v:}
in S(b;¢)\S(b). It follows that |S(b], ,)\S(b')| < |S(bie)\S(b)| and therefore
g(bi,_p) —g(t') < g(big) — g(b). Since an analogous argument holds if £ = 0, g is
submodular.

The number of edges in G is maximized when each position of R is in its own
block. In this case, the goal value of the constructed g is n(n + 1)/2. This implies that
the goal value of any symmetric function is at most n(n + 1) /2.

To see that it is strictly less than n(n + 1) /2, note that there are only two symmetric
functions f for which each position of R is in its own block: the parity function and
its complement. For each of these functions, the above construction does not achieve
minimum possible goal value. The goal value of these functions is n, and it is achieved
by the utility function g(b) = No(b) + N1(b) [3]. Thus every symmetric Boolean
function has goal value strictly less than n(n + 1) /2. O



The construction in the above proof generalizes a previous construction for k-of-n
functions. In that case, the graph G is bipartite and the constructed function achieves
minimum possible goal value for the k-of-n function [3]]. It is an open problem to give a
construction that achieves minimum possible goal value for every symmetric function.

Having described the construction, we prove the following theorem.

Theorem 2. There is a polynomial-time O(logn)-approximation algorithm for the
SBFE problem for symmetric Boolean functions.

Proof. The input to the SBFE problem for symmetric Boolean functions is the value
vector R for the symmetric function f that is to be evaluated.

The algorithm uses R to construct the graph G defined in the proof of Theorem
Once G is constructed, the value of the associated utility function g can be easily
computed on any given partial assignment. The algorithm runs the Adaptive Greedy
algorithm of Golovin and Krause on g to determine the order in which to perform
the tests. Let b € {0, 1,*}™ be the partial assignment representing the outcomes of
all the tests performed by Adaptive Greedy. By the proof of Theorem [I] the entries
R[N1(b)],...,R[n — Ny(b)] are all equal to the desired value f(x). The algorithm
outputs one of them, e.g., R[N (b)].

Let ) denote the goal value of g. As shown in the proof of Theorem [T} it is at most
n(n + 1)/2. Because Adaptive Greedy is an O(log Q)-approximation algorithm for
Stochastic Submodular Cover, the above algorithm achieves an approximation factor
of O(logn). O

6. The (B - 1)-approximation algorithm

The (B — 1)-approximation algorithm for the SBFE problem is simple. It runs the
algorithm for evaluating k-of-n function, due to Salloum, Breuer, and Ben-Dov, once
for each of the B — 1 values aw, ..., ap associated with the value vector of f. The
run for o5 sets kK = «;, and determines whether the initially unknown assignment x
satisfies N1(z) > «;, i.e., whether x belongs to a block numbered j or higher. Once
this is done for the B — 1 values s, . .., ap, it is straightforward to determine which
block of the value vector contains x, and hence to determine the value of f(x).

We present the pseudocode for this algorithm as Algorithm[I] and show it achieves
a (B — 1)-approximation. In the pseudocode, we denote as f; the k-of-n function with
k = «;. We note that in different iterations of the for loop, the strategy that is executed
in the body may choose a test that was already performed in a previous iteration. The
test does not actually have to be repeated, as the outcome can be stored after the first
time the test is performed, and accessed whenever the test is chosen again.

The correctness of the algorithm follows easily from the facts that f;(x) = 1 iff
Ni(x) > ay, and that o < Nq(2) < a=41, and so f(z) = Rfa+].

We now examine the expected cost of the strategy computed in Algorithm |l Let
C(f;) denote the expected cost of evaluating f; using the optimal k-of-n strategy. Let
OPT be the expected cost of the optimal adaptive strategy for f.

Lemma 1. C(f;) < OPT fori € {2,...,B}.



Algorithm 1 (B — 1)-approximation algorithm

for i < 2to B do
Using the k-of-n evaluation algorithm of Salloum, Breuer, and Ben-Dov, perform
tests to find the value of f;(x)

end for

if fi(x) =0forall¢ > 1,seti* =1 // recall that oy = 0

else set * < max{i | f;(z) =1}

return R[]

Proof. Let T' be the decision tree corresponding to an optimal adaptive strategy for
evaluating f. Consider using 7 to evaluate f on an initially unknown input z. When
a leaf of T is reached, we have discovered the values of some of the bits of . Let d
be the partial assignment representing that knowledge. Recall that f¢ is the function
induced from f by d. The value vector of f¢ is a subvector of the value vector R of
f. More particularly, it is the subvector stretching from index N;(d) of R to index
n — No(d). Since T is an evaluation strategy for f, reaching a leaf of 7" means that we
have enough information to determine f(x). Thus all entries of the subvector must be
equal, implying that it is contained within a single block of R. We call this the block
associated with the leaf.

For each block 7 > 2, we can create a new tree 7 from 7' which evaluates the
function f;. We do this by relabeling the leaves of T": if the leaf is associated with
block ', then we label the leaf with output value 1 if ¢’ > ¢, and with 0 otherwise. T
is an adaptive strategy for evaluating f;.

The expected cost of evaluating f; using 7 is equal to OPT, since the structure
of the tree is unchanged from 7" (we’ve only changed the labels on leaves). Since T}
cannot do better than the optimal k-of-n strategy, C'(f;) < OPT. O

Lemmal[I] yields the following theorem:

Theorem 3. There is a polynomial-time (B—1)-approximation algorithm for the SBFE
problem for symmetric Boolean functions.

Proof. Let C(f;, x) denote the cost of evaluating f;(x) using the optimal k-of-n evalu-
ation algorithm. Then the expected cost of Algorithm|l|is 3, c ¢ 13» B, Cfi, x)p(x).

Reversing the order of summation, this is equal to Zf;Z > zefoyn Clfi,@)p(a) =
Zf;z C(fi). Thus by Lemmam the total cost of Algorithmis at most Zf;Q C(fi) <
S22 OPT = (B —1)OPT. O

We note that we could easily modify this algorithm to use binary search (to find the
index ¢* of the block containing x), rather than sequential search. However, while this
seeemingly would lead to an approximation bound of O(log B), we do not know how
to prove that the modified algorithm actually achieves such a bound. The difficulty
in simply adapting the previous analysis is as follows. Consider the expression for
the expected cost of the previous algorithm, 3= (g qn Zf; C(fi,x)p(x). If the
algorithm is modified to use binary search rather than sequential search, then for each



x, the inner sum, Zf;Q C(fi,x)p(z), can be replaced by a sum of O(log B) terms of
the form C'(f;, z)p(x). However, these terms would not be the same for all , because
they depend on the execution of the binary search associated with x. This prevents
us from reversing the order of summation, as we did in the previous argument, which
prevents us from completing the proof and attaining the desired O(log B) bound.

7. Verification vs. Evaluation

Recall the definitions associated with verification strategies and their costs, from
Section[2} Let f: {0,1}" — {0, 1} be a Boolean function with associated costs ¢; and
probabilities p;. Let V(f) and £(f) denote the minimum possible expected verification
cost and minimum possible expected evaluation cost, respectively, of f.

The correctness of the algorithm of Salloum, Breuer, and Ben-Dov solving the
SBFE problem for k-of-n functions is based on the following lemma.

Lemma 2. [4)] Consider an instance of the SBFE problem. If f is a k-of-n function,
then the evaluation strategy that tests the bits in nondecreasing order of the ratio c; /p;,
until the value of f can be determined, is 1-optimal.

A dual lemma states that testing in nondecreasing order of ¢; /(1 — p;) is 0-optimal
when f is a k-of-n function.

It is obvious that V(f) < &(f). Before discussing this relationship further, we
describe the proof of correctness for the Salloum-Breuer-Ben-Dov algorithm, presented
in Section (3] for k-of-n functions. Since any 1-optimal strategy must perform at least
k tests before terminating, the strategy that tests in nondecreasing ¢; /p; order is still
1-optimal if you permute the first k tests in the ordering arbitrarily. Similarly, the
strategy that tests in nondecreasing ¢; /(1 — p;) order is still 0-optimal if you permute
the first n — k 4 1 tests arbitrarily. The algorithm first tests an x; that appears within
the first k tests of the ¢;/p; ordering, and also within the first n — k + 1 tests of the
¢i/(1 — p;) ordering. Thus testing such an z; first is consistent with both a 1-optimal
and a 0-optimal strategy. This also holds for the recursive calls of the algorithm. Thus
the strategy produced by the algorithm is both 0-optimal and 1-optimal, and because
V(f) < E(f), it is an optimal evaluation strategy.

The above correctness proof also implies that for k-of-n functions f, V(f) = £(f).

Das et al. [9] showed that in the unit-cost case, V(f) = £(f) holds when f is an
arbitrary symmetric Boolean function f. Their proof also relied on showing that there
exists a variable z; such that testing x; first is consistent with both a 1-optimal and
a 0-optimal strategy. However, the proof involves additional insights and arguments
that were not needed for k-of-n functions, and it does not imply a polynomial-time
procedure to find such an z;.

We show that the result of Das et al. does not hold for arbitrary costs. We describe
a symmetric Boolean function f, and associated p; and ¢;, for which the minimum
expected cost of evaluation exceeds the minimum expected cost of verification. The
description of the function is in the proof of the following theorem.

Theorem 4. There exists a symmetric Boolean function f: {0,1}™ — {0, 1}, costs ¢;,
and probabilities p;, such that V(f) < E(f).
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Proof. We give a function f on n = 4 bits with B = 3. The value vector of f is
[0,1,1,0,0]. The costs and probabilities for the bits are given in Table[I]

bit p;  cost

z; 0.1 5000
zo 0.3 6000
g 0.9 3000
zq4 0.8 5000

Table 1: Costs and probabilities of bits

Consider the evaluation tree for f given in Figure[T} we denote it by 7. We assume
left edges correspond to z; = 0 and right edges to z; = 1. So, for example, if z €
{0,1}* is such that z; = 7o = 0 and 23 = x4 = 1, then p(z) = (1 — p1) * (1 —
p2) * p3 x pg = .4536 and the sum of the tests performed by T on z is C(T,x) =
c3 + ¢z + ¢1 = 14000. The expected cost of T'is 3 ¢ 1 13 C(T, x)p(x) = 14,618.

In fact, T is optimal, meaning that it has minimum possible expected cost over all
adaptive strategies for evaluating f. Thus £(f) = 14, 618. The optimality of T can be
shown by computing the expected cost of only 12 candidate trees, as follows. For any
evaluation strategy, if the outcome of the first test is 1, then the induced problem is to
evaluate the function with value vector [1, 1,0, 0]; this new function is the negation of
a 2-of-3 function. If the outcome of the first test is 0 and the outcome of the second
test is 1, then the induced problem is to evaluate the function with value vector [1, 1, 0].
This function is the negation of a 2-of-2 function. If the outcome of the first test is 0
and the outcome of the second test is also 0, then the induced problem is to evaluate
the function with value vector [0, 1,1]. This is a 1-of-2 function. Since we know the
optimal evaluation strategies for k-of-n functions (and their negations), to determine
the optimal evaluation tree for f, we only need to determine which variables appear in
the root of the tree and in its left child. We do this by trying all 12 choices for these
two variables, and computing the expected costs of the associated trees. The results are
shown in Table |2} the optimal expected cost is bolded.

Figure 1: Optimal evaluation tree for f

Now consider the problem of verifying f. Recall that a verification strategy for f
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root leftchild expected cost of tree

T T2 15,529
1 T3 15,259
T Ty 16,042
X2 I 14,881
) I3 14,643
T2 T4 15,616
X3 X3 14,618
T3 T2 14,670
T3 T4 14,623
Ty T 15,394
Ty T2 15,616
Ty T3 15,406

Table 2: Possible evaluation trees for f and their costs

consists of two evaluation strategies, one for assignments x in &’ and one for assign-
ments z in Xp. If V() were equal to £(f), then since T is an optimal adaptive strategy
for f, it would have to be ¢-optimal for each ¢ € {0,1}. Otherwise, if T' were not ¢-
optimal for some ¢, one could achieve an expected verification cost lower than £(f) by
using an ¢-optimal tree for the assignments in X, and the tree 7" for the assignments in
Xi_s.

In Figure [2| we show a truncated version of an evaluation tree 7" for f whose 1-
costis Y cy, C(T',2)p(w) = 10,241.8. (In fact, this is the optimal 1-cost.) In the
figure, X designates a leaf which is not reachable on any x for which f(z) = 1, and
thus that node and its descendants in the original tree do not affect the 1-cost.

The 1-cost of the optimal evaluation tree 7" in Figure [I]is 10, 248.8. Because the
1-cost of the tree in Figure[2]tree is less than the 1-cost of T', V(f) < E(f).

Figure 2: Tree with optimal 1-cost
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