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Abstract
In this paper, the authors build on their previous work
to show that periodic rational 𝐺-equivariant topological
𝐾-theory has a unique genuine-commutative ring struc-
ture for 𝐺 a finite abelian group. This means that every
genuine-commutative ring spectrum whose homotopy
groups are those of 𝐾𝑈ℚ,𝐺 is weakly equivalent, as a
genuine-commutative ring spectrum, to 𝐾𝑈ℚ,𝐺 . In con-
trast, the connective rational equivariant 𝐾-theory spec-
trum does not have this type of uniqueness of genuine-
commutative ring structure.
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1 INTRODUCTION

Periodic equivariant topological 𝐾-theory 𝐾𝑈𝐺 is one of the foundational cohomology theories
of algebraic topology. It was first defined by Segal [24]. Equivariant 𝐾-theory for a group 𝐺 links
stable homotopy theory with the complex representation theory of 𝐺 and all of its subgroups. For
example, induction and restriction of representations are visible in the structure of the zeroth sta-
ble homotopy groups of 𝐾𝑈𝐺 . Equivariant complex 𝐾-theory arises from consideration of vector
bundles onmanifolds and provides deep connections between representation theory and geomet-
ric topology.

© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

1082 wileyonlinelibrary.com/journal/blms Bull. London Math. Soc. 2022;54:1082–1103.

mailto:am.bohmann@vanderbilt.edu
https://wileyonlinelibrary.com/journal/blms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.12616&domain=pdf&date_stamp=2022-05-15


GENUINE-COMMUTATIVE STRUCTURE ON RATIONAL 𝐾-THEORY 1083

Equivariance has come to the forefront of stable homotopy theory in recent years, as researchers
have realized the powerful possibilities of equivariant structures. These were made manifest in
Hill, Hopkins, and Ravenel’s ground-breaking solution to the Kervaire invariant one problem [17].
The formulation of this problem does not involve group actions in any way, but the solution in
[17] relies fundamentally on the techniques of equivariant homotopy theory. An essential tool in
this work is an algebraic structure of multiplicative transfer maps that is present in the homotopy
groups of a𝐺-equivariant cohomology theorywith a strongly commutative cup product, when𝐺 is
finite. This structure is part of a hierarchy of levels of commutativity in the equivariant world that
describe the extent to which homotopy commutativity is compatible with the group action. This
hierarchy has been known for some time [14, 20] but had not been extensively used. Systematic
study of these levels of commutativity began with work of Blumberg and Hill on𝑁∞-operads [7],
and it has since been a very active area of research [2, 8, 9 11–13, 16 22].While this body of work has
gone a long way towards illuminating equivariant commutativity, these structures are still widely
regarded as subtle and complicated.
In this paper, we analyze the rationalization of equivariant complex 𝐾-theory 𝐾𝑈ℚ,𝐺 from the

perspective of two levels of commutativity, where 𝐺 is finite abelian. Equivariant 𝐾-theory enjoys
the maximal level of commutativity, sometimes called genuine commutativity, as shown in [18].
Forgetting structure, wemay also view it as having theminimal level of commutativity, naive com-
mutativity. The results here and of our previous work in [10] show that rational periodic equivari-
ant 𝐾-theory is homotopically unique when considered at both levels. In contrast, the nonperi-
odic version of rational complex 𝐾-theory is only unique when considered at the minimum level
of commutativity.
The difference between these levels of commutativity boils down to the presence of normmaps

on the homotopy groups of a spectrum. After rationalization, these normmaps have a particularly
elegant and approachable form. Our uniqueness result— the first of its kind in equivariant stable
homotopy theory — illustrates the power of algebraic models for rational homotopy theory. It
also serves as an approachable and illuminating window into the structures that distinguish the
varying levels of equivariant commutativity.
Our proof uses a recent result ofWimmer [29] that provides an algebraic model for the category

of rational genuine-commutative ring 𝐺-spectra when 𝐺 is a finite group. In particular, Wimmer
shows that the∞-category of rational genuine-commutative ring𝐺-spectra,whichhave all norms,
is equivalent to the category [Orb𝐺, CDGA(ℚ)] of functors from the orbit category of 𝐺 to the
category of rational commutative differential graded algebras. The norm maps that characterize
genuine-commutative ring spectra showup in the algebraicmodel asmaps of CDGAs𝐴∙(𝐺∕𝐻) →
𝐴∙(𝐺∕𝐾) arising from maps 𝐺∕𝐻 → 𝐺∕𝐾 in the orbit category that are not isomorphisms. In
this way, Wimmer’s algebraic model for genuine-commutative ring spectra extends the algebraic
model for naive-commutative ring spectra developed by Barnes, Greenlees, and Kędziorek in [4]
— their work shows that rational naive-commutative ring spectra are modeled by functors from
Orb×

𝐺
to CDGA(ℚ), where Orb×

𝐺
denotes the subcategory of isomorphisms in Orb𝐺 .

In previous work [10], we calculated the image of rational equivariant𝐾-theory in the algebraic
model for naive-commutative ring spectra, when 𝐺 is an abelian group. In fact, the calculation
of [10] follows from a uniqueness result in that category akin to the main result of the present
paper. The homotopy groups of topological complex𝐾-theory form a commutative Green functor
and were computed previously by Segal [24]. When 𝐺 is abelian, these homotopy groups have
trivial Weyl group actions and we used this to show that there is a unique naive-commutative
ring spectrumwith this commutative Green functor of homotopy groups. In this paper, we further
show there is a unique genuine-commutative ring spectrumwith the same underlying homotopy
groups. This is proved as Theorem 5.2.
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TheoremA. Let𝐺 be a finite abelian group. If𝑋 is a genuine-commutative rational ring𝐺-spectrum
whose underlying homotopy Green functor is isomorphic to that of 𝐾𝑈ℚ,𝐺 , then 𝑋 is weakly equiva-
lent to 𝐾𝑈ℚ,𝐺 as genuine-commutative ring spectra.

The assumption in Theorem A that 𝑋 be a genuine-commutative rational ring 𝐺-spectrum is
essential, as we show in Example 5.7. Working with the algebraic models for naive- and genuine-
commutative ring 𝐺-spectra, we show that there exists a naive-commutative ring 𝐺-spectrum
𝑌 that is equivalent to 𝐾𝑈ℚ,𝐺 as a naive-commutative ring 𝐺-spectrum, but does not enjoy a
genuine-commutative ring structure. That is, 𝑌 is not in the image of the forgetful functor from
genuine-commutative ring 𝐺-spectra to naive-commutative ring 𝐺-spectra.
In [10], we also show a similar uniqueness result for the naive-commutative structure on con-

nective 𝐾-theory 𝑘𝑢ℚ,𝐺 . However, in contrast to the case for periodic 𝐾-theory, we do not get this
uniqueness at the genuine-commutative level for 𝑘𝑢ℚ,𝐺 . Instead, we find that not all weak equiv-
alences in the category of naive-commutative ring 𝐺-spectra can be extended to equivalences of
genuine-commutative ring 𝐺-spectra. This result is proved as Theorem 5.6.

Theorem B. Let 𝐺 be a finite abelian group. There exists a rational genuine-commutative ring
𝐺-spectrum𝑋 whose underlying Green functor of homotopy groups is isomorphic to that of 𝑘𝑢ℚ,𝐺 but
which is not weakly equivalent to 𝑘𝑢ℚ,𝐺 . That is, 𝑋 is weakly equivalent to 𝑘𝑢ℚ,𝐺 in the category of
rational naive-commutative ring 𝐺-spectra but not in the category of rational genuine-commutative
ring 𝐺-spectra.

This type of behavior is typical for increasing algebraic structure: for example, the wedge of
Eilenberg–MacLane spectra

⋁
𝑛 Σ

2𝑛𝐻ℚ is rationally equivalent to 𝐾𝑈ℚ but this does not extend
to an equivalence of ring spectra. The example of 𝑘𝑢ℚ,𝐺 is an explicit illustration of the additional
rigidity of weak equivalences that preserve genuine-commutative ring structure, in contrast to
those that preserve only naive commutativity.

Notation and Conventions

Throughout the paper, we assume that 𝐺 is a finite group. We use the notation (𝐺) for the
algebraic model of rational 𝐺-spectra, (𝐸1∞(𝐺)) for the algebraic model of rational naive-
commutative ring 𝐺-spectra, and (𝐸𝐺∞(𝐺)) for the algebraic model of rational genuine-
commutative ring 𝐺-spectra; see Definitions 2.2, 2.5, and 2.7, respectively. If 𝑋 is a rational naive-
commutative ring𝐺-spectrum, then 𝜃(𝑋) denotes its derived image in(𝐸1∞(𝐺)). If𝑋 is a rational
genuine-commutative ring 𝐺-spectrum, then we denote by Θ(𝑋) its derived image in (𝐸𝐺∞(𝐺))

and by 𝜃(𝑋) its derived image in(𝐸1∞(𝐺)), after forgetting part of the structure.
As we exclusively work in the rationalized context, to avoid notational clutter we leave the

rationalization of a spectrum implicit in our notation. Hence 𝐾𝑈ℚ,𝐺 will typically be denoted
by 𝐾𝑈𝐺 , and likewise 𝑘𝑢ℚ,𝐺 will be denoted by 𝑘𝑢𝐺 . However, we maintain the rationalization
in the notation for categories; for example, 𝖲𝖧ℚ denotes the rational stable homotopy category.
The only exception is in the notation for the algebraic models, which do not have nonrational
counterparts.
Finally, we use ≃ to denote a zig-zag of Quillen equivalences between model categories or an

equivalence between∞-categories.
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2 PRELIMINARIES

In this section, we recall the framework of algebraic models for rational 𝐺-spectra. We begin with
the classical, nonequivariant story.
The process of rationalization drastically simplifies stable homotopy theory. This philosophy

dates back at least to Serre. Serre’s computations of stable homotopy groups of spheres [25] imply
there is an equivalence between the rational stable homotopy category 𝖲𝖧ℚ and graded ℚ-vector
spaces gr(ℚ-mod) given by taking homotopy groups

𝜋∗(−)∶ 𝖲𝖧ℚ ⟶ gr(ℚ-mod).

This result can be lifted to an equivalence of homotopy theories, either at the level of∞-categories
or model categories. For example, Shipley [26] constructed a zig-zag of symmetric monoidal
Quillen equivalences between rational spectra and rational chain complexes

𝑝ℚ ≃ 𝖢𝗁ℚ.

Since these Quillen equivalences are symmetric monoidal, they induce an equivalence between
ring spectra and differential graded algebras. Moreover, if 𝑅 is a rational ring spectrum, we get an
induced equivalence between 𝑅-modules in spectra and corresponding modules in rational chain
complexes. A bit more work shows that 𝐸∞-algebras in the two categories are also equivalent.
They are modeled by algebras over the commutative operad on both sides and work of Richter
and Shipley [21] provides a zig-zag of Quillen equivalences between them.
Rational equivariant stable homotopy theory can similarly be encoded in algebraic models.

For equivariant spectra, homotopy groups have a richer structure given by homotopy Mackey
functors. Roughly speaking, a 𝐺-Mackey functor 𝑀 is a collection of abelian groups indexed
by subgroups 𝐻 of 𝐺, together with transfer, restriction, and conjugation maps between them
satisfying certain conditions. Taking homotopy groups produces an equivalence between the
rational 𝐺-equivariant stable homotopy category and the category of rational graded 𝐺-Mackey
functors

{𝜋𝐻∗ (−)}𝐻⩽𝐺 ∶ 𝐺𝖲𝖧ℚ ⟶ gr𝑎𝑐𝑘(𝐺)ℚ.

Mackey functors are purely algebraic, but can be fairly complex — see, for example, [28] for an
introduction to the subject. The complexity of Mackey functor structure comes from the fact that
the restrictions and transfers arising from subgroups are interrelated. Over the rational numbers,
the category of Mackey functors simplifies. Greenlees and May [15, Appendix A] showed that
rational 𝐺-Mackey functors split into the product over conjugacy classes of subgroups in 𝐺 of
ℚ[𝑊𝐺𝐻]-modules,

𝑎𝑐𝑘(𝐺)ℚ ≅
∏

(𝐻),𝐻⩽𝐺

ℚ[𝑊𝐺𝐻]-mod,

where𝑊𝐺𝐻 is the Weyl group of the subgroup 𝐻 in 𝐺, that is,𝑊𝐺𝐻 = 𝑁𝐺𝐻∕𝐻. What is more,
this splitting is compatible with the corresponding splitting at the level of rational𝐺-spectra using
the idempotents of the rational Burnside ring for 𝐺. For a modern account see [5].
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Combining the above, we get an equivalence of categories

𝐺𝖲𝖧ℚ ≃
∏

(𝐻),𝐻⩽𝐺

gr(ℚ[𝑊𝐺𝐻]-mod).

This result was later lifted to a zig-zag of Quillen equivalences between model categories by
Schwede–Shipley [23] and Barnes [3], and to a zig-zag of symmetric monoidal Quillen equiva-
lences by Kędziorek [19].

Theorem 2.1. There exists a zig-zag of symmetric monoidal Quillen equivalences

𝐺𝑝ℚ ≃
∏

(𝐻),𝐻⩽𝐺

𝖢𝗁(ℚ[𝑊𝐺𝐻]),

where the symmetric monoidal product on the right-hand side is given by⊗ℚ on each component of
the product.

Definition 2.2. The category
∏

(𝐻),𝐻⩽𝐺 𝖢𝗁(ℚ[𝑊𝐺𝐻])with the objectwise projectivemodel struc-
ture is an algebraic model for rational 𝐺-spectra and we denote it by (𝐺). If 𝑋 is a rational
𝐺-spectrum, then we denote by 𝜃(𝑋) its derived image in(𝐺).

As in the nonequivariant case, these symmetric monoidal Quillen equivalences induce a zig-
zag of Quillen equivalences between equivariant ring spectra and algebras in(𝐺). Additionally,
if 𝑅 is an equivariant rational ring spectrum, we get an induced equivalence between 𝑅-modules
in spectra and corresponding modules in the algebraic model(𝐺).
These parallels between the equivariant and nonequivariant pictures in the associative case

belie the fact that the case of commutative equivariant spectra is significantly more complicated
than the nonequivariant one. To begin, in the equivariant world there are distinct, nonequivalent
levels of commutativity, which all forget down to 𝐸∞-structure in 𝑝. These different levels of
commutativity aremodeled by Blumberg andHill’s𝑁∞-operads [7]. There are two special cases of
𝑁∞-operads which are important for this paper: the genuine-commutative operad, denoted by
𝐸𝐺∞, and the naive-commutative operad, denoted by 𝐸

1
∞. Algebras over these operads in 𝐺-spectra

are called genuine-commutative ring spectra and naive-commutative ring spectra, respectively. In
particular, genuine-commutative ring spectra are characterized by having all the norm maps
between their homotopy groups. This implies that the collection of homotopy groups of a genuine-
commutative ring spectrum forms a graded Tambara functor [1].
On the other hand, there is only one level of commutativity in the algebraic model (𝐺):

a differential graded algebra is either graded-commutative or it is not. It turns out that com-
mutative algebras in the algebraic model (𝐺) classify the naive-commutative rational ring
𝐺-spectra.

Theorem 2.3 [4]. There exists a zig-zag of Quillen equivalences from naive-commutative rational
ring 𝐺-spectra to the commutative algebras in the algebraic model(𝐺),

𝐸1∞-alg(𝐺𝑝ℚ) ≃ Comm-alg((𝐺)) =
∏

(𝐻),𝐻⩽𝐺

CDGA(ℚ[𝑊𝐺𝐻]).
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Remark 2.4. Let Orb𝐺 denote the orbit category of 𝐺, whose objects are cosets 𝐺∕𝐻 for all𝐻 ⩽ 𝐺

and whose morphisms are 𝐺-equivariant maps. Denote by Orb×
𝐺
the wide subcategory of Orb𝐺

consisting of only isomorphisms. Then the category of functors from Orb×
𝐺
to rational commu-

tative differential graded algebras is equivalent to the algebraic category given in Theorem 2.3,
that is

[Orb×
𝐺
, CDGA(ℚ)] ≅

∏
(𝐻),𝐻⩽𝐺

CDGA(ℚ[𝑊𝐺𝐻]).

Note that we recover the Weyl group actions by making the usual identification of equivariant
automorphisms of 𝐺∕𝐻 and the Weyl group𝑊𝐺𝐻, and then looking at the images in CDGA(ℚ).
We take this presentation as our algebraic model for naive-commutative rational ring 𝐺-spectra.

Definition 2.5. The category [Orb×
𝐺
, CDGA(ℚ)]with the objectwise projectivemodel structure is

an algebraic model for naive-commutative rational ring 𝐺-spectra and we denote it by(𝐸1∞(𝐺)).
If 𝑋 is a naive-commutative rational ring 𝐺-spectrum, then we denote by 𝜃(𝑋) its derived image
in(𝐸1∞(𝐺)).

Recent work ofWimmer [29] incorporates the additional structure of normmaps into the above
algebraic model, providing an algebraic model for genuine-commutative rational ring 𝐺-spectra.
In this case, the model is implemented by an equivalence of∞-categories.

Theorem 2.6 [29]. There is an equivalence of∞-categories

𝐸𝐺∞-alg(𝐺𝑝ℚ) ≃ [Orb𝐺, CDGA(ℚ)].

Definition 2.7. The infinity category [Orb𝐺, CDGA(ℚ)] is an algebraic model for genuine-
commutative rational ring 𝐺-spectra and is denoted (𝐸𝐺∞(𝐺)). If 𝑋 is a genuine-commutative
rational ring 𝐺-spectrum, then we denote by Θ(𝑋) its derived image in(𝐸𝐺∞(𝐺)).

Comparing Theorem 2.6 with Remark 2.4, we see that the additional norm map structure on
genuine-commutative ring spectra is present in the algebraic model as maps between the CDGAs
corresponding to nonconjugate subgroups of 𝐺. We can understand such maps as follows. Sup-
pose 𝐿 and 𝐾 are nonconjugate subgroups and there is a map 𝑓∶ 𝐺∕𝐿 → 𝐺∕𝐾 in Orb𝐺 with
𝑒𝐿 ↦ g𝐾. The equivariance of this map implies g−1𝐿g ⩽ 𝐾, and so we can factor 𝑓 as an iso-
morphism composed with a quotient map, that is, as the composition of

𝐺∕𝐿 → 𝐺∕(g−1𝐿g), 𝑒𝐿 ↦ g(g−1𝐿g) and

𝐺∕(g−1𝐿g) → 𝐺∕𝐾, 𝑒(g−1𝐿g) ↦ 𝑒𝐾.

Thus, as compared to an object in (𝐸1∞(𝐺)), the additional structure of an object in (𝐸𝐺∞(𝐺))

is given by the image of the quotient maps. We refer to this additional structure as the shadows of
the norm maps; an individual such map is a norm shadow.

Definition 2.8. Suppose𝐻 ⪇ 𝐾 ⩽ 𝐺. We refer to the image of the quotientmap 𝑝∶ 𝐺∕𝐻 → 𝐺∕𝐾,
𝑝(𝑒𝐻) = 𝑒𝐾 under a functor in(𝐸𝐺∞(𝐺)) as a norm shadow.
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Remark 2.9. Unlike the actual norm maps on homotopy groups of a genuine-commutative ring
𝐺-spectrum, the shadows of the norm maps are maps of commutative algebras, so in particular
they are maps of degree 0 that are both additive and multiplicative. They are also appropriately
equivariant, which in this context means that they commute with the images of the conjugacy
maps in Orb𝐺 .

Remark 2.10. Our focus in this paper is when 𝐺 is a finite abelian group. In this case, the action of
conjugation on the collection of subgroups of𝐺 is trivial, and so everymap inOrb𝐺 can be factored
as an automorphism followed by a quotientmap. The automorphisms are again given by elements
of Weyl groups, but now the normalizer of any subgroup is the entire group 𝐺. Hence to define
an object in (𝐸𝐺∞(𝐺)) when 𝐺 is abelian, we can specify an object of CDGA(ℚ[𝐺∕𝐻]) for each
subgroup𝐻 ⩽ 𝐺, together with𝐺-equivariantmaps ofCDGAs whenever there is proper subgroup
containment, subject to the requirement that thesemaps form a functor out of the subgroup lattice
of 𝐺. These maps are exactly the shadows of the normmaps. We use this perspective to define an
object in(𝐸𝐺∞(𝐺)) in Section 4.

The algebraic model for naive-commutative rational ring 𝐺-spectra may also be derived from
thework ofWimmer at the level of∞-categories.Hence combining the algebraicmodels for naive-
and genuine-commutative ring 𝐺-spectra with the algebraic model for rational 𝐺-spectra pro-
duces a commuting diagram of∞-categories.

Lemma 2.11. The following diagram of∞-categories, in which all vertical arrows denote forgetful
functors, commutes up to a natural equivalence.

Proof. The above diagram can be rewritten as the composite of the following squares.

Here the right horizontal maps 𝜃 and Θ̃ at the ∞-category level are the maps on diagrams
[Orb×

𝐺
, −] and [Orb𝐺, −] induced by the zig-zags of Quillen equivalences from [26] between 𝑝ℚ
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and 𝖢𝗁ℚ, and from [21] betweenComm𝑝ℚ andCDGA(ℚ). Commutativity of the square with the
two maps 𝜃 follows, since the diagram at the level of spectra commutes by [21]. The bottom right
square commutes, since the zig-zag of Quillen equivalences given in [21] extends to the category
of diagrams of commutative spectra indexed by Orb×

𝐺
and by Orb𝐺 .

The top left square commutes because the geometric fixed points functors used in [29] form a
symmetric monoidal functor and Comm𝑝 ≃ 𝐸1∞𝑝.
The left outer rectangle commutes up to a natural equivalence by [29, Proposition 4.5]. The

natural equivalence constructed there lifts to an equivalence of rational commutative spectra, and
thus the bottom left square commutes. □

We finish this sectionwith a simple example that illustrates the difference between the algebraic
models for naive- and genuine-commutative ring 𝐺-spectra.

Example 2.12. Let 𝐺 = 𝐶2 and take an object (ℚ[𝑥], ℚ[𝑥]) in (𝐸1∞(𝐺)), with the trivial Weyl
group action and 𝑥 in an even degree. This corresponds to a naive-commutative rational ring
𝐺-spectrum, which we call 𝑋. To obtain a genuine-commutative rational ring 𝐺-spectrum we
have to specify a norm shadow 𝑛∶ ℚ[𝑥]⟶ ℚ[𝑥]. For example, two possible choices are to define
𝑛 = idℚ[𝑥] or to define 𝑛 to be the ℚ-map which sends 𝑥 to 0. Each of these two choices for 𝑛
defines a rational genuine-commutative ring𝐺-spectrum. These spectra are notweakly equivalent
as genuine-commutative ring𝐺-spectra, but they both restrict to the samenaive-commutative ring
𝐺-spectrum𝑋. In other words, the genuine-commutative structure is not uniquely determined by
the homotopy groups nor by the underlying naive-commutative ring 𝐺-spectrum.

3 THE IMAGE OF A SPECTRUM IN THE ALGEBRAICMODEL

In this section, we delve further into the properties of the algebraic models in order to explain
methods for calculating the derived image of a given spectrum.

3.1 Formality results in the algebraic models

Recall that the derived comparison functor in Theorem 2.1 from 𝐺𝑝ℚ to(𝐺) is denoted 𝜃. This
functor is determined abstractly, and for 𝑋 a rational 𝐺-spectrum, it does not provide an explicit
description of 𝜃(𝑋) ∈ (𝐺). Nevertheless, we have the following formula linking homology and
homotopy groups

𝐻∗(𝜃𝐾(𝑋)) ≅ 𝜋∗(Φ
𝐾(𝑋)),

where Φ𝐾(𝑋) denotes the geometric 𝐾-fixed points of 𝑋 for 𝐾 ⩽ 𝐺, and for ease of notation we
have denoted the value of the functor 𝜃(𝑋) at𝐾 by 𝜃𝐾(𝑋). This identification allows for an explicit
description in the presence of formality. Concretely, in the case where the chain complex 𝜃𝐾(𝑋)
is formal for every 𝐾 ⩽ 𝐺, that is, 𝜃𝐾(𝑋) ≃ 𝐻∗(𝜃𝐾(𝑋)) in 𝖢𝗁(ℚ[𝑊𝐺𝐾]), these weak equivalences
at each 𝐾 ⩽ 𝐺 assemble to produce a description of the derived image of 𝑋 in the algebraic model
(𝐺).
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By construction, a similar statement is true for naive-commutative rational ring𝐺-spectra. That
is, let𝑋 be a rational naive-commutative ring𝐺-spectrum and let 𝜃(𝑋) denote its derived image in
the algebraic model(𝐸1∞(𝐺)). Then we have the same formula linking homology and homotopy
groups: for each 𝐾 ⩽ 𝐺,

𝐻∗(𝜃𝐾(𝑋)) ≅ 𝜋∗(Φ
𝐾(𝑋)),

where Φ𝐾(𝑋) again denotes the geometric 𝐾-fixed points of 𝑋. If it happens that for every 𝐾 ⩽ 𝐺

the CDGA 𝜃𝐾(𝑋) is formal, that is, 𝜃𝐾(𝑋) ≃ 𝐻∗(𝜃𝐾(𝑋)) in CDGA(ℚ[𝑊𝐺𝐾]), we obtain a descrip-
tion of the derived image of 𝑋 in the algebraic model(𝐸1∞(𝐺)).
In [10], we used thismethod to calculate the derived images of𝐻𝑅𝑈

𝐺
,𝐾𝑈𝐺 and 𝑘𝑢𝐺 in the alge-

braic model (𝐸1∞(𝐺)). The spectrum 𝐻𝑅𝑈
𝐺
is the Eilenberg–MacLane spectrum for the com-

plex representation ring Mackey functor 𝑅𝑈
𝐺
, and 𝜋

0
𝐾𝑈𝐺 = 𝑅𝑈

𝐺
. We obtained the following

calculations of these CDGAs and their homology. These calculations serve as the input for the
computations in the genuine algebraic model.

Theorem 3.1 [10]. For a finite abelian group 𝐺, there are weak equivalences in(𝐸1∞(𝐺))making
the following identifications for each 𝐾 ⩽ 𝐺:

𝜃𝐾(𝐻𝑅𝑈𝐺
) ≃ 𝐻∗(𝜃𝐾(𝐻𝑅𝑈𝐺

)) ≃ 𝑉𝐾

𝜃𝐾(𝐾𝑈𝐺) ≃ 𝐻∗(𝜃𝐾(𝐾𝑈𝐺)) ≃ 𝑉𝐾[𝛽
±1]

𝜃𝐾(𝑘𝑢𝐺) ≃ 𝐻∗(𝜃𝐾(𝑘𝑢𝐺)) ≃ 𝑉𝐾[𝛽],

where the ℚ[𝑊𝐺𝐾]-module 𝑉𝐾 is given by

𝑉𝐾 =

{
ℚ(𝜁𝑛) if 𝐾 is cyclic of order 𝑛
0 else.

Here ℚ(𝜁𝑛) is the field extension of ℚ by a primitive 𝑛th root of unity and 𝛽 is the Bott element in
degree two. The𝑊𝐺𝐾-actions on 𝑉𝐾 and the generators 𝛽 are trivial in all cases.

When working with genuine-commutative ring spectra, by construction and by Lemma 2.11,
we again have the formula linking homology and homotopy groups: for each 𝐾 ⩽ 𝐺,

𝐻∗(Θ𝐾(𝑋)) ≅ 𝜋∗(Φ
𝐾(𝑋)),

whereΦ𝐾(𝑋) denotes the geometric𝐾-fixed points of𝑋 andΘ is the∞-functor fromTheorem 2.6;
again Θ𝐾(𝑋) denotes the value of Θ(𝑋) at 𝐾 ⩽ 𝐺.
One would like to use formality to find the image Θ(𝑋) for a genuine-commutative ring spec-

trum 𝑋. This time, however, Θ(𝑋) lives in the∞-category(𝐸𝐺∞(𝐺)) = [Orb𝐺, CDGA(ℚ)]. Thus
the correct notion of ‘formality’ is formality of the entire diagram, which cannot be separated
into formality at each individual subgroup 𝐾 ⩽ 𝐺 as before. Nevertheless, if we can show the dia-
grammatic formality resultΘ(𝑋) ≃ 𝐻∗(Θ(𝑋)) in(𝐸𝐺∞(𝐺)), thenwe do obtain a description of the
derived image of 𝑋 in the algebraic model(𝐸𝐺∞(𝐺)). This is the procedure we implement in the
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remainder of the paper. We construct a zig-zag of weak equivalences in(𝐸𝐺∞(𝐺)) from Θ(𝐾𝑈𝐺)

to𝐻∗(Θ(𝐾𝑈𝐺)) in order to identify the derived image of 𝐾𝑈𝐺 .
Our strategy will be to first prove formality of Θ(𝐻𝑅𝑈

𝐺
) via a Koszul type resolution and then

lift this to resolutions giving formality of Θ(𝐾𝑈𝐺) and Θ(𝑘𝑢𝐺). Note this is not the most efficient
way to prove formality for Θ(𝐻𝑅𝑈

𝐺
). There is a standard formality argument for any Eilenberg–

MacLane spectrum using the (−1)-connected cover, but this approach cannot be extended to
Θ(𝐾𝑈𝐺). For clarity, we include the truncation argument below along with an explanation why
this simple approach cannot work for Θ(𝐾𝑈𝐺) or Θ(𝑘𝑢𝐺).

3.2 Formality for Eilenberg–MacLane spectra

For any 𝐴∙ ∈ DGA (not necessarily commutative), we can form the (−1)-connected cover 𝜏⩾0𝐴∙,
which is zero in negative degrees, has the zero cycles 𝑍0 of𝐴∙ in degree zero, and is 𝐴𝑖 in degree 𝑖
for 𝑖 > 0. As in [6], for example, this truncation can be used to show that anyDGAwith homology
concentrated in degree zero is formal. The zig-zag of quasi-isomorphisms is given by the inclusion
and the quotient map to homology

The second map exists because the homology is concentrated in degree zero.
In fact, given a diagram𝐴∙ ∈ (𝐸𝐺∞(𝐺))with homology concentrated in degree zero, this argu-

ment easily extends to give formality of the diagram.

Proposition 3.2. Let 𝐺 be any finite group. Suppose 𝐴∙ ∈ (𝐸𝐺∞(𝐺)) has homology concentrated
in degree zero. Then 𝐴∙ is formal.

Proof. Since 𝐴∙ has homology concentrated in degree zero, at each conjugacy class (𝐾) we have
a zig-zag as above. If 𝐺∕𝐽 → 𝐺∕𝐾 is a map in Orb𝐺 and 𝑛𝐾𝐽 ∶ 𝐴∙(𝐽) → 𝐴∙(𝐾) is the induced map
on CDGAs, then we have a commutative diagram

where the middle map is simply the restriction of 𝑛𝐾
𝐽
to the truncation. □

Corollary 3.3. Let 𝐺 be a finite group and let𝑀 be a Tambara functor. There is a unique genuine-
commutative ring structure on𝐻𝑀

ℚ
, the Eilenberg–MacLane spectrum for𝑀 ⊗ℚ.

Proof. Since we are working with an Eilenberg–MacLane spectrum, the image in the algebraic
model Θ(𝐻𝑀

ℚ
) has homology concentrated in degree zero. By the previous proposition, it is

formal. Thus by Theorem 2.6, the genuine-commutative ring structure on 𝐻𝑀
ℚ
is uniquely

determined. □
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This corollary is a special case of Ullman’s work [27] in which he shows that the cate-
gory of 𝐺-Tambara functors is equivalent to the homotopy category of genuine-commutative
Eilenberg–MacLane ring 𝐺-spectra, without rationalization. In the rational case, this result is a
straightforward consequence of the existence and the simplicity of the algebraic model.
In particular, Corollary 3.3 implies that Θ(𝐻𝑅𝑈

𝐺
) is formal. Unfortunately, the above method

does not extend to Θ(𝐾𝑈𝐺) because Θ(𝐾𝑈𝐺) has nonzero homology in negative degrees, so no
map from the connective cover can induce an isomorphism on homology. One might hope to use
something like the above argument for the connective cover Θ(𝑘𝑢𝐺) and then invert a represen-
tative for 𝛽 afterward, but even for the connective cover, this argument fails because we are not
guaranteed any map 𝜏⩾0Θ(𝑘𝑢𝐺) → 𝐻∗(Θ(𝑘𝑢𝐺)). Thus we need a different approach to show for-
mality.

4 CONSTRUCTING A NICE RESOLUTION OF𝑯∗(𝚯(𝑯RU𝑮))

We now give an approach to formality for the Eilenberg–MacLane spectrum Θ(𝐻𝑅𝑈
𝐺
) that

can be extended to give formality for Θ(𝐾𝑈𝐺). We construct a resolution 𝐵∙ for the homology
of Θ(𝐻𝑅𝑈

𝐺
) that has the additional property that it admits a map to any diagram 𝐴∙ whose

degree zero homology is the same as 𝐻0(Θ(𝐻𝑅𝑈𝐺
)), and that this map induces an isomorphism

on homology in degree zero. We then use this construction to prove formality of Θ(𝐾𝑈𝐺) in
Section 5.
We first make the following observation to simplify our constructions. The diagram Θ(𝐻𝑅𝑈

𝐺
)

comes with a Weyl group action at each subgroup. As observed in [10, Remark 4.4], if the group
is finite abelian, then the action on homology is trivial for all subgroups. Note this does not imply
the action on the CDGA at each subgroup is trivial. However, the following lemma shows we can
always choose representatives for homology classes that are fixed. Similarly, if a boundary element
is fixed, we can always find an element in its preimage under the differential that is fixed under
the Weyl group action.

Lemma 4.1 (Averaging [10, Lemma 5.2]). Let𝐴∙ be in CDGA(ℚ[𝑊𝐺𝐾]), and suppose a homology
class 𝑥 ∈ 𝐻∗(𝐴∙) is fixed under the𝑊𝐺𝐾-action. Then 𝑥 has a representative 𝑎 ∈ 𝐴∙ that is fixed
under the𝑊𝐺𝐾-action. Similarly if 𝑦 ∈ 𝐴∙ and 𝑑(𝑦) is fixed under the𝑊𝐺𝐾-action, then there exists
a fixed element 𝑏 such that 𝑑(𝑏) = 𝑑(𝑦).

We will construct our diagram 𝐵∙ so that 𝐵∙(𝐾) has a trivial 𝑊𝐺𝐾-action for all subgroups
𝐾 ⩽ 𝐺. When we construct the map to 𝐴∙ where 𝐻0(𝐴∙) ≅ 𝐻∗(Θ(𝐻𝑅𝑈𝐺

)), it will always be
assumed that the representatives of homology classes we choose are fixed so that themap is equiv-
ariant at each level. The above lemma ensures this is possible and we use this ‘Averaging Lemma’
throughout this section without further mention.

Construction 4.2. For a finite abelian group 𝐺, let 𝐵∙ ∈ (𝐸𝐺∞(𝐺)) be the diagram of rational
CDGAs defined as follows.
For 𝐾 a cyclic subgroup of 𝐺, define the free graded-commutative algebra

𝐵∙(𝐾) =
⨂

𝑝 prime
𝑝∣|𝐾|

⨂
𝐿⩽𝐾, 𝐿≠𝑒

𝐿 cyclic 𝑝-group

ℚ[𝑥𝐿] ⊗ 𝐸(𝑡𝐿)
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with |𝑥𝐿| = 0, |𝑡𝐿| = 1, and then define differentials

𝑑(𝑡𝐿) =

{
Φ𝑝(𝑥𝐿) 𝐿 ≅ 𝐶𝑝

𝑥𝐿′ − 𝑥
𝑝
𝐿

𝐿 ≅ 𝐶𝑝𝑟 with maximal proper subgroup 𝐿′ ≅ 𝐶𝑝𝑟−1 .

Here Φ𝑝 denotes the 𝑝th cyclotomic polynomial. We view 𝐵∙(𝐾) as a ℚ[𝐺∕𝐾]-CDGA with trivial
action. Observe that because the empty tensor product is the unit CDGAℚ, at the trivial subgroup
this construction reduces to 𝐵∙(𝑒) = ℚ.
For 𝐾 a noncyclic subgroup of 𝐺, define

𝐵∙(𝐾) = 𝑀∙ ⊗
⨂

𝑝 prime
𝑝∣|𝐾|

⨂
𝐿⩽𝐾, 𝐿≠𝑒

𝐿 cyclic 𝑝-group

ℚ[𝑥𝐿] ⊗ 𝐸(𝑡𝐿),

where the differentials on the generators 𝑥𝐿 and 𝑡𝐿 are as in the cyclic subgroup case and where
𝑀∙ is the CDGA

𝑀∙ = 𝐸(𝑎)

with |𝑎| = 1 and 𝑑(𝑎) = 1, which implies the homology of𝑀∙ is the zero ring. Again, regard𝐵∙(𝐾)
as a ℚ[𝐺∕𝐾]-CDGA with trivial 𝐺∕𝐾 action.
We next specify the norm shadows 𝑛𝐾

𝐿
∶ 𝐵∙(𝐿) → 𝐵∙(𝐾) arising from subgroup inclusions

𝐿 ⩽ 𝐾. Such an inclusion implies that |𝐿| ∣ |𝐾| and that any cyclic 𝑝-subgroup of 𝐿 is also a cyclic
𝑝-subgroup of 𝐾. We may thus define any 𝑛𝐾

𝐿
via inclusions of tensor products over smaller sets

into tensor products over larger sets. That is, for a cyclic 𝑝-subgroup 𝐽 of 𝐿 (and thus of 𝐾), we
send the generators 𝑥𝐽, 𝑡𝐽 ∈ 𝐵∙(𝐿) to the similarly named generators in 𝑥𝐽, 𝑡𝐽 ∈ 𝐵∙(𝐾). In the case
that 𝐿 is not cyclic, it must also be that 𝐾 is not cyclic, so we just send the extra exterior genera-
tor 𝑎 ∈ 𝐵∙(𝐿) to the corresponding generator 𝑎 ∈ 𝐵∙(𝐾). This commutes with the differentials by
direct inspection.
These definitions of 𝑛𝐾

𝐿
are clearly functorial in the subgroup lattice of 𝐺, and thus define an

Orb𝐺-diagram in CDGA, as discussed in Remark 2.10.

Lemma 4.3. The homology of the complex 𝐵∙(𝐾) defined in Construction 4.2 is concentrated in
degree 0, where it is given by

𝐻0(𝐵∙(𝐾)) =

{
ℚ(𝜁|𝐾|) 𝐾 cyclic
0 𝐾 noncyclic.

Proof. Consider first the case where 𝐾 is cyclic, so

𝐵∙(𝐾) =
⨂

𝑝 prime
𝑝∣|𝐾|

⨂
𝐿⩽𝐾, 𝐿≠𝑒

𝐿 cyclic 𝑝-group

ℚ[𝑥𝐿] ⊗ 𝐸(𝑡𝐿).

The differentials do not mix the tensor factors corresponding to distinct primes 𝑝, so we may
write this CDGA as a tensor product of CDGAs corresponding to each prime divisor of |𝐾|. As 𝐾
is cyclic, it has a unique maximal cyclic 𝑝 subgroup, which we denote 𝐾𝑝. All cyclic 𝑝 subgroups
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of 𝐾 are subgroups of 𝐾𝑝. We may thus write

𝐵∙(𝐾) =
⨂

𝑝 prime, 𝑝∣|𝐾| 𝐵∙(𝐾𝑝).

By the Künneth theorem, the homology of 𝐵∙(𝐾) splits as the tensor product

𝐻∗(𝐵∙(𝐾)) ≅
⨂
𝑝∣|𝐾|𝐻∗(𝐵∙(𝐾𝑝)).

For a fixed prime 𝑝, let 𝑝𝑘 be the maximal power of 𝑝 dividing |𝐾|. There is then a unique cyclic
𝑝 subgroup of 𝐾 of order 𝑝𝑟 for 1 ⩽ 𝑟 ⩽ 𝑘 and we may rewrite the CDGA 𝐵∙(𝐾𝑝) as⨂

𝐿⩽𝐾𝑝, 𝐿≠𝑒

𝐿 cyclic 𝑝-group

ℚ[𝑥𝐿] ⊗ 𝐸(𝑡𝐿) = ℚ[𝑥𝑝, 𝑥𝑝2 … , 𝑥𝑝𝑘 ] ⊗ 𝐸(𝑡𝑝, 𝑡𝑝2 , … , 𝑡𝑝𝑘 )

with differentials

𝑑(𝑡𝑝𝑟 ) =

{
Φ𝑝(𝑥𝑝) 𝑟 = 1

𝑥𝑝𝑟−1 − (𝑥𝑝𝑟 )
𝑝 𝑟 > 1

A standard regular sequence argument proves the homology of this complex vanishes in
degrees different from 0, and in degree 0 is given by

𝐻0(𝐵∙(𝐾𝑝)) ≅ ℚ[𝑥𝑝, … , 𝑥𝑝𝑘 ]∕
(
Φ𝑝(𝑥𝑝), 𝑥𝑝 − (𝑥𝑝2)

𝑝, … , 𝑥𝑝𝑘−1 − (𝑥𝑝𝑘 )
𝑝
)

≅ ℚ[𝑥𝑝, 𝑥𝑝𝑘 ]∕
(
Φ𝑝(𝑥𝑝), 𝑥𝑝 − (𝑥𝑝𝑘 )

𝑝𝑘−1
)

≅ ℚ[𝑥𝑝𝑘 ]∕
(
Φ𝑝((𝑥𝑝𝑘 )

𝑝𝑘−1)
)

≅ ℚ(𝜁𝑝𝑘 ),

where the last isomorphism follows from the cyclotomic polynomial identity

Φ𝑝((𝑥)
𝑝𝑘−1) = Φ𝑝𝑘 (𝑥).

We therefore have that𝐻0(𝐵∙(𝐾)) ≅
⨂

𝑝∣|𝐾| ℚ(𝜁|𝐾𝑝|) ≅ ℚ(𝜁|𝐾|).
If 𝐾 is not cyclic, then

𝐵∙(𝐾) = 𝑀∙ ⊗
⨂

𝑝 prime
𝑝∣|𝐾|

⨂
𝐿⩽𝐾, 𝐿≠𝑒

𝐿 cyclic 𝑝-group

ℚ[𝑥𝐿] ⊗ 𝐸(𝑡𝐿)

where the differentials do not mix the 𝑀∙ tensor factor with the remaining factors. Since
𝐻∗(𝑀∙) = 0, the Künneth theorem implies that𝐻∗(𝐵∙(𝐾)) = 0. □

Lemma 4.4. Let 𝐴∙ ∈ (𝐸𝐺∞(𝐺)) be any diagram whose zeroth homology satisfies

𝐻0(𝐴∙(𝐾)) ≅

{
ℚ(𝜁|𝐾|) 𝐾 cyclic
0 𝐾 noncyclic
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with trivial Weyl group actions on homology. Then there is a map in(𝐸𝐺∞(𝐺))

𝜓∶ 𝐵∙ → 𝐴∙

that induces an isomorphism on 𝐻0, where the diagram 𝐵∙ ∈ (𝐸𝐺∞(𝐺)) is the one defined in
Construction 4.2.

Proof. We construct 𝜓 by induction over the lattice of subgroups of 𝐺. At the trivial subgroup
𝐵∙(𝑒) = ℚ, so the CDGA map 𝜓𝑒 ∶ 𝐵∙(𝑒) → 𝐴∙(𝑒)must be the unit map.
Let 𝐾 be a subgroup of 𝐺. By induction, we may assume that for all proper subgroups

𝐿 ⩽ 𝐾, there are Weyl-equivariant CDGA maps 𝜓𝐿 ∶ 𝐵∙(𝐿) → 𝐴∙(𝐿) inducing isomorphisms on
𝐻0. Moreover, we may assume that whenever 𝐺∕𝐿′ → 𝐺∕𝐿 is a quotient map in Orb𝐺 , the dia-
gram

(4.5)

commutes. The proof is in four cases, depending on the structure of the subgroup 𝐾.
Case 1. 𝐾 is cyclic of prime order, 𝐾 ≅ 𝐶𝑝. Then 𝐵∙(𝐾) = ℚ[𝑥𝐾] ⊗ 𝐸(𝑡𝐾). By assumption,

𝐻0(𝐴∙(𝐾)) ≅ ℚ(𝜁𝑝) is the 𝑝th cyclotomic field extension. We may thus choose a (Weyl-fixed) ele-
ment 𝑥𝐾 ∈ 𝐴0(𝐾) that represents a primitive 𝑝th root of unity in homology. The homology class
[𝑥𝐾] must satisfy the 𝑝th cyclotomic polynomial Φ𝑝, and hence Φ𝑝(𝑥𝐾) is the boundary of an
element 𝑡𝐾 ∈ 𝐴1(𝐾), which we may choose to be Weyl-fixed. The assignment 𝜓𝐾(𝑥𝐾) = 𝑥𝐾 and
𝜓𝐾(𝑡𝐾) = 𝑡𝐾 thus determines a well-defined equivariant map of CDGAs

𝜓𝐾 ∶ ℚ[𝑥𝐾] ⊗ 𝐸(𝑡𝐾) → 𝐴∙(𝐾).

The only subgroup of 𝐾 is 𝑒, and since 𝐵∙(𝑒) is the unit CDGA ℚ, the diagram involving the norm
shadows from 𝑒 commutes by the uniqueness of units.
Case 2. 𝐾 is cyclic of prime power order, 𝐾 ≅ 𝐶𝑝𝑟 , 𝑟 > 1. To define a map out of

𝐵∙(𝐾) =
⨂

𝐿⩽𝐾, 𝐿≠𝑒

ℚ[𝑥𝐿] ⊗ 𝐸(𝑡𝐿)

it suffices to chooseWeyl-fixed images of each 𝑥𝐿 and 𝑡𝐿 that are compatible with the differentials
in 𝐵∙(𝐾). When 𝐿 is a proper subgroup of 𝐾, 𝑥𝐿 ∈ 𝐵∙(𝐾) is in the image of the map 𝑛𝐾𝐿 ∶ 𝐵∙(𝐿) →
𝐵∙(𝐾) corresponding to the quotient map 𝐺∕𝐿 → 𝐺∕𝐾. Hence, in order to ensure that 𝜓𝐾 com-
muteswith the norm shadows𝑛𝐾

𝐿
, wemust define𝜓𝐾(𝑥𝐿) = 𝑛𝐾

𝐿
(𝜓𝐿(𝑥𝐿)) and𝜓𝐾(𝑡𝐿) = 𝑛𝐾

𝐿
(𝜓𝐿(𝑡𝐿)),

where the norm shadows on the right-hand sides are those from the diagram 𝐴∙. To check these
elements are Weyl-fixed, observe for any g ∈ 𝐺, the diagram
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in which the vertical maps are the Weyl group actions by the class of g in𝑊𝐺𝐿 = 𝐺∕𝐿 or𝑊𝐺𝐾 =

𝐺∕𝐾, must commute. Hence the fact that [g] acts trivially on 𝐵∙(𝐿) implies that the elements
𝑛𝐾
𝐿
(𝜓𝐿(𝑥𝐿)) and 𝑛𝐾𝐿 (𝜓𝐿(𝑡𝐿)) are fixed by the Weyl group of 𝐾 and thus this assignment is Weyl-

equivariant. The assignments for 𝑥𝐿 and 𝑡𝐿 are compatible with the differentials on these classes
in 𝐵∙(𝐾) because 𝜓𝐿 and 𝑛𝐾𝐿 are maps of differential graded objects.
We thus only have to choose suitable images for 𝑥𝐾 and 𝑡𝐾 . Let 𝐽 ⩽ 𝐾 be the maximal proper

subgroup of 𝐾, so 𝐽 ≅ 𝐶𝑝𝑟−1 . By hypothesis 𝜓𝐽(𝑥𝐽) ∈ 𝐴0(𝐽) represents a primitive 𝑝𝑟−1th root of
unity. On homology, the norm shadow 𝑛𝐾

𝐽
∶ 𝐴∙(𝐽) → 𝐴∙(𝐾) induces a map

[𝑛𝐾𝐽 ]∶ ℚ(𝜁𝑝𝑟−1) → ℚ(𝜁𝑝𝑟 ).

This is a map of fields and hence is injective. Thus the homology class of 𝑛𝐾
𝐽
(𝜓𝐽(𝑥𝐽)) represents

a primitive 𝑝𝑟−1th root of unity in ℚ(𝜁𝑝𝑟 ). It is straightforward to check (either by hand or using
a splitting field argument) that any primitive 𝑝𝑟−1th root of unity in this field has a 𝑝th root:
that is, there is a class 𝛼 ∈ 𝐻0(𝐴∙(𝐾)) such that 𝛼𝑝 = [𝑛𝐾

𝐽
(𝜓𝐽(𝑥𝐽))] and moreover, 𝛼 is a primitive

𝑝𝑟th root of unity. Choose aWeyl-fixed representative 𝑥𝐾 ∈ 𝐴0(𝐾) of 𝛼 so that [𝑥𝐾] = 𝛼. Then on
homology, we have

[𝑛𝐾𝐽 (𝜓𝐽(𝑥𝐽)) − 𝑥
𝑝
𝐾
] = 0.

This equation implies that there exists a Weyl-fixed element 𝑡𝐾 ∈ 𝐴1(𝐾) such that 𝑑(𝑡𝐾) =
𝑛𝐾
𝐽
(𝜓𝐽(𝑥𝐽)) − 𝑥

𝑝
𝐾
. The assignment 𝜓𝐾(𝑥𝐾) = 𝑥𝐾 and 𝜓𝐾(𝑡𝐾) = 𝑡𝐾 is thus compatible with the dif-

ferentials in 𝐵∙(𝐾) by inspection.
We have defined the map 𝜓𝐾 ∶ 𝐵∙(𝐾) → 𝐴∙(𝐾) in such a way that for any 𝐿 ⩽ 𝐾, we have the

equality 𝑛𝐾
𝐿
◦𝜓𝐿 = 𝜓𝐾◦𝑛

𝐾
𝐿
, which gives a commuting square as in the diagram (4.5). On homology,

𝜓𝐾 sends the primitive 𝑝𝑟th root of unity [𝑥𝐾] ∈ 𝐻0(𝐵∙(𝐾)) to the primitive 𝑝𝑟th root of unity
𝛼 ∈ 𝐻0(𝐴∙(𝐾)) and hence is an isomorphism.
Case 3. 𝐾 is cyclic of nonprime-power order. In this case,

𝐵∙(𝐾) =
⨂

𝑝 prime
𝑝∣|𝐾|

⨂
𝐿⩽𝐾, 𝐿≠𝑒

𝐿 cyclic 𝑝-group

ℚ[𝑥𝐿] ⊗ 𝐸(𝑡𝐿)

and any cyclic 𝑝 subgroup 𝐿 in 𝐾 must be proper. Hence all the generators 𝑥𝐿 and 𝑡𝐿 are in the
image of norm shadows from proper subgroups. As in Case 2, for any 𝑝-cyclic subgroup 𝐿 of 𝐾,
we must define 𝜓𝐾(𝑥𝐿) = 𝑛𝐾

𝐿
(𝜓𝐿(𝑥𝐿)) and 𝜓𝐾(𝑡𝐿) = 𝑛𝐾

𝐿
(𝜓𝐿(𝑡𝐿)). It follows from the argument in

Case 2 that these assignments produce a well-defined Weyl-equivariant map

𝜓𝐾 ∶ 𝐵∙(𝐾) → 𝐴∙(𝐾).

We can explicitly see that 𝜓𝐾 induces an isomorphism on 𝐻0 as follows. For each 𝑝 ∣ |𝐾|, let 𝐾𝑝
be the unique maximal 𝑝-cyclic subgroup of 𝐾. On homology, the element in 𝐵∙(𝐾) given by the
tensor product of all the elements 𝑥𝐾𝑝 represents a primitive |𝐾|th root of unity, and thus by
the injectivity of field maps (or by analyzing the inductive construction), its image under 𝜓𝐾 is a
primitive |𝐾|th root of unity in𝐻0(𝐴∙(𝐾)).
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Suppose 𝐾′ is a proper subgroup of 𝐾. We must check the commutativity of the diagram

Consider 𝑥𝐿′ ∈ 𝐵∙(𝐾
′). (The case for 𝑡𝐿′ is exactly the same.) We then compute

𝜓𝐾(𝑛
𝐾
𝐾′
(𝑥𝐿′)) = 𝜓𝐾(𝑥𝐿′)

= 𝑛𝐾
𝐿′
(𝜓𝐿′(𝑥𝐿′))

= 𝑛𝐾
𝐾′
(𝑛𝐾

′

𝐿′
(𝜓𝐿′(𝑥𝐿′)))

= 𝑛𝐾
𝐾′
(𝜓𝐾′(𝑛

𝐾′

𝐿′
(𝑥𝐿′)))

= 𝑛𝐾
𝐾′
(𝜓𝐾′(𝑥𝐿′)).

The first two equalities follow from the definition of the norm shadows in 𝐵∙ and the construction
of the map 𝜓𝐾 . The third equality is the usual functoriality of norm shadows. The fourth equal-
ity follows from the inductive hypothesis that 𝜓𝐾′ commute with norm shadows for the proper
subgroup𝐾′ < 𝐾. The final equality again follows from the definition of the norm shadows in 𝐵∙.
Case 4. 𝐾 is noncyclic. In this case

𝐵∙(𝐾) = 𝑀∙ ⊗
⨂

𝑝 prime
𝑝∣|𝐾|

⨂
𝐿⩽𝐾, 𝐿≠𝑒

𝐿 cyclic 𝑝-group

ℚ[𝑥𝐿] ⊗ 𝐸(𝑡𝐿).

This is the coproduct in CDGAs of𝑀∙ and the CDGA⨂
𝑝 prime
𝑝∣|𝐾|

⨂
𝐿⩽𝐾, 𝐿≠𝑒

𝐿 cyclic 𝑝-group

ℚ[𝑥𝐿] ⊗ 𝐸(𝑡𝐿)

so it suffices to define 𝜓𝐾 on each of these tensor factors. On the second factor, we may proceed
exactly as in Case 3: for a 𝑝-cyclic subgroup 𝐿 ⩽ 𝐾, we define 𝜓𝐾(𝑥𝐿) = 𝑛𝐾

𝐿
(𝜓𝐿(𝑥𝐿)) and 𝜓𝐾(𝑡𝐿) =

𝑛𝐾
𝐿
(𝜓𝐿(𝑡𝐿)). To define 𝜓𝐾 on 𝑀∙, recall that by hypothesis 𝐻0(𝐴∙(𝐾)) = 0. Observe that in the

category of unital CDGAs, this implies that the 𝐻∗(𝐴∙(𝐾)) = 0 and that the image of the unit
map ℚ → 𝐴∙ vanishes on homology. That is, either 𝐴∙(𝐾) = 0 or else the multiplicative identity
1 ∈ 𝐴0(𝐾) must be in the image of the differential on 𝐴∙(𝐾). Thus we may choose a Weyl-fixed
element 𝑎 ∈ 𝐴1(𝐾) such that 𝑑(𝑎) = 1 and define 𝜓𝐾(𝑎) = 𝑎.
By the same argument as inCase 3, this definition of𝜓𝐾 is functorial on the shadows of the norm

maps. Since the homology on both sides is zero, the map 𝜓𝐾 is an isomorphism on homology. □
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5 UNIQUENESS RESULTS FOR 𝑲𝑼𝑮 AND 𝒌𝒖𝑮

In the previous section, we constructed a resolution for 𝐻∗(Θ(𝐻𝑅𝑈𝐺
)) with the property that it

admits a map to any CDGA whose degree zero homology is isomorphic to 𝐻0(Θ(𝐻𝑅𝑈𝐺
)), and

that this map induces an isomorphism on homology in degree zero. In this section, we use this
construction to prove our main results.

Theorem 5.1. Let 𝐺 be a finite abelian group. For any 𝐴∙ ∈ (𝐸𝐺∞(𝐺)) with 𝐻∗(𝐴∙) objectwise
isomorphic to 𝐻∗(𝜃(𝐾𝑈𝐺)), there exists a zig-zag of weak equivalences in (𝐸𝐺∞(𝐺)) from 𝐴∙ to
Θ(𝐾𝑈𝐺).

Proof. For any such 𝐴∙, observe 𝐻0(𝐴∙) ≅ 𝐻0(𝜃(𝐻𝑅𝑈𝐺
)) by Theorem 3.1. Let 𝐵∙ be the reso-

lution for 𝐻∗(Θ(𝐻𝑅𝑈𝐺
)) given in Construction 4.2. As shown in Lemma 4.4, we have a map

𝜓∶ 𝐵∙ → 𝐴∙ that induces an isomorphism of diagrams on degree zero homology. Our strategy
will be to construct a diagram of CDGAs 𝐷∙ using 𝐵∙ and then extend the map 𝜓 to give a weak
equivalence Ψ∶ 𝐷∙ → 𝐴∙.
Define a complex 𝐷∙(𝐾) for each 𝐾 ⩽ 𝐺 by

𝐷∙(𝐾) = 𝐵∙(𝐾) ⊗ ℚ[𝛾𝐾, 𝛾̄𝐾] ⊗ 𝐸(𝑦𝐾), where

|𝛾𝐾| = 2, |𝛾̄𝐾| = −2, |𝑦𝐾| = 1, 𝑑(𝑦𝐾) = 𝛾𝐾𝛾̄𝐾 − 1,

and the Weyl group action on 𝛾𝐾 , 𝛾̄𝐾 , and 𝑦𝐾 is trivial. From the Künneth theorem, identifying
[𝛾𝐾] with 𝛽𝐾 , we observe

𝐻∗(𝐷∙(𝐾)) ≅ 𝐻∗(𝐵∙(𝐾)) ⊗ ℚ[𝛽𝐾, 𝛽
−1
𝐾 ] ≅ 𝐻∗(Θ(𝐾𝑈𝐺)(𝐾)),

so the complex has the correct objectwise homology. To define norm shadows, suppose
𝐿 ⩽ 𝐾 ⩽ 𝐺 and extend the norm shadows in 𝐵∙ by making the following assignments on the addi-
tional generators:

𝑛𝐾𝐿 (𝛾𝐿) = 𝛾𝐾, 𝑛𝐾𝐿 (𝛾̄𝐿) = 𝛾̄𝐾, and 𝑛𝐾𝐿 (𝑦𝐿) = 𝑦𝐾.

Observe that on homology, the norm shadows in 𝐷∙ satisfy [𝛾𝐿] ↦ [𝛾𝐾] for 𝐿 ⩽ 𝐾.
We next extend 𝜓 to amapΨ∶ 𝐷∙ → 𝐴∙. To do this, first consider the complex at the trivial sub-

group, and choose representatives 𝛼𝑒, 𝛼̄𝑒 ∈ 𝐴∙(𝑒) such that [𝛼𝑒] = 𝛽𝑒 and [𝛼̄𝑒] = 𝛽−1𝑒 in homology.
Since [𝛼𝑒][𝛼̄𝑒] = 𝛽𝑒𝛽

−1
𝑒 = 1, there must exist a class 𝑧𝑒 ∈ 𝐴1(𝑒) such that 𝑑(𝑧𝑒) = 𝛼𝑒𝛼̄𝑒 − 1. Note

we can choose these elements to be Weyl-fixed by Lemma 4.1. Now let 𝐾 be a subgroup of 𝐺.
Consider the norm shadow

𝑛𝐾𝑒 ∶ 𝐴∙(𝑒) → 𝐴∙(𝐾).

Let 𝛼𝐾 = 𝑛𝐾𝑒 (𝛼𝑒), 𝛼̄𝐾 = 𝑛𝐾𝑒 (𝛼̄𝑒), and 𝑧𝐾 = 𝑛𝐾𝑒 (𝑧𝑒). The norm shadow is a map of CDGAs, so we
have the relation

𝑑(𝑧𝐾) = 𝑑(𝑛𝐾𝑒 (𝑧𝑒)) = 𝑛𝐾𝑒 (𝑑(𝑧𝑒)) = 𝑛𝐾𝑒 (𝛼𝑒𝛼̄𝑒 − 1) = 𝛼𝐾𝛼̄𝐾 − 1.

Hence 𝑧𝐾 is a witness to the fact that [𝛼𝐾][𝛼̄𝐾] = 1 in homology.
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We may thus extend the map 𝜓 to a map Ψ by defining 𝛾𝐾 ↦ 𝛼𝐾 , 𝛾̄𝐾 ↦ 𝛼̄𝐾 , and 𝑦𝐾 ↦ 𝑧𝐾 .
By construction, this is a map of CDGAs at each level and commutes with the shadows of the
norm maps.
It remains to check that themapΨ induces objectwise isomorphisms on homology. Recall from

Theorem 3.1 that the homology at each subgroup is either zero or isomorphic to ℚ(𝜁𝑛)[𝛽±1] for
some 𝑛. The only graded ℚ-algebra endomorphisms of ℚ(𝜁𝑛)[𝛽±1] are injective because it is a
graded field, and furthermore, since ℚ(𝜁𝑛)[𝛽±1] is a finite-dimensional ℚ-vector space in each
grading, injectivity implies surjectivity. Thus the map Ψ does indeed induce objectwise isomor-
phisms on homology.
We have constructed a weak equivalence Ψ∶ 𝐷∙ → 𝐴∙ for any 𝐴∙ such that 𝐻∗(𝐴∙) is object-

wise isomorphic to 𝐻∗(Θ(𝐾𝑈𝐺)). In particular, there exists a zig-zag of weak equivalences in
(𝐸𝐺∞(𝐺))

which completes the proof. □

Theorem 5.2. For any finite abelian group 𝐺, the spectrum 𝐾𝑈𝐺 admits a unique structure as a
rational genuine-commutative ring𝐺-spectrum.That is, if𝑋 is a genuine-commutative ring spectrum
whose graded Green functor of homotopy groups is isomorphic to that of 𝐾𝑈𝐺 , then there is a weak
equivalence of rational genuine-commutative ring 𝐺-spectra between 𝑋 and 𝐾𝑈𝐺 .

Proof. Consider the corresponding algebraic object Θ(𝑋) ∈ (𝐸𝐺∞(𝐺)). From Theorem 5.1, we
have that Θ(𝑋) is weakly equivalent to Θ(𝐾𝑈𝐺) in(𝐸𝐺∞(𝐺)). The result then follows from The-
orem 2.6. □

Such a uniqueness result does not hold for the connective coverΘ(𝑘𝑢𝐺), although it is true that
the diagram Θ(𝑘𝑢𝐺) is formal in(𝐸𝐺∞(𝐺)). The main difference is the polynomial class 𝛽𝑒 is not
invertible and so the norm shadows are not determined by the objectwise homology. Compare the
results of Theorem 5.3 and Lemma 5.4.

Theorem5.3. For𝐺 finite abelian, the diagramΘ(𝑘𝑢𝐺) is formal in the category(𝐸𝐺∞(𝐺)). In fact,
for any diagram𝐴∙ such that𝐻∗(𝐴∙) is isomorphic as diagrams to𝐻∗(Θ(𝑘𝑢𝐺)), there is a zig-zag of
weak equivalences relating 𝐴∙ and Θ(𝑘𝑢𝐺).

Proof. Since 𝑘𝑢𝐺 is the connective cover of𝐾𝑈𝐺 , the norm shadows onΘ(𝑘𝑢𝐺) are the truncations
of the norm shadows on Θ(𝐾𝑈𝐺). Writing𝐻∗(Θ𝐾(𝑘𝑢𝐺)) = 𝑉𝐾[𝛽], as in Theorem 3.1, we see that
each norm shadow takes 𝛽 to 𝛽 because Theorem 5.1 implies that this is true in𝐻∗(Θ(𝐾𝑈𝐺)).
As in the proof of Theorem 5.1, we extend the resolution 𝐵∙ of Θ(𝐻𝑅𝑈𝐺

) to one of Θ(𝑘𝑢𝐺).
Concretely, for 𝐾 ⩽ 𝐺, we define

𝐷′∙(𝐾) = 𝐵∙(𝐾) ⊗ ℚ[𝛾𝐾]

where |𝛾𝐾| = 2, 𝛾𝐾 is Weyl-fixed, and 𝑑(𝛾𝐾) = 0. As in the definition of 𝐷∙, the norm shadows
on 𝐷′∙ are given by the norm shadows on 𝐵∙ and the assignment 𝛾𝐿 ↦ 𝛾𝐾 for 𝐿 < 𝐾. Thus by
definition,𝐻∗(𝐷

′
∙(𝐾)) = 𝑉𝐾[𝛽], with norm shadows taking 𝛽 to 𝛽.
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By a similar argument to the one in the proof of Theorem 5.1, we can construct a map of dia-
grams 𝜓∶ 𝐷′∙ → 𝐴∙ inducing a weak equivalence on homology whenever the homology of 𝐴∙ is
isomorphic to that of 𝐷′∙ via an isomorphism of diagrams. □

This shows that the diagram Θ(𝑘𝑢𝐺) is determined by the diagram 𝐻∗(Θ(𝑘𝑢𝐺)). However, the
objectwise description of𝐻∗(𝜃(𝑘𝑢𝐺)) given in Theorem 3.1 is not sufficient to determineΘ(𝑘𝑢𝐺).

Lemma 5.4. Suppose 𝐺 is a nontrivial finite abelian group. Then there exists𝐴∙ ∈ (𝐸𝐺∞(𝐺)) such
that𝐻∗(𝐴∙) is objectwise isomorphic to𝐻∗(𝜃(𝑘𝑢𝐺)) but not isomorphic to𝐻∗(Θ(𝑘𝑢𝐺)) as a diagram
in(𝐸𝐺∞(𝐺)).

Proof. We prove this by constructing such an 𝐴∙. For subgroups 𝐾 ⩽ 𝐺, define 𝐴∙(𝐾) to be the
tensor product 𝐵∙(𝐾) ⊗ ℚ[𝛽𝐾] where |𝛽𝐾| = 2, 𝑑(𝛽𝐾) = 0, and the Weyl group action on 𝛽𝐾 is
trivial, and where 𝐵∙ is the diagram defined in Construction 4.2. Extend the norm shadows from
𝐵∙ to 𝐴∙ via 𝑛𝐾𝐿 (𝛽𝐿) = 0 for all subgroups 𝐿 < 𝐾 ⩽ 𝐺. By the Künneth Theorem, Lemma 4.3, and
Theorem 3.1, we see that𝐻∗(𝐴∙) is objectwise isomorphic to𝐻∗(𝜃(𝑘𝑢𝐺)), with the induced norm
shadows on𝐻∗(𝐴∙) all satisfying 𝛽𝐾 ↦ 0.
On the other hand, the shadows of the norm maps in 𝐻∗(Θ(𝑘𝑢𝐺)) are restrictions of the shad-

ows of the norms in the diagram of fields 𝐻∗(Θ(𝐾𝑈𝐺)) because 𝑘𝑢𝐺 is the connective cover of
𝐾𝑈𝐺 . Thus they must be injective maps at each level. We conclude 𝐻∗(𝐴∙) is not isomorphic to
𝐻∗(Θ(𝑘𝑢𝐺)) in(𝐸𝐺∞(𝐺)). □

Remark 5.5. We can in fact construct multiple nonisomorphic objects in(𝐸𝐺∞(𝐺))whose object-
wise homology is the same as 𝐻∗(𝜃(𝑘𝑢𝐺)). The number of nonequivalent genuine-commutative
ring structures on 𝐻∗(𝜃(𝑘𝑢𝐺)) depends on the cyclic subgroup lattice of 𝐺. For example, if
𝐺 = 𝐶𝑝2, we can define the shadows of the norms in exactly four ways (up to isomorphism). We
depict these choices as diagrams of the form indicated below on the far left.

In each diagram, the degree zero norm shadows are given by the standard inclusions of fields. In
higher degrees, they are determined by the indicated image of 𝛽. In general, there are 2𝑛 noni-
somorphic extensions for 𝐶𝑝𝑛 given by the two choices, zero versus nonzero, of the image of the
Bott element 𝛽 at each subgroup.
The number of genuine-commutative ring structures on𝐻∗(𝜃(𝑘𝑢𝐺)) becomes evenmore inter-

esting when considering other cyclic groups. For example, when 𝐺 = 𝐶𝑝𝑞 for 𝑝 and 𝑞 distinct
primes, there are four norm shadows and thus at most 24 = 16 choices. Some of these do not give
rise to a commutative diagram, such as the combination

𝑛
𝐶𝑝
𝑒 (𝛽𝑒) = 𝛽𝐶𝑝 , 𝑛

𝐶𝑝𝑞
𝐶𝑝

(𝛽𝐶𝑝) = 𝛽𝐶𝑝𝑞 , 𝑛
𝐶𝑞
𝑒 (𝛽𝑒) = 0, 𝑛

𝐶𝑝𝑞
𝐶𝑞

(𝛽𝐶𝑞 ) = 0.
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After removing the options where 𝑛
𝐶𝑝𝑞
𝐶𝑝

𝑛
𝐶𝑝
𝑒 (𝛽𝑒) ≠ 𝑛

𝐶𝑝𝑞
𝐶𝑞

𝑛
𝐶𝑞
𝑒 (𝛽𝑒), one sees there are exactly 10

genuine-commutative ring structures up to isomorphism in(𝐸𝐺∞(𝐺)) when 𝐺 = 𝐶𝑝𝑞.

The result of Lemma 5.4 implies a nonuniqueness result for 𝑘𝑢𝐺 that stands in contrast to the
result of Theorem 5.2 for periodic K-theory.

Theorem 5.6. Let 𝐺 be a nontrivial finite abelian group. There exists a rational genuine-
commutative ring G-spectrum 𝑋 whose underlying Green functor of homotopy groups is isomor-
phic to that of 𝑘𝑢𝐺 but which is not weakly equivalent to 𝑘𝑢𝐺 as genuine-commutative rational
𝐺-spectrum. That is, 𝑋 is weakly equivalent to 𝑘𝑢𝐺 in the category of rational naive-commutative
ring 𝐺-spectra but not in the category of rational genuine-commutative ring 𝐺-spectra.

Proof. Consider the diagram 𝐴∙ from Lemma 5.4. By Theorem 2.6, there is a corresponding
genuine-commutative ring 𝐺-spectrum 𝑋 such that Θ(𝑋) and 𝐴∙ are weakly equivalent. By the
uniqueness of the naive-commutative structure on 𝑘𝑢𝐺 from [10, Corollary 5.10], there exists a
zig-zag of weak equivalences between 𝑋 and 𝑘𝑢𝐺 in the category of naive-commutative rational
ring spectra. But by construction, 𝐻∗(Θ(𝑋)) is not isomorphic to 𝐻∗(Θ(𝑘𝑢𝐺)), so the diagram
Θ(𝑋) cannot be weakly equivalent to Θ(𝑘𝑢𝐺), and thus 𝑋 cannot be weakly equivalent to 𝑘𝑢𝐺 as
genuine-commutative rational ring 𝐺-spectra. □

Weend this section by clarifying the conclusions that can be drawn fromour uniqueness results.
As noted in Section 2, there is a forgetful functor from rational genuine-commutative ring 𝐺-
spectra to rational naive-commutative ring 𝐺-spectra

𝑈∶ 𝐸𝐺∞-alg(𝐺𝑝ℚ) → 𝐸1∞-alg(𝐺𝑝ℚ).

The main result in Theorem 5.2 implies that if 𝑋 ∈ 𝐸𝐺∞-alg(𝐺𝑝ℚ) satisfies 𝑈(𝑋) ≃ 𝑈(𝐾𝑈𝐺),
then 𝑋 ≃ 𝐾𝑈𝐺 in 𝐸𝐺∞-alg(𝐺𝑝ℚ). On the other hand, Theorem 5.6 shows that 𝑋 satisfying
𝑈(𝑋) ≃ 𝑈(𝑘𝑢𝐺) does not necessarily imply 𝑋 ≃ 𝑘𝑢𝐺 .
Note, however, that this uniqueness of 𝐾𝑈𝐺 does not imply that any naive-commutative ring

𝐺-spectrum 𝑌 that is weakly equivalent to 𝐾𝑈𝐺 must admit a genuine-commutative ring struc-
ture. In other words, not every object that is weakly equivalent to 𝐾𝑈𝐺 in 𝐸1∞-alg(𝐺𝑝ℚ) arises
from an object in 𝐸𝐺∞-alg(𝐺𝑝ℚ) by forgetting the norm maps. Below we construct a naive-
commutative ring 𝐺-spectrum that is weakly equivalent to 𝐾𝑈𝐺 but does not admit a genuine-
commutative ring structure.

Example 5.7. Let𝐺 = 𝐶𝑝2 where 𝑝 ≠ 2. We construct an𝐴∙ ∈ (𝐸1∞(𝐺)) that is not in the image
of the forgetful functor from (𝐸𝐺∞(𝐺)) to (𝐸

1
∞(𝐺)). Via Lemma 2.11, there thus exists a naive-

commutative ring spectrum 𝑋 corresponding to 𝐴∙ that does not admit a genuine-commutative
ring structure. The object 𝐴∙ is defined as follows:

𝐴∙(𝑒) = ℚ 𝐴∙(𝐶𝑝) = ℚ(𝜁𝑝) 𝐴∙(𝐶𝑝2) = ℚ[𝑥𝑝2] ⊗ 𝐸(𝑦𝑝2)

where in the last CDGA we let |𝑥𝑝2 | = 0, |𝑦𝑝2 | = 1, and 𝑑(𝑦𝑝2) = Φ𝑝2(𝑥𝑝2), and the former two
CDGAs are concentrated in degree zero with zero differential. Note that the homology of𝐴∙(𝐶𝑝2)
isℚ(𝜁𝑝2) concentrated in degree zero. Hence the homology of𝐴∙ is isomorphic to the homology of
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𝜃(𝐻𝑅𝑈
𝐺
). By [10, Lemma 5.5], the complex 𝜃(𝐻𝑅𝑈

𝐺
) is formal; hence there is a zig-zag of weak

equivalences of rational naive-commutative ring 𝐺-spectra between 𝑋 and𝐻𝑅𝑈
𝐺
.

We now show that 𝐴∙ cannot be the underlying naive-commutative object of a well-defined
object in(𝐸𝐺∞(𝐺)). Suppose that a norm shadow

𝑛∶ 𝐴∙(𝐶𝑝) → 𝐴∙(𝐶𝑝2)

exists. By a degree argument, wemust have that 𝑛(𝜁𝑝) = 𝑓(𝑥𝑝2), where 𝑓(𝑥𝑝2) is some polynomial
in ℚ[𝑥𝑝2], and therefore (

𝑛(𝜁𝑝)
)𝑝
=
(
𝑓(𝑥𝑝2)

)𝑝
.

Furthermore, since the shadows of the norm maps are maps of commutative rings, we also have
the identity (

𝑛(𝜁𝑝)
)𝑝
= 𝑛((𝜁𝑝)

𝑝) = 𝑛(1) = 1.

As a consequence, we get (𝑓(𝑥𝑝2))𝑝 = 1 which only holds when 𝑓(𝑥𝑝2) = 1. However, in degree
zero the map 𝑛 is a map from a field to a ring and thus must be injective. Since 1 ∈ 𝐴∙(𝐶𝑝2) is also
the image of the unit 1 ∈ 𝐴∙(𝐶𝑝), this leads to a contradiction.
Since 𝐾𝑈𝐺 and𝐻𝑅𝑈𝐺

agree at the zeroth degree, this example can be extended to an example
of a naive-commutative ring spectrum 𝑋 that is isomorphic to 𝐾𝑈𝐺 in the homotopy category of
naive-commutative ring 𝐺-spectra but does not admit a genuine-commutative ring structure.

Remark 5.8. At 𝑝 = 2, one hasℚ(𝜁2) = ℚ, and so the complex in(𝐸1∞(𝐶4)) constructed in Exam-
ple 5.7 does underlie a complex in(𝐸𝐶4∞ (𝐶4)) in which all norm shadows are the unit map. In this
case, one can instead construct slightly more complicated examples of complexes in (𝐸1∞(𝐶4))

that do not arise from an object in(𝐸
𝐶4
∞ (𝐶4)).

ACKNOWLEDGEMENTS
We thank Hausdorff Research Institute for Mathematics in Bonn for their hospitality in hosting
the Women in Topology III workshop, where this research began. Funding for the workshop was
also provided in part by Foundation Compositio Mathematica and the National Science Foun-
dation of the United States. NSF support was via the grants NSF-DMS 1901795 and NSF-HRD
1500481: AWM ADVANCE. The first author was partially supported by NSF Grant DMS-1710534.
The fourth author was supported by NWO Veni Grant 639.031.757.
We also thank Mike Hill for many useful conversations and Christian Wimmer for sharing a

draft of his work. The first author thanks Spencer Dowdall for acting as a notational sounding-
board. Thanks to the anonymous referee for their comments and suggestions.

JOURNAL INFORMATION
The Bulletin of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.



GENUINE-COMMUTATIVE STRUCTURE ON RATIONAL 𝐾-THEORY 1103

REFERENCES
1. V. Angeltveit and A. M. Bohmann, Graded Tambara functors, J. Pure Appl. Algebra 222 (2018), no. 12, 4126–

4150.
2. S. Balchin, D. Barnes, and C. Roitzheim,𝑁∞-operads and associahedra, Pacific J. Math. 315 (2021), no. 2, 285–

304.
3. D. Barnes, Splitting monoidal stable model categories, J. Pure Appl. Algebra 213 (2009), no. 5, 846–856.
4. D. Barnes, J. P. C. Greenlees, andM. Kędziorek,An algebraic model for rational naïve-commutative equivariant

ring spectra, Homology Homotopy Appl. 21 (2018), no. 1, 73–93.
5. D. Barnes andM. Kędziorek, An introduction to algebraic models for rational𝐺-spectra. Equivariant topology

and derived algebra. London Math. Soc. Lecture Note Ser., 474, Cambridge Univ. Press, Cambridge 2022.
6. D. Barnes and C. Roitzheim, Rational equivariant rigidity, An alpine expedition through algebraic topology,

volume 617 of Contemp. Math., vol. 617, Amer. Math. Soc., Providence, R.I., 2014, pp. 13–30.
7. A. J. Blumberg andM.A.Hill,Operadicmultiplications in equivariant spectra, norms, and transfers, Adv.Math.

285 (2015), 658–708.
8. A. J. Blumberg and M. A. Hill, Incomplete Tambara functors, Algebr. Geom. Topol. 18 (2018), no. 2, 723–766.
9. A. J. Blumberg andM. A. Hill, The right adjoint to the equivariant operadic forgetful functor on incomplete Tam-

bara functors. Homotopy theory: tools and applications, Contemp. Math., vol. 729, Amer. Math. Soc., Provi-
dence, R.I., 2019, pp. 75–92.

10. A. M. Bohmann, C. Hazel, J. Ishak, M. Kędziorek, and C. May,Naive-commutative structure on rational equiv-
ariant 𝐾-theory for abelian groups, Topol Appl. 2022, https://doi.org/10.1016/j.topol.2022.108100.

11. B. Böhme, Multiplicativity of the idempotent splittings of the Burnside ring and the 𝐺-sphere spectrum, Adv.
Math. 347 (2019), 904–939.

12. B. Böhme, Idempotent characters and equivariantly multiplicative splittings of K-theory, Bull. Lond. Math. Soc.
52 (2020), no. 4, 730–745.

13. P. Bonventre and L. A. Pereira, Genuine equivariant operads, Adv. Math. 381 (2021), 107502.
14. S. R. Costenoble and S. Waner, Fixed set systems of equivariant infinite loop spaces, Trans. Amer. Math. Soc.

326 (1991), no. 2, 485–505.
15. J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995), no. 543,

viii+178.
16. J. J. Gutiérrez and D. White, Encoding equivariant commutativity via operads, Algebr. Geom. Topol. 18 (2018),

no. 5, 2919–2962.
17. M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann.

of Math. (2) 184 (2016), no. 1, 1–262.
18. M. Joachim,Higher coherences for equivariant𝐾-theory, In, Structured ring spectra, LondonMath. Soc. Lecture

Note Ser., vol. 315, Cambridge Univ. Press, Cambridge, 2004, pp. 87–114.
19. M. Kędziorek, An algebraic model for rational 𝐺-spectra over an exceptional subgroup, Homology Homotopy

Appl. 19 (2017), no. 2, 289–312.
20. J. E. McClure, 𝐸∞-ring structures for Tate spectra, Proc. Amer. Math. Soc. 124 (1996), no. 6, 1917–1922.
21. B. Richter and B. Shipley, An algebraic model for commutative 𝐻ℤ-algebras, Algebr. Geom. Topol. 17 (2017),

no. 4, 2013–2038.
22. J. Rubin, Combinatorial𝑁∞-operads. Algebr. Geom. Topol. 21 (2021), no. 7, 3513–3568.
23. S. Schwede and B. Shipley, Stable model categories are categories of modules, Topology 42 (2003), no. 1, 103–153.
24. G. Segal, Equivariant 𝐾-theory, Publ. Math. Inst. Hautes Études Sci. 34 (1968), 129–151.
25. J.-P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425–505.
26. B. Shipley, 𝐻ℤ-algebra spectra are differential graded algebras, Amer. J. Math. 129 (2007), no. 2, 351–379.
27. J. Ullman, Tambara functors and commutative ring spectra, arXiv:1304.4912, 2013.
28. P. Webb, A guide to Mackey functors, in Handbook of algebra, vol. 2, Elsevier/North-Holland, Amsterdam,

2000, pp. 805–836.
29. C. Wimmer, A model for genuine equivariant commutative ring spectra away from the group order,

arXiv.org:1905.12420 [math.AT], 2019.

https://doi.org/10.1016/j.topol.2022.108100

	Genuine-commutative structure on rational equivariant -theory for finite abelian groups
	Abstract
	1 | INTRODUCTION
	Notation and Conventions

	2 | PRELIMINARIES
	3 | THE IMAGE OF A SPECTRUM IN THE ALGEBRAIC MODEL
	3.1 | Formality results in the algebraic models
	3.2 | Formality for Eilenberg-MacLane spectra

	4 | CONSTRUCTING A NICE RESOLUTION OF 
	5 | UNIQUENESS RESULTS FOR AND 
	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	REFERENCES


