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1 | INTRODUCTION

Periodic equivariant topological K-theory KU is one of the foundational cohomology theories
of algebraic topology. It was first defined by Segal [24]. Equivariant K-theory for a group G links
stable homotopy theory with the complex representation theory of G and all of its subgroups. For
example, induction and restriction of representations are visible in the structure of the zeroth sta-
ble homotopy groups of KU. Equivariant complex K-theory arises from consideration of vector
bundles on manifolds and provides deep connections between representation theory and geomet-
ric topology.
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Equivariance has come to the forefront of stable homotopy theory in recent years, as researchers
have realized the powerful possibilities of equivariant structures. These were made manifest in
Hill, Hopkins, and Ravenel’s ground-breaking solution to the Kervaire invariant one problem [17].
The formulation of this problem does not involve group actions in any way, but the solution in
[17] relies fundamentally on the techniques of equivariant homotopy theory. An essential tool in
this work is an algebraic structure of multiplicative transfer maps that is present in the homotopy
groups of a G-equivariant cohomology theory with a strongly commutative cup product, when G is
finite. This structure is part of a hierarchy of levels of commutativity in the equivariant world that
describe the extent to which homotopy commutativity is compatible with the group action. This
hierarchy has been known for some time [14, 20] but had not been extensively used. Systematic
study of these levels of commutativity began with work of Blumberg and Hill on N -operads [7],
and it has since been a very active area of research [2, 8, 9 11-13, 16 22]. While this body of work has
gone a long way towards illuminating equivariant commutativity, these structures are still widely
regarded as subtle and complicated.

In this paper, we analyze the rationalization of equivariant complex K-theory KU  from the
perspective of two levels of commutativity, where G is finite abelian. Equivariant K-theory enjoys
the maximal level of commutativity, sometimes called genuine commutativity, as shown in [18].
Forgetting structure, we may also view it as having the minimal level of commutativity, naive com-
mutativity. The results here and of our previous work in [10] show that rational periodic equivari-
ant K-theory is homotopically unique when considered at both levels. In contrast, the nonperi-
odic version of rational complex K-theory is only unique when considered at the minimum level
of commutativity.

The difference between these levels of commutativity boils down to the presence of norm maps
on the homotopy groups of a spectrum. After rationalization, these norm maps have a particularly
elegant and approachable form. Our uniqueness result — the first of its kind in equivariant stable
homotopy theory — illustrates the power of algebraic models for rational homotopy theory. It
also serves as an approachable and illuminating window into the structures that distinguish the
varying levels of equivariant commutativity.

Our proof uses a recent result of Wimmer [29] that provides an algebraic model for the category
of rational genuine-commutative ring G-spectra when G is a finite group. In particular, Wimmer
shows that the co-category of rational genuine-commutative ring G-spectra, which have all norms,
is equivalent to the category [Orb;, CDGA(Q)] of functors from the orbit category of G to the
category of rational commutative differential graded algebras. The norm maps that characterize
genuine-commutative ring spectra show up in the algebraic model as maps of CDGAs A,.(G/H) —
A,(G/K) arising from maps G/H — G /K in the orbit category that are not isomorphisms. In
this way, Wimmer’s algebraic model for genuine-commutative ring spectra extends the algebraic
model for naive-commutative ring spectra developed by Barnes, Greenlees, and Kedziorek in [4]
— their work shows that rational naive-commutative ring spectra are modeled by functors from
Orbé to CDGA(Q), where Orbé denotes the subcategory of isomorphisms in Orby;.

In previous work [10], we calculated the image of rational equivariant K-theory in the algebraic
model for naive-commutative ring spectra, when G is an abelian group. In fact, the calculation
of [10] follows from a uniqueness result in that category akin to the main result of the present
paper. The homotopy groups of topological complex K-theory form a commutative Green functor
and were computed previously by Segal [24]. When G is abelian, these homotopy groups have
trivial Weyl group actions and we used this to show that there is a unique naive-commutative
ring spectrum with this commutative Green functor of homotopy groups. In this paper, we further
show there is a unique genuine-commutative ring spectrum with the same underlying homotopy
groups. This is proved as Theorem 5.2.
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Theorem A. Let G be a finite abelian group. If X is a genuine-commutative rational ring G-spectrum
whose underlying homotopy Green functor is isomorphic to that of KU, then X is weakly equiva-
lent to KU, ;; as genuine-commutative ring spectra.

The assumption in Theorem A that X be a genuine-commutative rational ring G-spectrum is
essential, as we show in Example 5.7. Working with the algebraic models for naive- and genuine-
commutative ring G-spectra, we show that there exists a naive-commutative ring G-spectrum
Y that is equivalent to KUq ; as a naive-commutative ring G-spectrum, but does not enjoy a
genuine-commutative ring structure. That is, Y is not in the image of the forgetful functor from
genuine-commutative ring G-spectra to naive-commutative ring G-spectra.

In [10], we also show a similar uniqueness result for the naive-commutative structure on con-
nective K-theory kug ;. However, in contrast to the case for periodic K-theory, we do not get this
uniqueness at the genuine-commutative level for kug, ;. Instead, we find that not all weak equiv-
alences in the category of naive-commutative ring G-spectra can be extended to equivalences of
genuine-commutative ring G-spectra. This result is proved as Theorem 5.6.

Theorem B. Let G be a finite abelian group. There exists a rational genuine-commutative ring
G-spectrum X whose underlying Green functor of homotopy groups is isomorphic to that of kug,  but
which is not weakly equivalent to kug . That is, X is weakly equivalent to kug, ; in the category of
rational naive-commutative ring G-spectra but not in the category of rational genuine-commutative
ring G-spectra.

This type of behavior is typical for increasing algebraic structure: for example, the wedge of
Eilenberg-MacLane spectra \/, Z*"HQ is rationally equivalent to KU, but this does not extend
to an equivalence of ring spectra. The example of kug, ;; is an explicit illustration of the additional
rigidity of weak equivalences that preserve genuine-commutative ring structure, in contrast to
those that preserve only naive commutativity.

Notation and Conventions

Throughout the paper, we assume that G is a finite group. We use the notation .A(G) for the
algebraic model of rational G-spectra, A(Eio(G)) for the algebraic model of rational naive-
commutative ring G-spectra, and A(ESO(G)) for the algebraic model of rational genuine-
commutative ring G-spectra; see Definitions 2.2, 2.5, and 2.7, respectively. If X is a rational naive-
commutative ring G-spectrum, then 8(X) denotes its derived image in .A(E})<> (G)).If X isarational
genuine-commutative ring G-spectrum, then we denote by ©(X) its derived image in A(ESO(G))
and by 6(X) its derived image in A(Eio (G)), after forgetting part of the structure.

As we exclusively work in the rationalized context, to avoid notational clutter we leave the
rationalization of a spectrum implicit in our notation. Hence KU ; will typically be denoted
by KU, and likewise kug, ; will be denoted by ku;. However, we maintain the rationalization
in the notation for categories; for example, SH, denotes the rational stable homotopy category.
The only exception is in the notation for the algebraic models, which do not have nonrational
counterparts.

Finally, we use ~ to denote a zig-zag of Quillen equivalences between model categories or an
equivalence between co-categories.
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2 | PRELIMINARIES

In this section, we recall the framework of algebraic models for rational G-spectra. We begin with
the classical, nonequivariant story.

The process of rationalization drastically simplifies stable homotopy theory. This philosophy
dates back at least to Serre. Serre’s computations of stable homotopy groups of spheres [25] imply
there is an equivalence between the rational stable homotopy category SHy and graded Q-vector
spaces gr(Q-mod) given by taking homotopy groups

7. (=): SHy — gr(Q-mod).

This result can be lifted to an equivalence of homotopy theories, either at the level of co-categories
or model categories. For example, Shipley [26] constructed a zig-zag of symmetric monoidal
Quillen equivalences between rational spectra and rational chain complexes

Spg =~ Ch,.

Since these Quillen equivalences are symmetric monoidal, they induce an equivalence between
ring spectra and differential graded algebras. Moreover, if R is a rational ring spectrum, we get an
induced equivalence between R-modules in spectra and corresponding modules in rational chain
complexes. A bit more work shows that E -algebras in the two categories are also equivalent.
They are modeled by algebras over the commutative operad on both sides and work of Richter
and Shipley [21] provides a zig-zag of Quillen equivalences between them.

Rational equivariant stable homotopy theory can similarly be encoded in algebraic models.
For equivariant spectra, homotopy groups have a richer structure given by homotopy Mackey
functors. Roughly speaking, a G-Mackey functor M is a collection of abelian groups indexed
by subgroups H of G, together with transfer, restriction, and conjugation maps between them
satisfying certain conditions. Taking homotopy groups produces an equivalence between the
rational G-equivariant stable homotopy category and the category of rational graded G-Mackey
functors

{ﬂf(_)}ﬂgc : GSH@ — ngack(G)@.

Mackey functors are purely algebraic, but can be fairly complex — see, for example, [28] for an
introduction to the subject. The complexity of Mackey functor structure comes from the fact that
the restrictions and transfers arising from subgroups are interrelated. Over the rational numbers,
the category of Mackey functors simplifies. Greenlees and May [15, Appendix A] showed that
rational G-Mackey functors split into the product over conjugacy classes of subgroups in G of
Q[W ;H]-modules,

Mack(G)g = [] @WgH]-mod,
(H),H<G

where W;H is the Weyl group of the subgroup H in G, thatis, Wo;H = NgH /H. What is more,
this splitting is compatible with the corresponding splitting at the level of rational G-spectra using
the idempotents of the rational Burnside ring for G. For a modern account see [5].
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Combining the above, we get an equivalence of categories

GSHg =~ H gr(Q[W H]-mod).
(H),H<G

This result was later lifted to a zig-zag of Quillen equivalences between model categories by
Schwede-Shipley [23] and Barnes [3], and to a zig-zag of symmetric monoidal Quillen equiva-
lences by Kedziorek [19].

Theorem 2.1. There exists a zig-zag of symmetric monoidal Quillen equivalences

GSpg =~ H Ch(Q[W;H]),
(H),H<G

where the symmetric monoidal product on the right-hand side is given by @, on each component of
the product.

Definition 2.2. The category H(H)’ n<c Ch(Q[WH]) with the objectwise projective model struc-
ture is an algebraic model for rational G-spectra and we denote it by A(G). If X is a rational
G-spectrum, then we denote by 6(X) its derived image in .A(G).

As in the nonequivariant case, these symmetric monoidal Quillen equivalences induce a zig-
zag of Quillen equivalences between equivariant ring spectra and algebras in .A(G). Additionally,
if R is an equivariant rational ring spectrum, we get an induced equivalence between R-modules
in spectra and corresponding modules in the algebraic model A(G).

These parallels between the equivariant and nonequivariant pictures in the associative case
belie the fact that the case of commutative equivariant spectra is significantly more complicated
than the nonequivariant one. To begin, in the equivariant world there are distinct, nonequivalent
levels of commutativity, which all forget down to E_ -structure in Sp. These different levels of
commutativity are modeled by Blumberg and Hill’s N -operads [7]. There are two special cases of
N -operads which are important for this paper: the genuine-commutative operad, denoted by
Eg’;, and the naive-commutative operad, denoted by Eéo Algebras over these operads in G-spectra
are called genuine-commutative ring spectra and naive-commutative ring spectra, respectively. In
particular, genuine-commutative ring spectra are characterized by having all the norm maps
between their homotopy groups. This implies that the collection of homotopy groups of a genuine-
commutative ring spectrum forms a graded Tambara functor [1].

On the other hand, there is only one level of commutativity in the algebraic model .A(G):
a differential graded algebra is either graded-commutative or it is not. It turns out that com-
mutative algebras in the algebraic model A(G) classify the naive-commutative rational ring
G-spectra.

Theorem 2.3 [4]. There exists a zig-zag of Quillen equivalences from naive-commutative rational
ring G-spectra to the commutative algebras in the algebraic model A(G),

EL -alg(GSpy) =~ Comm-alg(A(G)) = [] CDGA@[WH]).
(H),H<G
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Remark 2.4. Let Orb; denote the orbit category of G, whose objects are cosets G/H forall H < G
and whose morphisms are G-equivariant maps. Denote by Orb>G< the wide subcategory of Orbg
consisting of only isomorphisms. Then the category of functors from Orbé to rational commu-
tative differential graded algebras is equivalent to the algebraic category given in Theorem 2.3,
that is

[orb), cDGA@)] =[] CDGA@IWH]).
(H),H<G

Note that we recover the Weyl group actions by making the usual identification of equivariant
automorphisms of G/H and the Weyl group W;H, and then looking at the images in CDGA(Q).
We take this presentation as our algebraic model for naive-commutative rational ring G-spectra.

Definition 2.5. The category [Orb};, CDGA(Q)] with the objectwise projective model structure is
an algebraic model for naive-commutative rational ring G-spectra and we denote it by A(E})o (G)).
If X is a naive-commutative rational ring G-spectrum, then we denote by 6(X) its derived image
in A(EL (G)).

Recent work of Wimmer [29] incorporates the additional structure of norm maps into the above
algebraic model, providing an algebraic model for genuine-commutative rational ring G-spectra.
In this case, the model is implemented by an equivalence of co-categories.

Theorem 2.6 [29]. There is an equivalence of co-categories
ES -alg(GSp,) ~ [Orbg, CDGA(Q)].

Definition 2.7. The infinity category [Orb;, CDGA(Q)] is an algebraic model for genuine-
commutative rational ring G-spectra and is denoted .A(Eg0 (G)). If X is a genuine-commutative
rational ring G-spectrum, then we denote by @(X) its derived image in A(EOGO (G)).

Comparing Theorem 2.6 with Remark 2.4, we see that the additional norm map structure on
genuine-commutative ring spectra is present in the algebraic model as maps between the CDGAs
corresponding to nonconjugate subgroups of G. We can understand such maps as follows. Sup-
pose L and K are nonconjugate subgroups and there is a map f: G/L — G/K in Orb,; with
eL — gK. The equivariance of this map implies g~'Lg < K, and so we can factor f as an iso-
morphism composed with a quotient map, that is, as the composition of

G/L - G/(¢g"'Lg), eLw+ g(¢g~'Lg) and
G/(g'Lg) » G/K, e(g 'Lg)~ eK.

Thus, as compared to an object in A(E! (G)), the additional structure of an object in A(EOGO(G))
is given by the image of the quotient maps. We refer to this additional structure as the shadows of
the norm maps; an individual such map is a norm shadow.

Definition 2.8. Suppose H < K < G. We refer to the image of the quotient map p: G/H — G/K,
p(eH) = eK under a functor in A(EOGO(G)) as a norm shadow.
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Remark 2.9. Unlike the actual norm maps on homotopy groups of a genuine-commutative ring
G-spectrum, the shadows of the norm maps are maps of commutative algebras, so in particular
they are maps of degree 0 that are both additive and multiplicative. They are also appropriately
equivariant, which in this context means that they commute with the images of the conjugacy
maps in Orbg.

Remark 2.10. Our focus in this paper is when G is a finite abelian group. In this case, the action of
conjugation on the collection of subgroups of G is trivial, and so every map in Orb; can be factored
as an automorphism followed by a quotient map. The automorphisms are again given by elements
of Weyl groups, but now the normalizer of any subgroup is the entire group G. Hence to define
an object in A(EEO(G)) when G is abelian, we can specify an object of CDGA(Q[G/H]) for each
subgroup H < G, together with G-equivariant maps of CDGAs whenever there is proper subgroup
containment, subject to the requirement that these maps form a functor out of the subgroup lattice
of G. These maps are exactly the shadows of the norm maps. We use this perspective to define an
object in A(EY (G)) in Section 4.

The algebraic model for naive-commutative rational ring G-spectra may also be derived from
the work of Wimmer at the level of co-categories. Hence combining the algebraic models for naive-
and genuine-commutative ring G-spectra with the algebraic model for rational G-spectra pro-
duces a commuting diagram of oco-categories.

Lemma 2.11. The following diagram of co-categories, in which all vertical arrows denote forgetful
functors, commutes up to a natural equivalence.

GSp, A(G)

| |

EL-alg(GSpy) —— A(EL(G))

| |

ES-alg(GSpy) —— A(ES(G))

Proof. The above diagram can be rewritten as the composite of the following squares.

GSp —— = [O1b;, Spo] ————= A(G)

| ]

El-alg(GSpy,) —2 . [Orby, CommSpg | — L AELG))

] |

ES-alg(GSpg) —2"% [Orbg, CommSp,] —> A(ES(G))

Here the right horizontal maps 6 and © at the oo-category level are the maps on diagrams
[Orbé, —] and [Orbg, —] induced by the zig-zags of Quillen equivalences from [26] between Spg,
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and Chg, and from [21] between CommSpg and CDGA(Q). Commutativity of the square with the
two maps 6 follows, since the diagram at the level of spectra commutes by [21]. The bottom right
square commutes, since the zig-zag of Quillen equivalences given in [21] extends to the category
of diagrams of commutative spectra indexed by Orby; and by Orby.

The top left square commutes because the geometric fixed points functors used in [29] form a
symmetric monoidal functor and CommSp ~ E;Sp.

The left outer rectangle commutes up to a natural equivalence by [29, Proposition 4.5]. The
natural equivalence constructed there lifts to an equivalence of rational commutative spectra, and
thus the bottom left square commutes. O

We finish this section with a simple example that illustrates the difference between the algebraic
models for naive- and genuine-commutative ring G-spectra.

Example 2.12. Let G = C, and take an object (Q@[x], Q[x]) in A(EL (G)), with the trivial Weyl
group action and x in an even degree. This corresponds to a naive-commutative rational ring
G-spectrum, which we call X. To obtain a genuine-commutative rational ring G-spectrum we
have to specify a norm shadow n : Q[x] — Q[x]. For example, two possible choices are to define
n =idgyy) or to define n to be the Q-map which sends x to 0. Each of these two choices for n
defines a rational genuine-commutative ring G-spectrum. These spectra are not weakly equivalent
as genuine-commutative ring G-spectra, but they both restrict to the same naive-commutative ring
G-spectrum X. In other words, the genuine-commutative structure is not uniquely determined by
the homotopy groups nor by the underlying naive-commutative ring G-spectrum.

3 | THE IMAGE OF A SPECTRUM IN THE ALGEBRAIC MODEL

In this section, we delve further into the properties of the algebraic models in order to explain
methods for calculating the derived image of a given spectrum.

3.1 | Formality results in the algebraic models

Recall that the derived comparison functor in Theorem 2.1 from G Spg, to .A(G) is denoted 6. This
functor is determined abstractly, and for X a rational G-spectrum, it does not provide an explicit
description of 6(X) € A(G). Nevertheless, we have the following formula linking homology and
homotopy groups

H,(0x(X)) = 7, (@5 (X)),

where ®X(X) denotes the geometric K-fixed points of X for K < G, and for ease of notation we
have denoted the value of the functor 6(X) at K by 8, (X). This identification allows for an explicit
description in the presence of formality. Concretely, in the case where the chain complex 65 (X)
is formal for every K < G, that is, 6 (X) ~ H,(6x(X)) in Ch(Q[W;K]), these weak equivalences
at each K < G assemble to produce a description of the derived image of X in the algebraic model
A(G).
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By construction, a similar statement is true for naive-commutative rational ring G-spectra. That
is, let X be a rational naive-commutative ring G-spectrum and let 6(X) denote its derived image in
the algebraic model A(E;o (G)). Then we have the same formula linking homology and homotopy
groups: for each K < G,

where ®X(X) again denotes the geometric K-fixed points of X. If it happens that for every K < G
the CDGA 8¢ (X) is formal, that is, 0 (X) ~ H,(6x(X)) in CDGA(Q[W;K]), we obtain a descrip-
tion of the derived image of X in the algebraic model .A(Eio G)).

In [10], we used this method to calculate the derived images of HRU ,, KU ;; and kug; in the alge-
braic model A(Eéo(G)). The spectrum HRU ;, is the Eilenberg-MacLane spectrum for the com-
plex representation ring Mackey functor RU ;, and 7 ,KU; = RU .. We obtained the following
calculations of these CDGAs and their homology. These calculations serve as the input for the
computations in the genuine algebraic model.

Theorem 3.1 [10]. For a finite abelian group G, there are weak equivalences in A(Eio (G)) making
the following identifications for each K < G:

Ox(HRU ;) ~ H,(6x(HRU ;) =~ Vg
Ox(KUg) ~ H,(6x(KU)) = Vg [B*]

Ok (kug) ~ H, (O (kug)) =~ VB,

where the Q[W ;K |-module Vi is given by

V. = Q(,) ifKiscyclicofordern
7o else.

Here Q($,,) is the field extension of Q by a primitive nth root of unity and f3 is the Bott element in
degree two. The W ;K -actions on V. and the generators 3 are trivial in all cases.

When working with genuine-commutative ring spectra, by construction and by Lemma 2.11,
we again have the formula linking homology and homotopy groups: for each K < G,

H,(0x(X)) = 7, (5 (X)),

where ®X(X) denotes the geometric K-fixed points of X and @ is the co-functor from Theorem 2.6;
again O (X) denotes the value of ©(X) atK < G.

One would like to use formality to find the image ©(X) for a genuine-commutative ring spec-
trum X. This time, however, ®(X) lives in the co-category A(EY (G)) = [Orbg, CDGA(Q)]. Thus
the correct notion of ‘formality’ is formality of the entire diagram, which cannot be separated
into formality at each individual subgroup K < G as before. Nevertheless, if we can show the dia-
grammatic formality result ©(X) ~ H,(O(X)) in .A(EOG<> (G)), then we do obtain a description of the
derived image of X in the algebraic model A(ES (G)). This is the procedure we implement in the
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remainder of the paper. We construct a zig-zag of weak equivalences in A(Efo (G)) from ©(KU)
to H,(O(KU)) in order to identify the derived image of KU ;.

Our strategy will be to first prove formality of © HRU ;) via a Koszul type resolution and then
lift this to resolutions giving formality of ©(KU ;) and @(ku). Note this is not the most efficient
way to prove formality for @ HRU ). There is a standard formality argument for any Eilenberg-
MacLane spectrum using the (—1)-connected cover, but this approach cannot be extended to
O(KUg;). For clarity, we include the truncation argument below along with an explanation why
this simple approach cannot work for (KU ;) or O(ku,;).

3.2 | Formality for Eilenberg-MacLane spectra

For any A, € DGA (not necessarily commutative), we can form the (—1)-connected cover 7,yA,,
which is zero in negative degrees, has the zero cycles Z, of A, in degree zero, and is A; in degree i
fori > 0. Asin [6], for example, this truncation can be used to show that any DGA with homology
concentrated in degree zero is formal. The zig-zag of quasi-isomorphisms is given by the inclusion
and the quotient map to homology

A, S 1A 23 H (A

The second map exists because the homology is concentrated in degree zero.
In fact, given a diagram A, € .A(Eg0 (G)) with homology concentrated in degree zero, this argu-
ment easily extends to give formality of the diagram.

Proposition 3.2. Let G be any finite group. Suppose A, € A(ESO(G)) has homology concentrated
in degree zero. Then A, is formal.

Proof. Since A, has homology concentrated in degree zero, at each conjugacy class (K) we have
a zig-zag as above. If G/J — G /K is a map in Orb, and nf 1 A.(J) = A.(K) is the induced map
on CDGAs, then we have a commutative diagram

A(K) $— 150A.(K) —> H,(A.(K))

T e

n
A() 4 150A.0) — H,(A.()),
where the middle map is simply the restriction of nf to the truncation. O

Corollary 3.3. Let G be a finite group and let M be a Tambara functor. There is a unique genuine-
commutative ring structure on HM,, the Eilenberg-MacLane spectrum for M ® Q.

Proof. Since we are working with an Eilenberg-MacLane spectrum, the image in the algebraic
model ©(HM ) has homology concentrated in degree zero. By the previous proposition, it is
formal. Thus by Theorem 2.6, the genuine-commutative ring structure on HM , is uniquely
determined. O
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This corollary is a special case of Ullman’s work [27] in which he shows that the cate-
gory of G-Tambara functors is equivalent to the homotopy category of genuine-commutative
Eilenberg-MacLane ring G-spectra, without rationalization. In the rational case, this result is a
straightforward consequence of the existence and the simplicity of the algebraic model.

In particular, Corollary 3.3 implies that @ HRU ;) is formal. Unfortunately, the above method
does not extend to ®(KU ;) because @(KU ;) has nonzero homology in negative degrees, so no
map from the connective cover can induce an isomorphism on homology. One might hope to use
something like the above argument for the connective cover @(ku ;) and then invert a represen-
tative for 8 afterward, but even for the connective cover, this argument fails because we are not
guaranteed any map 7.,0(kug) — H,.(0©(kug)). Thus we need a different approach to show for-
mality.

4 | CONSTRUCTING A NICE RESOLUTION OF H (@(HRU,,))

We now give an approach to formality for the Eilenberg-MacLane spectrum ©(HRU ;) that
can be extended to give formality for ®(KU ;). We construct a resolution B, for the homology
of ®(HRU ;) that has the additional property that it admits a map to any diagram A, whose
degree zero homology is the same as Hy(©(HRU ;)), and that this map induces an isomorphism
on homology in degree zero. We then use this construction to prove formality of ®(KU) in
Section 5.

We first make the following observation to simplify our constructions. The diagram ®@(HRU ;)
comes with a Weyl group action at each subgroup. As observed in [10, Remark 4.4], if the group
is finite abelian, then the action on homology is trivial for all subgroups. Note this does not imply
the action on the CDGA at each subgroup is trivial. However, the following lemma shows we can
always choose representatives for homology classes that are fixed. Similarly, if a boundary element
is fixed, we can always find an element in its preimage under the differential that is fixed under
the Weyl group action.

Lemma 4.1 (Averaging [10, Lemma 5.2]). Let A, be in CDGA(Q[W ;K]), and suppose a homology
class x € H,(A,) is fixed under the W;K-action. Then x has a representative a € A, that is fixed
under the W ;K-action. Similarly if y € A, and d(y) is fixed under the W ;K -action, then there exists
a fixed element b such that d(b) = d(y).

We will construct our diagram B, so that B,(K) has a trivial W;K-action for all subgroups
K < G. When we construct the map to A, where Hy(A,) = H . (@(HRU,,)), it will always be
assumed that the representatives of homology classes we choose are fixed so that the map is equiv-
ariant at each level. The above lemma ensures this is possible and we use this ‘Averaging Lemma’
throughout this section without further mention.

Construction 4.2. For a finite abelian group G, let B, € A(EOGO(G)) be the diagram of rational
CDGAs defined as follows.
For K a cyclic subgroup of G, define the free graded-commutative algebra

B.(K) = @ axleEBw)

pprime L<K,L#e
plIK| L cyclic p-group
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with |x;| =0, |[t;| = 1, and then define differentials

d(t,) = {CDP(XL) L= Cp

Xp — xf L = C,,, with maximal proper subgroup L~ Cprr.
Here @, denotes the pth cyclotomic polynomial. We view B, (K) as a Q[G /K]-CDGA with trivial
action. Observe that because the empty tensor product is the unit CDGA Q, at the trivial subgroup
this construction reduces to B, (e) = Q.
For K a noncyclic subgroup of G, define

BK)=M.® @ @ alx]e®EQw),

p prime L<K, L#e
plIK| L cyclic p-group

where the differentials on the generators x; and ¢; are as in the cyclic subgroup case and where
M, is the CDGA

M, = E(a)

with |a| = 1 and d(a) = 1, which implies the homology of M, is the zero ring. Again, regard B, (K)
as a Q[G/K]-CDGA with trivial G/K action.

We next specify the norm shadows nf > B.(L) - B.(K) arising from subgroup inclusions
L < K. Such an inclusion implies that |L| | |K| and that any cyclic p-subgroup of L is also a cyclic
p-subgroup of K. We may thus define any nf via inclusions of tensor products over smaller sets
into tensor products over larger sets. That is, for a cyclic p-subgroup J of L (and thus of K), we
send the generators x;, t; € B,(L) to the similarly named generators in x;, t; € B,(K). In the case
that L is not cyclic, it must also be that K is not cyclic, so we just send the extra exterior genera-
tor a € B,(L) to the corresponding generator a € B, (K). This commutes with the differentials by
direct inspection.

These definitions of nf are clearly functorial in the subgroup lattice of G, and thus define an
Orbg-diagram in CDGA, as discussed in Remark 2.10.

Lemma 4.3. The homology of the complex B,(K) defined in Construction 4.2 is concentrated in
degree 0, where it is given by

_ @(glKl) K cyclic
Hy(B.(K)) = {0 K noncyclic.

Proof. Consider first the case where K is cyclic, so

BK)=Q@ @ axleEw).

p prime L<K, L#e
plIK| L cyclic p-group

The differentials do not mix the tensor factors corresponding to distinct primes p, so we may
write this CDGA as a tensor product of CDGAs corresponding to each prime divisor of |[K|. As K
is cyclic, it has a unique maximal cyclic p subgroup, which we denote K. All cyclic p subgroups
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of K are subgroups of K ,. We may thus write
BK)= @  B.K).
p prime, p||K|

By the Kiinneth theorem, the homology of B, (K) splits as the tensor product

H,(B.(K)) = Q) H.(B.(K,)).

plIK|

For a fixed prime p, let p¥ be the maximal power of p dividing |K|. There is then a unique cyclic
p subgroup of K of order p" for 1 < r < k and we may rewrite the CDGA B.(K),) as

Qlx;] ® E(t) = Qlx,, xp2 ..., xpk] Q@ E(tpstp2s e bpk)
Lst,L;ée
L cyclic p-group

with differentials

d(ty) = {CDP(XP) Tl

Xpr-1 = ()P r>1

A standard regular sequence argument proves the homology of this complex vanishes in
degrees different from 0, and in degree O is given by

Hy(B.(Kp)) = Q[x,, ...,xpk]/(ép(xp),xp - (xpz)p, ooy X pho1 — (xpk)p)

IR

Q[x,, xpk]/<<1>p(xp), X, — (xpk)pk_1>

1R

k-1
Qlxel/(@,(Cep” )
= QS k),
where the last isomorphism follows from the cyclotomic polynomial identity
k—
@,((x)P) = P p(x).

We therefore have that Hy(B,(K)) = ®p”K| @(§'|Kp|) = Q¢ k-
If K is not cyclic, then

BK)=M.0 @ Q alxIe®Ew)

pprime L<K,L#e
plIK| L cyclic p-group

where the differentials do not mix the M, tensor factor with the remaining factors. Since
H_(M,) = 0, the Kiinneth theorem implies that H,(B,(K)) = 0. O

Lemma4.4. Let A, € A(Ef0 (G)) be any diagram whose zeroth homology satisfies

Hy(A.(K)) = {f@m) K cyclic

K noncyclic
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with trivial Weyl group actions on homology. Then there is a map in A(EfO (G))
Y: B, — A,

that induces an isomorphism on H,, where the diagram B, € A(Eg’;(G)) is the one defined in
Construction 4.2.

Proof. We construct ¢ by induction over the lattice of subgroups of G. At the trivial subgroup
B.(e) = Q, so the CDGA map 3, : B.(e) — A,(e) must be the unit map.

Let K be a subgroup of G. By induction, we may assume that for all proper subgroups
L < K, there are Weyl-equivariant CDGA maps ¥; : B.(L) - A,(L) inducing isomorphisms on
H,. Moreover, we may assume that whenever G/L’ — G/L is a quotient map in Orb, the dia-
gram

B.(L) — 2~ A.(L)
nl, T Tni/ (4.5)
B.(L) —2- A(L)

commutes. The proof is in four cases, depending on the structure of the subgroup K.

Case 1. K is cyclic of prime order, K = Cp,. Then B,(K) = Q[xx] ® E(tx). By assumption,
Hy(A.(K)) = Q¢ p) is the pth cyclotomic field extension. We may thus choose a (Weyl-fixed) ele-
ment X € Ay(K) that represents a primitive pth root of unity in homology. The homology class
[Xk ] must satisfy the pth cyclotomic polynomial ®,, and hence ®,(x) is the boundary of an
element ¢ € A,(K), which we may choose to be Weyl-fixed. The assignment 9 (xx) = X and
Pi(tx) = ty thus determines a well-defined equivariant map of CDGAs

Yr: Qxg] ® E(ty) —» A.(K).

The only subgroup of X is e, and since B, (e) is the unit CDGA Q, the diagram involving the norm
shadows from e commutes by the uniqueness of units.
Case 2. K is cyclic of prime power order, K = Cpr, r > 1. To define a map out of

B.(K)= @ Qlx]®El)

LK, L#e

it suffices to choose Weyl-fixed images of each x; and ¢; that are compatible with the differentials
in B,(K). When L is a proper subgroup of K, x; € B,(K) is in the image of the map nf : B.(L) —
B.(K) corresponding to the quotient map G/L — G /K. Hence, in order to ensure that 1, com-
mutes with the norm shadows nk, we must define ¢ (x;) = n¥ (¥, (x;)) and ¢ (t) = nk (P (1)),
where the norm shadows on the right-hand sides are those from the diagram A,. To check these
elements are Weyl-fixed, observe for any g € G, the diagram

23

AL~ AK)

lg]- l [g]- l
K

A(L) A.(K)

B.(L)

Lﬂi

B.(L) ¥
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in which the vertical maps are the Weyl group actions by the class of g in W;L = G/L or WK =
G /K, must commute. Hence the fact that [g] acts trivially on B,(L) implies that the elements
nf (¥ (x;)) and nf (¥ (t)) are fixed by the Weyl group of K and thus this assignment is Weyl-
equivariant. The assignments for x; and ¢; are compatible with the differentials on these classes
in B,(K) because 3; and nf are maps of differential graded objects.

We thus only have to choose suitable images for X and f5. Let J < K be the maximal proper
subgroup of K, so J = Cpr-1. By hypothesis §;(x;) € A(J) represents a primitive p'~'th root of
unity. On homology, the norm shadow nf : A,(J) » A,.(K)induces a map

[l’lf] . @(gpr—l) g Q({p’)

This is a map of fields and hence is injective. Thus the homology class of nf (¥;(x;)) represents
a primitive p"~!th root of unity in Q(¢ pr)- It is straightforward to check (either by hand or using
a splitting field argument) that any primitive p"~'th root of unity in this field has a pth root:
that is, there is a class &« € H(A.(K)) such that a? = [;’15< (¥;(x;))] and moreover, a is a primitive
p"th root of unity. Choose a Weyl-fixed representative X € Ay(K) of a so that [x] = a. Then on
homology, we have

[y (%, (x)) = X¢] = 0.

This equation implies that there exists a Weyl-fixed element ¢, € A;(K) such that d(ty) =
nf @y(x5)) — fﬁ. The assignment - (xx) = Xg and P (tx) = tx is thus compatible with the dif-
ferentials in B, (K) by inspection.

We have defined the map ¢y : B.(K) - A,(K) in such a way that for any L < K, we have the
equality nf oth; = 1/’1{0"1{{ , which gives a commuting square as in the diagram (4.5). On homology,
g sends the primitive p"th root of unity [xx] € Hy(B.(K)) to the primitive p"th root of unity
a € Hy(A.(K)) and hence is an isomorphism.

Case 3. K is cyclic of nonprime-power order. In this case,

BK)=Q @ alxI®Er)

pprime L<K,L#e
plIK| L cyclic p-group

and any cyclic p subgroup L in K must be proper. Hence all the generators x; and ¢; are in the
image of norm shadows from proper subgroups. As in Case 2, for any p-cyclic subgroup L of K,
we must define Y (x;) = nk (9 (x;)) and P (t;) = ny (P, (t;)). It follows from the argument in
Case 2 that these assignments produce a well-defined Weyl-equivariant map

P B.(K) = A.(K).

We can explicitly see that )x induces an isomorphism on H,, as follows. For each p | |K], let K,
be the unique maximal p-cyclic subgroup of K. On homology, the element in B, (K) given by the
tensor product of all the elements Xk, represents a primitive |K|th root of unity, and thus by
the injectivity of field maps (or by analyzing the inductive construction), its image under ¥y is a
primitive |K|th root of unity in H,(A,(K)).
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Suppose K’ is a proper subgroup of K. We must check the commutativity of the diagram

® ® Qx| ® E(t;) A

pprime L<K,L#e
plIK| L cyclic p-group

nK

K’
nK
K!

Pxr
R & axleEBEr) —AK)
pprime L'<K’,L'#e
plIK’| L’ cyclic p-group

Consider x;, € B,(K"). (The case for ¢, is exactly the same.) We then compute

P (nk, (xp)) = Py Cepy)
= ng, (P (xp))
= nf, (¥ @y ()
= nf, g (nk ()

= n,’é (P (x1))-

The first two equalities follow from the definition of the norm shadows in B, and the construction

of the map 1. The third equality is the usual functoriality of norm shadows. The fourth equal-

ity follows from the inductive hypothesis that 1y, commute with norm shadows for the proper

subgroup K’ < K. The final equality again follows from the definition of the norm shadows in B,.
Case 4. K is noncyclic. In this case

BK)=M.® @ @ alxl®EQ).

p prime L<K, L#e
plIK| L cyclic p-group

This is the coproduct in CDGAs of M, and the CDGA

® & axIeEw)

p prime L<K, L#e
plIK| L cyclic p-group

so it suffices to define 1 on each of these tensor factors. On the second factor, we may proceed
exactly as in Case 3: for a p-cyclic subgroup L < K, we define ¥ (x;) = nf(z/)L(xL)) and P (t;) =
nf (®r(t1)). To define ¢ on M., recall that by hypothesis Hy(A,(K)) = 0. Observe that in the
category of unital CDGAs, this implies that the H,(A,(K)) = 0 and that the image of the unit
map @ — A, vanishes on homology. That is, either A,(K) = 0 or else the multiplicative identity
1 € Ay(K) must be in the image of the differential on A,(K). Thus we may choose a Weyl-fixed
element a € A,(K) such that d(a) = 1 and define ¢y (a) = a.

By the same argument as in Case 3, this definition of i is functorial on the shadows of the norm
maps. Since the homology on both sides is zero, the map 1y is an isomorphism on homology. []
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5 | UNIQUENESS RESULTS FOR KU ; AND ku,

In the previous section, we constructed a resolution for H,(®@(HRU ;)) with the property that it
admits a map to any CDGA whose degree zero homology is isomorphic to Hy(6(HRU ,)), and
that this map induces an isomorphism on homology in degree zero. In this section, we use this
construction to prove our main results.

Theorem 5.1. Let G be a finite abelian group. For any A, € A(EOGO(G)) with H,(A,) objectwise
isomorphic to H,(6(KU)), there exists a zig-zag of weak equivalences in A(EOGO(G)) from A, to
O(KUyg).

Proof. For any such A,, observe Hy(A,) = Hy(6(HRU ;)) by Theorem 3.1. Let B, be the reso-
lution for H,(®(HRU ;)) given in Construction 4.2. As shown in Lemma 4.4, we have a map
1 : B, — A, that induces an isomorphism of diagrams on degree zero homology. Our strategy
will be to construct a diagram of CDGAs D, using B, and then extend the map 1 to give a weak
equivalence W: D, — A,.

Define a complex D, (K) for each K < G by

D.(K) = B.(K) ® Qlyk, 7x] ® E(yk), where

vyl =2, 17kl=-2, lykl=1, dyg)=rgix—1,

and the Weyl group action on yy, 7x, and yy is trivial. From the Kiinneth theorem, identifying
[yx ] with B, we observe

H,(D.(K)) = H,(B.(K)) ® Q[Bg, fz'] = H,(O(KU;)(K)),

so the complex has the correct objectwise homology. To define norm shadows, suppose
L € K £ G and extend the norm shadows in B, by making the following assignments on the addi-
tional generators:

nk(y) =vrx, ni@) =7 and nk(y)=yg.

Observe that on homology, the norm shadows in D, satisfy [y;] = [yx] for L < K.

We next extend ¢ toamap W : D, — A,. To do this, first consider the complex at the trivial sub-
group, and choose representatives a,, &, € A,(e) such that [e,] = 8, and [&,] = 8, in homology.
Since [a,][&,] = 8,8, = 1, there must exist a class z, € A, (e) such that d(z,) = a,&, — 1. Note
we can choose these elements to be Weyl-fixed by Lemma 4.1. Now let K be a subgroup of G.
Consider the norm shadow

nk: A.(e) - A.(K).

Let ay = n¥(a,), ax = nX(&,), and zx = n¥(z,). The norm shadow is a map of CDGAs, so we
have the relation

d(zg) = d(ng (2,)) = n; (d(2,) = ng (@&, — 1) = agag — 1.

Hence zy is a witness to the fact that [ax ][@x] = 1 in homology.
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We may thus extend the map 3 to a map ¥ by defining yx = ag, 7x — A, and yg — zg.
By construction, this is a map of CDGAs at each level and commutes with the shadows of the
norm maps.

It remains to check that the map ¥ induces objectwise isomorphisms on homology. Recall from
Theorem 3.1 that the homology at each subgroup is either zero or isomorphic to Q(¢,,)[3*!] for
some n. The only graded Q-algebra endomorphisms of Q(¢,)[f*!] are injective because it is a
graded field, and furthermore, since Q($,,)[8*'] is a finite-dimensional Q-vector space in each
grading, injectivity implies surjectivity. Thus the map ¥ does indeed induce objectwise isomor-
phisms on homology.

We have constructed a weak equivalence ¥: D, — A, for any A, such that H,(A,) is object-
wise isomorphic to H,(©(KU)). In particular, there exists a zig-zag of weak equivalences in
AES©6)

O(KUg) <— D. — A.,
which completes the proof. O

Theorem 5.2. For any finite abelian group G, the spectrum KU ; admits a unique structure as a
rational genuine-commutative ring G-spectrum. That is, if X is a genuine-commutative ring spectrum
whose graded Green functor of homotopy groups is isomorphic to that of KUy, then there is a weak
equivalence of rational genuine-commutative ring G-spectra between X and KUy,

Proof. Consider the corresponding algebraic object O(X) € A(Efo(G)). From Theorem 5.1, we
have that ©(X) is weakly equivalent to @(KU ) in A(Efo (G)). The result then follows from The-
orem 2.6. O

Such a uniqueness result does not hold for the connective cover ®(ku;), although it is true that
the diagram @(ku) is formal in A(Ef<> (G)). The main difference is the polynomial class 3, is not
invertible and so the norm shadows are not determined by the objectwise homology. Compare the
results of Theorem 5.3 and Lemma 5.4.

Theorem 5.3. For G finite abelian, the diagram ©(ku;) is formal in the category .A(Eg0 (G)). Infact,
forany diagram A, such that H,(A,) is isomorphic as diagrams to H,(0(ku)), there is a zig-zag of
weak equivalences relating A, and O(kug).

Proof. Since kug; is the connective cover of KU ;, the norm shadows on ©(ku,;) are the truncations
of the norm shadows on @(KU ;). Writing H,(Oy(kug;)) = Vi[B], as in Theorem 3.1, we see that
each norm shadow takes 8 to 8 because Theorem 5.1 implies that this is true in H, (0(KU;)).

As in the proof of Theorem 5.1, we extend the resolution B, of ®(HRU ;) to one of ©(kug).
Concretely, for K < G, we define

D!(K) = B.(K) ® Qly]

where |yx| = 2, yx is Weyl-fixed, and d(yx) = 0. As in the definition of D,, the norm shadows
on D’ are given by the norm shadows on B, and the assignment y; — y for L < K. Thus by
definition, H,(D'(K)) = V[f], with norm shadows taking 8 to 3.
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By a similar argument to the one in the proof of Theorem 5.1, we can construct a map of dia-
grams ¢ : D’ —» A, inducing a weak equivalence on homology whenever the homology of A, is
isomorphic to that of D’ via an isomorphism of diagrams. O

This shows that the diagram ©(ku;) is determined by the diagram H,(®(ku)). However, the
objectwise description of H, (6(ku)) given in Theorem 3.1 is not sufficient to determine ©(ku).

Lemma 5.4. Suppose G is a nontrivial finite abelian group. Then there exists A, € A(Efo (G)) such
that H,(A,) is objectwise isomorphic to H,(6(kug)) but not isomorphic to H,(0(ku.)) as a diagram
in A(ES(G)).

Proof. We prove this by constructing such an A,. For subgroups K < G, define A,(K) to be the
tensor product B, (K) ® Q[Bx] where |Bx| = 2, d(Bx) = 0, and the Weyl group action on i is
trivial, and where B, is the diagram defined in Construction 4.2. Extend the norm shadows from
B, to A, via nf(ﬁL) = 0 for all subgroups L < K < G. By the Kiinneth Theorem, Lemma 4.3, and
Theorem 3.1, we see that H,(A,) is objectwise isomorphic to H,(6(ku)), with the induced norm
shadows on H,(A,) all satisfying Sz + 0.

On the other hand, the shadows of the norm maps in H,(0(ku)) are restrictions of the shad-
ows of the norms in the diagram of fields H,(®(KU)) because ku is the connective cover of
KU. Thus they must be injective maps at each level. We conclude H,(A,) is not isomorphic to
H,(0(kug)) in A(ES (G)). 0

Remark 5.5. We can in fact construct multiple nonisomorphic objects in A(EC (G)) whose object-
wise homology is the same as H,(6(ku)). The number of nonequivalent genuine-commutative
ring structures on H,(6(kus)) depends on the cyclic subgroup lattice of G. For example, if
G = Cp2, we can define the shadows of the norms in exactly four ways (up to isomorphism). We
depict these choices as diagrams of the form indicated below on the far left.

A.(Cp) Q¢p)I8] Q¢ )I8] Q¢ )IA] Q¢ 2)I8]

n” T ﬁHOT ﬁHﬁT BHOT ﬁHBT
14

A.(Cp) Qp)IA] Qp)IA] Qp)IA] Q8]

no? T ﬁHoT ﬁHoT ﬁ'—»ﬁT ﬁHﬁT

A.(e) Q[B] Q[A] Q[A] Q[A]

In each diagram, the degree zero norm shadows are given by the standard inclusions of fields. In
higher degrees, they are determined by the indicated image of 5. In general, there are 2" noni-
somorphic extensions for C» given by the two choices, zero versus nonzero, of the image of the
Bott element § at each subgroup.

The number of genuine-commutative ring structures on H,(6(ku)) becomes even more inter-
esting when considering other cyclic groups. For example, when G = C,,, for p and g distinct
primes, there are four norm shadows and thus at most 2* = 16 choices. Some of these do not give
rise to a commutative diagram, such as the combination

ne(B) =Fc,  mBe)=Be,s  meBI=0.  n(Be)=0.



GENUINE-COMMUTATIVE STRUCTURE ON RATIONAL K-THEORY | 1101

. . Cpg C Cpo C
After removing the options where "ch”ep B,) # nC:"ne"(Be), one sees there are exactly 10

genuine-commutative ring structures up to isomorphism in .A(EOGo (G)) when G = C,.

The result of Lemma 5.4 implies a nonuniqueness result for ku; that stands in contrast to the
result of Theorem 5.2 for periodic K-theory.

Theorem 5.6. Let G be a nontrivial finite abelian group. There exists a rational genuine-
commutative ring G-spectrum X whose underlying Green functor of homotopy groups is isomor-
phic to that of kug but which is not weakly equivalent to kug as genuine-commutative rational
G-spectrum. That is, X is weakly equivalent to ku in the category of rational naive-commutative
ring G-spectra but not in the category of rational genuine-commutative ring G-spectra.

Proof. Consider the diagram A, from Lemma 5.4. By Theorem 2.6, there is a corresponding
genuine-commutative ring G-spectrum X such that ®(X) and A, are weakly equivalent. By the
uniqueness of the naive-commutative structure on kug; from [10, Corollary 5.10], there exists a
zig-zag of weak equivalences between X and ku in the category of naive-commutative rational
ring spectra. But by construction, H,(©(X)) is not isomorphic to H,(0(ku)), so the diagram
O(X) cannot be weakly equivalent to ©(ku;), and thus X cannot be weakly equivalent to ku as
genuine-commutative rational ring G-spectra. O

We end this section by clarifying the conclusions that can be drawn from our uniqueness results.
As noted in Section 2, there is a forgetful functor from rational genuine-commutative ring G-
spectra to rational naive-commutative ring G-spectra

U : ES -alg(GSpy) — EL -alg(GSpy).

The main result in Theorem 5.2 implies that if X € EoGo-alg(GSp@) satisfies U(X) ~ U(KUy),
then X ~ KUy in ES -alg(GSpg). On the other hand, Theorem 5.6 shows that X satisfying
U(X) ~ U(ku) does not necessarily imply X =~ ku,.

Note, however, that this uniqueness of KU does not imply that any naive-commutative ring
G-spectrum Y that is weakly equivalent to KU ; must admit a genuine-commutative ring struc-
ture. In other words, not every object that is weakly equivalent to KU in Eéo—alg(GSpQ) arises
from an object in ES -alg(GSp,) by forgetting the norm maps. Below we construct a naive-
commutative ring G-spectrum that is weakly equivalent to KU, but does not admit a genuine-
commutative ring structure.

Example 5.7. Let G = C),» where p # 2. We constructan A, € .A(Eéo(G)) thatis not in the image
of the forgetful functor from A(EOGO(G)) to A(Eéo(G)). Via Lemma 2.11, there thus exists a naive-
commutative ring spectrum X corresponding to A, that does not admit a genuine-commutative
ring structure. The object A, is defined as follows:

A-(e) =Q A-(Cp) = @(gp) A-(sz) = @[sz] ®E(yp2)
where in the last CDGA we let |x,2| =0, |yp2| = 1, and d(y,2) = ®p2(x2), and the former two

CDGAs are concentrated in degree zero with zero differential. Note that the homology of A.(C ,2)
is @({2) concentrated in degree zero. Hence the homology of A, is isomorphic to the homology of
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O(HRU ;). By [10, Lemma 5.5], the complex 6(HRU ) is formal; hence there is a zig-zag of weak
equivalences of rational naive-commutative ring G-spectra between X and HRU .

We now show that A, cannot be the underlying naive-commutative object of a well-defined
object in A(E% (G)). Suppose that a norm shadow

n: A(C,) - A.(Cp)

exists. By a degree argument, we must have that n(¢,) = f(x,2), where f(x,.) is some polynomial
in Q[x ], and therefore

("(gp))p = (f(xpz))p'

Furthermore, since the shadows of the norm maps are maps of commutative rings, we also have
the identity

(n¢))" = n(&)P) =n1) =1.

As a consequence, we get (f(x,2))P = 1 which only holds when f(x,.) = 1. However, in degree
zero the map n is a map from a field to a ring and thus must be injective. Since 1 € A,(C ;) is also
the image of the unit 1 € A,(Cp), this leads to a contradiction.

Since KU and HRU , agree at the zeroth degree, this example can be extended to an example
of a naive-commutative ring spectrum X that is isomorphic to KU in the homotopy category of
naive-commutative ring G-spectra but does not admit a genuine-commutative ring structure.

Remark5.8. At p = 2,one has Q(¢,) = Q, and so the complex in .A(E;o (C,)) constructed in Exam-

ple 5.7 does underlie a complex in A(Egj‘ (C,)) in which all norm shadows are the unit map. In this
case, one can instead construct slightly more complicated examples of complexes in A(E;(C4))

that do not arise from an object in A(ES;‘(Q)).
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