EXTERIOR POWERS AND TOR-PERSISTENCE
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ABSTRACT. A commutative Noetherian ring R is said to be Tor-persistent if, for any
finitely generated R-module M, the vanishing of Torl’»? (M,M) for i > 0 implies M has
finite projective dimension. An open question of Avramov, et. al. asks whether any such
R is Tor-persistent. In this work, we exploit properties of exterior powers of modules and
complexes to provide several partial answers to this question; in particular, we show that
every local ring (R,m) with m? = 0 is Tor-persistent. As a consequence of our methods,
we provide a new proof of the Tachikawa Conjecture for positively graded rings over a
field of characteristic different from 2.

1. INTRODUCTION

Several conjectures and open questions on the rigidity of Ext and Tor have recently
gained much attention. Among the most well-known of these is the Auslander-Reiten con-
jecture which poses that given a commutative Noetherian ring R and a finitely generated
R-module M, the vanishing of Exti (M, M @& R) for all i > 0 forces M to be projective [1].
The Auslander-Reiten conjecture traces its roots to the representation theory of Artin alge-
bras where it is intimately connected to Nakayama’s conjecture and its generalized version.
A significant special case of the Auslander-Reiten conjecture is the Tachikawa conjecture
which posits that the Auslander-Reiten conjecture holds when R is Cohen-Macaulay and
M = wg is a canonical module of R [4]. Inspired by work of Sega [16], Avramov et.
al. introduce the following which can be thought of as a version of the Auslander-Reiten
conjecture for Tor.

Question 1.1 ([5]). Let R be a commutative Noetherian ring. If, for a finitely generated
R-module M, we have TorlR (M,M) = 0 for i > 0, must M have finite projective dimension?

Rings for which Question 1.1 has an affirmative answer are called Tor-persistent. Thus
Question 1.1 can be rephrased to ask whether every commutative Noetherian ring is Tor-
persistent. Several classes of rings are known to be Tor-persistent, for example, complete
intersection rings, Golod rings, and rings of small embedding codimension or multiplicity
[2, 5, 13, 14]. The complete intersection case depends on support theory, which is only
available in this setting, while the other known results depend on conditions for the van-
ishing of Torf(M ,N) for all i > 0 and every M and N, an approach that does not extend to
the general case (see [5]).

The main purpose of this work is to provide evidence, and new insights, that this ques-
tion may have an affirmative answer. Our first main result provides a new class of rings
which are Tor-persistent (see Theorem 2.1).

Theorem A. If (R,m) is a local ring with m> = 0, then R is Tor-persistent.
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Our second main result provides some restrictions in the graded case; here eg(M) de-
notes the Hilbert-Samuel mutiplicity of the R-module M (see Theorem 3.5).

Theorem B. Let R = ®;>0R; be a Noetherian standard graded algebra over a field Ry =k
with chark # 2. Let M be a finitely generated graded R-module satisfying the following.
(1) er(M) = er(R),
(2) TorR(M,M) =0 fori> 0, and
(3) M ®gM has no embedded primes.
Then M = R.

In fact, we prove Theorem B under more general assumptions. As a consequence of this
result, we provide a commutative algebra proof of the Tachikawa Conjecture for positively
graded rings over a field of characteristic different from 2 (see Corollary 3.8). This result
also follows from work of Zeng using techniques in representation theory of Artin algebras
[171.

Our approach to both of our main results provides an explanation as to why the van-
ishing of Tor®(M,N) is special when M = N; namely, the vanishing of TorX(M, M) has
consequences for the exterior and symmetric powers of M. For the cases we consider,
these consequences come in the form of numerical constraints on the exterior and symmet-
ric squares, and are enough to conclude that the module in question is free.

We conclude this section with some notation that we use in the subsequent ones. Through
the remainder of the paper, let (R, m, k) be a commutative Noetherian ring which is either
local or positively graded over the field £ with maximal homogeneous ideal m. If R has
a canonical module, it is denoted by wg. We let M be a finitely generated R-module; in
the graded case we assume M is homogeneous. We use Vg(M) = BE(M) for the minimal
number of generators of M and Ig(M) for the length of M. We write QR(M) for the ith
syzygy of M and BR (M) for the ith Betti number. We let codimR := vg(m) — dim R be the
embedding codimension of R. We let 1y : /\%(M ) — M @z M be the antisymmetrization
map defined on elementary wedges by x| Axp — x] ® xp —x2 ® x1.

2. TOR-PERSISTENCE FOR RINGS WITH RADICAL CUBE ZERO
The following main result contains Theorem A from the introduction.

Theorem 2.1. Assume (R,m,k) is a local ring with m3 = 0. If M is an R-module such that
TorR (M, M) = 0 for 2 < i < 5, then M is free.

Proof. We may assume M is nonzero. As a notational convenience, we set Yr(M) =

‘l,’; %)) — 1. We note that yg(M) > 0 with equality if and only if M = k" for some n.

Suppose M is not free. Set N = QX(M), L = Q¥ (M), and b = vg(N). Let ¢ be the
map fitting in the natural exact sequence 0 — L %, R — N — 0. Since N — mR"*™) and
since m3 = 0, we have m?N = 0. Similarly, we have m2L = 0. By dimension shifting,
TorR(N,L) = 0, and so we have m(L®gL) = 0 by [I1, Lemma 1.4]. Further, we have
Tor®(N,N) =0 fori=1,2,3so [ |, Theorem 2.5] gives

(1) ve(L) = vr(N)b,
(2) vg(m) =27%(N), and
(3) 7(R) = yr(N)?, where r(R) := dimy Soc(R) is the type of R.
The map 17,1 : A7(LOrk) = (LOgK) @ (LRgK) is injective because L@gk is a k-vector
space, and this map is naturally identified with 17 ®idy: A%(L) @k — (LQgL) Q@rk. As
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L ®g L is a k-vector space, so is its quotient /\%(L), hence 17, ® idy is naturally identified
with 1. In particular, 17 is injective.

Now, we have ¢ ® ¢ = (¢ ®idg) o (idz ®¢@). The map @ ®idg, is injective since
Torf (N,R?) =0, and id;, ®g ¢ is injective since Torf (L, N) = Torf (M, M) = 0. Thus ¢ ® ¢
is also injective.

Next, we have the following commutative diagram

Na(L) —E— LegL

/\%(Wl lw@'w
1
A:(RY) —5 RP @R RY
Since ¢ ® ¢ and 1;, are both injective, the commutivity of the diagram forces /\,23((,0) to be

injective. Since A%(L) is a k-vector space, it must thus embed in the socle of A%(R?).
The vector space dimension of A%(L) is

(VR(L)> _ (YR(N)b) _ RWV)b(rr(N)b—1)

2 2 2
while that of soc(A%(R?)) is

@) (5) = m (M0,

It follows that we must have

N)b(Yr(N)b—1 b(b—1

2 2

If yz(N) = 0, then N is a k-vector space which cannot be, since N has infinite projective
dimension and Tor’f (N,N) = 0. Therefore, as b # 0, we have

W(N)b—1 < 1r(N)b—wR(N)
which forces Yg(N) = 1. Thus R is Gorenstein with vg(m) = 2, by items (1)—(2) above,
and so R is also a complete intersection.
Let cxg(M) be the complexity of M, since R is a complete intersection, we have cxg(M) <
codimR = 2; see e.g. [12, Theorem 1.1 and subsequent paragraph]. Thus, [12, Proposition

2.3] forces Torfe (M,M) =0 fori > 0. By [2, Theorem 4.2], this contradicts the fact that M
is not free. The result follows. O

3. SOME RESTRICTIONS FOR TOR-PERSISTENCE

Unless otherwise stated, throughout this section we let R = @;>oR; be a positively
graded algebra over a field Ry = k and m = @®;~(R; its homogeneous maximal ideal. Let
M = ®;czM; be a finitely generated graded R-module. The Hilbert series of M is

HM(I) = Z(dimkMi)ti.
i€
We recall that if M #£ 0, and if x = (x1,...,%gimpm) iS @ homogeneous system of parame-
ters on M with degx; = a;, then there exists a Laurent polynomial &,() € Z[t,t '] with
€,;(1) > 0 such that Hy() can be written as

_ &)
Hba(t) = i (1
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[6, Proposition 4.4.1 and Remark 4.4.2].
We denote by eg(M) the Hilbert-Samuel multiplicity of M

(d1mR)‘lR(M/m”M)

n_,QQ ndlmR

eR(M) =

>

we also write e(R) for eg(R).
For a graded complex of finite rank graded free R-modules
X = ~~~Xi+1 %Xl‘ —)Xi,1 —
with X; = @ ez R(— )b, we denote by
PX l Z Z b; j[/
i,jJEL

the (graded) Poincaré series of X. If F is a graded free resolution of M, then we set
Puy(t,z) := Pr(t,z). The additivity of length gives the following comparison of Hilbert and
Poincaré series.

Fact 3.1. For R and M as above, we have Hy(t) = Hg(¢)Py(t,—1).

We now describe a construction of Buchsbaum-Eisenbud [7], following the presentation
of Frankild-Sather-Wagstaff-Taylor[9]. Assume for the remainder of this paragraph that
chark # 2. Let X be as above, and let o : X ® X — X ® X be the map defined on
homogeneous generators by

(XX(X®X,):X®X/7( )\xHx\ < ®x.

Let S3(X) be the complex Coker(aX) and call it the second symmetric power of X.

In the following statement we summarize some important properties of Sx(X). We
remark that although the statements in [9] are in the local case, the arguments therein
readily extend to account for the grading in R.

Fact 3.2 ([9, 3.8, 4.1, 3.12]). Assume chark # 2. Let X be a graded complex of finite rank
graded free R-modules.

(1) The following exact sequences are split exact.

0 — Ker(a®) = X @ X — Im(a®) — 0
0—Im(a¥) = X QX — S3(X) =0
(2) Ho(S3(X)) = Sh(Ho(X)).
3) Poy)(t,2) =3 [P (t,2)* + P (1*,—2%)
Now, assume chark # 2 and consider the antisymmetrization map 1y /\% (M) - M®g

M defined in the introduction. This map is a split injection where the splitting map is given
by x®y — $x A\ y. Since Coker(1/) = S(M), we have the following fact.

Fact 3.3. Assume chark # 2, M @g M = S3(M) ® N4 (M)
The following lemma is essential in the proof of our main result.

Lemma 3.4. Assume chark # 2. If M is a graded R-module such that TorX (M, M) = 0 for
every i > 0, then we have

_ Hy(t)  Hu(t*)Hg(t) nd  H Hy (1)  Hg(t)Hm(1%)

Hszze(M) (1) = 2Hg(1) 2Hg(12) Ng (M) (1) = 2Hg(t) - 2Hg(t2)
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Proof. Let F be a minimal graded free resolution of M. By the vanishing of Tor assump-
tion, the complex F Qg F is acyclic and therefore a minimal free resolution of M Qg M.
Therefore, Fact 3.2(1)—(2) imply that S,%(F ) is acyclic and a minimal free resolution of
S2(M). From Facts 3.1 and 3.2(3) we obtain

Hg ) (1) = Hr (1) Pz ) (1, 1) = Hk(t) [Pp(t, —1)24Pp(e%,-1)

R

2
Hiy(1) | Hy(t)Hp(*)Pr(1*,—1)

2HR(Z‘) 2HR(t2)
_ HA() | He()Hu(P)
2HR(I) ZHR(IZ)
We note that
HZ (¢
Hgo(6) = Hi(t)Prcogr 1, ~1) = el B3 (e, —1) = 1)
Hg(t)
Thus, it suffices to show Hyem(t) = Hg ) (t)+H A2 (M) (t), which follows from Fact
3.3. O

We are now ready to prove Theorem B.

Theorem 3.5. Let R be a Noetherian positively graded k-algebra with chark #£ 2. Let M
be a finitely generated graded R-module such that dim(M) = dim(R) and satisfying the
following:

(1) For some homogeneous system of parameters x of R, &,(1) = &(1).

(2) Tor®(M,M) =0 fori >0, and

(3) M ®gM has no embedded primes.
Then M = R.

Proof. We proceed by contradiction. Suppose that /\,% (M) # 0 so, by Fact 3.3, we have
M@rM = N3(M)@S%(M). Since M ®g M has no embedded primes, it follows that A% (M)
is has dimension dim(R). By Lemma 3.4, we have

HR(I)HR(I2)HA§(M) (t) = Hy(t)*Hg (t*) — Hy (1> ) Hg (1)

As each module in question has maximal dimension, we may clear denominators to obtain
a formula for multiplicity polynomials with respect to any system of parameters x of R

SR, |, (1) = g5 er (1) — e () (1)

e
Evaluating these at # = 1 shows that € ALM) (1) =0, a contradiction. Therefore, A%(M) =0,

and it follows that M is cyclic. Thus M = R/I for some homogeneous ideal I. As I/I> =
TorR(R/1,R/I) = TorX (M, M) = 0, it follows that I = 0, concluding the proof. O

Remark 3.6. Hypothesis (1) in Theorem 3.5 follows from the condition that eg(M) = e(R)
in a number of cases, e.g. if m" admits a homogeneous minimal reduction for some n > 0
(which occurs, for instance, if R is standard graded), if R is Artinian, if M has constant
rank, or if R is Cohen-Macaulay and M = wg [6, Corollary 4.4.6]. When M has rank,
hypothesis (1) in Theorem 3.5 is equivalent to M having rank 1. Frequently, such modules
are ideals, e.g., if R is a domain and M is torsion-free.

In what follows, we set (—)" = Homg(—, ®g)
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Corollary 3.7. Let R be a positively graded Cohen-Macaulay k-algebra with chark # 2.
If M is a finitely generated graded maximal Cohen-Macaulay R-module such that:

(1) For some homogeneous system of parameters x of R, &,(1) = &x(1).

(2) Exth(M,M") =0 fori> 0.
Then M = R.

Proof. From [14, Lemma 3.4 (1)], we have that M ®r M is maximal Cohen-Macaulay and
that TorR (M, M) = 0 for all i > 0. The result then follows from Theorem 3.5. g

As an immediate consequence of Corollary 3.7 (cf. [6, Corollary 4.4.6]), we prove the
(commutative) graded case of the Tachikawa conjecture in charactersitic different from
2, which also follows from work of Zeng. Notably, Zeng’s approach requires passing to
noncommutative algebras, whereas our proof uses only techniques in commutative algebra.

Corollary 3.8 ([17, Theorem 1.3]). Let R be a positively graded Cohen-Macaulay k-
algebra with chark # 2. If Exty(wg,R) = 0 for every i > 0, then R is Gorenstein.

For Artinian rings, condition (1) of Theorem 3.5 follows from the hypothesis that
Ir(M) = I(R) and condtion (3) of Theorem 3.5 is automatically satisfied, so we obtain
the following.

Corollary 3.9. Let R be an Artinian positively graded k-algebra with chark # 2. If M is a
finitely generated graded R-module such that Ix(M) = [(R) and TorR(M,M) = 0 for every
i>0, then M =R.
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