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ARTICLE INFO ABSTRACT

Handling Editor - Dr. R. Thompson Rice is one of the most important agricultural commodities throughout the Mekong River Basin including the

Tonle Sap Lake floodplains in Cambodia. Recent increases in hydropower dams along the Mekong River have

K?yword&' ) likely altered the surface water hydrology impacting the arable areas and soil qualities for rice production in the
Rlcj Plr‘)d“cnon Tonle Sap lowland. Along with the hydrological impacts, the region’s rice farming is facing a rapidly changing
Hydrology

climate. It is critical to understand how the hydrological changes associated with dam development impact the
region’s rice production in a changing climate. The aims of this study were to assess the impacts of recent in-
creases in hydropower dams on the timing and areas of rice cropping in the Tonle Sap floodplains and to evaluate
the effects of changing hydrology, rising temperature, and adaptive farming practices on rice productivity using a
process-based rice crop model: ORYZA (v3). The effect of dams on arable areas for rice was identified by a
remote-sensing method based on the PhenoRice algorithm for the period of 2001-2019 in two rice-growing
provinces: Kampong Thom and Battambang. The PhenoRice method identified an increase in rice growing
areas as well as shifts in both timing and location of rice cropping towards the sources of irrigation during the dry
season since 2010. The ORYZA model simulated a substantial yield reduction with an increase of 2 °C in air
temperature in the region. The model predicted that the rice productivity in the region is sensitive to soil organic
carbon content which is expected to change with surface water hydrology. The model also predicted that region’s
rice yield can increase by optimizing the timing and amount of N fertilization. The findings from this study
highlight how hydrology, climate, and agronomic practices can interact to impact rice production in the Lower
Mekong Region and provide insights for effective water management and agronomic practices to attain food
security in the region in a changing climate.
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1. Introduction also improved from 2.5 to 3.3 tons-ha—! from 2005 to 2017 (MAFF,

2018). The Ministry of Agriculture reported a total harvested area of 3.2

Rice (Oryza sativa L.) is the staple food in Cambodia and rice farming
provides livelihood to the majority of the nation’s poor population
(Cramb et al., 2020; FAO, 2015). About 85% of the country’s croplands
is cultivated for rice (Siek et al., 2017). Rice production has increased in
recent years since the government implemented its policy on “The
Promotion of Paddy Production and Rice Export” in 2010 (Royal Gov-
ernment of Cambodia, 2010). Cultivated rice area climbed at a rate of
1.7% from 1990 to 2017 (Cramb, 2020). The country’s average yield

* Corresponding author.

million ha in 2018. This boost can be attributed to farmers moving from
subsistence to commercial farming, adoption of modern varieties,
increased use of fertilizers, mechanization, and availability of credit
(Cramb et al.,, 2020; Johnston et al., 2013; World Bank, 2015a).
Cambodian rice is also gaining recognition in the export market for its
high eating quality (Sopheap et al., 2018). Despite these developments,
Cambodia’s yield and production still lags Thailand and Vietnam, its top
rice-producing neighbors that also enjoy the irrigation benefits of the
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rich Mekong River ecosystem (Smith and Hornbuckle, 2013; USDA,
2010; World Bank, 2015a).

Large portions of rice in Cambodia are cultivated around the Tonle
Sap floodplains. Approximately 23% of the floodplains are used for
agriculture, for which 75% are used for rice production (FAO, 2015;
Matsui et al., 2006). The Tonle Sap Lake is the largest and most
important lake in the Lower Mekong Region in South-East Asia. It is
often referred as the beating heart of Cambodia with its cyclic swelling
and shrinking during the annual transition from monsoon to dry season
(Lamberts, 2006). Tonle Sap Lake connects to the Mekong River through
the 110 km Tonle Sap River (Eyler and Weatherby, 2019). As the
Mekong River brings intense monsoon floods from May to October, it
carries an abundant mix of organic matter, nutrient-rich sediments, and
diverse fish species that are deposited to the Tonle Sap floodplains (Eyler
and Weatherby, 2019). At its peak, the lake can increase six times larger
than its dry season volume. Depth goes from 1 to 10 m or more, of which
70% of the water comes from the Mekong River (Matsui et al., 2006). As
the floods recede during the dry season, the floodplains become a
spawning ground for fishes and provide a fertile soil for crop production
(Eyler and Weatherby, 2019; Hortle et al., 2004; Lamberts, 2006).

Hydrology in the Tonle Sap floodplains is changing because of the
increasing number of dams in the Mekong River and tributaries regu-
lating the flood flow downstream (Pokhrel et al., 2018a). While dams
and hydroelectric power plants are built to address the increasing energy
demands the Lower Mekong, they also alter the natural cycle of biota
exchange between Tonle Sap and Mekong River (Sabo et al., 2017;
Stone, 2016). Currently, the connectivity of the floodplains to the river
already reduced by 31% (Eyler and Weatherby, 2019). Previous studies
already predicted that lake extent and depth during dry season could
increase (Haddeland et al., 2006; Kummu and Sarkkula, 2008; Mekong
River Commission, 2010; Pokhrel et al., 2018b) and consequently drive
irrigation infrastructure development (Arias et al., 2012). Better access
to irrigation could influence planting time and open more lands for rice
farming. However, the impact of changing Tonle Sap hydrology to rice
production in terms of area, location, and timing of cultivation has not
yet been examined.

Water availability is a major constraint in dry season rice production
in Cambodia. Paddy fields situated farther away from rivers and canals
are likely to experience water stress according to a study conducted by
Veasna et al. (2014). However, with hydropower dams regulating the
flow of stored flood water from the monsoon months, water level is
expected to rise and reside longer during the dry season (Arias et al.,
2012; Kummu and Sarkkula, 2008; Mekong River Commission, 2010;
Pokhrel et al., 2018b). Several infrastructure projects are currently
initiated to allow better access to dependable irrigation (ADB, 2019;
ACIAR, 2015). Although MAFF (2018) already reported the increasing
dry season rice production area, information on the location and timing
of the expansion are scarce.

As climate is changing, drought spells are occurring more frequently
in Cambodia, specifically in 2002, 2012, 2015 and 2016 (Sithirith,
2017). The country’s mean temperature has increased at a rate of
0.02 °C annually since 1950 (Thoeun, 2015). By 2060, the mean annual
temperature is predicted to increase by 2.7 °C (World Bank, 2018). Dry
season monthly average temperature of Tonle Sap Lake is rising by
0.03 °C each year from 1988 to 2018 (Daly et al., 2020). Comprehensive
water management and forecasting in the Lower Mekong Region is
critical in making important decisions related to food security. For
instance, with the presence of dams, providing guidelines on the amount
and timing of discharge will aid in ensuring irrigation demands are met
in the rice cropping areas.

The soil organic matter of the agricultural zone of Tonle Sap’s
floodplains is replenished by the rich mix of sediments from the
monsoon flood. Dry season rice benefits from this ecosystem service
once the water subsides, leaving behind fertile silt deposits (Eyler and
Weatherby, 2019). In a comprehensive survey conducted by Arias et al.
(2013), they determined positive correlation between organic matter

Agricultural Water Management 258 (2021) 107183

content and duration of inundation. As the dams continue to control the
magnitude of water and sediment flow (Beveridge et al., 2020; Kondolf
et al., 2014), the nutrient quality carried by the flood pulse during the
wet season could diminish. This might result in less fertile deposits in the
floodplains come dry season, making it even more necessary for farmers
to apply chemical fertilizers.

In the absence of long-term yield and production data, earth obser-
vation acquired from satellite images can provide information on how
rice production patterns in Tonle Sap floodplains have changed over the
years. Rice cropping areas can be identified by detecting agronomic
flooding during the start of the season and subsequent ground cover
changes corresponding to rice phenological stages displayed by the
vegetation index. Such indicators are the basis of the PhenoRice algo-
rithm (Boschetti et al., 2017), which utilizes hypertemporal optical
imagery from Moderate Resolution Imaging Spectroradiometer
(MODIS) to map rice areas (NASA Goddard Space Flight Center, Ocean
Ecology Laboratory, 2014a, 2014b). The method identifies signals of
crop establishment and key phases of development of the rice plant.
Effects of climate and agronomic variables that contribute to rice yield
and production can be explained using process-based crop models
(Boote et al., 1996; Rosenzweig et al., 2014). The ORYZA (v3) Rice
Model (Bouman et al., 2001; Li et al., 2017) was specifically designed to
simulate rice growth and development. The model can estimate the ef-
fect of climate, soil carbon and nitrogen dynamics, irrigation, and farm
management practices to harvest yield at varying rice production en-
vironments (Belder et al., 2005; Boling et al., 2007; Radanielson et al.,
2018; Sudhir-Yadav et al., 2011). When actual ground data are not
available, remote sensing and crop modeling can provide area-based
historical yield estimates and generate yield forecasts for future
scenarios.

This study examined the changes in the dry season rice production in
the Tonle Sap floodplains coinciding with the surge of hydropower dam
developments in the Mekong River. Using remote sensing, we analyzed
the relationship between cropping patterns and surface water avail-
ability. Through crop simulation modeling, we investigated the effects of
climate change, farm management practices, and field abiotic conditions
to harvestable rice yield. Specifically, this research sought to accomplish
the following objectives: 1) to detect the changes in timing and location
of cropping before and after the surge of dam developments using the
PhenoRice method and 2) to test and apply the ORYZA (v3) Rice Model
in simulating the effect of changes in hydrology, agronomic practices,
and increasing temperature to rice production and yield.

2. Materials and methods
2.1. Spatio-temporal changes in crop production

Based on the study by Hecht et al. (2019), dam constructions in the
Lower Mekong River dramatically increased from 2010 and beyond
(Fig. 1), therefore we designated 2001-2010 as “pre-dam” and
2011-2019 as “post-dam”, which in this paper referred to as “dam-p-
eriods”. There were 37 operational hydropower dams in the Mekong
River basin in 2010 and this number increased to 64 by 2017 (Hecht
et al., 2019).

2.1.1. Study sites

This study focused on Kampong Thom and Battambang, two of the
major rice-producing provinces in Cambodia (Fig. 2). In 2017, MAFF
reported that Battambang contributed 1.15 million tons (11.0%) and
Kampong Thom shared 0.80 million tons (7.9%) to the country’s total
rice production. In the same year, Kampong Thom and Battambang
accounted for 9.81% and 3.74% of the total dry season production area,
respectively. The dry season rice production spans from October to
March. Direct-seeding by manual broadcasting is the common sowing
practice (Nesbitt, 1997). Rice growers in these provinces rely on irri-
gation systems for water source during the dry season. Canals and
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Fig. 1. Mekong River dam inventory from published article by Hecht et al. (2019) showing the rapid increases in the number of hydropower dams from 2001 to
2017. This is the basis for delineating the “dam periods” in this paper into “pre-dam” (2001-2010) and “post-dam” (2011-2019).
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Fig. 2. Geographical map of the study sites overlaying the permanent extent of Cambodia’s Tonle Sap Lake during the dry season rice production and the maximum

observed flood extent during the monsoon season since 2000.
(Source: OpenDevelopment Cambodia, 2017).

reservoirs distribute the remaining monsoon water in the Tonle Sap Lake
to the rice-growing areas (Cramb et al., 2020; Smith and Hornbuckle,
2013).

Kampong Thom is in the central part of Cambodia, close to the
confluence that connects the lake to the Mekong River, exposing it to
early and prolonged inundation (Fig. 2). Much of its locality lies in the
southeastern part of the Tonle Sap floodplain where 94% of agricultural
lands are devoted for rice farming (ADB, 2012). Dry season rice is
commonly planted in the latter part of the wet season to early dry sea-
son, which is around September to November (Cramb et al., 2020;

Ricepedia, 2018). Battambang is situated in the northwestern part of
Cambodia and by the northern end of the Tonle Sap Lake (Fig. 2). In the
western side of the province is the Kamping Pouy Reservoir, providing
good water management system for the rice growers within the area
(Nguyen et al., 2011; Sithirith, 2017). It has one of the largest irrigated
paddy rice areas in the country (Siek et al., 2017) and the top producer
of wet season rice. The locations of these two provinces provide
perspective on the rice cropping pattern, from the start of the monsoon
until the flood recedes in the dry season. Kampong Thom experiences
early and longer flooding while Battambang experiences late inundation
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and early flood recession.

2.1.2. Detecting the timing and location of cropping using PhenoRice

The PhenoRice method identifies rice cropping areas on a per-pixel
basis by thresholding vegetation indices and derivative curve fitting
(Boschetti et al., 2017). This allows the recognition of key phenological
stages such as sowing, flowering, and planting duration. It also detects
signals of agronomic flooding before and after crop establishment to
confirm arice area. The algorithm has been tested over different genetic,
environmental, management, and climatic conditions with high detec-
tion of accuracy (Boschetti et al., 2017; Busetto et al., 2019; Setiyono
et al., 2018).

Phenological indicators are distinguished by using the Enhanced
Vegetation Index (EVI) and Normalized Difference Flood Index (NDFI)
from the MODIS Terra and Aqua (MOD13Q1 and MYD13) time-series
images (Busetto and Ranghetti, 2016; NASA Goddard Space Flight
Center, Ocean Ecology Laboratory, 2014b, 2014a). As a rule, a pixel is
classified as a rice area if a clear and unambiguous flood condition is
detected based on the defined NDFI threshold. The flood signals should
be followed by EVI profile consistent with the rice’s development stages
to discriminate from other flooded habitats (Boschetti et al., 2017;
Busetto et al., 2019). Rapid growth during the vegetative stage of the
plant is indicated by the increase in EVI signal, followed by a relatively
stationary peak that signifies anthesis, and finally the decrease in
spectral curve slope that represents senescence and harvest.
Savitzky-Golay smoothing (Chen et al., 2004) was applied to reduce
noise and substitute missing pixels of the EVI and NDFI time series. The
highest minima of the EVI spectral curve closest to the detected agro-
nomic flooding is a proxy to crop establishment while the highest
maxima correspond to crop heading. The MODIS time-series Day of Year
(DOY) product, which gives the Julian date when the image was ac-
quired, aids in identifying the dates when these important signals occur
allowing us to estimate crop establishment or planting time. Usefulness
Index and Pixel Reliability indicators were used for quality control,
especially the inherent error expected for the monsoon season where
cloud covers and rain are a common occurrence. The complete
description of this method is provided by Boschetti et al. (2017) and
implemented as an Interactive Data Language in ENVI® (Exelis Visual
Information Solutions, Boulder, Colorado), a software for geographical
and remote sensing imagery analysis. In this study, the PhenoRice
workflow (see Appendix A) was coded and executed in the statistical
software R (R Core Team, 2020).

The required parameters were calibrated by applying PhenoRice to
the 17 farms visited in Kampong Thom and Battambang. Length of
vegetative stage and planting durations were based on the commonly
used rice varieties on these sites. Medium-duration (~100-110 days)
varieties were assumed for dry season planting. Flooded conditions,
which suggest land preparation and crop establishment, have a mini-
mum threshold NDVI value of 0.

Earth observation images from MODIS Terra and Aqua have 250-m
spatial resolution and 8-day combined nominal temporal resolution.
These products have been widely-used for modeling terrestrial ecosys-
tems to detect long-term land-use and cover changes. Time-series EVI
(Huete et al., 1994), NDFI (Boschetti et al., 2014), DOY, Usefulness
Index, and Pixel Reliability quality indicators were the specific products
used as input for PhenoRice. They were preprocessed and extracted
using the MODIStsp package (Busetto and Ranghetti, 2016) in R. Annual
land cover maps downloaded from SERVIR-Mekong (https://rlems-
servir.adpc.net/en/landcover/) were used to pre-classify rice areas
before implementing PhenoRice.

Crop establishment dates estimated by PhenoRice from 2001 to 2019
were recorded, with the corresponding pixel count and location. The
planting dates were used as input in ORYZA (v3) to estimate the total
rice production (tons ha™!). The total area for a given crop establish-
ment date were calculated for each dam-period. The time-series moving
average was obtained with 8-day rolling window, accounting for the
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temporal resolution of the MODIS images. We plotted the geo-
coordinates of the pixels and created a density map to spatially illus-
trate the locations and clustering of farm areas.

2.1.3. Estimating changes in flooding extent using NDFI

The changes in dry season hydrology in the Tonle Sap Lake were
estimated through remote sensing, where water areas were detected
using NDFI signals. A fixed area extent to delineate Kampong Thom and
Battambang was designated for each analyzed image from 2001 to 2019.
An area is flooded if the pixel has a minimum value of 0 (Boschetti et al.,
2017). The percentage of flood pixels for a given extent and associated
DOY were obtained. The moving average of percent flooding during
pre-dam and post-dam were calculated with an 8-day rolling window,
based on the temporal resolution of NDFI and DOY images. The rela-
tionship between the extent of flooding with the timing and area of
cropping were evaluated using pair-wise comparison and Pearson cor-
relation, respectively. Note that NDFI only detects surface water, thus
that depth of flooding was not considered in the analysis.

2.2. ORYZA (v3) model calibration and testing

All the production and yield estimations in this study were executed
using the ORYZA (v3) Rice Model (Li et al., 2017), formerly known as
ORYZA2000 (Bouman et al., 2001), developed at the International Rice
Research Institute (IRRI). This recently updated version has an
expanded ability to model lowland, upland, and flooded rice ecosys-
tems. It mechanistically simulates growth and development of rice
through its photosynthesis, respiration, and water-nitrogen balance
modules. Its capability to model weather, agronomic management
conditions, and abiotic constraints has been calibrated and validated for
18 popular rice varieties in various locations throughout Asia (Belder
et al., 2005; Boling et al., 2007; Li et al., 2015; Radanielson et al., 2018;
Sudhir-Yadav et al., 2011). The model update features the soil carbon
and nitrogen dynamics module that quantify the changes in the soil
organic carbon and nitrogen content. The soil temperature module was
also added, which accounts for the daily temperature from the soil
surface to the lower layers. The detailed formulations behind these
modules can be found in Li et al. (2017).

To test the ability of the crop model to simulate farm conditions
within our specific study region, we calibrated and tested ORYZA (v3)
using field measurements and information gathered from farmer’s in-
terviews during the dry season of 2018 and 2019. There were two rice
varieties commonly planted in our sample farms. One is Sen Kra Ob,
with short-to-medium planting duration, aromatic, and commonly
grown for the export market. The other variety was IR 5154, which has a
longer growth duration and cultivated in both dry and wet seasons.
These two varieties were calibrated using the measured total dry
biomass and phenological information to determine their specific leaf
area and partitioning factors (Appendix B). The values were calculated
using the auto-calibration tool in the ORYZA (v3) model package. All the
other crop parameters were taken from the default crop values of the
model, which are based on the robustly parameterized IR 72 rice variety.
Model testing was conducted by comparing the measured total dry
biomass, stem, and leaf measurements in the vegetative stage of the
2019 dry season to the simulated values. Associated R?, root mean
square error (RMSE), relative root mean square error (rRMSE), and
model efficiency (EF) were duly noted to determine the predictive ac-
curacy of the simulation outputs. The following formula were used to
calculate RMSE, rRMSE, and EF:

@

100 (2)
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3

Observed values are designated by y; and simulated values by Y;. The
total number of samples is given by N and ¥ is the mean of observed
values.

2.2.1. Farm surveys and interview with growers

We conducted interviews with local growers to collect baseline data
for model calibration and testing. Sowing date, irrigation depth, amount
and timing of fertilizer application, and growth stage information of the
planted variety were noted. Sizes of the farms included in the study
ranged from 0.2 to 3.0 ha. We visited 12 farms in Krong Stueng Saen
Village in Kampong Thom near the Stung Sen River, a tributary of Tonle
Sap Lake. The sample farms were selected such that their spread
represent the elevation gradient and distance from the lake. During our
interviews, we gathered that irrigation is managed by a local farmers
cooperative under the Cambodia Agricultural Value Chain (CAVAC)
program. Although these farms are located no more than 10 kilometers
apart, their crop establishments varied according to their proximity to
irrigation sources. Farms located farther away from the river tend to sow
early to utilize the receding monsoon flood. In Battambang, we collected
data from five farms located in Banan District. Their irrigation is
controlled by the local government through the Provincial Department
of Water Resources and Meteorology as verified during our interviews.
Thus, their sowing times could vary from two weeks to one month.

It was an unusually dry year in Cambodia in 2019. For instance,
Kampong Thom farmers had to plant early to take advantage of the
subsiding lake water from the dry monsoon season. Most of the rice
farmers in Battambang suspended sowing because there was no avail-
able irrigation. We were informed during the farm visit that the local
government decided to reserve the water supply for the anticipated
drought for the rest of the dry season in 2019. The farms we visited in
Kampong Thom appeared to have greater flexibility and capacity to
make decisions related to irrigation management compared to the Bat-
tambang sites who are reliant on the local government for the release of
water to the canals.

2.2.2. Plant biomass measurements

Weight of total biomass and planting density were taken at repro-
ductive stage in DS 2018 (January to February, 2019). Samples were
taken from three replicates of 0.5 x 0.5 m quadrat spread out to
represent each farmer’s plot. Total number of tillers per quadrat were
noted and 20 subsamples were oven-dried at 75 °C for at least 3 days.
Fresh and dry weight of the 20 subsampled tillers were measured.
During the vegetative stage in DS 2019 (December, 2019), weight of
partitioned biomass and planting density were measured. Weeds were
observed to be a common problem in the paddies, occupying up to 20%
of the cropping area based on visual estimation in the farms visited.

2.2.3. Soil measurements

Soil measurements were taken by core boring at 0-15 cm depths. Soil
texture was determined by hydrometer method adapted from Huluka
and Miller (2014). Total N was analyzed by Kjeldahl digestion method
(Greweling and Peech, 1960; Jackson, 1959). Total soil organic carbon
was measured following Ghani et al. (2003). Bulk density was deter-
mined from soil sampled at 5 cm depth using a metal tube with 5 cm
diameter (Costantini, 1995). Soil texture, total N, soil organic matter
content, and bulk density measurements were used as input data for crop
model simulations. All plant and soil samples were processed at the Soil
Science Laboratory of the Royal University of Agriculture in Phnom
Penh, Cambodia. Other required parameters, such as the different
volumetric water contents and saturated hydraulic conductivity, were
estimated following the derivation formulated by Saxton and Rawls
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(2006). To provide the 100 cm depth soil information required by the
crop model, soil texture, soil organic carbon, and bulk density from 15 to
100 cm depth were obtained from SoilGridsTM (https://soilgrids.org).
This online resource is provided by the World Soil Information (also
known as the International Soil Reference and Information Centre)
generated from global compilation of soil profile data and environ-
mental layers through machine learning methods at 250 m? resolution.
Other input data required by ORYZA (v3), such as volumetric water
content and hydraulic conductivity, were derived based on Saxton and
Rawls (2006) from the soil texture information provided by
SoilGridsTM.

2.2.4. Climate data

Climate data for model calibration and farm-specific dry season
simulations in 2018 and 2019 were provided by the weather stations
from Cambodia’s Center of Excellence on Sustainable Agricultural
Intensification and Nutrition (CESAIN). Since historical weather data
from 2001 to 2018 were unavailable for Battambang and Kampong
Thom, we obtained the temperature, solar radiation, vapor pressure and
wind speed data from the National Centers for Environmental Prediction
Global Forecast System (NCEP GFS). Rainfall data from Tropical Rainfall
Measuring Mission (TRMM 3B42V7) were resampled to 0.1 degree
(~10 km) spatial resolution. The estimated climate data from GFS and
TRMM were used for seasonal yield simulations performed from 2001 to
2018.

2.3. Scenario simulations

ORYZA (v3) simulates rice growth at daily time step, requiring crop,
soil, field management, and weather input data. Crop data includes the
genetic characteristics of the variety used, such as phenology, devel-
opment rates, assimilate partitioning behavior, among others. Soil input
information includes soil texture, chemical composition, and water
content. Agronomic management inputs required are crop establishment
method, timing/density of planting, and timing/amount of applied
irrigation and nitrogen (N). Daily weather data includes temperature,
solar radiation, vapor pressure, wind speed, and rainfall. We used the
model to estimate the final yield based on the planting date we obtained
from PhenoRice, as well as to simulate yield responses due to changes in
temperature, N application, and soil nutrient deposits in the form of
organic carbon.

2.3.1. Estimating past production and yield

We calculated the attainable yield for each sowing date from 2001 to
2018 to capture the changes and effects of climate conditions to the
total. In this context, attainable yield is the highest possible yield that
the model can predict from the given inputs and abiotic conditions
(Sadras et al., 2015). Same management inputs were employed through
all the simulations, which were based on the agronomic practices of the
visited farms in Kampong Thom with median harvest yield. Essentially,
the only varying factors were the historical daily weather information
obtained from NCEP GFS and TRMM 3B42V7. Using the total rice area
per planting date from PhenoRice and yield from calibrated IR 5154
variety, we estimated the mean daily total production for pre-dam and
post-dam periods.

2.3.2. Predicting yield response to changes in temperature, nitrogen
applications, and residual soil organic carbon

Upon determining the level of confidence of ORYZA (v3) to simulate
the actual field conditions in our farm samples, we performed sensitivity
analysis by designing a range of treatments to model yield response. All
simulations were executed using field conditions and farmer’s practices
gathered from the Kampong Thom farms during the 2019 dry season
(Appendix C).
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2.3.2.1. Temperature effects. In 2015, Cambodia recorded a maximum
annual temperature of 38 °C (Thoeun, 2015). Furthermore, the World
Health Organization (WHO) predicted that Cambodia’s yearly average
could increase from 1.6 to 2.0 °C by 2100 (WHO, 2016). Given these
conditions, we estimated the effect of supra-optimal temperatures on the
harvest yield of the sample farms in Kampong Thom farms. We simu-
lated changes of — 5 to 5 °C from the daily temperatures recorded by
CESAIN weather station. In addition, a long-term simulation experiment
was performed to explore the rice yield sensitivity to temperature in-
creases and whether this increase would affect the ideal planting times
in the future climate. This simulation experiment was done by adding
3 °C to the base air temperatures in the weather data for the period of
2001-2018. The temperatures used in these simulations were meant to
capture extreme temperature changes, higher than the predicted by
WHO.

2.3.2.2. Nitrogen application effects. We performed N simulations with
three application schedules based on our farm interviews (Appendix C),
with total N applied ranging from 30 to 200 kg-ha™! per season. In the
first simulation (S-1) N was applied at two different developmental
stages: 1) during early tillering and 2) panicle initiation; in the second
simulation (S-2) N was also applied twice: 1) during late tillering and 2)
booting; and lastly (S-3) simulated three N applications: 1) during early
tillering, 2) late tillering, and 3) panicle initiation.

2.3.2.3. Residual soil organic carbon. In anticipation of the decline of
sediment quality in the Tonle Sap floodplains, we estimated the possible
effects of the changing soil organic carbon (SOC) content to the harvest
yield. Referencing the onsite SOC measured during the start of dry
season in 2018, we estimated the final yield if SOC is decreased by up to
50% or increased to up to 50% using the calibrated IR 5154 variety.

2.4. Data processing and statistical analysis

The MODIS time-series satellite data from 2001 to 2020 were
extracted from the National Aeronautics and Space Administration
archive (NASA Goddard Space Flight Center, Ocean Ecology Laboratory,
2014b, 2014a) and pre-processed in R language (R Core Team, 2020)
using the ‘MODIStsp’ package (Busetto and Ranghetti, 2016). The
PhenoRice algorithm was written and implemented in R with the aid of
GIS and remote sensing packages such as ‘rgdal’ (Bivand et al., 2021),
‘raster’ (Hijmans and Van Etten, 2012), ‘rgeos’ (Bivand et al., 2021) and
‘sf” (Pebesma, 2018). Further data processing and statistical analyses
such as student t-test, correlation, ANOVA, and Savitzky-Golay
smoothing were undertaken using ‘tidyverse’ (Wickham et al., 2019),
‘hydroGOF’ (Zambrano-Bigiarini, 2020), ‘prospectr’ (Stevens and
Ramirez-Lopez, 2020), and ‘base’ (R Core Team, 2020) packages in R.
(Table 1).

3. Results

3.1. Lake water extent in relation to location and timing of rice
production

The almost two-fold increase in hydropower dams in the lower
Mekong River since 2010 coincided with apparent shift in timing and
location of rice cultivation to later in the year, especially for Kampong
Thom province. To graphically illustrate the influence of the floodwater
availability to the crop establishment distribution in the dry season
production (October to January), we overlaid the rolling average of the
surface water detected in the Tonle Sap Lake with the average percent of
rice area planted (Fig. 3, area in blue). We performed simple pair-wise
comparison on the seasonal and monthly flood extent between pre-
and post-dam periods. The percent water area detected in the designated
map extent per province during the two dam periods were compared
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Table 1

PhenoRice parameters for identifying the locations and planting dates of rice
areas in Kampong Thom and Battambang. Values were calibrated based on the
time-series satellite images of sample farm locations visited in 2018 and DS 2019
dry season.

Datasets and Values Units  Description

Parameters

Pre-dam 2001-2010 years  Years before increased presence of
dams

Post-dam 2011-2019 years  Years of increased presence of dams

Dry season 1 October - 31 - Possible planting periods

January

EVImin th 0.35 - Maximum lowest value of EVI to be
considered as sowing period

EVImax th 0.40 - Minimum highest value of EVI to be
considered as anthesis

NDFIy, 0 - Minimum threshold of NDFI to
indicate flooded conditions

Wilgecr 90 days Maximum difference between
identified anthesis and possible
harvest period

decry, 55 % Percent decrease in EVIy, ¢ and
EVImax h to estimate harvest period

Atmin 35 days Maximum difference between
identified sowing period and
possible anthesis

Atmax 110 days Maximum difference between

identified sowing and possible
harvest period

(Table 2). Based on student t-test, there was no significant difference
between the seasonal area of flooding of the two dam periods in both
Battambang and Kampong Thom (Table 2). However, monthly flood
variability showed statistical increase in surface water at post dam
period, specifically in the months of November and January for both in
Kampong Thom and Battambang floodplains (Table 2).

Examining the cultivated rice areas detected by PhenoRice, there
was an apparent shift in crop establishment schedule as shown by the
difference in plot areas in Fig. 3 (area in green and yellow). Pairwise
comparison between pre-dam and post-dam periods showed significance
difference on the estimated monthly total rice area (Table 3). Increase in
rice cultivation during post-dam period was more evident in Kampong
Thom, specifically from November to December. Previously at pre-dam,
sowing falls on early October, the onset of the dry season.

In the case of Battambang province, the results of a two-tailed stu-
dent t-test in Table 3 did not show statistical significance in the seasonal
rice areas between pre-dam and post-dam. However, extended crop
establishment was observed in November to December during post-dam
period.

PhenoRice allowed us to examine the spatial distribution of rice
farms in the Tonle Sap floodplains, illustrated by the density maps of the
different planting seasons in Fig. 4. The heat map of Kampong Thom
showed that farms were more clustered during pre-dam and became
sparsely distributed during post-dam and (Fig. 4, A and B). In Battam-
bang province, the locations and area distribution were generally similar
for both pre- and post-dam (Fig. 3, C and D). Cropping was relatively
denser during pre-dam on the northwest side where Kamping Pouy
reservoir is situated, however, an apparent decrease in hotspot density
can be observed during the post-dam period. Concentration near the
reservoir declined while cultivations seemed to shift towards the di-
rection of the lake.

To establish the relationship between the area of inundation and area
of rice cultivation, a simple correlation was performed between the
seasonal flooding detected and total seasonal rice area (Table 4). The
seasonal flooding was the mean of the surface water detected by NDFI
each year for the entire dry season, while the total seasonal rice area is
the mean of the annual sum of dry season rice areas estimated by Phe-
noRice. In Kampong Thom, there was a strong correlation between the
extent of flooding and rice area planted (0.81) at pre-dam. However, this
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Fig. 3. Relationship between flooding extent and timing of crop establishment in Kampong Thom and Battambang province at pre-dam (2001-2010) and post-dam
(2011-2019) periods. Flooding extent (area in blue) was estimated using the MODIS NDFI time series products, calculating the 8-day rolling average percentage of
inundation detected. Sowing area is the 8-day rolling average percentage of cultivated rice estimated by PhenoRice.

Table 2

Pair-wise comparison between pre-dam (2001-2010) and post dam
(2011-2019) surface water area detected by NDFI signals. Comparisons were
made per season and monthly basis.

Season/ Kampong Thom (% surface Battambang (% surface water)
Month water)
Pre- Post- Significance  Pre- Post- Significance
dam dam Dam Dam
Dry season 1.08 1.26 1.13 1.25
percent
surface
water
October 2.00 2.25 o 2.04 2.07
November 1.35 1.58 x 1.39 1.65 il
December 0.47 0.56 0.48 0.50
January 0.45 1.33 ok 0.53 1.30 bl

*p < 0.05; ** p < 0.01; *** p < 0.001

correlation decreased at post-dam (0.49) as shown in Table 4. As the
correlation decreased, significant increase in cultivation (Table 3) and
fairly spread-out distribution of planting locations along the floodplains
(Fig. 4, A and B) were observed at post-dam in Kampong Thom.
Conversely in Battambang, the correlation between flooding extent
and planting area remained high and increased slightly at post-dam

Tablee 3

(0.71-0.74). As the extent of the lake increased in November and
December at post-dam (Table 2), so did the area of rice cultivation
(Table 3). There was no considerable change in the location of planting
in Battambang but subtle movement of high-density areas towards the
location of the lake was evident in Fig. 4 (C and D).

3.2. Results of crop model calibration and testing

Total dry biomass of IR 5154 and Sen Kra Ob sampled in 2018 were
used for model calibration. Total and partitioned biomass sampled in
Kampong Thom in 2029 were used for model testing. Only IR 5154
variety was used for model testing because inadequate data for Sen Kra
Ob. Results are shown in the 1:1 plot in Fig. 5 to visually inspect the
differences between the modeled and actual measurements. The corre-
sponding values of the goodness-of-fit parameters are listed in Table 5.
The calculated modeling efficiency (EF) for model calibration was 0.49
and 0.64 for IR 5154 and Sen Kra Ob, respectively. A model is considered
acceptable if threshold values are 0.5 < EF (Moriasi et al., 2007). Other
parameters, such as RMSE, rRMSE, and R?, were used to verify the
ability of the model to predict biomass and yield from actual farm
conditions (Table 5). The total biomass during the more advanced stage
of development were underestimated, but overall model testing showed
acceptable EF and R2. Partitioned green leaves and stem gave EF values
of 0.56 and 0.35, respectively.

Mean comparison of the total rice areas estimated by PhenoRice between pre-dam (2001-2010) and post-dam (2011-2019) periods.

Season/Month Kampong Thom (x100 ha) Battambang (x100 ha)

Pre-dam Post-dam Significance Pre-Dam Post-Dam Significance
Dry season total rice area 27.39 82.84 el 109.77 117.08
October 22.81 20.96 102.09 91.34
November 2.83 44.85 i 7.19 23.99 i
December 1.30 16.64 wx 0.49 1.75 *
January 0.05 0.00 e - -

*p <0.05; ** p <0.01; *** p <0.001
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Fig. 4. Heat maps of estimated cultivated rice areas by PhenoRice showing the locations and clustering of farms in Kampong Thom (A, B) and Battambang (C, D)
during the dry season at pre-dam (2001-2010) and post-dam (2011-2019) periods. Due to their location in the Tonle Sap Lake, Kampong Thom experiences early and
longer flooding while Battambang experiences late inundation and early flood recession. Note that the floodplain extent is only for illustration purposes and not

representative of the flooding detected by NDFI in Fig. 3.

Table 4

Pearson correlation between the seasonal flooding extent detected by NDFI and
the total rice cultivation areas estimated by PhenoRice at pre-dam (2001-2010)
and post-dam (2011-2019) periods.

Farm Site Pre-Dam (2001-2010) Post-Dam (2011-2019)
Kampong Thom 0.81 0.49
Battambang 0.71 0.74

3.3. Modeling production from historical climate conditions

Combining remote sensing and crop modeling, we observed
considerable increase in total rice production during the post-dam
period in Kampong Thom province. This can be expected since rice
areas noticeably increased, based on the results of PhenoRice method
(Fig. 6). Crop establishments at pre-dam period were concentrated in
October with relatively less production activities for the rest of the dry
season. Noticeable shift in planting time is observed during post-dam,
particularly in the months of November to December.

Yields trends in pre- and post-dam periods follow the same pattern,
as represented by solid continuous line in Fig. 6. The dry season
attainable yield of IR 5154, the variety used in the simulation, fluctuated
between 6.5 and 7.0 tons-ha™!. The seasonal variability was primarily
driven by the climatic conditions during the plant’s growth and devel-
opment. Note that for these simulations, historical weather data were
used, and same farm management inputs were assumed regardless of the
planting date.

The annual total production for the sample provinces were estimated
and presented in the bar graph in Fig. 7. The only available official data
gathered from MAFF for the two sample provinces was for 2016 and

2017, represented by the points in the graph. This very low number of
data points were inadequate to substantially validate the 17-year pro-
duction data estimated by the model. From these two production data
points, there was noticeable underestimation by the combined Phe-
noRice and ORYZA (v3), which would also be true for the previous years
where official data were not available. Fluctuations in the total dry
season annual production was also evident in the modeled results
instead of a slow steady increase that is displayed by the production
growth from MAFF reports (MAFF, 2017, 2018). Potential reasons for
this underestimation are addressed in the discussion.

3.4. Simulating potential future conditions

3.4.1. Amount and timing of N application

The model estimated that a total optimum N of 150 kg-ha™! was
required for IR 5154 to reach its maximum attainable yield. Regardless
of the treatment, no apparent yield advantage was observed for any N
applied greater than 150 kg-ha ™. Treatments S-1 and S-2 tend to score
higher yield than S-3 in sub-optimal N conditions. For S-1 and S-2, N was
applied two times during the growing period while N was applied three
times for S-3.

3.4.2. Soil organic carbon

During our soil sampling, the measured SOC in the farms varied from
0.3 to 0.8 g-kg™! at 0-15 cm depths, which fall in the low fertility
category. Three treatments based on the management practices
observed in the sample farms were simulated. The treatments were
identified as follows: low, refers to the practices that produced the
lowest reported yield; medium for the median yield; and high for the
management that obtained the highest yield during the 2019 dry season
survey. IR 5154 was the variety used for all the simulations.
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Fig. 5. Calibration and testing of IR 5154 and Sen Kra Ob varieties for ORYZA (v3) simulations. Calibration was based on the total biomass measured in the sample
farms. Model testing was performed only for IR 5154. Partitioned and total biomass gathered during the 2019 dry season were used for model testing with cor-

responding values of the goodness-of-fit parameters listed on Table 5.

Table 5

Calculated RMSE, rRMSE, EF, and R? for plant biomass during parameterization and testing. Data used for calibration were measured during late vegetative to
reproductive stage of crops planted in the dry season of 2018 while testing data were taken during the vegetative stage of 2019 dry season.

Calibration Model Testing

RMSE* rRMSE EF R? RMSE* rRMSE EF R?
IR 5154
Total biomass 1.59 18.0 0.49 0.48 1.66 34.0 0.67 0.79
Green leaves 0.64 36.4 0.56 0.52
Stem 1.51 51.0 0.35 0.73
Sen Kra Ob
Total biomass 1.01 14.6 0.64 0.74

*RMSE is in tons-ha !, rRMSE is in %
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Fig. 6. Estimating the total production per day in Kampong Thom province by multiplying the attainable yield estimated by ORYZA (v3) and the area detected by
PhenoRice at pre-dam (2001-2010) and post-dam (2011-2019) periods. IR 5154 variety was used for the simulations and agronomic inputs were based on the farm

practices that produced the median yield during the site visit.
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Fig. 7. Estimating the annual seasonal total production of Kampong Thom and Battambang provinces based on the attainable yield estimated by ORYZA (v3) and rice
area detected by PhenoRice. Official data from MAFF in 2016 and 2017 are overlaid as individual data points to compare with estimated results.

The rate of yield increase with increasing SOC (Fig. 8B) were the
same for all the treatments. Yield improvement by no more than 0.5 t-
ha~! was observed if the current SOC is increased by 50%. The relatively
flatter slope of the line shown by the best farm practice indicated that
not much value was added to their yield with increased SOC. On the
other hand, decreasing the amount of SOC by 50% caused greater impact
on yield, especially for medium- (0.50-0.58 t-ha™!) and low-managed
farms (0.46-0.50 t-ha_l). Yield could decline in best-managed farms
by 0.39 t-ha™?, and increase of 0.20 t-ha~! with decrease and increase of
SOC by 50%, respectively.

— 81— 52— 83

~ high =— medium — low

3.4.3. Temperature increase

We simulated how change in temperature in Kampong Thom farms
could affect the harvest yield with varying management practices,
employing the same treatments used in SOC sensitivity analysis. The
recorded average minimum and maximum daily temperature for these
simulations were 23 and 35 °C, respectively. Results in Fig. 8C showed
that abrupt declines in harvest yield occurred when temperature
increased by more than 2°C. Medium- and low-managed farms
appeared to have less sensitivity to temperature decline of to up to 5 °C.
Yield penalty as temperature rises were more observable in farms under

— high =— medium — low
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Fig. 8. Simulating yield response to A) N amount and timing of application, B) reduction and increase of soil organic carbon (SOC), and C) change in temperature.
For N simulations (A), S-1 is applied at early tillering and panicle initiation (PI); S-2 at late tillering and booting; and S-3 at early tillering, late tillering, and PI. For
SOC (B) and temperature simulations (C), the treatments were based on the agronomic practices observed in Kampong Thom. Low refers to the farm management
practices that produced the lowest yield, medium for the median yield, and high for the management that obtained the highest yield during DS 2019. All simulations

were executed in ORYZA (v3) using IR 5154 variety.
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high agronomic management.

We then verified the possible yield response if the historical tem-
perature was increased by 3 °C in Kampong Thom and Battambang
(Fig. 9). This hypothetical increase in temperature was based on the
predicted in average temperature increase in Cambodia by 2060 (World
Bank, 2018). It was apparent in Fig. 9 that yield could decline by up to 4
tons-ha~!, especially in late December to January at post-dam period in
both provinces. Some dates that were no longer considered favorable for
rice production, particularly late December to the first quarter of the
year. Same management conditions were applied for both average and
increased temperature simulations.

4. Discussion
4.1. Analysis on the changes in cropping patterns

Remote sensing complemented by crop model-based yield estimation
fills the critical information gap when area-specific historical harvest
and production and data are not available. Applying this method could
also provide spatial and temporal perspective on the changes in crop-
ping patterns that would aid land-use planners and policymakers in
decisions related to resource management and food security.

In the case of Kampong Thom, expansion in cropping areas at post-
dam period appeared to have spread both towards and away from the
permanent lake (Fig. 4, A and B). This implies access to stored irrigation,
which can be attributed to the gradual release of the flood waters
accumulated during the monsoon season in more and newer hydro-
power dams. Recent findings by (Bonnema and Hossain, 2017) confirm
that Lower Mekong Basin tributaries, which includes Tonle Sap, have
already experienced extended dry season flooding from 2002 through
2015. Access to stored irrigation water allows rice farmers more flexi-
bility to decide when to start their cropping. This was exemplified by the
changes in planting dates detected by PhenoRice, shifting from October
during pre-dam period to November and December during post-dam
period (Fig. 3). The decreased correlation between the cultivated rice
area and availability of surface water in Kampong Thom (Table 4) could
indicate that farmers were less pressured in seizing the available
floodwater before it drains for the rest of the dry season.

In contrast, if indeed the floodwater subsides sooner at the onset of
dry season and the extent of the lake during the wet season has
decreased during the post-dam period, the location of cultivation hot-
spots in Battambang in Fig. 4 (C and D) illustrate the early flood

Pre-dam (2001-2010)
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recession in the northern part of the lake (Fig. 4, C and D), whereby rice
growers taking advantage of the available irrigation before it subsides.
The geographic locations of Kampong Thom and Battambang relative to
the Tonle Sap Lake (Fig. 1) demonstrate how rice production in the
floodplains are dependent on the accessibility to floodwater. For
instance, Kampong Thom gets flooded ahead of Battambang because of
its proximity to the lake-river confluence. The latter drains water first
and the former experiences longer inundation.

Without irrigation, planting needs to be done just before flood re-
cedes. Our results found discernible associations with the availability of
surface water (Table 4), the observed expansion in rice cultivation area
(Table 3 and Fig. 3), and the spatio-temporal movement of rice pro-
duction (Fig. 4). From a survey conducted by Joffre and de Silva (2015)
from 2003 to 2013, they reported that dry season average irrigated area
per household increased from O to 0.7 ha in Tonle Sap Lake’s agricul-
tural zones (Joffre and de Silva, 2015). If water supply is available, dry
season rice production can be boosted further by reliable irrigation
infrastructure (de Silva et al., 2014; Helmers, 1997; Veasna et al., 2014).
Through the support of the Australian Centre for International Agri-
cultural Research to CAVAC, 20 new irrigation schemes were built in
Cambodia between 2010 and 2015 to divert water from rivers, making
water more available year-round (ACIAR, 2015; GEF, 2019). Growing
export demand, adoption of high-yielding varieties, agricultural mech-
anization, increased use of chemical fertilizers, and loan provisions for
farmers also contribute to the improved productivity of dry season rice
(Cramb, 2020; Cramb et al., 2020; Johnston et al., 2013; Liese et al.,
2014; World Bank, 2015b), however these factors were not considered
in our analysis. Nevertheless, current efforts from donor bodies to sup-
port the development and rehabilitation of irrigation canals and reser-
voirs (ADB, 2019; ACIAR, 2015; GEF, 2019) would keep Cambodia’s
momentum in increasing its dry season rice production.

We recognize that rice locations identified by PhenoRice were likely
underestimated and may require thorough validation from high reso-
lution satellite images and more in situ validation. Persistent cloud cover
and precipitation were common sources of noise and Pixel Reliability
indices were not sufficient to correct this error. It was stressed by the
proponents of the algorithm (Busetto et al., 2019) that the main focus of
PhenoRice was to estimate crop establishment based on phenological
signals and has a known issue of underestimating rice areas. A two-year
total production data (2016 and 2017) for Battambang and Kampong
Thom was available from MAFF and were included in Fig. 6, but was
insufficient as validation data points. The official MAFF reports (Fig. 7)
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Fig. 9. ORYZA (v3) estimation of the attainable yield per establishment date in Kampong Thom at pre-dam and post-dam when temperature was increased by 3 °C
from average temperature (T,ye). Simulations were conducted using IR 5154 and based from the farm practices that produced the median yield during the site visit.
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showed that our estimate of rice production areas from PhenoRice likely
underestimated the total rice production in Kampong Thom. Despite this
limitation, the geographical and temporal planting patterns provide
approximations of the difference between the rice production trends in
the identified dam-periods.

4.2. Analysis on yield and production simulations

Area estimation by PhenoRice and yield simulations by ORYZA (v3)
generated new information about the effects of various farm manage-
ment practices, soil fertility, and increasing temperature to rice pro-
duction and yield when historical provincial-level data was lacking. The
capability of ORYZA (v3), a process-based crop model, to describe rice
production in Kampong Thom and Battambang provinces was evaluated
using actual farm measurements from 2018 and 2019 dry season crop-
ping. Despite the limited sample points, the above-ground biomass data
from IR 5154 and Sen Kra Ob provided acceptable goodness-of-fit during
the calibration (Fig. 5, Table 5). Observed and simulated values were
generally close to the 1:1 line therefore within allowable limits (Pineiro
et al., 2008). Model testing using the IR 5154 variety were generally
satisfactory, with improved EF and R? especially for total biomass (Fig. 5
and Table 5). We put less priority in obtaining high model accuracy,
rather, we aim to adequately provide yield trends through the crop
model’s ability to show responses from our variables of interest.

Yield and production simulations were focused on dry season crop-
ping as dams in the Mekong River modulate water release downstream
(Haddeland et al., 2006; Hecht et al., 2019; Kummu and Sarkkula,
2008), anticipating irrigation to be more available and opening up more
farmlands for rice production. Historical production calculations were
carried out only for Kampong Thom as our findings show that the effect
of hydrology was more evident in this province. Succeeding yield
response simulations were performed using IR 5154 since we were able
to calibrate and test this variety in our crop model. Exploring the
different farm management options in Fig. 8 assessed possible risks for
farmers who tend to invest more time and inputs during the dry season
(Cramb et al., 2020). Farmers can control more variables during the dry
season compared to wet season, such as the delivery of water and fer-
tilizer application that could result in better yield returns.

Limited nutrient availability is one of the major reasons for low
productivity of rice in Cambodia (Kong et al., 2020). If reliable irrigation
becomes more accessible for dry season cropping, farmers have better
opportunity to maximize productivity and profitability from investing
on chemical fertilizers. ORYZA (v3) results illustrated that once the
maximum N threshold was reached, any additional N amount no longer
contributed any considerable increase in yield (Fig. 8A). Simulations
also showed that two-time application, one during vegetative and one
during reproductive stage, was more efficient if the total applied N was
less than 150 kg-ha!. During our site visits, most farmers interviewed
in Kampong Thom reported applying less than this amount of fertilizer
(Appendix C).

The model illustrated that when SOC was reduced by 50%, the yield
penalty was greater than the potential yield gained if SOC was increased
by 50% (Fig. 7B). Thus, highlighting the importance of the cyclic
replenishment of soil nutrients in the Tonle Sap floodplains. Floodplain
soil tend to be more fertile after monsoon flood recedes, when nutrient-
rich sediments are brought ashore from the upstream (Arias et al.,
2013). Natural soil enhancement provided by the flood pulse is not only
sustainable, but it also benefits the farmers who can’t afford commercial
fertilizers. Fertilizer accounts for 21% of wet season and 37% of dry
season input cost (Vuthy, 2014). In 2010, the World Bank reported that
Cambodia is heavily reliant on importers for their fertilizer supply.
Substandard and counterfeit products are also an issue because effective
inspection procedures are not in place (Vuthy et al., 2014; World Bank,
2015b). This situation puts the farmers on the losing end, having to use
fertilizer less than the recommended level because of the high price and
the risk of benefiting less than what they paid for.
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The farmers we interviewed related about instances when cropping
was halted because of unreliable irrigation. Drier rainy season means
lower water reserves, which was the case in our 2019 visit. Results of
ORYZA (v3) simulations predicted that increasing the current average
temperature by least 2 °C was critical and could cause significant yield
decline (Fig. 8). The planting window where farmers can obtain the
highest attainable yield may also shorten. In the future, sowing in late
December to the first quarter of the year could be prone to higher yield
loss (Fig. 9). Some farmers we interviewed do two cropping during the
dry season. Their first sowing is in early October followed by second
planting in late January to February. Based on our simulation results,
warmer future scenario may not be favorable for late dry season pro-
duction. Furthermore, with 3 °C temperature increase in Fig. 9, the drop
in yield is most pronounced in December planting dates, which coin-
cided with the increased planting area in the post-dam period. This
could potentially mean that the gains in total rice production through
improved access to water may be negated by an increase in temperature
during the same period.

5. Conclusions

Dry season rice production in the Tonle Sap floodplains has inten-
sified in recent years. Following the PhenoRice method, this study
showed that most crop establishment activities shifted to November and
December, areas of rice cultivation increased, and rice-growing loca-
tions became more dispersed. These changes coincided with the increase
of dam developments in the Mekong River. As dams control the
discharge of water downstream, irrigation becomes more accessible.
This would give farmers more flexibility on the timing of crop estab-
lishment and could open more areas for rice cultivation. Although the
ability of PhenoRice to detect rice areas needs further validation, the
results of this study provided important observations to streamline the
focus of future research studies. Accuracy in detecting rice area can be
improved by using satellite images with higher temporal and/or spatial
resolution. Thorough ground-truthing is also recommended.

Various simulation scenarios were explored using ORYZA (v3) to
predict yield responses to farm management practices, soil fertility, and
increasing temperature. Testing different N management regimes, we
determined the optimum N required and the best timing of application
to get the attainable yield of the sample rice variety. The model also
estimated the yield loss/increase if the present soil organic carbon
concentrations are reduced/increased by 50%. We identified that an
increase by at least 2 °C from the current average temperature could
lead to drastic yield loss, shorten the ideal planting window for sowing,
and prevent late or second cropping in future warmer dry seasons.
Examining these changes in rice production and drivers of yield are
critical in forecasting and decision-making related to food security and
water resource management in the Lower Mekong Region. Providing
insights on when and where to cultivate rice would provide information
to policymakers to set guidelines that will be equitable to local com-
munities that depend upon the ecosystem services of the Tonle Sap Lake.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This paper is based upon work supported by the National Science
Foundation under Grant No. 1740042 through the Innovations at the
Nexus of Food, Energy and Water Systems Program. Special thanks to
Chhay Kry, Hong Norm, Soma Voeun, and Chhun Sokunroth for their
valuable assistance during our field work in Cambodia. This research
would not have been possible without the information provided by the



M. Marcaida I1I et al.
participating farmers in Kampong Thom and Battambang provinces.
Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.agwat.2021.107183.

References

Arias, M.E., Cochrane, T.A., Norton, D., Killeen, T.J., Khon, P., 2013. The flood pulse as
the underlying driver of vegetation in the largest wetland and fishery of the Mekong
Basin. Ambio 42. https://doi.org/10.1007/s13280-013-0424-4.

Arias, MLE., Cochrane, T.A., Piman, T., Kummu, M., Caruso, B.S., Killeen, T.J., 2012.
Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia)
caused by water infrastructure development and climate change in the Mekong
Basin. J. Environ. Manag. 112. https://doi.org/10.1016/j.jenvman.2012.07.003.

Asian Development Bank (ADB), 2019. Irrigated Agriculture Improvement Project:
Report and Recommendation of the President [WWW Document]. URL (https
://www.adb.org/projects/documents/cam-51159-002-rrp) (accessed 23 June
2020).

Australian Centre for International Agricultural Research (ACIAR), 2015. Cambodia
Agricultural Value Chain program (CAVAC) Phase II [WWW Document]. URL (htt
p://exchange.growasia.org/system/files/investment-design-cambodia-agricultur
al-value-chain-program-phase-ii.pdf) (accessed 23 June 2020).

Belder, P., Bouman, B.A.M., Spiertz, J.H.J., Peng, S., Castaneda, A.R., Visperas, R.M.,
2005. Crop performance, nitrogen and water use in flooded and aerobic rice. Plant
Soil 273. https://doi.org/10.1007/s11104-004-7401-4.

Beveridge, C., Hossain, F., Bonnema, M., 2020. Estimating impacts of dam development
and landscape changes on suspended sediment concentrations in the Mekong River
Basin’s 3S tributaries. J. Hydrol. Eng. 25. https://doi.org/10.1061/(ASCE)HE.1943-
5584.0001949.

Bivand R., Keitt T., Rowlingson B., Pebesma E., Sumner M., Hijmans R., Baston D.,
Rouault E., Warmerdam F., Ooms J., Colin Rundel, 2021. rgdal: Bindings for the
“Geospatial” Data Abstraction Library.

Boling, A.A., Bouman, B.A.M., Tuong, T.P., Murty, M.V.R., Jatmiko, S.Y., 2007.
Modelling the effect of groundwater depth on yield-increasing interventions in
rainfed lowland rice in Central Java, Indonesia. Agric. Syst. 92. https://doi.org/
10.1016/j.agsy.2006.05.003.

Bonnema, M., Hossain, F., 2017. Inferring reservoir operating patterns across the
Mekong Basin using only space observations. Water Resour. Res. 53. https://doi.org/
10.1002/2016WR019978.

Boote, K.J., Jones, J.W., Pickering, N.B., 1996. Potential uses and limitations of crop
models. Agron. J. 88. https://doi.org/10.2134/
agronj1996.00021962008800050005x.

Boschetti, M., Busetto, L., Manfron, G., Laborte, A., Asilo, S., Pazhanivelan, S., Nelson, A.,
2017. PhenoRice: a method for automatic extraction of spatio-temporal information
on rice crops using satellite data time series. Remote Sens. Environ. 194. https://doi.
org/10.1016/j.rse.2017.03.029.

Boschetti, M., Nutini, F., Manfron, G., Brivio, P.A., Nelson, A., 2014. Comparative
analysis of normalised difference spectral indices derived from MODIS for detecting
surface water in flooded rice cropping systems. PLoS One 9. https://doi.org/
10.1371/journal.pone.0088741.

Bouman B., Kropff M., Wopereis M., ten Berge H., van Laar H., 2001. ORYZA2000:
modeling lowland rice. International Rice Research Institute (IRRI), Los Banos,
Philippines.

Busetto, L., Ranghetti, L., 2016. MODIStsp: an R package for automatic preprocessing of
MODIS Land Products time series. Comput. Geosci. 97. https://doi.org/10.1016/j.
cageo.2016.08.020.

Busetto, L., Zwart, S.J., Boschetti, M., 2019. Analysing spatial-temporal changes in rice
cultivation practices in the Senegal River Valley using MODIS time-series and the
PhenoRice algorithm. Int. J. Appl. Earth Obs. Geoinf. 75, 15-28. https://doi.org/
10.1016/j.jag.2018.09.016.

Chen, J., Jonsson, P., Tamura, M., Gu, Z., Matsushita, B., Eklundh, L., 2004. A simple
method for reconstructing a high-quality NDVI time-series data set based on the
Savitzky-Golay filter. Remote Sens. Environ. 91, 332-344. https://doi.org/10.1016/
j.rse.2004.03.014.

Costantini, A., 1995. Soil sampling bulk density in the coastal lowlands of south-east
queensland. Aust. J. Soil Res. 33, 11-18. https://doi.org/10.1071/SR9950011.
Cramb, R. (Ed.), 2020. White Gold: The Commercialisation of Rice Farming in the Lower

Mekong Basin. Springer Singapore, Singapore.

Cramb, R., Sareth, C., Vuthy, T., 2020. The commercialisation of rice farming in
Cambodia. In: Cramb, R. (Ed.), White Gold: The Commercialisation of Rice Farming
in the Lower Mekong Basin. Springer Singapore, Singapore, pp. 227-245. https://
doi.org/10.1007/978-981-15-0998-8 11.

Daly, K., Ahmad, S.K., Bonnema, M., Beveridge, C., Hossain, F., Nijssen, B.,

Holtgrieve, G., 2020. Recent warming of Tonle Sap Lake, Cambodia: implications for
one of the world’s most productive inland fisheries. Lakes Reserv. Res. Manag. 25.
https://doi.org/10.1111/Ire.12317.

de Silva, S., Johnston, R., Sellamuttu, S.S., 2014. Agriculture, Irrigation and Poverty
Reduction In Cambodia: Policy Narratives and Ground Realities Compared [WWW
Document]. URL (http://pubs.iclarm.net/resource centre/AAS-2014-13.pdf)
(accessed 27 June 2020).

13

Agricultural Water Management 258 (2021) 107183

Pebesma, Edzer, 2018. Simple features for R: standardized support for spatial vector
data. R. J. 10. https://doi.org/10.32614/RJ-2018-009.

Eyler, B., Weatherby, C., 2019. Letters from the Mekong: Toward A Sustainable Water-
Energy Food Future in Cambodia. Washington, DC.

Food and Agriculture Organization (FAO), 2015. Cambodia country fact sheet on food
and agriculture policy trends [WWW Document]. URL (http://www.fao.org/3/i37
61e/i3761e.pdf) (accessed 15 June 2020).

Ghani, A., Dexter, M., Perrott, K.W., 2003. Hot-water extractable carbon in soils: a
sensitive measurement for determining impacts of fertilisation, grazing and
cultivation. Soil Biol. Biochem. 35, 1231-1243. https://doi.org/10.1016/5S0038-
0717(03)00186-X.

Global Environment Facility (GEF), 2019. Promoting Climate-Resilient Livelihoods in
Rice-Based Communities in the Tonle Sap Region [WWW Document]. URL (https://
www.thegef.org/sites/default/files/web-documents/10177_LDCF_Cambodia_PIF.
pdf) (accessed 19 June 2020).

Greweling, T., Peech, M., 1960. Chemical Soil Test. Cornell Univ. Agric. Exp. Stn.

Haddeland, I., Lettenmaier, D.P., Skaugen, T., 2006. Effects of irrigation on the water and
energy balances of the Colorado and Mekong river basins. J. Hydrol. 324, 210-223.
https://doi.org/10.1016/j.jhydrol.2005.09.028.

Hecht, J.S., Lacombe, G., Arias, M.E., Dang, T.D., Piman, T., 2019. Hydropower dams of
the Mekong River basin: a review of their hydrological impacts. J. Hydrol. 568,
285-300. https://doi.org/10.1016/j.jhydrol.2018.10.045.

Helmers, K., 1997. Rice in the Cambodian economy: past and present. In: Nesbitt, H.J.
(Ed.), Rice Production in Cambodia. International Rice Research Institute (IRRI),
Manila, Philippines, pp. 1-14.

Hijmans, R.J., Van Etten, J., 2012. raster: Geographic Data Analysis and Modeling.

Hortle, K.G., Lieng, S., Valbo-Jorgensen, J., 2004. An introduction to Cambodia’s inland
fisheries [WWW Document]. URL (https://www.mrcmekong.org/assets/Publicat
ions/report-management-develop/Mek-Dev-No4-Mekong-Fisheries-Cambodia-Eng.
pdf) (accessed 4 September 2019).

Huete, A., Justice, C., Liu, H., 1994. Development of vegetation and soil indices for
MODIS-EOS. Remote Sens. Environ. 49, 224-234. https://doi.org/10.1016/0034-
4257(94)90018-3.

Huluka, G., Miller, R., 2014. Particle size determination by hydrometer method. Soil Test
Methods from the Southeastern United States. South. Coop. Ser. Bull.

Jackson, ML.L., 1959. Soil chemical analysis. J. Plant Nutr. Soil Sci. 85. https://doi.org/
10.1002/jpln.19590850311.

Joffre, O.M., de Silva, S., 2015. Community Water Access, Availability and Management
Survey in the Tonle Sap Region [WWW Document]. URL (https://aquadocs.org/bitst
ream/handle/1834/32480/AAS-2015-04.pdf?sequence=1&isAllowed=y) (accessed
14 September 2019).

Johnston, R., Roberts, M., Try, T., De Silva, S., 2013. Groundwater for Irrigation in
Cambodia [WWW Document]. URL (http://www.iwmi.cgiar.org/Publications/issue
_briefs/cambodia/issue_brief 03-groundwater for_irrigation_in_cambodia.pdf)
(accessed 22 June 2020).

Kondolf, G.M., Rubin, Z.K., Minear, J.T., 2014. Dams on the Mekong: cumulative
sediment starvation. Water Resour. Res. 50. https://doi.org/10.1002/
2013WR014651.

Kong, K., Hin, S., Seng, V., Ismail, A.M., Vergara, G., Choi, I.-R., Ehara, H., Kato, Y.,
2020. Importance of phosphorus and potassium in soil-specific nutrient management
for wet-season rice in Cambodia. Exp. Agric. 56. https://doi.org/10.1017/
$0014479719000309.

Kummu, M., Sarkkula, J., 2008. Impact of the Mekong river flow alteration on the Tonle
Sap flood pulse. Ambio 37, 185-192. https://doi.org/10.1579/0044-7447(2008)37
[185:I0TMRF]2.0.CO;2.

Lamberts, D., 2006. The Tonle Sap lake as a productive ecosystem. Int. J. Water Resour.
Dev. 22. https://doi.org/10.1080/07900620500482592.

Li, T., Angeles, O., Marcaida, M., Manalo, E., Manalili, M.P., Radanielson, A.,
Mohanty, S., 2017. From ORYZA2000 to ORYZA (v3): an improved simulation
model for rice in drought and nitrogen-deficient environments. Agric. . Meteorol.
237-238, 246-256. https://doi.org/10.1016/j.agrformet.2017.02.025.

Li, T., Angeles, O., Radanielson, A., Marcaida, M., Manalo, E., 2015. Drought stress
impacts of climate change on rainfed rice in South Asia. Clim. Change 133. https://
doi.org/10.1007/s10584-015-1487-y.

Liese, B., Isvilanonda, S., Ngoc, L.N., Pananurak, P., Pech, R., Shwe, T., Sombounkhanh,
K., Mollmann, T., Zimmer, Y., 2014. Economics of Southeast Asian Rice Production
[WWW Document]. URL (http://www.agribenchmark.org/fileadmin/Dateiablage/
B-Cash-Crop/Reports/Report-2014-1-rice-FAO.pdf) (accessed 19 June 2019).

Matsui, S., Keskinen, M., Sokhem, P., Nakamura, M., 2006. Tonle SapExperience and
Lessons Learned Brief [WWW Document]. URL (https://iwlearn.net/documents/
5987) (accessed 4 September 2019).

Mekong River Commission, 2010. Impacts on the Tonle Sap Ecosystem [WWW
Document]. Mekong River Comm. URL (http://www.probeinternational.org/Impact
s-on-the-Tonle-Sap-Ecosystem%28June-10%29.pdf) (accessed 29 July 2020).

Ministry of Agriculture, Forestry, and F. (MAFF), 2018. Annual Report for Agriculture
Forestry and Fisheries 2017-2018 and Directions 2018-2019 [WWW Document].
URL (https://www.oads.or.kr/upload_file/bbs/56-1.MAFF-2017-2018) (EN)-Final-
Binder.pdf (accessed 29 March 2019).

Ministry of Agriculture, Forestry, and F. (MAFF), 2017. Annual Report for Agriculture
Forestry and Fisheries 2016-2017 and Directions 2017-2018 [WWW Document].
URL (https://www.oads.or.kr/upload_file/bbs/56-1.MAFF-2017-2018) (EN)-Final-
Binder.pdf (accessed 20 June 2020).

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L.,
2007. Model evaluation guidelines for systematic quantification of accuracy in
watershed simulations. Trans. ASABE 50, 885-900. https://doi.org/10.13031/
2013.23153.


https://doi.org/10.1016/j.agwat.2021.107183
https://doi.org/10.1007/s13280-013-0424-4
https://doi.org/10.1016/j.jenvman.2012.07.003
https://www.adb.org/projects/documents/cam-51159-002-rrp
https://www.adb.org/projects/documents/cam-51159-002-rrp
http://exchange.growasia.org/system/files/investment-design-cambodia-agricultural-value-chain-program-phase-ii.pdf
http://exchange.growasia.org/system/files/investment-design-cambodia-agricultural-value-chain-program-phase-ii.pdf
http://exchange.growasia.org/system/files/investment-design-cambodia-agricultural-value-chain-program-phase-ii.pdf
https://doi.org/10.1007/s11104-004-7401-4
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001949
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001949
https://doi.org/10.1016/j.agsy.2006.05.003
https://doi.org/10.1016/j.agsy.2006.05.003
https://doi.org/10.1002/2016WR019978
https://doi.org/10.1002/2016WR019978
https://doi.org/10.2134/agronj1996.00021962008800050005x
https://doi.org/10.2134/agronj1996.00021962008800050005x
https://doi.org/10.1016/j.rse.2017.03.029
https://doi.org/10.1016/j.rse.2017.03.029
https://doi.org/10.1371/journal.pone.0088741
https://doi.org/10.1371/journal.pone.0088741
https://doi.org/10.1016/j.cageo.2016.08.020
https://doi.org/10.1016/j.cageo.2016.08.020
https://doi.org/10.1016/j.jag.2018.09.016
https://doi.org/10.1016/j.jag.2018.09.016
https://doi.org/10.1016/j.rse.2004.03.014
https://doi.org/10.1016/j.rse.2004.03.014
https://doi.org/10.1071/SR9950011
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref14
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref14
https://doi.org/10.1007/978-981-15-0998-8_11
https://doi.org/10.1007/978-981-15-0998-8_11
https://doi.org/10.1111/lre.12317
http://pubs.iclarm.net/resource_centre/AAS-2014-13.pdf
https://doi.org/10.32614/RJ-2018-009
http://www.fao.org/3/i3761e/i3761e.pdf
http://www.fao.org/3/i3761e/i3761e.pdf
https://doi.org/10.1016/S0038-0717(03)00186-X
https://doi.org/10.1016/S0038-0717(03)00186-X
https://www.thegef.org/sites/default/files/web-documents/10177_LDCF_Cambodia_PIF.pdf
https://www.thegef.org/sites/default/files/web-documents/10177_LDCF_Cambodia_PIF.pdf
https://www.thegef.org/sites/default/files/web-documents/10177_LDCF_Cambodia_PIF.pdf
https://doi.org/10.1016/j.jhydrol.2005.09.028
https://doi.org/10.1016/j.jhydrol.2018.10.045
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref21
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref21
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref21
https://www.mrcmekong.org/assets/Publications/report-management-develop/Mek-Dev-No4-Mekong-Fisheries-Cambodia-Eng.pdf
https://www.mrcmekong.org/assets/Publications/report-management-develop/Mek-Dev-No4-Mekong-Fisheries-Cambodia-Eng.pdf
https://www.mrcmekong.org/assets/Publications/report-management-develop/Mek-Dev-No4-Mekong-Fisheries-Cambodia-Eng.pdf
https://doi.org/10.1016/0034-4257(94)90018-3
https://doi.org/10.1016/0034-4257(94)90018-3
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref23
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref23
https://doi.org/10.1002/jpln.19590850311
https://doi.org/10.1002/jpln.19590850311
https://aquadocs.org/bitstream/handle/1834/32480/AAS-2015-04.pdf?sequence=1&amp;isAllowed=y
https://aquadocs.org/bitstream/handle/1834/32480/AAS-2015-04.pdf?sequence=1&amp;isAllowed=y
http://www.iwmi.cgiar.org/Publications/issue_briefs/cambodia/issue_brief_03-groundwater_for_irrigation_in_cambodia.pdf
http://www.iwmi.cgiar.org/Publications/issue_briefs/cambodia/issue_brief_03-groundwater_for_irrigation_in_cambodia.pdf
https://doi.org/10.1002/2013WR014651
https://doi.org/10.1002/2013WR014651
https://doi.org/10.1017/S0014479719000309
https://doi.org/10.1017/S0014479719000309
https://doi.org/10.1579/0044-7447(2008)37[185:IOTMRF]2.0.CO;2
https://doi.org/10.1579/0044-7447(2008)37[185:IOTMRF]2.0.CO;2
https://doi.org/10.1080/07900620500482592
https://doi.org/10.1016/j.agrformet.2017.02.025
https://doi.org/10.1007/s10584-015-1487-y
https://doi.org/10.1007/s10584-015-1487-y
http://www.agribenchmark.org/fileadmin/Dateiablage/B-Cash-Crop/Reports/Report-2014-1-rice-FAO.pdf
http://www.agribenchmark.org/fileadmin/Dateiablage/B-Cash-Crop/Reports/Report-2014-1-rice-FAO.pdf
https://iwlearn.net/documents/5987
https://iwlearn.net/documents/5987
http://www.probeinternational.org/Impacts-on-the-Tonle-Sap-Ecosystem%28June-10%29.pdf
http://www.probeinternational.org/Impacts-on-the-Tonle-Sap-Ecosystem%28June-10%29.pdf
https://www.oads.or.kr/upload_file/bbs/56-1.MAFF-2017-2018
https://www.oads.or.kr/upload_file/bbs/56-1.MAFF-2017-2018
https://doi.org/10.13031/2013.23153
https://doi.org/10.13031/2013.23153

M. Marcaida III et al.

NASA Goddard Space Flight Center, Ocean Ecology Laboratory, O.B.P.G, 2014a. MODIS-
Terra Ocean Color Data [WWW Document]. URL (https://oceancolor.gsfc.nasa.gov/
data/terra/) (accessed 14 September 2019).

NASA Goddard Space Flight Center, Ocean Ecology Laboratory, O.B.P.G, 2014b. MODIS-
Aqua Ocean Color Data [WWW Document]. URL (https://oceancolor.gsfc.nasa.
gov/data/aqua/) (accessed 14 September 2019).

Nesbitt, H.J. (Ed.), 1997. Rice production in Cambodia. International Rice Research
Institute (IRRI), Manila, Philippines.

Nguyen, Y.T.B., Kamoshita, A., Araki, Y., Ouk, M., 2011. Farmers’ management practices
and grain yield of rice in response to different water environments in Kamping Puoy
Irrigation Rehabilitation Area in Northwest Cambodia. Plant Prod. Sci. 14, 377-390.
https://doi.org/10.1626/pps.14.377.

Pineiro, G., Perelman, S., Guerschman, J.P., Paruelo, J.M., 2008. How to evaluate
models: observed vs. predicted or predicted vs. observed? Ecol. Modell. 216,
316-322. https://doi.org/10.1016/j.ecolmodel.2008.05.006.

Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, D., 2018a. A review
of the integrated effects of changing climate, land use, and dams on Mekong River
hydrology. Water 10. https://doi.org/10.3390/w10030266.

Pokhrel, Y., Shin, S., Lin, Z., Yamazaki, D., Qi, J., 2018b. Potential disruption of flood
dynamics in the lower Mekong river basin due to upstream flow regulation. Sci. Rep.
8. https://doi.org/10.1038/541598-018-35823-4.

R Core Team, 2020. R: A Language and Environment for Statistical Computing.
Radanielson, A.M., Gaydon, D.S., Li, T., Angeles, O., Roth, C.H., 2018. Modeling salinity
effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. Eur. J.

Agron. 100, 44-55. https://doi.org/10.1016/j.eja.2018.01.015.

Ricepedia, 2018. Cambodia [WWW Document]. URL (https://ricepedia.org/cambodia)
(accessed 28 July 2020).

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Miiller, C., Arneth, A., Boote, K.J.,
Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T.A.M.,
Schmid, E., Stehfest, E., Yang, H., Jones, J.W., 2014. Assessing agricultural risks of
climate change in the 21st century in a global gridded crop model intercomparison.
Proc. Natl. Acad. Sci. USA 111. https://doi.org/10.1073/pnas.1222463110.

Royal Government of Cambodia, 2010. Policy Paper On The Promotion of Paddy
Production and Rice Export. Phnom Penh.

Sabo, J.L., Ruhi, A., Holtgrieve, G.W., Elliott, V., Arias, M.E., Ngor, P.B., Résanen, T.A.,
Nam, S., 2017. Designing river flows to improve food security futures in the Lower
Mekong Basin. Science 358. https://doi.org/10.1126/science.aao1053.

Sadras, V.0., Cassman, K.G., Grassini, P., Hall, A.J., Bastiaanssen, W.G.M., Laborte, A.G.,
Milne, A.E., Sileshi, G., Steduto, P., 2015. Yield Gap Analysis of Field Crops. Methods
and Case Studies.

Saxton, K.E., Rawls, W.J., 2006. Soil water characteristic estimates by texture and
organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 70. https://doi.org/
10.2136/sssaj2005.0117.

Setiyono, T., Quicho, E., Gatti, L., Campos-Taberner, M., Busetto, L., Collivignarelli, F.,
Garcia-Haro, F., Boschetti, M., Khan, N., Holecz, F., 2018. Spatial rice yield
estimation based on MODIS and sentinel-1 SAR data and ORYZA crop growth model.
Remote Sens. 10. https://doi.org/10.3390/rs10020293.

Siek, D., Xu, S.W., Wyu, Ahmed, A.-G., 2017. Impact of livestock scale on rice production
in Battambang of Cambodia. IOP Conf. Ser.: Earth Environ. Sci. 86, 012019 https://
doi.org/10.1088/1755-1315/86,/1/012019.

Sithirith, M., 2017. Water governance in cambodia: from centralized water governance
to farmer water user community. Resources 6. https://doi.org/10.3390/
resources6030044.

Smith, D.J., Hornbuckle, J.W., 2013. A review on rice productivity in Cambodia and
water use measurement using direct and indirect methods on a dry season rice crop

14

Agricultural Water Management 258 (2021) 107183

[WWW Document]. URL (https://publications.csiro.au/rpr/download?pid=csiro:EP
1310226&dsid=DS6) (accessed 29 March 2020).

Sopheap, E., Setka, S., Mithona, A., Seiha, T., Thong, K., Saio, K., 2018. Quality and
safety of Cambodian rice. Food Sci. Technol. Res. 24, 829-838. https://doi.org/
10.3136/fstr.24.829.

Stevens, A., Ramirez-Lopez, L., 2020. An introduction to the prospectr package.

Stone, R., 2016. Dam-building threatens Mekong fisheries. Science 354. https://doi.org/
10.1126/science.354.6316.1084.

Sudhir-Yadav, S., Li, T., Humphreys, E., Gill, G., Kukal, S.S., 2011. Evaluation and
application of ORYZA2000 for irrigation scheduling of puddled transplanted rice in
north west India. Field Crop. Res. 122, 104-117. https://doi.org/10.1016/j.
fcr.2011.03.004.

Thoeun, H.C., 2015. Observed and projected changes in temperature and rainfall in
Cambodia. Weather Clim. Extrem. 7, 61-71. https://doi.org/10.1016/j.
wace.2015.02.001.

USDA, 2010. CAMBODIA: Future Growth Rate of Rice Production Uncertain [WWW
Document]. URL (https://ipad.fas.usda.gov/highlights/2010/01/cambodia/)
(accessed 19 June 2020).

Veasna T., Bunna S., Roat M.P., Vanndy L., Sinat P., Vang S., Chantha O., Viraday N.,
Nareth M., Kanthel P., Tara T., Veasna HE P., Hing U., Collins M., Hornbuckle J.,
Quayle W., Smith D., Zandona R., 2014. Improved irrigation water management to
increase rice productivity in Cambodia, in: A Policy Dialogue on Rice Futures: Rice-
Based Farming Systems Research in the Mekong Region. pp. 92-102.

Vuthy, T., 2014. Policy challenges for Cambodia’s agricultural development and food
security—a review of the rice sector. In: Robins, L. (Ed.), A Policy Dialogue on Rice
Futures: Rice Based Farming Systems Research in the Mekong Region. Australian
Centre for International Agricultural Research (ACIAR), Phnom Penh, pp. 152-158.

Vuthy, T., Pirom, K., Dary, P., 2014. Development of the Fertiliser Industry in Cambodia:
Structure of the Market, Challenges in the Demand and Supply Sides, and the Way
Forward Initiative on The Role of Fertilisers and Seeds in Transforming Agriculture
in Asia.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., Francois, R.,
Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E.,
Bache, S., Miiller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., Takahashi, K.,
Vaughan, D., Wilke, C., Woo, K., Yutani, H., 2019. Welcome to the Tidyverse.

J. Open Source Softw. 4. https://doi.org/10.21105/joss.01686.

World Bank, 2018. Climate change knowledge portal [WWW Document]. (https://c
limateknowledgeportal.worldbank.org/country/cambodia).

World Bank, 2015a. Cambodia: The Agriculture, Irrigation, and Rural Roads Sectors —
Public Expenditure Review [WWW Document]. URL (http://hdl.handle.net/1098
6/22509).

World Bank, 2015b. Cambodia Quality Assessment Report. Rapid Appraisal of Fertility
Quality in Cambodia [WWW Document]. URL (https://openknowledge.worldbank.
org/bitstream/handle/10986,/22539/Cambodia000Qua00quality0in0Cambodia.pd
f?sequence=1&isAllowed=y) (accessed 19 July 2020).

World Health Organization (WHO), 2016. Climate and Health Country Profile-2015:
Cambodia [WWW Document]. URL (https://www.who.int/publications/i/item/hea
Ith-and-climate-change-country-profile-2015-cambodia) (accessed 27 June 2010).

Zambrano-Bigiarini, M., 2020. hydroGOF: Goodness-of-fit functions for comparison of
simulated and observed hydrological time serie.

Asian Development Bank, 2012. Climate Resilient Rice Commercialization Sector
Development Program [WWW Document]. URL https://www.adb.org/sites/default
/files/linked-documents/44321-013-cam-oth-03.pdf (accessed 23 June 2020).


https://oceancolor.gsfc.nasa.gov/data/terra/
https://oceancolor.gsfc.nasa.gov/data/terra/
https://oceancolor.gsfc.nasa.gov/data/aqua/
https://oceancolor.gsfc.nasa.gov/data/aqua/
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref32
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref32
https://doi.org/10.1626/pps.14.377
https://doi.org/10.1016/j.ecolmodel.2008.05.006
https://doi.org/10.3390/w10030266
https://doi.org/10.1038/s41598-018-35823-4
https://doi.org/10.1016/j.eja.2018.01.015
https://ricepedia.org/cambodia
https://doi.org/10.1073/pnas.1222463110
https://doi.org/10.1126/science.aao1053
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref40
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref40
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref40
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.3390/rs10020293
https://doi.org/10.1088/1755-1315/86/1/012019
https://doi.org/10.1088/1755-1315/86/1/012019
https://doi.org/10.3390/resources6030044
https://doi.org/10.3390/resources6030044
https://publications.csiro.au/rpr/download?pid=csiro:EP1310226&amp;dsid=DS6
https://publications.csiro.au/rpr/download?pid=csiro:EP1310226&amp;dsid=DS6
https://doi.org/10.3136/fstr.24.829
https://doi.org/10.3136/fstr.24.829
https://doi.org/10.1126/science.354.6316.1084
https://doi.org/10.1126/science.354.6316.1084
https://doi.org/10.1016/j.fcr.2011.03.004
https://doi.org/10.1016/j.fcr.2011.03.004
https://doi.org/10.1016/j.wace.2015.02.001
https://doi.org/10.1016/j.wace.2015.02.001
https://ipad.fas.usda.gov/highlights/2010/01/cambodia/
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref49
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref49
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref49
http://refhub.elsevier.com/S0378-3774(21)00460-1/sbref49
https://doi.org/10.21105/joss.01686
https://climateknowledgeportal.worldbank.org/country/cambodia
https://climateknowledgeportal.worldbank.org/country/cambodia
http://hdl.handle.net/10986/22509
http://hdl.handle.net/10986/22509
https://openknowledge.worldbank.org/bitstream/handle/10986/22539/Cambodia000Qua00quality0in0Cambodia.pdf?sequence=1&amp;isAllowed=y
https://openknowledge.worldbank.org/bitstream/handle/10986/22539/Cambodia000Qua00quality0in0Cambodia.pdf?sequence=1&amp;isAllowed=y
https://openknowledge.worldbank.org/bitstream/handle/10986/22539/Cambodia000Qua00quality0in0Cambodia.pdf?sequence=1&amp;isAllowed=y
https://www.who.int/publications/i/item/health-and-climate-change-country-profile-2015-cambodia
https://www.who.int/publications/i/item/health-and-climate-change-country-profile-2015-cambodia
https://www.adb.org/sites/default/files/linked-documents/44321-013-cam-oth-03.pdf
https://www.adb.org/sites/default/files/linked-documents/44321-013-cam-oth-03.pdf

	A spatio-temporal analysis of rice production in Tonle Sap floodplains in response to changing hydrology and climate
	1 Introduction
	2 Materials and methods
	2.1 Spatio-temporal changes in crop production
	2.1.1 Study sites
	2.1.2 Detecting the timing and location of cropping using PhenoRice
	2.1.3 Estimating changes in flooding extent using NDFI

	2.2 ORYZA (v3) model calibration and testing
	2.2.1 Farm surveys and interview with growers
	2.2.2 Plant biomass measurements
	2.2.3 Soil measurements
	2.2.4 Climate data

	2.3 Scenario simulations
	2.3.1 Estimating past production and yield
	2.3.2 Predicting yield response to changes in temperature, nitrogen applications, and residual soil organic carbon
	2.3.2.1 Temperature effects
	2.3.2.2 Nitrogen application effects
	2.3.2.3 Residual soil organic carbon


	2.4 Data processing and statistical analysis

	3 Results
	3.1 Lake water extent in relation to location and timing of rice production
	3.2 Results of crop model calibration and testing
	3.3 Modeling production from historical climate conditions
	3.4 Simulating potential future conditions
	3.4.1 Amount and timing of N application
	3.4.2 Soil organic carbon
	3.4.3 Temperature increase


	4 Discussion
	4.1 Analysis on the changes in cropping patterns
	4.2 Analysis on yield and production simulations

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Supporting information
	References


