MIXED MULTIPLICITIES OF GRADED FAMILIES OF IDEALS
YAIRON CID-RUIZ AND JONATHAN MONTANO*

ABSTRACT. We show the existence (and define) the mixed multiplicities of arbitrary graded fam-
ilies of ideals under mild assumptions. In particular, our methods and results are valid for the
case of arbitrary m-primary graded families. Furthermore, we provide a far-reaching ‘“Volume =
Multiplicity formula” for the mixed multiplicities of graded families of ideals.

1. INTRODUCTION

The concept of mixed multiplicities of ideals is of remarkable importance in the areas of com-
mutative algebra and algebraic geometry, and its study seems to have been initiated by Bhat-
tacharya in [1]. These multiplicities have a successful history of interconnecting problems from
commutative algebra, with applications to the topics of Milnor numbers, mixed volumes, and in-
tegral dependence (see, e.g., [1, 12, 13,18,21,22]). For comprehensive discussions on them, the
reader is referred to the survey [19] and to Chapter 17 of the book [13].

This concept can be naturally extended to graded families of ideals — it amounts to consider
graded families of ideals instead of just the powers of ideals. A graded family of ideals | ={I,, }nen
in a ring R is a sequence of ideals such that Iy =R and 1,1, C I 4 for every n,m € N. If in
addition the Rees algebra R(1) = ®nenInt™ C R[t] is Noetherian, then we say [ is Noetherian.
When [, O [, for every n € N, we say that [ is a filtration. If (R, m) is local with maximal ideal
m, we say that [ is m-primary when [, is m-primary for each n > 1.

The study of mixed multiplicities of (not necessarily Noetherian) graded families was pioneered
by Cutkosky-Sarkar-Srinivasan [5] for the case of m-primary filtrations. Recently, in the previous
work [3], the authors of this paper defined mixed multiplicities for arbitrary graded families of
monomial ideals (that satisfy the mild condition of having a linear bound for the degree of the
generators of the ideals), and showed that the mixed volumes of arbitrary convex bodies can
be expressed in terms of the newly defined mixed multiplicities. The latter result provides an
important application of mixed multiplicities of graded families and gives some reinforcement on
the interest of studying this notion.

The goal of this paper is to show the existence (and define) the mixed multiplicities of arbitrary
graded families of ideals under mild assumptions. In the m-primary case, the conditions that we
assume are automatically satisfied, and so we obtain an extension of the main result in [5] (i.e.,
we drop the filtration condition). An additional important result of our work is that we show a
“Volume = Multiplicity formula” for mixed multiplicities of graded families. Below, we discuss
the main contributions of this paper.

1.1 — Mixed multiplicities of m-primary graded families of ideals. Let (R,m,k) be a Noetherian
local ring of dimension d. Let M be a finitely generated R-module and let I,..., [ be m-primary
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ideals. Then, form = (my,..., mg) > 0 the function A(M/ I'ln' .- 1§ M) coincides with a polyno-
mial in my,..., ms of total degree equal to dim(M). The homogeneous part in degree d = dim(R)
of this polynomial can be written as

M;1,...,1
1) G?ﬁ ..... 1t te) = Z ed(d v..l.d ! S)tih"'tgs~
d=(d;,...ds) NS, |d|=d Lt Bse

The numbers eq(M;1y,..., ;) are non-negative integers called the mixed multiplicities of M with
respect to [y,...,I;.

Motivated by (1), the existence of a similar polynomial for the case of graded families yields the
definition of mixed multiplicities. Let [(1) ={I(1)n nen, ---» 1(S) ={I(s)n nen be (not necessarily
Noetherian) m-primary graded families of ideals in R. The following theorem extends the main
result of [5] from m-primary filtrations to m-primary graded families.

Theorem A (Theorem 3.3, Corollary 3.5). Adopt the assumptions and notations above, and sup-
pose that dim(N(R)) < d, where N(R) denotes the nilradical of the m-adic completion R. Then,
there exists a homogeneous polynomial of total degree d and non-negative real coefficients, de-

.....

A (M/I(l)mml I(S)mmsM)

M .
G(u(l) ,,,,, u(s])(m1,~~~,ms) = n}gnoo md )
for every (my,...,mg) € N°. Moreover, for every (my,...,mg) € N* we have
GM (my,..., ms)
. (1) pr(s)p) Mo Ms ) )
im o = Giin),...as) (M55 M)

We can write the polynomial G ml) 1(s)) (t1,...,ts) from Theorem A as follows

.....

Z eq(M:I(1),...,0(s)) dr

ds
di!---dg! bt

.....

d=(d;,...,ds)eNSs,|d|=d

Then, for each d € N*® with |d| = d, one defines the real number eq(M;[(1),...,0(s)) > 0 to be the
mixed multiplicity of M with respect to [(1),...,1(s) of type d (see Definition 3.4). An important
consequence of Theorem A is a “Volume = Multiplicity formula” for mixed multiplicities, that is,
we obtain the following equality

lim ed(M;I(l)p({...,I(s)p)
P—00 P

= eq(M;1(1),...,0(s))

for each d € N® with |d| = d (see Corollary 3.5). The latter result extends the “Volume = Mul-
tiplicity formula” known for the case of multiplicities (see [4, 6—8, 15, 16]) and it serves as the
main tool to provide simple proofs of important properties of these mixed multiplicities; the list
includes: additivity under short exact sequences (see Proposition 4.1), Associativity formula (see
Theorem 4.2), and Minkowski inequalities (see Theorem 4.3).

1.2 — Mixed multiplicities of arbitrary graded families of ideals. Assume now that R has positive
dimension. Let [, ],...,]; be ideals in R such that [ is m-primary and J,..., J; have positive grade,
i.e., J; contains non-zero divisors for each 1 <1< r. Then, for ng > 0and n= (ny,...,n;:) >0
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the function A(IM0JT - Jiv /I ... Ti) coincides with a polynomial of total degree d — 1
whose homogeneous part in degree d — 1 can be written as

Z e(do,d)(IHl,“er)

d0 dl_” dr
do'd;!---d,! btk

(d(),d):(do,dl ..... dT)EINT,d()—Hd‘:d—I

Following standard techniques (see, e.g., [3, proof of Lemma 4.2]), one may show that for each

S YO Citas Sk e L) I .
ng € Nandn=(ny,...,n,) € N" the limit limy, oo — ! exists and coin-

m
cides with G(;j, . y,)(no,m1,..., 1), where G, ) (to, t1,..., tr) is the following polynomial

e(dpd) (L1150 J0) gps
(do+1)'d;!---d,! ©

d d
[ SRR

(2) G(I§]1 ,,,,, Jr)(to,tl,...,tr) = Z

(do,d)E[Nr_"l,do—Fm‘:d—]

The numbers e(g,q)(I | J1,...,]r) are non-negative integers called the mixed multiplicities of
J1,--., ] with respect to I.

Now, the notion of mixed multiplicities for non m-primary graded families can be obtained
by showing the existence of a polynomial similar to the one in (2). Let J(1) ={J(1)n}tnens ---
J(r) ={J(r)ntnen be (not necessarily Noetherian) graded families of non-zero ideals, and let
[ = {In}hen be a (not necessarily Noetherian) m-primary graded family of ideals. Moreover,
assume that for every ng € N and n = (ny,...,n;) € N the pair of graded families

({Jmn}meN > {ImnoJmn}me D\l)

satisfies a certain linear growth condition (see Definition 2.2, Setup 3.7, Remark 2.3, and Re-
mark 3.8 for details).

Theorem B (Theorem 3.11, Corollary 3.13). Adopt the assumptions and notations above, and
suppose that R is analytically irreducible. Then, there exists a homogeneous polynomial of total

G([I;Jl(l) J][‘r))(n()’n]’---’nr) — lim A(](l)mnl"‘I(r)mnr/lmn()](l)mnl"‘](r)mnr)

""" m—oo md

b

.....

term of the form et(li' -ty withe #0and d; +- - -+ dy = d. Moreover, for every (ng,ny,...,ny) €
N1 we have

. Iy
plggo pd = Guy),...0) (M0osTLrs- -5 Tr).

By Theorem B we can write G, j(1)...y(r) (o, t1,..., tr) as

e(ao.a) (11 J(1),....I(r))
(do+1)!dy! - dy!

do+1.d d:
G(I];JJ(]) ..... JJ(T))(tO’tla---atr) = Z tOO tll"'tr'

(do,d)eNTH! dp+|d|=d—1

Then, for each (dg,d) € N™*! with dg +|d| = d — 1, one defines the real number eapa)(l |
J(1),...,J(r)) > 0 to be the mixed multiplicity of J(1),...,J(r) with respect to [ of type (dg,d)
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(see Definition 3.12). Again, Theorem B yields a “Volume = Multiplicity formula” for this case,
that is, we obtain the following equality

1. e(do,d](lp |J(1)p7"'7I(T)P)
1m d
p—0o0 p

for each (dg,d) € N"™*! with dy+|d| = d — 1 (see Corollary 3.13).

= e(aoa)(11J(1)..... J(r))

1.3 — Some notations and organization of the paper. For a vector n = (ny,...,n,) € N" we denote
by |n| the sum of its entries. For vectors n = (ny...,n,) and m = (my,...,m,) in N" we write
n > mifny > my forevery 1 <i<r, we write n > 0if n; > 0 for every 1 <1 < r. The vectors
(0,...,0) e N"and (1,...,1) € N" are denoted by 0 and 1, respectively.

The basic outline of this paper is as follows. Section 2 is of technical nature and there we deal
with certain limits which are the core of our arguments. In Section 3 we prove Theorem A and
Theorem B. Finally, Section 4 is devoted to showing some properties of mixed multiplicities of
m-primary graded families of ideals.

2. LINEAR GROWTH

This technical section contains the core of our methods. In Theorem 2.9 below we show the
equality of certain limits and that result allows us to define mixed multiplicities of graded families
in the next section. Throughout this section the following setup is fixed.

Setup 2.1. Let (R,m,k) be a d-dimensional complete local domain. Let J = {Jn}nen and [ =
{I Jnen be (not necessarily Noetherian) graded families of non-zero ideals, such that J,, O I, for
every n € N. For every a € Z-, let Jq :={Janen be the Noetherian graded family generated

by Ji,...,]a, thatis, forn > a one has Jon = Z?;ll JaiJan—i- Likewise, define lq := {Ign}nen-

The following definition includes a condition on graded families that is needed in the proof of
our main result.

Definition 2.2. Assume Setup 2.1. We say that the pair of graded families (J,[) has linear growth
if there exists ¢ = c¢(J,1) € N such that

JoNm™ =L, Nm ™ for every n € N.

Remark 2.3. We note that the above condition is quite natural and that it holds in a variety of
interesting cases. For example, if | and J are m-primary, this condition is automatically satisfied
(see Remark 3.2 and Remark 3.8). Moreover, if [ is Noetherian, then (J,0) has linear growth as
long as A(Jn /1) < oo for every n € N (see Proposition 2.4).

For an ideal I, we denote by I3 := (I :g m®) the saturation of I. We also write 1% = {I32'}, -
and call it the saturation of [. The following states that the pair of a Noetherian filtration and its
saturation has linear growth.

Proposition 2.4 ([17, Theorem 3.4]). Assume Setup 2.1 and that | is Noetherian. Then (I°*,1) has
linear growth.

Proof. Set I, =R for n < 0. Since the algebra Rt t7 1] = Pz Int" C R[t,t!] is Noetherian,
the same proof of [ 17, Theorem 3.4] applies to show that there exists ¢ € N such that, foralln > 1,
there exists a primary decomposition of I;, whose m-primary component (if any) contains m°™.
Therefore, E*Nm™ C I,, N"m®™, and the result follows. O
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We now recall some notation from [14] (see also [6]). Let S € N4+ be a subsemigroup of N+
and 7: R4T! — R the projection onto the last coordinate. For any n € N we define

n
Sn:=SNm'(n), and  nxlU:= {Zni | n1,---,nn€U}
i=1

for any subset U C S of S. Let L = L(S) be the subspace of R4*! generated by S and M = M(S)
the rational half-space M(S) := L(S)N7! (Rsg). Let Con(S) C L(S) be the closed convex cone
given as the closure of the set of all linear combinations ) ;Ain; with n; € S and A; > 0. Let
G(S) C L(S) be the group generated by S. The pair (S,M) is strongly admissible if S C M,
Con(S) is strictly convex, and Con(S) N oM = {0}. For such a pair we define

ind(S,M) := [Z:7t(G(S))] and ind(S,0M) := [0Mz: G(S)NnoM].

Moreover,
A(S,M) := Con(S)N7 ! (ind(S,M))

is the Newton-Okounkov body of (S,M) and, if q = dim(0M), Volq(A(S,M)) is its integral
volume.

Let (J,1) be a pair of graded families with linear growth and let ¢ = ¢(J,[) be as in Def-
inition 2.2. In [6] (see also [5, Lemma 4.2]) Cutkosky showed the existence of an excellent
regular local ring (S, ms,ks) of dimension d = dim(R) that birrationally dominates R, that is,
S is essentially of finite type over R and the two rings have the same quotient field Quot(R).
Given y =yy,...,Yq a generating set for mg, and b = (by,...,bq) rationally independent real
numbers with b; > 1 for every 1 < 1 < d, he constructed a valuation v on Quot(R) by setting
v(y") =n-b=n;b; +---+ngby for every n = (n,,...,nq) € N&. Moreover, it is shown that v
dominates S, that is, m,, NS = mg, where (V,,,m,,, k,) is the valuation ring of v; and that k,, = ks.

For every 0 < 3 € R we define the following ideals of V,:

Kp :={f € Quot(R) | v(f) = B}, and Kg :={f € Quot(R) | v(f) > B}.

We note that Kg/ Kg = k, = kg for every 3 € I, C R inside the valued group I, thus for any
R-ideal I one has

3) dimy (Kg NI/K{NT) < dimye(Kp/KJ) < ks 2 K.

By [4, Lemma 4.3], there exists & € Z~ such that Koy "R C m™ for every n € N. Therefore, the
condition assumed in Definition 2.2 yields that

Thus, since Kyen MR 1s an m-primary ideal, for every n € N one has
“4) A(]n/ln) :A(]n/chcnmIn)_A(In/KoccnmIn)~
For every t € Z- ¢ we define:
) FJ(JU ={(n,n) = (ny,...,ng,n) € N [ dimy (Kb N Jn/Kip NJn) > tand n| < aen},
<

Z
Fu(t) ={(n,n) = (ny,...,ng,n) € N4 [dimy (Kb N In/K} NI) > tand n| < aen};
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and for every a,t € Z- we define:

(6)
FJ(JZ) ={(n,n) = (ny,....,ng,n) € N [dimy (Kn.pb N Jan/K N Jan) >t and n| < aen},

rt.— {(n,n) = (n1,...,ng,n) € N [ dimg (Knp N Ian/Kip NIan) > tand [n| < acn}.

la

Let S be any of the sets defined in either (5) or (6). As noted in [6, Theorem 6.1], one can adapt
the proofs of [6, Lemma 4.4 and Lemma 4.5] to show S is a semigroup. Moreover, one has that

G(S) = 74+
and if M = R x Ry = ! (Rxq), then (S, M) is strongly admissible with
(7) ind(S,M) =ind(S,0M) = 1.
Set A(S) :=A(S,M).
The following lemma is of fundamental importance for our main results (cf. [6, Theorem 6.1]).

Lemma 2.5. Assume the notations introduced in this section, in particular that (J,0) has linear
growth, then the following limit exists

i AUn/In)

n—00 nd

)

and is equal to
[ks:kl

> (vota (A(T)) = vola (A("))).

t=1
Additionally, we have the equalities

Tim Volg (A(T)Y) ) = Vola (A(T"))  and  lim Vola (A(1}) ) = Vola (A(1]))

a—oo

forallt e Z~,y.

Proof. By (4), and since b; > 1 for every 1 <1i < d, we have the following equalities

}\(Jn/ln) = Z (dimk( nbm]n/K bm]n) dimy (KnAmen/KImen)>

0<n-b<acn

-y <dimk (K N Jn /Ky () —dimy (Kpp NI /K, N1T) )
o< |n|<xen

[ks:k]

-5 (o)

where the last equality holds by (3). Thus, from [ 14, Corollary 1.16] and (7) we obtain
[ks:kl]

® tim AUn/In) Z(Vold(A(rjﬁ))—Vold(A(ru“)))),

nooo nd
t=1

and so the first statement follows.
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Now, for every n,a,t € Z-¢ we have n x FJ(],) C F( ) and nx F( ) - F( ) . Thus, by [15,

Proposition 3.1] (see also [0, Theorem 3.3]) and [ Corollary 1.16], for a ﬁxed e € Ry, there
exists ag € N such that if a > ap we have

9
(t) (t)
o a05) v 36 - i, " am P o)
(10)
luna] |, #rie]

Vola (A(1{)) > Vola (A1) = lim 528 > lim —

for every 1 <t < [Kkg : k]. Then the second statement follows from (9) and (10). ]
We include the following observation for future reference.

Remark 2.6. Assume the notations introduced in this section. Proceeding similarly to (8), from
[14, Corollary 1.16] we obtain the following equality

lim U“/K"‘C“m“ ZVold< )

n—oo

Our next goal is to prove Theorem 2.9, which is the main tool for our results in the next section.
For this theorem we need to introduce some prior notation.

Setup 2.7. We adopt Setup 2.1. Let J(1) ={J(1)ntnens --- J(r) ={J(*)nnen be graded families
of non-zero ideals, and let 1(1) ={I(1)n}nen, - 1(S) ={I(S)nnen be m-primary graded families
of ideals. For n = (ny,...,n;) € N', m = (my,...,mg) € N%, and p, a € N we use the following
notation:

Jn:= l(llnl : "I(T)nr, Im == Illlml "'I(S)ms,
(11) J(p)n = I(I)gl : -~](T)3T, Ja(p)n = ](1)2,1]9 ot 'l(flllfp, Ja,n = J(I)a,nl "'J(rla,nr,
I(p)™:= 1(1)-211 "'I(S)glsa Ly(p)™ = 1(1)2}113 e I(Tl$§’ Iom = 1{Dam, ) ams-

Form = (my,...,mg) € NS and n = (ny,...,n;) € N" we define the pair of graded families

(gm,n, j'Cm,nl = <{Jmn}meﬁ\l , {Immen}mGD\l> and

(3P)ma HPIma) = (IP)™hmers L) ™™ (P) ™} ) for every p € Zs.

We further assume that each (Jmn,Hmn) has linear growth, and that if ¢y = ¢(Imn, Hmn)s
then ¢(J(P)mn H(P)mn) = Cmap for every p.

We continue with the following lemma which is needed in the proof of Theorem 2.9. It provides
a further needed approximation result for the case of Noetherian filtrations, and it is the natural
extension of [3, Proposition 4.3].

Lemma 2.8. Assume Setup 2.7. Moreover, assume that J(i) and 1(j) are all Noetherian for
I<i<rand1<j<s. Foreverym= (my,...,mg) € NS andn= (ny,...,n;:) € N" we have

. (t) . (t)
plggo Volyq (A (rﬁ(p)m,n)> = Volq4 (A <F3m’n>) and
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. (t) _ (t)
plgrgo Voly (A (Fg{(p)m)) = Voly (A (F}Cm’n>)

Proof. We fixm = (my,...,mg) € N*and n = (ny,...,n;) € N" and consider the following graded
families:

Sforallt e Z-.

(Amas Bma) 1= () lper 1P)™I(p)pen ).
We note that ¢(Amn,Bmn) = Cm.n, then

(t) (t) (t) (t) (t)

mx [rflm,n}p = [rﬁ(p)m,n = [rﬂm,n}mp r?f(plm,n]mp C [rﬁm,n]mp‘
for every m,p,t € Z-¢. Thus, by [15, Proposition 3.1] (see also [6, Theorem 3.3]) and [!4,
Corollary 1.16], for a fixed ¢ € R~, there exists pg € N such that if p > py we have
(12)

(t)
}mp and mx [er,n}P C [

(t) t)
#[F } #[m*[r( | }
3( )m,n Amn
Volg (A (r(” )) > lim — M iy 2Pl S Voly (A (rg’ )) _¢
'Am,n m—oo mdpd m—oo mdpd m,n
and
(13)

(t) (t)
# [rg{ ] # [m* Ty ] }
(P)mn Bmn
Vola (A (Fg) )) > lim # 2 Jim mdpd’ = > Volg <A (Fg) )) — ¢t
m,n m—oo m—00 m,n

for every p,t € Z~¢. Then, from (12), (13), and [14, Corollary 1.16] it follows that

(14) lim Volg (A (rg(a)m» — Voly <A (r}i)) and
. (t) _ (t)
(15) lim Volg (A (rwmm,n)) — Voly (A (rﬁm’n» .
By the Noetherian assumption, there exists q > 0 such that
(16) JA)g =J()nq and I(j)g=1()nq foreveryn>0,1<i<m1<j<s

(see, e.g., [9, Lemma 13.10], [10, Theorem 2.1]). Therefore,
J(mq)" = Jmgn and I(mq)™J(mq)" = LngmJman
for all m > 0, and then [ 14, Corollary 1.16] implies

QARG

0 e ()) =t = g = (4 (L)
and
#lrn i)
08 Vola (A (I, ) ) = Jim, e = im ™ = ol (A(T,))
The result now follows by combining (14), (15), (17), and (18). ]

We are now ready to present the main theorem of this section.
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Theorem 2.9. Assume Setup 2.7. Forn= (ny,...,n;) € N" and m = (my,...,mg) € NS we have
that the following limits exist and are equal

mn mm mn
i g 2O AU e/ md )
p—00M—00 p m m—oo m

Proof. Fix a € Z~, and notice that [(i)qn C [(i)n and J(j)an CJ(j)n forall 1 <i<s, 1 <j<r
and n € N. We fix m = (my,...,mg) € N¥ and n = (ny,...,n,) € N, and for simplicity of
notation, we set

(0,70 :== (Gmn>Hmn), (), H(P)) = (I(P)mn- H(P)mn), and c:=c(d,H).

With this notation, by Lemma 2.5 it suffices to show
[ks:k]

[ks:k]
pll)ngo Z (Vold <A(FE§() ))> — Volg (A(rggp)») = Z (Vold (A(Fét))> — Voly <A(F9(E))>> .

Let a’ := a-max{ny,...,ny,my,...,ms}. Since J is generated by the ideals Ju,Jon,...,Jan, We
get the inclusions Jam € Jq/mn € Jmn = Jm for all m € N. So, by Remark 2.6 we obtain the
following

kg:k] Jam Ja’,'rnn
& . A (Kacmmga,m> . A (Ko‘cmm‘]a’mn>
Z Vold< ) = lim 3 < lim T <
m—00 m m— o0 m
(K Hmmg ) kK] N
xcm m t
S pm —— = ; Volq (A(ra ))

Likewise, we also have o m € Iy mmJa’ mn € ImmJmn = Fm for all m € N and then

[ks:kl A <g{a—m> A ( Lo/ mmda’ mn >
Z VOI < ) — lim Kaen NHa,m < lim Kaen ﬂIa/ mmJa/,mn <
(20)
)\ (K :Hmj-( > ks k]
. NHm
< lim i Vol ( )
< i, =2 Vol

Therefore, by (19) and (20) and by applying the second statement of Lemma 2.5, for a given € > 0
there exists a:= a(e) € Z- such that

[ks:K] t )\(KL%) [ks:K] .
an Y la (A1) > tim =S Vol () =,
and,

(osioye ) e

(22) Z Vold< ) > lim e Z Vold< ) -2

For every p € Z-( we have the inclusions

Ja’(p)mn - 3(p)m - 3pm and Ia’(p)mmJa’(p)mn C j{(p)m C g{pm-
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Thus, as each [(1) 4 and each J(j) - is a Noetherian graded family, by Lemma 2.8 and Remark 2.6
there exists pg := po(a) such that if p > py we have

[kg k

] kK] (K Ja/(}?) (n) )
(t) (t) . o(cmﬂ al P mu
> Vola (A(T})) = 3 Vola (A(Ty1))) > tim_ i >
(23) t=1 t=1

A Ja',mn
Kacem mJa/,mn £

> i -
= Tr%gnoo md 2’
and
ks:k] kK] (K Ia/(F)Tm)Ja/gp)n(ln) )
(t) (t) . acn NI/ (p mm a’'\P mn
> Vola (A(T)) = Y Vola (A(Tyg,)) > lim = >
(24) t=1 t=1
Ia’,mmJa/,mn
> i A (K‘chmla’,mm‘]a/,mn> €
- mgnw md - 2"
The result now follows by combining (21), (22), (23), and (24). [

3. EXISTENCE OF MIXED MULTIPLICITIES OF GRADED FAMILIES

In this section, we use Theorem 2.9 to show the existence of mixed multiplicities of graded
families of ideals. We begin with the m-primary case.

3.1. The m-primary case. In this subsection, we use the following setup.

Setup 3.1. Let (R,m,k) be a Noetherian local ring of dimension d such that dim (N(R)) < d;
here N(R) denotes the nilradical of the m-adic completion R. Let M be a finitely generated R-
module. Let I(1) ={I(1)n}nen, --- 0(s) ={I(s)ntnen be m-primary graded families of ideals.
For every p € N and m = (my,...,ms) € N° we follow the same abbreviations from (11). The
sequence (I(1),...,0(s)) of graded families is simply denoted by [. For each p € N, we denote by
Gé\é)(tl,...,ts) the polynomial

corresponding with the ideals I(1)p,...,I(s)p (see (1)).
Remark 3.2. We note that there exists ¢ € N such that m¢ C I(i); for every 1 <1i<'s. Thus,
(i

for every m = (my,...,mg) € N5, the assumptions of Setup 2.7 are satisfied if J(i), = R for each
I<i<randn e N.

The following result allows us to define the mixed multiplicities of m-primary graded families
of ideals.

Theorem 3.3. Assume Setup 3.1. Then, there exists a homogeneous polynomial of total degree d
A(M/LymM
GM(m) = lim AM/TrmM) ?iim )
m—o0 m
for everym = (my,...,ms) € N5. Moreover, for every m € N° we have
Gévl ) (m)

lim —P

= GM(m).
P00 Pd [I( )
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Proof. By passing to the m-adic completion R, we may assume R is a complete local ring. By
assumption, and by following the same proof of [5, Lemma 5.2] we may assume R is complete
and reduced. Let pq,...,py be the minimal primes of R and set R; := R/p; forevery 1 <i<w. In
[6, Lemma 5.4] the authors prove that for any m-primary graded family of ideals {I;, };mepn that is
a filtration, 1.e., I +1 C I, for every m € N, we have
(M/ImM = AM &g Ri/ImM @k Ri)

Z lim

P m—o0

(25) lim a

m—00

However, it is easy to see that the filtration condition is not necessary and that the result in (25)
is also valid for graded families. Thus, by using this fact first with [, = L,y and then with
I, =I(p)™™ we may assume R is a complete domain. Under the latter assumption, in [6, Lemma
5.3] it is shown that

(26) lim w

m—o00 md

=rankg(M) ( lim M)

m—oo md

for any m-primary filtration {I,;,};men. Again, the result in (26) is also valid for graded families.
Hence, it suffices to show the result for M = R when R is a complete domain. The result now
follows by using Theorem 2.9 with J(i), =R for each 1 <1< rand n € N (see also Remark 3.2,
[5, Lemma 3.2, proof of Theorem 4.5]). ]

We are now ready to define the mixed multiplicities of m-primary graded families of ideals.

Definition 3.4. Let Gﬁvl(t) be the polynomial in the conclusion of Theorem 3.3. Write

ea(M:0(1),...,0(s) 4, .a.
G =) = al---dg! CIRR

ldj=d

We define the real number number eq(M;[(1),...,1(s)) to be the mixed multiplicity of M of type
d with respect to I(1),...,0(s).

As an immediate consequence of Theorem 3.3 we obtain the following “Volume = Multiplicity
formula” for mixed multiplicities of m-primary graded families of ideals.

Corollary 3.5. For every d € NS with |d| = d we have
ed(M’I(l)p”I(s)p)

lim 3 =ea(M;I0(1),...,0(s)).
pP—00 P
In particular, the coefficients ofGﬁvl(t) are non-negative, that is, eq(M;(1),...,0(s)) > 0 for every
de NS with|d|=d
In the case that the graded families [(1),...,1(s) are all the same, we obtain the following

corollary.

Corollary 3.6. Assume the graded families I(1),...,1(s) are all equal to I ={L}nen. Then for
every d € N® with |d| = d we have eq(M;[(1),...,1(s)) = eq(M;L).

Proof. Tt is easy to verify that for an m-primary ideal I one has eq(M;1,...,1) = eq(M;I) for
every d € NS with |d| = d. The result now follows from Corollary 3.5. O
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3.2. The general case. The data below is set in place during this subsection.

Setup 3.7. Let (R, m, k) be an analytically irreducible ring of dimension d. Let J(1) ={J(1)n}nen
ooy J(r) ={J (r)nnen be graded families of non-zero ideals, and let | ={I;, },cp be an m-primary
graded family of ideals. For every p € N and n = (ny,...,n,) € N" we follow the same abbrevi-
ations from (11). The sequence (J(1),...,J(r)) of graded families is simply denoted by J. For
each natural number p € N, we denote by G(ﬂ(p); J(p)) (to,t1,...,ty) the polynomial

Gy (1, Jr)p) (F0s - )

.....

corresponding with the ideals I,, J(1)p,...,J(T)p (see (2)). We further assume that for every natural
number ng € N and n = (nq,...,n;) € N" the pair of graded families

<{Jmn}men\l > {ImnoJmn}me N )

has linear growth, and that if ¢ := ¢ ({Jmntmen, {Imngdmntmen), then
Jp)™NmP™ =10 (p) ™ NmP™ for every p,m € N.

Remark 3.8. We note that the assumptions in Setup 3.7 are natural in the context of this paper (see,
e.g., [6, Theorem 6.1]), and they are satisfied under mild assumptions on the ideals. For instance,
if we consider a positively graded ring over a field and assume that there is a linear bound on n
for the degrees of the generators of the (now) homogeneous ideals J(i), (cf. [3, Lemma 3.9]).
The latter bound exists whenever R is a standard polynomial ring and there is a linear bound for
the Castelnuovo-Mumford regularities, for example, if {J,, }nen are the symbolic powers of ideals
of dimension at most two [2, Corollary 2.4], or initial ideals of ideals of dimension at most one
[11, Theorem 3.5].

From the previous remark we obtain the following explicit examples.

Example 3.9. Let Xi,...,X; C [P]i1 be zero- or one-dimensional schemes and J,..., ], their cor-

responding defining ideals in k[xg,...,x4]. The families of symbolic powers J(i) = {]En)}neN for
1 <1<, together with any m-primary graded family of homogeneous ideals | = {1, }cp, satisfy
the assumptions of Setup 3.7.

Example 3.10. An example of particular interest is the following: given a sequence of convex
bodies Kj,...,K;, we consider the graded families of monomial ideals J(1),...,J(r) from [3,
Section 5] whose mixed multiplicities coincide with the mixed volumes of Ki,...,K; (see [3,
Theorem 5.4]). These families, together with any m-primary graded family of homogeneous ideals
I ={I\}nen, satisfy the assumptions of Setup 3.7.

The following result allows us to define the mixed multiplicities of graded families of ideals.

Theorem 3.11. Assume Setup 3.7. Then, there exists a homogeneous polynomial of total degree
d and real coefficients G(U;J])(to,t) = G(ﬂ;\ﬂ)(to,tl,...,tr) € Rit] = R[tg,ty,...,ts] such that

A I
Gp.0)(no,m) = lim (Jmn/TImngJmn)

m—co md

2

for everyng € Nandn = (ny,...,n;) € N". Additionally, the polynomial G . j)(to,t) has no term

of the form et - -ti" with e # 0 and d; + - -+ dy = d. Moreover; for every ng and n € N we
have
G1(p):d(p)) (M0, 1)

Jim SRR = Gy (noon).
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Proof. By passing to the m-adic completion R, we may assume R is a complete local domain.
The result now follows by Theorem 2.9 and (2) (see also Remark 3.2, [5, Lemma 3.2, proof of
Theorem 4.5]). ]

We are ready to define the mixed multiplicities of graded families of ideals.

Definition 3.12. Let Gy (to,t) be the polynomial in the conclusion of Theorem 3.11. Write

e(doa) (11 JI(1),...,d(r))
@7 Gy (to.t) = Z (Ed)+1)vd o dy! tSOH Tl
do-Hdl=d—1 0 G

We define the real number e(q, q)(1 | J(1),...,J(r)) to be the mixed multiplicity of J(1),...,(r)
of type (do,d) with respect to |.

We also obtain the following version of the “Volume = Multiplicity formula”.
Corollary 3.13. For every dg € N and d € N" with dy+|d| = d — 1 we have

lim e(do"”(lp”Sd)p"“’mp) = e(qa) (1] 3(1)..... J(r)).

In particular, the coefficients of Gy, (to,t) are non-negative, thatis, e(g, a)(11 J(1),...,J(1)) =0
for every dg € N and d € N™ with d0+ d|=d—1.

We end this section with the following comparison of the two notions of mixed multiplicities
introduced in this section (cf. [20, Theorem 1.2]).

Corollary 3.14. Assume that J(1),...,J(r) are m-primary graded families of ideals. Then, for
every dy € Nand d € N" with dg+|d| = d we have

(i) If do =0, then e(g, a) (R0, J(1),..., (1)) = ea(R; S(1),..., I(r)).
(i) 1 do > 0, then (g, q)(R:0, J(1)...... I(1)) = e(q,1a(1 | I(1)..... I(r).
|

In particular, e(g_; 0)(11 I(1),...,I(r)) = eq(R;1).
Proof. The result follows from the following short exact sequence
0— Jmn/ImnoJmn — R/ImnoJmn — R/Jmn —0

for every ng,m € Nandn € N". O

4. PROPERTIES OF MIXED MULTIPLICITIES OF m-PRIMARY GRADED FAMILIES

In this short section we demonstrate how Theorem 3.3 and Corollary 3.5 can be used to show
that the mixed multiplicities of graded families inherit many important properties from mixed
multiplicities of ideals. Throughout this section we assume Setup 3.1.

We begin with the additivity under short exact sequences (cf. [13, Lemma 17.4.4], [5, Proposi-
tion 6.7]).

Proposition 4.1. Assume Setup 3.1. Let 0 — M’ — M — M” — 0 be a short exact sequence of
finitely generated R-modules. Then for every d € N° with |d| = d we have

ea(M;I(1),...,0(s)) = eqa(M’;1(1),....0(s)) +eq(M";1(1),...,1(s)).
Proof. The result follows by [13, Lemma 17.4.4] and Corollary 3.5. O



14 YAIRON CID-RUIZ AND JONATHAN MONTANO

We continue with the associativity formula (cf. [ 13, Theorem 17.4.8], [5, Theorem 6.8]). In the
following statement, for a graded family [ = {I, }nen, and a prime ideal p € Spec(R), we denote
by [(R/p) the graded family of R/p-ideals I(R/p) = {1 (R/p)nen-

Theorem 4.2. Assume Setup 3.1. Let M be a finitely generated R-module. Then for every d € N°
with |d| = d we have

ea(Ms0(1),...,0(s)) = ) Ag,(Mp)ea(R/p:0(1)(R/p).....0(s)(R/p)),
P

where the sum runs over the minimal primes p of R such that dim(R/p) = d.

Proof. We note that for a minimal prime p of R we have dim (N(l%)) < d (see [5, Theorem
6.8]). The result now follows by [ 13, Theorem 17.4.8] and Corollary 3.5.

We also obtain Minkowski inequalities for mixed multiplicities of graded families (cf. [13,
Theorem 17.7.2, Corollary 17.7.3], [5, Theorem 6.3]). In the following statement for a graded
families | = {I; Jnen and J = {Jn nen we denote by [J the graded family 1J = {I, 1 fnen-

Theorem 4.3. Assume Setup 3.1 and that R has positive dimension. Then,

(i) era—i)(M;0(1),0(2))* < efivra—ion) (M3 I(1),0(2)) et aig1) (M 1(1),0(2)) for 1 < i<
d—1.
(i) e(i,a—1)(M;0(1),0(2))erq—i1)(M;0(1),0(2)) < ea(M;1(1))eq(M;1(2)) for 0 < i< d.
(iii) e(,q—1)(M;0(1), (2))d <ea(MI(1)) 4 tea(M1(2)) for 0 < i< d

(i) ea(M:I(1)1(2))4 < eq(M:1(1))2 +eq(M:1(2))4 for0< i< d
Proof. The result follows by [ 13, Theorem 17.7.2, Corollary 17.7.3] and Corollary 3.5. 0J
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