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The Asian clam Corbicula fluminea (Family: Cyneridae) has aggressively invaded
freshwater habitats worldwide, resulting in dramatic ecological changes and declines
of native bivalves such as freshwater mussels (Family: Unionidae), one of the most
imperiled faunal groups. Despite increases in our knowledge of invasive C. fluminea
biology, little is known of how intrinsic and extrinsic factors, including co-occurring
native species, influence its microbiome. We investigated the gut bacterial microbiome
across genetically differentiated populations of C. fluminea in the Tennessee and Mobile
River Basins in the Southeastern United States and compared them to those of six
co-occurring species of native freshwater mussels. The gut microbiome of C. fluminea
was diverse, differed with environmental conditions and varied spatially among rivers,
but was unrelated to host genetic variation. Microbial source tracking suggested that
the gut microbiome of C. fluminea may be influenced by the presence of co-occurring
native mussels. Inferred functions from 16S rBNA gene data using PICRUST2 predicted
a high prevalence and diversity of degradation functions in the C. fluminea microbiome,
especially the degradation of carbohydrates and aromatic compounds. Such modularity
and functional diversity of the microbiome of C. fluminea may be an asset, allowing to
acclimate to an extensive range of nutritional sources in invaded habitats, which could
play a vital role in its invasive success.

Keywords: freshwater biodiversity, invasive species microbiome, microbial source tracking, RADseq, species
interactions, Unionidae

INTRODUCTION

The introduction of species outside of their native range through human activities is an accelerating
phenomenon worldwide (Seebens et al., 2017). Invasive species, spreading aggressively after
introduction, have important negative ecological consequences on the ecosystem they invade and
are the second leading cause of species endangerment and extinction (Bellard et al., 2016). As with
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other organisms, invasive species live and interact with a diverse
community of microorganisms, their microbiome, which is an
integral part of their biology and ecology (Bahrndorffetal., 2016).
While the composition and function of microbiomes have been
examined for many host species, they have rarely been assessed
in an invasion context (but see, e.g., Goddard-Dwyer et al., 2021).

The influence of the microbiome on invasive species success,
while increasingly recognized in plants (Kowalski et al., 2015), is
still largely unknown in animals (Bahrndorff et al., 2016). This
is striking given that numerous hypotheses for the success or
failure of the invasion process involve mutualistic or antagonistic
partners of invasive and native species, which can include
microbes (Lockwood et al, 2013a,b). It has been suggested
that a higher variability or diversity of functions displayed by
the gut microbiome may benefit a host’s capacity to adapt
to a more extensive range of nutritional niches, therefore
facilitating its establishment in invaded areas (Bahrndorff
et al,, 2016; Goddard-Dwyer et al.,, 2021). The microorganisms
transported by an invasive species may also pose a risk to native
populations through the transmission of pathogens (Lymbery
et al., 2014), or through the modification of environmental
microbial communities that may be less beneficial to the native
hosts (Coats and Rumpho, 2014).

As with any organism, microbiomes associated with invasive
species can be driven by both host-specific (e.g., host condition,
life history, genetics) and environmental factors (e.g., water
physichochemistry, diet) (Chiarello et al,, 2019). Additionally,
while invasive species may carry microorganisms that are
co-introduced from their native range, they may also lose
much of their microbiome during an invasion and thus
may acquire novel microbes locally (Parker et al., 2006).
This makes the invasion history, such as the number of
distinct introductions and subsequent patterns of spatial
expansion, important when assessing the microbiome diversity
of invasive species (Parker et al., 2020). Interactions with
local native communities may be particularly important when
the invasive species occupies the same functional role as co-
occurring native fauna, as similar niche requirements should
increase encounters between native and invasive species,
therefore increasing the potential for microbe acquisition
(Parker et al., 2006; Shelby et al., 2016). Thus, investigating
the microbiome of established invasive populations across
ecological gradients provides an opportunity to understand the
relative influence of host-specific and environmental influences
in shaping the microbiome of invasive species during the
invasion process.

Invasive species in freshwater habitats are of particular
concern, as these ecosystems are among the most diverse and
vulnerable on the planet and have exhibited the most dramatic
decreases in biological diversity since the 1970s (Darwall et al.,
2018; Lopes-Lima et al., 2018; Albert et al., 2021). Asian clams
in the genus Corbicula are among the most problematic invasive
freshwater species, having spread rapidly from their native range
in Eastern Asia, Australia, and Eastern Africa, to a worldwide
distribution in just a few decades (Lee et al., 2005; Sousa et al.,
2008). The exact number of species within the genus Corbicula is
still unclear, but most invasive lineages are classified as Corbicula

fluminea or fluminalis (Sousa et al., 2008). The United States
populations are referred to as Corbicula fluminea (National
Invasive Species Information Center’, February 2021), but belong
to five genetically distinct morphotypes (Haponski and Foighil,
2019). Corbicula fluminea reproduces androgenetically, where
the nuclear DNA of juveniles is derived entirely from the
male parent (Ishibashi et al., 2003), and clonal reproduction of
introduced lineages has contributed to their rapid expansions
(Lee et al., 2005; Haponski and Foighil, 2019).

Corbicula fluminea invasions are especially concerning
because of their potential impact on native bivalve populations,
particularly mussels in the family Unionidae (Sousa et al,
2008; Haag, 2019). Freshwater mussels play important roles in
ecosystems through their filter-feeding (Vaughn and Hoellein,
2018) and are among the most threatened faunal groups
worldwide, with 45% of the described species being threatened,
endangered, or extinct (Lopes-Lima et al, 2014a, 2018).
Freshwater mussels are typically slow growing and long-lived
(most living ~6-50 years, Haag, 2012) and often occur in
dense multi-species aggregations, yet both their diversity and
abundance have been declining dramatically (Haag, 2019).
C. fluminea occupies the same functional guild as unionids
(i.e., filter-feeding bivalves) but shows a faster growth rate and
shorter life span (1-5 years) that, together with earlier sexual
maturity and clonal reproduction, allows it to reproduce and
disperse more rapidly than native mussels and to recover more
quickly following perturbations (McMahon, 2002; Sousa et al.,
2008; Ferreira-Rodriguez et al.,, 2018b). Increasing densities of
C. fluminea may thus replace unionid populations in the wild
(McMahon, 2002; Ferreira-Rodriguez et al., 2018b) and pose a
risk to remaining populations (Sousa et al., 2008; Haag, 2019).
While field assessments in Western Europe and North America
document variable spatial overlap between invasive C. fluminea
and native mussel populations (Vaughn and Spooner, 2006;
Ferreira-Rodriguez et al., 2018a), experiments have revealed the
negative impact of C. fluminea on mussel growth and physiology,
with the most likely cause being competition for space and/or
resources, as C. fluminea typically displays higher individual
filtration rates than native mussels (Ferreira-Rodriguez et al.,
2018a,b; Haag, 2019).

Despite these possible threats to native mussels, the
microbiome of C. fluminea and its relationship to native
mussel microbiomes have never been examined. The unionid
microbiome has been increasingly studied over the past few
years, suggesting some degree of species-specificity, where
mussel species collected from the same environment have
distinct microbiomes (Weingarten et al., 2019; Liu et al., 2020;
McCauley et al., 2021). However, while opportunistic bacteria
are detected within moribund mussels or during mass mortality
events, little is known about potential bacterial pathogens of
mussel populations in the wild (Grizzle and Brunner, 2009; Leis
et al.,, 2019; McElwain, 2019; Richard et al., 2021), or the risk
of a transmission of such pathogens from exotic species such
as C. fluminea. Whether C. fluminea likewise harbors its own
distinctive microbiome, influences the microbiome of native

Thttps://www.invasivespeciesinfo.gov/
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freshwater mussels, or has acquired a microbial community
that reflects that of the local environment and/or one of the
native mussels remains unknown. Further, the unique invasion
history and reproductive mode of C. fluminea clonal lineages
may influence microbiome diversity and transmission within
and among populations. Thus, understanding the distribution of
different clonal lineages or fine-scale population genetic structure
could provide additional clues into the respective roles of
host-specific and environmental influences. Given the potential
negative impacts on native mussel communities, investigating the
diverse factors that may contribute to C. fluminea microbiome
diversity alongside native mussel microbiome will help better
elucidate possible impacts on freshwater mussel communities.

We report the first investigation into the microbiome of
C. fluminea populations that co-occur along a gradient of
native freshwater mussel assemblage density in the Mobile and
Tennessee River Basins (Figure 1; Hopper et al., 2021). We
describe the diversity and inferred function of the microbiome
of C. fluminea and assess the main differences compared to
that of co-occurring native mussels. By integrating population
genomic data, we examine the genetic structure of C. fluminea
in the Mobile and Tennessee Basins and test whether ancestry
contributes to microbiome diversity, either from clonal lineage
or within-lineage genetic variation. Lastly, we examine if the
presence and/or higher densities of C. fluminea may lead to
changes in the microbiome of co-occurring native mussels
and assess the potential reciprocal influence of the native
mussel microbiome on that of C. fluminea. By examining how
spatial-environmental variation, population genetic structure,
and co-occurring mussel communities interact to influence
microbiome composition, we provide insights into host-specific
and environmental factors driving the microbiome of established
invasive freshwater species.

MATERIALS AND METHODS
Study Area

Samples were collected from six rivers in the Mobile and
Tennessee River Basins, in the southeastern United States
(Figure 1). The southeastern United States is a hotspot for
freshwater mussel biodiversity, containing ~90% of the North
American diversity (Parmalee and Bogan, 1998; Williams et al.,
2008). This extraordinarily diverse region has been severely
degraded by anthropogenic activity, such that 95% of the 70
United States federally protected mussel species occur in this
region (Williams et al., 2008). Although C. fluminea has been
considered established in the southeastern United States for
more than 50 years (US Geological Survey, 2021), complete
accounts of C. fluminea invasion timing and quantitative
population estimates are rarely available where mussels are
found (Benson and Williams, 2021). On our 16 study sites
(1-4 per river), C. fluminea density ranged from low to
very high (averaging 0.5-92 individuals/m?) and was generally
correlated to native mussel densities, which ranged from 0.6
to 23 individuals/m? (as reported by Hopper et al., 2021;
Figure 1).

Specimen Collection and Environmental

Measures

We collected 180 specimens of C. fluminea and 144 specimens of
Unionidae belonging to six species (Lampsilis ovata, Cyclonaias
pustulosa, Cyclonaias asperata, Fusconaia cerina, Tritogonia
verrucosa, and Amblema plicata) between July and September
2019 (Figure 1 and S1-Supplementary Table 1). We collected
3-28 individuals of C. fluminea per site, along with up to 10
individuals each from up to three native mussel species. Mussel
species were identified morphologically by author C.L.A.

All specimens were placed on ice and transported back
to the University of Alabama on the same day of collection,
where they were flash-frozen and stored at —80°C. The
entire gastrointestinal tracts of mussels and C. fluminea
were subsequently excised using sterile dissecting equipment
and transported on dry ice to the University of Mississippi
for microbiome analysis. For population genomic analysis,
C. fluminea mantle tissue was clipped and stored in molecular
biology grade absolute ethanol at —80°C.

Three surface sediment and three 120-mL water samples
were collected from each site at the time of sampling.
Water samples were filtered through sterile 1 pm pore
size glassfiber filters (25 mm diameter; Millipore) placed
in sterile tubes. Water temperature, pH, conductivity, and
dissolved oxygen were measured at each site using aYSI
DO Probe (YSI Inc., Yellow Springs, OH, United States),
and 50 mL water samples were collected to determine
concentrations of dissolved organic carbon (DOC), Soluble
Reactive Phosphorus (SRP), soluble ammonium (NHg+),
soluble nitrite (NO,—), soluble nitrate (NOz—). Sediment
granulometry was also determined for each sample site.
Values of these parameters and methodology are described in
S1-Supplementary Table 2.

Microbial DNA Extraction, 16S rRNA
Gene Sequencing, and Sequence

Processing

A subset of 3-8 C. fluminea specimens per site was selected for
microbiome analysis for a total sample size of 80 C. fluminea
and 144 native mussels (S1-Supplementary Table 2). Bivalve gut
tissue was ground using sterile pellet pestles with the extraction
buffer from a PowerSoil Pro kit (Qiagen, Germantown, MD), and
bacterial DNA was extracted as described previously (McCauley
et al, 2021). DNA from sediment and filtered water (seston)
samples were extracted following PowerSoil Pro kit instructions.
Dual-indexed barcoded primers were used to amplify the V4
region of the 16S rRNA gene of the extracted DNA from each
sample following established techniques (Kozich et al., 2013;
McCauley et al., 2021). This hypervariable region was chosen
following previous work on unionid microbiome using Illumina
MiSeq technology (Weingarten et al., 2019; Aceves et al., 2020;
Richard et al,, 2021), and recommendations from the Earth
Microbiome Project’(01/2022). The amplified 16S rRNA gene
fragments were combined and spiked with 20% PhiX before being

Zhttps://earthmicrobiome.org/protocols-and-standards/16s/
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FIGURE 1 | Map of the collecting sites (A,C,D) and pictures of the shells (B) of the species studied. (A) Overall map of the United States of America, showing the
Mobile and the Tennessee river basins shaded in gray. (C) Density of unionids on our collecting sites along the six rivers of study. (D) Density of the invasive Asian
clam Corbicula fluminea on collecting sites and site names represented by three letters. (B) On-scale pictures of representative shells of the native unionid species
included in this paper (Lampsilis ovata, Cyclonaias pustulosa, Cyclonaias asperata, Fusconaia cerina, Tritogonia verrucosa, and Amblema plicata) and the invasive

sequenced on an Illumina MiSeq at the University of Mississippi
Medical Center Molecular and Genomics Core Facility.

Raw sequences were processed using the DADA2 R-package in
R version 3.6.3 (R Core Team, 2020b). We followed the general
methodology available on the DADA2 Github*(11/2020). We
filtered sequences with more than two and five estimated errors
on forward and reverse reads, respectively, and truncated reads
on their 3’ end at the first base where quality dropped under
a quality score of 2 (TrunQ = 2). After estimation of error
rates, Amplified Sequence Variants (ASVs) were predicted and
merged using default parameters. Chimeras were removed using
the consensus method in “removeBimeraDenovo” function.
Any final ASV out of a range of 243-263 base pairs was
then removed, leaving a total of 57,556 ASVs in the un-
rarefied dataset of 318 samples. Bivalve microbiomes contained

3https://benjjneb.github.io/dada2/tutorial.html

4,042 to 196,506 sequences. To ensure comparable alpha-
and beta-diversities, we randomly rarefied bivalve samples to
4,000 sequences. Environmental samples (sediment, seston)
contained fewer sequences (2,374 - 16,587 and 2,100 - 34,963,
respectively), and were rarefied to 2,000 sequences per sample.
After rarefaction, 31,091 ASVs remained in the entire dataset
containing all bivalves and environmental samples. Coverage
was assessed by Chao’s non-parametric indicator using the
“entropart” R-package (Marcon and Hérault, 2015) and averaged
0.98 £ 0.02 (Mean =+ Standard Deviation, here and elsewhere)
across samples after rarefaction.

Microbial Phylogeny and Diversity

Indices

Alpha-diversity (Shannon alpha-diversity) was assessed using
the ‘vegan’ R-package and expressed in an equivalent number
of species (Dixon, 2003; Jost, 2007). To compute phylogenetic
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diversity, ASV sequences were incorporated into the GreenGenes
99% phylogenetic tree version 13.8 (McDonald et al., 2012) using
SEPP software (Janssen et al., 2018) implemented in QIIME2
(Bolyen et al, 2019), using default parameters. Phylogenetic
richness, based on the phylogenetic distance between ASVs, and
phylogenetic diversity, taking into account both phylogenetic
distances and ASV relative abundance, were, respectively,
assessed using Faith’s PD and the index of Allen using “picante”
(Kembel et al., 2010) and “entropart” R-packages. Phylogenetic
beta-diversity was assessed using the weighted (W-) and
unweighted (U-) versions of Unifrac on microbial phylogeny
using GUniFrac R-package (Chen, 2021).

Statistical Analysis of Phylogenetic and

Taxonomic Data

All data visualizations were made using the “ggplot2” R-package
(Wickham, 2016). Comparison of alpha-diversity between
C. fluminea and native mussels was assessed using Wilcoxon
signed-rank tests, using all native mussel species at once, and
separately for each mussel species. Rarefaction curves for each
sample were obtained using “vegan” and averaged per species,
before plotting. To assess differences in the overall structure
of the gut microbiome, U- and W-Unifrac dissimilarities were
plotted along the first two axes of a Principal Coordinates
Analysis (PCoA) ordination, and significant differences between
species, sites, and rivers were assessed using PERMANOVAs. Post
hoc pairwise comparisons of microbiome structure were assessed
using “pairewiseAdonis*.” Correlation between microbiome
dissimilarities and physicochemical characteristics on site were
assessed using the envfit function in “vegan,” removing sites
for which we didn’t have all measurements (S1-Supplementary
Table 2). Tritogonia verrucosa specimens presented the
highest variability and made the ordinations difficult to
interpret. Therefore, to ease visualizations, we performed
PCoAs without T. verrucosa. Separate PCoAs, including
T. verrucosa, are provided in Supplementary Information
S2. To assess the geographical variation within C. fluminea
microbiome, Spearman correlation tests were performed on
U- and W-Unifrac dissimilarities and geographical distances
between sites along the same river.

Individual LefSe analyses were computed to identify which
microbial taxa differed between C. fluminea and each mussel
species consistently across all sites (Segata et al, 2011).
Co-variation of mussel and co-occurring C. fluminea gut
microbiomes were assessed using 500 Mantel tests computed
in “vegan,” on random subsamples of the same number of
C. fluminea and native mussel specimens on each site. The
median of the 500 p-values was computed and the distribution
of Spearman’s correlation values was visualized using boxplots.
The potential contribution of the microbiome of C. fluminea
to that of native mussels was assessed using FEAST (Shenhav
et al., 2019) with each native mussel specimen as a “sink” and
all other co-occurring microbial communities (microbiomes of
other mussels, C. fluminea, seston, and sediment) as “sources.”
Conversely, the potential influence of the microbiome of native

“https://github.com/pmartinezarbizu/pairwise Adonis

mussels over co-occurring C. fluminea was assessed using each
native mussel specimen as a “source” and C. fluminea as a “sink.”
Such reciprocal influence was then compared across recipient
or source species (i.e., distinct mussel species and C. fluminea)
and sites using separated Kruskal-Wallis tests (KW). They were
then correlated with physicochemical and biotic variables (native
mussel and C. fluminea density, native mussel richness) using
separated Pearson’s correlation tests on scaled data using the
“psych” R-package (Revelle, 2021).

Microbial Functional Inferences and

Functional Diversity

Functional inferences from the ASV community table and
ASV sequences were obtained using PICRUST2 using default
parameters except for a similarity cutoff of 0.75 to remove
poorly aligned sequences (Douglas et al., 2020). The inferred
enzymatic functions were aggregated into metabolic pathways
according to MetaCyc database release May 2020, using the same
software. Predictive abundances of pathways were transformed
using a clr transformation of predicted expression levels using the
“microbiome” R-package (Lahti et al., 2019), and samples were
visualized using a Principal Component Analysis (PCA) in the
“phyloseq” R-package (McMurdie and Holmes, 2013). Functional
Bray-Curtis dissimilarities were computed on the transformed
functional table, using “vegan” in order to test the overall
differences in predicted functions from mussel vs. C. fluminea
microbiome, using PERMANOVAs in “vegan.” To identify which
pathways were significantly enriched in C. fluminea compared to
native mussels, we performed a DESeq2 analysis with a negative
binomial generalized linear model (P < 0.05) using “phyloseq”
and “DESeq2” R-packages (Love et al., 2014). The parent class
for each significant pathway was manually recorded from the
MetaCyc database to simplify result visualization.

Potential structural diversity of degraded compounds was
assessed by recording the Simplified Molecular Input Line-
Entry System (SMILES) code of each entry compound of all
pathways belonging to the Degradation-Utilization- Assimilation
class. Pairwise structural dissimilarities between every compound
were computed using RDKit (Landrum, 2021), and averaged for
each degradation pathway. The obtained dissimilarities were then
used to reconstruct a dendrogram using the ‘stats’ R-package,
which was used as an input in GUniFrac to assess the predicted
structural richness (unweighted Unifrac) of potentially degraded
compounds (hereafter, “degradation potential”).

Population Genomics of Corbicula
fluminea

Restriction Site-Associated DNA Library Construction
and Sequencing

To evaluate the population structure of C. fluminea, we
used the Best-RAD protocol (Ali et al, 2016) for reduced
representation genomic sequencing (Ali et al., 2016; Andrews
et al., 2016) of 185 C. fluminea from the sites described above
(Figure 1 and S1-Supplementary Table 1). DNA was isolated
from mantle clips using Qiagen DNeasy kits (Germantown,
ML, United States). DNA was normalized to 10 ng/pl and
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digested with the restriction enzyme SbfI-HF (New England
Biolabs, Ipswich, MA, United States), followed by ligation
of oligonucleotides containing unique 8 base pair Hamming
barcodes for each individual. Barcoded samples were combined
into two sample pools (94 and 91 haphazardly distributed
samples each) and sonicated using a Covaris M220 focused
ultrasonicator (COVARIS, INC, Woburn, MA, United States) to
generate fragments with a mean of 550 bp. RAD-tag fragments
for each sample pool were isolated with streptavidin beads, and
biotinylated groups were removed by Sbf-1 digestion. A NEBNext
Ultra™ kit (New England Biolabs, Ipswich, MA) was used to
prepare Illumina sequencing libraries with unique dual index
primers for each sample pool, using 12 PCR cycles to amplify
the RAD-tags. Samples were sequenced on an Illumina HiSeq X
(Illumina Inc., San Diego, CA, United States) to produce 150 bp
paired-end reads (Psomagen, Rockville, ML, United States).

Bioinformatics

Mlumina reads were demultiplexed and quality filtered using
Stacks v2.53 (Catchen et al., 2013) process_radtags (parameters
-¢, -q, -1, —best-rad, others default). 173 samples (> 500,000
reads per sample) were retained for downstream analyses.
Reads were mapped to the 18 major linkage groups in the
chromosome-level C. fluminea genome assembly (Zhang et al.,
2021) using BWA-mem v (Li and Durbin, 2009). Alignments
were sorted with samtools v1.10 (Li et al., 2009), and duplicate
reads were removed with picard v2.18.9 MarkDuplicates®. Single
Nucleotide Polymorphisms (SNPs) were called using freebayes
v1.2.0 (Garrison and Marth, 2012), with the minimum coverage
across samples set at 100 and including monomorphic loci
(-report-monomorphic). All data processing of variant call files
(vcf) used VCFtools v0.1.16 (Danecek et al., 2011) and statistical
analyses using R version 4.0.3 (R Core Team, 2020a). We first
removed indels and retained sites with a maximum of two alleles,
a minimum sequence coverage of five, and a maximum of 10%
missing data. This vcf was used to calculate nucleotide diversity
(m) for each site, including monomorphic sites, using -site-pi in
vcftools; m was averaged for each chromosome for individuals
in each river. After calculating 7, for other population genetic
analyses, the data set was filtered to only include variant sites
(-min-alleles 2) with a minimum quality threshold of 10 (-
minQ 10) and a minor allele frequency of 5% (-maf 0.05). SNPs
with a minor allele frequency < 0.05 were removed to reduce
the impact of low frequency alleles and possible genotyping
error (Rochette et al., 2019). Given that C. fluminea is clonal
and based on other population genomic studies of this species
(Haponski and Foighil, 2019), it was anticipated that there
would be substantial excesses in observed heterozygosity (Balloux
et al.,, 2003; Stoeckel et al,, 2006). The inbreeding coefficient
FIS was thus calculated in “hierfstat” R-package v0.5-7 using
the function boot. Pfis with 1,000 bootstraps (Goudet and
Jombart, 2021). After observing strongly negative FIS values (see
Results), an inspection of the data revealed many SNPs that were
fully heterozygous in all samples. We elected to remove SNPs
with fixed observed heterozygosity prior to population structure

>http://broadinstitute.github.io/picard

analyses and then thinned loci to < 1 SNP per kb to retain no
more than one SNP per RAD-tag locus. This final dataset of 5,225
SNPs was used for all population structure and genetic distance
estimations below.

The R-package “vcfR” v1.12.0 was used for import and data
format conversion (Knaus and Griinwald, 2017). Individual-level
differentiation was examined using a dissimilarity matrix. The
“poppr” v2.9.2 package function diss.dist was used to create
a distance matrix of the percent allelic differences between
individuals (Kamvar et al., 2014, 2015). Population structure was
visualized using discriminant analysis of principal components
(DAPC) performed in “adegenet” v2.1.4 (Jombart, 2008) and
plotted using “ggplot2.” To examine the genetic differentiation
among populations, pairwise FST was calculated (significance
tested by 1,000 bootstraps) in “StAMPP” v1.6.2 (Pembleton et al.,
2013). To assess the geographical patterns within C. fluminea
genetics, Spearman tests were performed on individual genetic
dissimilarities and river distances between sites along the
same river. The overall correlation between individual genetic
variation and microbiome was then computed using Mantel tests
performed on the 73 individuals in common the microbiome and
RADSeq datasets using “vegan” (999 permutations), performed
both globally and within each river. A population-level Mantel
test was also performed to assess a possible correlation between
pairwise FST and U- and W-Unifrac distances computed for site-
averaged microbiomes (i.e., averaged ASV relative abundances
for all C. fluminea from the same site).

DNA Barcoding

To confirm the clonal lineage assignment of individuals included
in the analysis, a subset of individuals from each location (N = 47
total) were amplified for the mitochondrial cytochrome c oxidase
subunit I (COI) gene using the LCO1490 and HCO2198 (Folmer
et al, 1994) DNA barcoding primers. PCR and sequencing
(in both primer directions) following methods in Lozier et al.
(2020). Geneious R10 (BioMatters, Ltd.) was used for all sequence
inspection, editing, assembly, and alignment. Sequence ends were
automatically trimmed (2.5% error limit) followed by manual
inspection. Consensus sequences for each sample were aligned
with the MAFFT plug-in. Clone identity was determined using
NCBI BLAST (default megablast).

RESULTS

Gut Microbiome Diversity and Structure

Phylogenetic richness based on presence-absence data and
diversity weighted by relative abundances of ASVs were higher
in C. fluminea microbiome than that of native mussels (Figure 2
and S2-Supplementary Table 1, Wilcoxon tests, P < 0.001).
The C. fluminea microbiome was richer phylogenetically and
taxonomically than every co-occurring mussel species sampled,
except for that of L. ovata, which reached similar levels
(Figure 2 and S2-Supplementary Table 1). Phylogenetic and
taxonomic and diversity accounting for relative abundance
were also significantly higher in C. fluminea when compared
to two and four of the native mussel species, respectively
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FIGURE 2 | Alpha diversity of the gut microbiomes of six native freshwater mussel species and the invasive clam Corbicula fluminea, collected from six rivers in the
Tennessee and Mobile River Basins, United States. (A) Distribution of phylogenetic richness (Faith’s PD) and phylogenetic diversity (Allen index of diversity) in

C. fluminea and mussels. (B) Average accumulation curves representing the number of amplified sequence variants (ASVs) in random subsamples of 1 to 4000
sequences per sample. Other descriptors of alpha diversity and coverage are available in S2-Supplementary Table 1.
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(S2-Supplementary Table 1). Conversely, estimated coverage
was significantly higher for every mussel species compared to
C. fluminea, excepted for L. ovata (S2-Supplementary Table 1).
While C. fluminea shared 21.4-26.9% of its ASVs with co-
occurring mussel species, each mussel species shared 31.5-53.1%
of their ASV's with co-occurring C. fluminea.

The overall structure of the C. fluminea gut microbiome was
distinct from that of native mussels as a group (PERMANOVA,
P = 0.001, R*? = 0.09 and 0.03 for W- and U-Unifrac,
respectively, Figures 3A,C); more distinct from seston bacterial
communities (P = 0.001, R? = 0.17 for both indices); and even
more distinct from sediment bacterial communities (P = 0.001,
R? = 0.47 and 0.50). The structure of the C. fluminea microbiome
and that of each mussel species were systematically distinct,
especially based on W-Unifrac (R? = 0.11-0.33 depending on
the mussel species considered; S2-Supplementary Table 2). The
mussels T. verrucosa and A. plicata hosted the most distinctive
microbiomes compared to that of C. fluminea, and T. verrucosa
sampled from the Buttahatchee and Sipsey Rivers exhibited the
most unique microbiome structure compared to all other species
(Figure 3 and S2-Supplementary Table 2, S2-Supplementary
Figure 1). Variability in microbiome structure was equivalent for
C. fluminea and each mussel species, other than greater variability
in T. verrucosa and C. asperata (permutation tests on betadisper,
P < 0.05).

The mean dissimilarity between C. fluminea and native
mussels (U-Unifrac = 0.73 £ 0.06; W-Unifrac = 0.36 & 0.10)
was similar to that between native mussel species (U-
Unifrac = 0.73 £ 0.06; W-Unifrac = 0.39 &+ 0.12). When the
analyses were performed excluding T. verrucosa, to eliminate the
greater influence of this mussel species, C. fluminea vs. mussel
dissimilarity (U-Unifrac = 0.73 & 0.04; W-Unifrac = 0.33 & 0.08)
remained similar to that within native mussel species (U-
Unifrac = 0.73 = 0.05; W-Unifrac = 0.34 & 0.08).

Additionally, the gut microbiome of C. fluminea tended to co-
vary with that of native mussels, especially based on the presence-
absence of ASVs (500 Mantel tests on U-Unifrac, median P < 0.1,
Figure 3). However, this correlation was not significant in

T. verrucosa, A. plicata, and L. ovata when considering relative
abundance weighted dissimilarities (median P > 0.1, Figure 3).

Geographic Variation in the Gut

Microbiome
Structures of C. fluminea and native mussel microbiomes varied
across rivers and sampling sites, and these effects were higher
for W-Unifrac than U-Unifrac (PERMANOVAs, P < 0.01 and
R? = 0.14-0.38 for every mussel species, and P < 0.01 and
C. fluminea, R*> = 0.15-0.58, respectively; S2-Supplementary
Table 3). Microbiome dissimilarities of C. fluminea showed
a positive correlation with river distance, i.e., more distant
individuals along the same river tended to have more distinct
microbiomes (Spearman test, P < 0.001, S2-Supplementary
Figure 2). Among environmental variables, soluble nitrate
(P=0.001, R? = 0.40), nitrite (P = 0.001, R* =0.32), SRP (P = 0.02,
R? = 0.14), water temperature (P = 0.02, R? = 0.14) and dissolved
oxygen (P = 0.03, R? = 0.12), were significantly correlated to
variations in the structure of C. fluminea microbiome (Figure 4).
The microbiome dissimilarities between native mussels (other
than T. verrucosa) were correlated to unionid density (P = 0.002,
R? = 0.23), dissolved oxygen (P = 0.002, R* = 0.17), nitrite
(P =0.001, R? = 0.17), SRP (P = 0.005, R? = 0.13), pH (P = 0.003,
R? = 0.12), and water temperature (P = 0.02, R? = 0.08) (envfit,
Figure 4). The microbiome dissimilarities between T. verrucosa
only correlated to SRP (P = 0.02, R? = 0.22). There was
no significant correlation between C. fluminea density and
the microbiome dissimilarities between native mussels (envfit,
P =0.38).

Population Genomic Variation in

Corbicula fluminea and Ilts Relationship

to the Gut Microbiome

DNA barcoding with COI confirmed that samples were identical
to the C. fluminea lineage “A” (S3-Supplementary Figure 1),
the most common in North America. Clonal lineage thus
does not appear to have a major contribution to microbiome
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FIGURE 3 | Dissimilarities between gut microbiomes of six native freshwater mussel species and the invasive clam Corbicula fluminea, collected from rivers in the
Tennessee and Mobile River Basins. A and C: Principal Coordinate Analyses (PCoAs) representing the weighted (A) and unweighted (C) versions of Unifrac
phylogenetic dissimilarity between individual microbiomes of five of the mussel species, and C. fluminea (PCoAs with all six species including T. verrucosa are
available in S2-Supplementary Figure 1). B and D: correlations between dissimilarities of W-Unifrac (B) and U-Unifrac (D) of C. fluminea and mussel microbiomes,
assessed by 500 Mantel tests on random subsamples of the same number of specimens at each site (either with all mussel species — “All,” or per species). The
median of the 500 p-values, indicating an overall significant co-variation between C. fluminea and mussel microbiomes, is displayed on the right.

dissimilarities across C. fluminea individuals in these rivers.
3,580,850 bp were sequenced by RAD-tag sequencing to a
mean coverage of 44.15x per site sample, with a mean of
2.4% missing data per sample. Nucleotide diversity was similar
among populations (m = 0.0049 - 0.0053 for all rivers) and
thus was also not considered a major predictor of microbiome
variation (S3-Supplementary Table 1). Consistent with extensive
clonal reproduction (Haponski and Foighil, 2019), FIS was
strongly negative in all populations (FIS values —0.92 to
—0.85, S3-Supplementary Table 1), and there were many SNPs
(7,213 of 34,646 SNPs) that were heterozygotes across all
sequenced individuals. After removing these sites and thinning

to one SNP per kb, 5,225 SNPs remained for analysis of
population structure. Pairwise FST showed weak but significant
differentiation of C. fluminea across rivers (S3-Supplementary
Table 2). DAPC analysis also indicated within clonal lineage
variation in diversity that was primarily structured by river,
although not by basin; samples from the Bogue Chitto River
largely separated on Axis 1 and Axis 2 transitioned from
Sipsey River samples (negatively loading) to Paint Rock and
Bear Creek River samples, to Duck and Buttahatchee River
samples (positively loading) (Figure 4). Within rivers, genetic
dissimilarities of C. fluminea exhibited a positive correlation
with geographical distance, i.e., more distant individuals tended
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FIGURE 4 | Genetic and microbial dissimilarities in the invasive clam C. fluminea and six native freshwater mussel species, collected from six rivers in the Tennessee
and Mobile River Basins. (A) DAPC showing the genetic dissimilarities between all 173 C. fluminea specimens that were included in the population genomics
analysis (RADSeq). (B) PCoA displaying W-Unifrac dissimilarities between the gut microbiomes of the 80 individuals analyzed for their microbiome. (C) PCoA
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to have more distinct genomes (Spearman correlation testS,
P < 0.001, S2-Supplementary Figure 2). Despite this structuring
of C. fluminea genetic diversity and geographic variation in
gut microbiomes, no significant correlations between genetic
distances and microbiome dissimilarities were detected, either
globally (Mantel tests on W- and U-Unifrac and individual
genetic dissimilarities, P > 0.05) or within rivers (Spearman’s
correlation test on dissimilarities between individuals collected
along the same river, P = 0.02, r = —0.1, Figure 4 and S2-
Supplementary Figure 2). Similarly, no correlation was detected
based on FST between rivers (Mantel tests on averaged W- and
U-Unifrac per river and FST, P > 0.05).

Composition

The C. fluminea gut microbiome consisted of 69 different
bacterial phyla and 126 bacterial classes, with the classes
accounting for the greatest proportion of sequences being
similar to those in the microbiome of the six native mussel
species. These included Clostridia (34.7 £ 21.2% and
14.1 £ 20.3% of the sequences for C. fluminea and native
mussels, respectively), Planctomycetacia (18.1 £ 9.3% and
23.5 £ 15.3%), Alphaproteobacteria (10.6 £ 5.1% and
12.7 £ 89%), Gammaproteobacteria (9.7 £ 10.6% and
8.2 &£ 7.4%), and Bacilli (4.3 £ 4.9% and 3.5 & 5.7%). Native
mussels also presented high percentages of Mollicutes, which
were of a lower abundance in C. fluminea (12.8 + 14.9% in
mussels vs. 4.5 & 5.5%). Compared to all species of native mussels
and across all sites, the C. fluminea microbiome contained higher
proportions of Actinobacteriota (LefSE logl0 LDA score = 3.0),
Verrucomicrobiota (2.9), and Planctomycetes (3.5), especially
the Gemmataceae (3.2) and Pirellulaceae (3.0). Eleven of the
most abundant ASVs were found to be significantly enriched
in C. fluminea compared to native mussels, the most numerous

ones classified as members of genera Romboutsia (Clostridiales),
Stenotrophomonas (Xanthomonadales), Epulopiscium
(Lachnospirales), and Paraclostridium (Peptostreptococcales)
(S2-Supplementary Figure 3).

Potential Reciprocal Influences of
Corbicula fluminea and Mussel

Microbiomes

The estimated influence of the C. fluminea microbiome on that
of the co-occurring mussels was on average of 5.8 + 8.0%,
while the influence of the native mussel microbiome on the
C. fluminea microbiome was 14.0 & 12.2% (KW on FEAST
results, P < 0.001) (Figure 5). The estimated influence of
the C. fluminea microbiome over that of native mussels was
primarily dependent on the recipient mussel species (KW,
P < 0.001), and independent from the collection site (KW,
P = 0.08). Mussel species that were under the greatest influence
from the C. fluminea microbiome were Cyclonaias pustulosa
(11.6 + 13.5%) and Lampsilis ovata (7.4 £+ 7.7%), while the
species that was the least influenced was Tritogonia verrucosa
(2.4 & 3.8%).

In contrast, the influence of the native mussel microbiome
on that of C. fluminea was significantly distinct across sites,
varying from 4.67% on site FAY (Sipsey river) to 15.3%
on BTN (Paint Rock river, KW, P = 0.01), but not across
source mussel species (KW, P = 0.051, varying from 4.39%
from T. verrucosa to 9.47% from C. pustulosa although no
mussel species were sampled on every site, making such
comparison difficult, Figure 1 and S1-Supplementary Table 1).
However, neither water physicochemical characteristics nor
biotic variables (C. fluminea and unionid densities) explained
such variation of mussel contribution across sites variation
(Spearman’s correlation tests, P > 0.05).
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FIGURE 5 | Influence of co-occurring host-associated, seston, and sediment
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data, P < 0.001, r = 0.6).

Inferred Functions and Degradation
Potential

The 436 functional pathways were inferred from the C. fluminea
gut microbiome sequence data compared to 443 for native
mussels. The functional potential of C. fluminea was distinct
overall from that of native mussels (PERMANOVA based on
Bray-Curtis, P = 0.001, R? = 0.07), especially from that of
T. verrucosa, A. plicata, and C. asperata (PERMANOVA’s pairwise
post hoc tests, P < 0.05). Compared to native mussels, the
functional potential of the C. fluminea gut microbiome was
enriched in pathways related to the degradation of various
compounds (especially carbohydrates and carboxylates, aromatic
compounds). In contrast, the microbiome of mussels included
higher potential for biosynthesis (especially cofactors and
vitamins, nucleotides, and nucleosides) (Figure 6). Among the
seven pathways that contributed the most to the differences
between the C. fluminea and mussel microbiomes, six were
classified as a degradation or assimilation function, and only one
to biosynthesis (methylquinone). All seven revealed a potential
for higher expression in C. fluminea than in native mussels
(S2-Supplementary Figure 4). Accordingly, the degradation
potential of each microbiome, taking into account all degradation
pathways, was significantly higher for C. fluminea than for any
native mussel species except L. ovata, where it reached similar
levels (S2-Supplementary Figure 5).

DISCUSSION

Here we document for the first time the gut microbiome
of the invasive C. fluminea. We demonstrate that while this
species’ microbiome is diverse, it is not highly distinctive from
that of the co-occurring native mussels. The high correlation
of the structure of the C. fluminea microbiome with local
environmental parameters, together with the influence of co-
occurring mussel species and the lack of influence of host
genetic ancestry, suggests that the microbiome of this invasive
species may be largely dependent on extrinsic factors such as
environmental conditions and local bacterial occurrence.

Differences in the Microbiome Between

Corbicula fluminea and Native Mussels

The microbiome structure of C. fluminea was only partially
distinct from that of six co-occurring native mussel species, with
similar dominant classes of Bacteria but differences occurring
at a finer taxonomic level. Overall similarities between the
microbiome of native mussels and C. fluminea could be explained
by the trophic similarity between these organisms, primarily
filter-feeding on suspended particles and deposit-feeding within
the sediment (Sousa et al., 2008; Schartum et al., 2017). However,
given the species-specificity of microbiomes within freshwater
mussels (i.e., distinct species occupying the same habitat host
distinct microbiomes, (Weingarten et al., 2019; McCauley et al.,
2021), we expected a more distinct C. fluminea microbiome
given its contrasting phylogeny and life history traits to those of
freshwater mussels. We also found no evidence that intra-specific
genetic ancestry or diversity was related to microbiome variation
within C. fluminea. All individuals sampled belong to the clonal
lineage A (Haponski and Foighil, 2019) and although SNP data
revealed significant within-lineage genetic differentiation across
rivers, there was no effect of genetic differentiation among
individuals or populations on their microbiomes. Instead, the
structure of C. fluminea microbiome was tightly correlated to
local environmental variables, with nitrates, nitrites, and SRP
being the primary drivers.

Studies on other invertebrates have demonstrated a consistent
effect of host genotype on the microbiome when hosts are reared
under controlled or germ-free conditions (Wegner et al., 2013;
Callens et al., 2020), so that it is likely that the lack of correlation
between the genotype of C. fluminea and its gut microbiome in
this study is related to variable field conditions. Further studies
under controlled conditions would be needed to confirm the
absence of a host genotype-microbiome link in this aquatic
filter-feeder.

Diversity of the Microbiome of Corbicula

fluminea and Inferred Functions

We observed a greater microbial richness in the gut microbiome
of C. fluminea compared to co-occurring native mussels,
except for L. ovata, which had similar levels of microbiome
diversity. Such higher diversity may be related to differences
in feeding behavior, as a higher clearance rate or a lower
selectivity in ingested particles could induce gut colonization
by a greater diversity of bacteria. C. fluminea has a higher
filter-feeding rate than the few native mussels that have been
studied so far (Hills et al., 2020; Pouil et al., 2021), and while
systematic comparisons are lacking, C. fluminea also shows
a low prey selectivity (seemingly limited to an avoidance of
toxic bacterioplankton (Bolam et al., 2019) and assimilates a
wider range of substrates (Atkinson et al, 2010). Unionid
mussels exhibit a higher degree of filtration selection and a
narrower range of substrate assimilation (Beck and Neves, 2003;
Atkinson et al., 2010; Lopes-Lima et al., 2014b). The greater
bacterial diversity hosted by C. fluminea may allow them to
consume a broader range of nutritional sources. This could
provide a competitive advantage for C. fluminea and, accordingly,
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functional inferences predicted a greater diversity of degradation
potential in the gut microbiome of C. fluminea compared to
native mussels, and most metabolic pathways that were enriched
in C. fluminea were associated with degradative functions. This
hypothesis is based on functional inferences and should be
studied further with appropriate metagenomic analysis of the
C. fluminea gut microbiome to confirm such higher prevalence of
degradation functions, combined with experiments to assess the
relationship between the C. fluminea microbiome and the nature
of successfully digested particles.

Reciprocal Influences Between Invasive
and Native Species

Overall, native mussels shared a substantial fraction of their
microbiomes with co-occurring C. fluminea (31.5-53.1% of ASV's
depending on mussel species), and C. fluminea and native mussel
microbiomes tended to co-vary across sites. The FEAST estimate
of mussel influence over co-occurring C. fluminea microbiome
was more than twice that of the reverse interaction. This may
indicate that C. fluminea may host gut populations that are
obtained locally, including from native mussels that may be

indirectly transferred through the water column or the sediment
via feces and pseudofeces. While such potential contamination
should be further explored in controlled conditions, it may
confirm evidence from plants that suggests that invasive species
can suffer from the loss of their natural bacterial symbionts
when they are introduced to a new environment, and must
develop novel interactions with local bacteria, potentially bacteria
associated with co-occurring native species (Parker et al., 20065
Shelby et al., 2016).

Accordingly, while comparisons of the microbiome of invasive
animal species across native vs. introduced range are lacking,
a study on invasive tunicates documented a more variable and
more diverse microbiome in individuals in the introduced range
than those in their native range, which may also suggest this
hypothesis could be confirmed in invasive animals (Utermann
etal., 2020). Moreover, in our study, while the estimated influence
of mussel microbiome over that of C. fluminea was variable
across sites, it was independent of local unionid density. Although
appropriate density experiments must confirm this, this may
indicate that even low densities of native species may provide
microbial partners to C. fluminea microbiome.
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CONCLUSION

We show that the gut microbiome of the invasive clam
C. fluminea presents several characteristics (e.g., higher diversity,
higher functional potential, and potentially a lower selectivity
and a higher rate of horizontal transmission from native
counterparts) that may be beneficial for such a globally invasive
organism to acclimate to a non-native area. This work should
be further developed, focusing on understanding which bacterial
partners may be more beneficial to C. fluminea to assess whether
these partners are also enriched in populations of C. fluminea
in their native range, or are indicative of invasive areas. Studies
evaluating geographic regions with additional clonal lineages
would also be valuable for fully understanding how genetic
diversity contributes to microbiome variation in this invasive
species. Focused analyses could pave the way for a more
nuanced understanding of the transport of symbionts within
invasive animal species, which is still a poorly investigated
topic, and has the potential to develop pre- or probiotics for
endangered native species.
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