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ABSTRACT

In this study, the comparison between the orbit electron density and total ion
density measured by payloads of Tri-GNSS Radio-Occultation System (TGRS) and
Ion Velocity Meter (IVM) onboard the FORMOSAT-7/COMSIC2 (F7/C2) satellites
is presented. The collocated TGRS and IVM observations for each of the F7/C2 satel-
lites at ~715 and ~540 km are evaluated during the whole year of 2020. Comparative
analysis reveals that the TGRS and IVM density observations have high correlation
coefficients of 0.92 - 0.96 for each of the F7/C2 satellites. The mean differences are
around -0.03 x 10* to 0.02 x 10* cm™ with standard deviations ranging from ~0.91
x 10* to 2.18 x 10* cm, demonstrating a good agreement between the independent
TGRS and IVM observations. Furthermore, the collocated observations are utilized
to examine the global spatial and temporal variations of the topside ionosphere. The
results show that the morphologies of the topside ionosphere in TGRS orbit electron
density are nearly identical to the IVM ion density, suggesting that both F7/C2 pay-
loads reliably produce accurate topside ionosphere observations. We found that the
TGRS orbit electron density tends to be 10 - 30% smaller than the IVM ion density in
the daytime equatorial ionosphere region at both high and low orbits, but the density
differences decrease to approximately -30 - 0% during the nighttime. These density
differences could be due to the error caused by the spherical symmetry assumption
in TGRS orbit electron density estimation. Observing system simulation experiments
are further performed to evaluate the relative errors between the TGRS and IVM
density observations at high and low orbits.

1. INTRODUCTION

The Global Navigation Satellite Systems (GNSS) ra-
dio occultation (RO) limb-sounding technique is a power-
ful technique for the global sounding of the atmosphere and
ionosphere. In 2006, the FORMOSAT-3/COSMIC (F3/C)
mission, a joint Taiwan and the United States RO satellite
mission, was launched from Vandenberg Air Force Base,
California. The F3/C mission created the first RO constel-
lation for meteorology, ionosphere, and climate. This con-
stellation consisted of six LEO satellites at orbits of 72°
inclination at ~800 km altitude, providing real-time global
atmospheric and ionospheric data for research and opera-
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tional use (e.g., Cheng et al. 2006; Schreiner et al. 2007;
Anthes et al. 2008). Over its mission lifetime, the F3/C
constellation has improved the capability of weather predic-
tion, climate monitoring, and space weather forecast with
unprecedented accuracy (e.g., Scherliess et al. 2009; Anthes
2011; Yue et al. 2012; Matsuo et al. 2013; Hsu et al. 2014,
2018; Lin et al. 2017; Sun et al. 2017; Ho et al. 2020), as
well as advanced the understanding of the ionosphere vari-
ability (Lin et al. 2007, 2009, 2010, 2012; Burns et al. 2008;
Zeng et al. 2008; Liu et al. 2010; Pedatella et al. 2011,
2014; Zakharenkova et al. 2012, 2017; Chang et al. 2013a,
b, 2015, 2020; Pedatella and Maute 2015; Wu et al. 2017).
The success of the F3/C mission motivated the follow-
on mission FORMOSAT-7/COSMIC2 (F7/C2), which
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similarly collects atmosphere and ionosphere data using
the RO technique (Anthes and Schreiner 2019; Fong et al.
2019; Schreiner et al. 2020). The F7/C2 constellation, con-
sisting of six LEO satellites, was launched on 25 June 2019
into six evenly spaced circular orbits of 24° inclination to
be ultimately deployed at ~540 km altitude, providing un-
precedented data coverage within £45° in latitude. The new
F7/C2 constellation is equipped with next-generation GNSS
receivers, so-called Tri-GNSS RO System (TGRS), devel-
oped by National Aeronautics and Space Administration’s
Jet Propulsion Laboratory (Tien et al. 2012), which can track
GPS and GLONASS signals with higher signal-to-noise ra-
tio, improving the quality of the RO measurements. With
upgrades to flight software, the TGRS may be able to track
Galileo signals as well. TGRS not only measures the tem-
perature, moisture, and pressure in the atmosphere, it also
provides measurements of total electron content (TEC) and
electron density in the ionosphere. F7/C2 provides more than
4000 neutral atmosphere RO profiles per day, with nearly
6000 ionosphere tracks per day. In addition to the TGRS,
each F7/C2 satellite has an Ion Velocity Meter (IVM, Heelis
et al. 2017) and the Radio Frequency Beacon (RFB) science
payload providing dense ionospheric sampling +24° of the
equator. The IVM measures in situ ion density, tempera-
ture, and drift velocity. The RFB enables measurements of
TEC and ionospheric scintillation by ground-based receiv-
ers. These scientific payloads provide high-quality data that
will contribute to terrestrial and space weather forecasts and
ionosphere research (e.g., Chou et al. 2020; Ho et al. 2020;
Lin et al. 2020a, b; Wu 2020; Chen et al. 2021; Cherniak et
al. 2021; Rajesh et al. 2021).

The topside ionospheric measurements are considered a
valuable database for ionosphere and space weather research
(e.g., Gentile et al. 2006; Heelis et al. 2009) and for im-
provement of empirical and operational ionospheric models
(e.g., Bilitza et al. 2017). Validating the topside ionosphere
measurements is therefore crucial to evaluate scientific sat-
ellite payloads’ performance (e.g., Hajj and Romans 1998;
Jakowski et al. 2002). Lei et al. (2007) showed that the F3/C
RO electron density agrees well with the Incoherent Scat-
ter Radars (ISR) electron density in the topside ionosphere,
demonstrating that the F3/C RO limb-sounding technique
provides accurate measurements. A similar study using
F7/C2 electron density by Cherniak et al. (2021) showed
similar high-quality comparisons between ISR observations
and RO derived electron density profiles. Yue et al. (2011)
compared the orbit electron density measured by the CHAI-
lenging Minisatellite Payload (CHAMP) RO with the in-situ
Planar Langmuir Probe (PLP) electron density. Comparison
between the PLP and RO observations showed that the RO
orbit electron density tends to be greater than the PLP elec-
tron density by ~10%. They suggested that the discrepancy
between the RO and PLP measurements might be due to the
assumption of spherical symmetry in the RO orbit electron

density retrieval (Syndergaard et al. 2006). However, the
errors in PLP electron density are unknown, and may also
contribute to the density difference. Lai et al. (2013) and
Pedatella et al. (2015) compared the F3/C RO electron den-
sity with the collocated in-sifu observations from CHAMP
and Communications/Navigation Outage Forecasting Sys-
tem. These studies show overall good agreement between
the RO and in-situ satellite observations. Their results also
revealed a systematic error in the equatorial and low-latitude
daytime ionosphere due to the usage of the Abel inversion to
retrieve the RO electron density profiles.

Although the studies mentioned above suggest that the
topside ionosphere measurements from the RO and in-situ
satellite observations should have high accuracy, it remains
a challenge to evaluate the accuracy of in-situ satellite ob-
servations with the RO density observations on the spatial
and temporal basis due to the limited number of collocated
observations. This study aims to validate the F7/C2 IVM ion
density with the TGRS orbit electron density. Both TGRS
and IVM payloads onboard the F7/C2 satellites provide a
unique opportunity for validation with abundant collocated
observations. We compare the IVM ion density with the
TGRS orbit electron density for each of the F7/C2 satel-
lites to investigate the data quality and the error distribution
in terms of local time, magnetic latitude, month, and orbit
altitude throughout the year 2020. Since the assumptions of
circular orbit and constant electron density along the orbit
track (i.e., spherical symmetry assumption) could lead to
systematic errors in TGRS electron density retrieval (Syn-
dergaard et al. 2006; Yue et al. 2010), observation system
simulation experiments (OSSEs) are, therefore, performed
to estimate the relative errors between the TGRS and IVM
density that are due to retrieval errors.

2.DATA
2.1 F7/C2 TGRS Orbit Electron Density

The F7/C2 TGRS orbit electron density can be ob-
tained in the level 2 ionPrf files (variable name: edorb) in
the CDAAC database. The CDAAC F7/C2 TGRS elec-
tron density profiles are derived using the Abel inversion
through the TEC observations (e.g., Lei et al. 2007). In
order to derive the orbit electron density, the F7/C2 TECs
are calibrated to obtain the portion of TEC below the LEO
satellites by subtracting the non-occultation side TEC from
the occultation side TEC (e.g., Schreiner et al. 1999; Yue et
al. 2011). Under the assumptions of spherical symmetry and
straight-line propagation, the relation between the calibrat-
ed TEC (TEC,,) and electron density (N,) can be expressed
through the Abel transform (Schreiner et al. 1999):

TEC.o(r) =2 Dy 1)

v 2 _roz
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where r,,, and r, are the radius of the satellite orbit and the
distance from the Earth’s center to the tangent point. The
electron density profile can be calculated recursively from
top to bottom along with the tangent points. A first-order
estimate of orbit electron density N,(r,,;) can be obtained
by solving Eq. (1). The solution of Eq. (1) can be expressed
as follows:

TECcal (r()) = 2Ne (rorb) \ rarbz - V02 (2)
=~ 2Ne(rorh)\/ 2rorb (rorb - r())

The orbit electron density is essentially calculated by fitting
a square root function of TEC.,,(r,) for the uppermost few
kilometers (~10 km) with the assumptions of constant elec-
tron density and a circular orbit (Syndergaard et al. 2006).

2.2 F7/C2 IVM Ion Density

The IVM is developed by the University of Texas at
Dallas and has been successfully utilized on many satellite
missions such as Dynamic Explorer, the Defense Meteoro-
logical Satellite Program (DMSP), ROCSAT, and the Iono-
spheric Connections Explorer ICON). The IVM consists of
two planar thermal ion sensors, a Retarding Potential Ana-
lyzer (RPA) and an Ion Drift Meter IDM). The RPA mea-
sures the energy of plasma along the direction of satellite
motion, and the IDM measures the arrival angle of plasma.
Both sensors are utilized to derive currents and voltages for
calculating the total ion density, composition, temperature,
and drift through a least-square fitting procedure (Heelis et
al. 2017). Wu et al. (2022) proposed a differential TGRS
slant TEC method to derive N,(r,,,) and provide a linear cor-
rection to the IVM ion densities. This method is similar to
Syndergaard et al. (2006), but the two methods are slightly
different. Wu et al. (2022) set a rigorous criterion to derive
N,(r,) by limiting the boresight angle between the LEO and
GNSS to be 0.5 degrees, which indicates that the F7/C2 sat-
ellite velocity (or anti-velocity) vector aligns with the direc-
tion of the GNSS satellite. The distance (ds) traveled by the
F7/C2 satellites is settled on a 2-second separation between
two slant TEC samples, approximately 15 km in the hori-
zontal distance. Under such conditions, 9 pairs of slant TEC
samples are available to derive 9 density values (N, = dTEC/
ds), which are then averaged to obtain a single N,(r,,;). The
derived N,(r,;) has high precision of less than 5%. The
linear coefficients between the slant TEC-derived N.,(r,,;)
and IVM ion density are further estimated through a least-
square fitting and applied to remove the bias of the IVM ion

density (https://data.cosmic.ucar.edu/gnss-ro/cosmic2/nrt/

F7C2_SpWx_IVM_Density Data_Release_Memo.pdf).
This method can estimate N,(r,,) more accurately with-

out using Eq. (2), which requires assumptions of constant
electron density and a circular orbit, though limited data are

available due to the constraint on the boresight angle. The
corrected IVM ion density can be obtained in the level 2
ivmLyv?2 file (variable name: ion_dens) in the COSMIC Data
Analysis and Archive Center (CDAAC, http://cdaac-www.
cosmic.ucar.edu) database. Note that the original IVM ion
density can also be obtained in the ivmLv2 file (variable
name: orig_ion_density). This study uses the corrected [VM
ion density with 1 Hz cadence to compare the F7/C2 TGRS
orbit electron density.

3. OBSERVATIONS

At launch, all F7/C2 satellites were placed into an ini-
tial ~700 - 720 km circular orbit. Satellites were lowered
separately and allowed to precess away from the other satel-
lites to achieve uniform observational coverage at low lati-
tudes. Figure 1 shows the average orbit altitudes for each of
the F7/C2 satellites in 2020. It shows that FM1 and FM4 are
below 550 km orbits, and FM6 is ~715 km orbit throughout
the year. FM2, FM3, and FM5 were lowered to ~540 km
orbits from 700 - 720 km orbits in March, June, and Sep-
tember, respectively. Hence the F7/C2 observations during
day-of-year (DOY) 001-365, 2020 provide an ideal period
to validate the IVM and TGRS density observations at both
low and high orbits. To mitigate spatial and temporal varia-
tions in observations, we restrict TGRS electron density and
IVM ion density to samples that occur within 100 km and
1-second. The comparison includes all latitudes, longitudes,
and local times to obtain sufficient collocated observations
from January to December 2020. Outliers greater than 1 x
10% cm™ or smaller than -2 x 10° cm™ in TGRS electron
density, approximately accounting for 0.0026% of total col-
located observations (19/731052), are excluded. The total
selected collocated observation number (N) is 731052.

Figure 2 shows the comparison between the TGRS or-
bit electron density and the IVM total ion density for each
of the six F7/C2 satellites (named hereafter C2E1-C2E6).
The TGRS orbit electron densities are generally consistent
with the IVM ion density observations with correlation coef-
ficients of 0.94, 0.95, 0.95, 0.95, 0.96, and 0.92 for C2E1-
C2E6, respectively. We note that TGRS orbit electron densi-
ties show occasional negative values, accounting for ~0.57%
of the collocated observations. This indicates that the meth-
od used to estimate the orbit electron density [Eq. (2)] has
degraded performance during some RO events (Syndergaard
et al. 2004, 2006). Figure 3 shows the corresponding histo-
grams of the difference between the collocated TGRS elec-
tron and IVM ion density observations (Ne-Ni). The mean
density differences for each of the satellites are around -2.53
x 10° to 0.31 x 10° cm™ with standard deviations ranging
from ~0.91 x 10* to 2.08 x 10* cm™. The density differences
are relatively small compared to the average ion and orbit
electron densities of ~2.5 x 10* to 5.8 x 10* cm™. Overall, the
small mean differences and standard deviations demonstrate
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Fig. 1. The variation of average orbit altitudes for six F7/C2 satellites (C2E1-C2E6) in 2020.
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a good agreement between the TGRS and IVM observations.

To further examine the spatial and temporal variations
of TGRS electron density and IVM totally ion density, the
collocated observations are utilized to plot the density distri-
bution as a function of magnetic local time (MLT) and mag-
netic latitude (MLAT) from January to December in 2020.
These density maps are constructed by binning these two
quantities into 0.5 h x 2.5° MLT x MLAT grids and taking
the mean values in each grid-point. A three-grid smoothing
window is then applied. Figures 4 and 5 show the TGRS
orbit electron density (odd rows) and IVM ion density (even
rows) maps for C2E1-C2E3 and C2E4-C2E6, respectively.
The most prominent feature, the so-called equatorial-ioniza-
tion anomaly (EIA) in the low latitude daytime ionosphere,
can be identified in both observations. The EIA structures
display significant semi-annual variations and hemispheric
asymmetry, consistent with previous studies (e.g., Rishbeth
et al. 2000; Tulasi Ram et al. 2009; Qian et al. 2013). Of
particular significance is that the morphology of EIA struc-
tures in TGRS orbit electron density are nearly identical to
the IVM ion density maps, implying that both TGRS and
IVM payloads reliably produce accurate observations of the
total topside ionospheric plasma density.

Note that the electron and ion density maps show sig-
nificant differences between each of the satellites and/or

TGRS Ne- IVM Ni (x 10% cm™3)

TGRS Ne- IVM Ni (x 10* cm™)
Fig. 3. Histograms of the difference between the TGRS electron density and IVM ion density for six F7/C2 satellites (C2E1-C2E6).

months due to the altitudinal difference of satellite orbits as
shown in Fig. 1. For example, C2E3 was at ~710 km altitude
from January to May and lowered to ~540 km altitude from
June to July, leading to a large difference in electron and ion
densities between the first and second half of the year. The
deployment phases of F7/C2 also lead to a significant gap in
observations. Overall, the quantities of electron and ion den-
sities between each of the F7/C2 satellites are similar when
comparing the densities at a similar orbit altitude. However,
the morphologies of EIA are slightly different because all
longitudes have been selected to obtain global mean MLT-
MLAT density maps, which in turn result in discrepancies
between each of the F7/C2 observations.

Figures 6 and 7 show the maps of density difference
(Ne-Ni) and relative error [(Ne-Ni)/Ni x 100%] as a func-
tion of MLAT and MLT. At lower orbit (~540 km), the error
maps indicated by red triangles show significant decreases
of about 0.5 x 10* to 2.5 x 10* cm™, approximately -20 to
-10% of relative errors, in TGRS electron density around
the daytime EIA region (~08:00 - 18:00 LT). The den-
sity differences become smaller than -1 x 10* cm™ during
~18:00 - 08:00 LT, but the relative errors increase to -30 to
-10% due to small background electron and ion densities.
The error maps also show that the TGRS electron density
tends to be greater than the IVM ion density by 10 - 20%
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around the negative error EIA regions during the daytime.
The decrease and increase in TGRS electron density around
the EIA region could be due to the constant electron density
assumption (i.e., spherical symmetry assumption) of Eq.
(2), which is similar to the alternating bands of negative and
positive errors due to the spherical symmetry assumption of
the Abel inversion in the bottomside ionosphere (e.g., Peda-
tella et al. 2015).

At higher orbit (~715 km), the error maps show a
smaller decrease of about -0.5 x 10* to -1 x 10* cm?, ap-
proximately -30 to -10% of relative errors, in TGRS electron
density around the daytime EIA region (~08:00 - 18:00 LT).
The density differences are nearly zero bias with relative er-
rors of about -20 to 0% at ~18:00 - 08:00 LT. We note that
the relative errors can reach over 100% at ~04:00 LT when
the background density reaches a minimum at both orbit al-
titudes. The IVM measurements have degradation when the
total ion density is smaller than 3 x 10* cm™ due to the much
lower O* concentrations after midnight during the prevailing
solar minimum conditions (e.g., Coley et al. 2010). Overall,
the TGRS orbit electron density tends to be smaller than the
IVM ion density in the EIA region. The density differences
are greater at lower orbit than at higher orbit, which could
be attributed to TGRS orbit electron density retrieval errors.
More significant RO retrieval errors occur around the EIA
region, as well as regions around dawn/dusk terminators
where the horizontal gradients are prominent.

4. OBSERVING SYSTEM SIMULATION
EXPERIMENTS

Although the TGRS orbit electron density and IVM ion
density generally show a good agreement, it is a challenge
to evaluate the accuracy of IVM ion density since the TGRS
orbit electron density has systematic errors due to the spher-
ical symmetry assumption. Therefore, observing system
simulation experiments (OSSEs) are performed to assess
the systematic errors in TGRS orbit electron density obser-
vations (e.g., Liu et al. 2015; Chou et al. 2017). Yue et al.
(2011) indicated that the solar activity would not influence
the relative Abel errors of electron density. It is expected
that the relative error distributions of the OSSEs and the F7/
C2 observations should be comparable if the IVM ion den-
sity is accurate. Here the realistic RO line-of-sight (LOS)
geometries between F7/C2 and GNSS satellites are utilized
to simulate the synthetic RO TECs by inserting the LOS
geometries into an empirical model ionosphere given by the
International Reference Ionosphere (IRI) 2016 (Bilitza et al.
2017) with spatial and temporal resolutions of 1° x 1° x 5 km
x 1 h. We limit the altitudinal extension of the background
IRI ionosphere up to 1000 km to reduce the computational
cost. The impact of plasmaspheric TEC above 1000 km on
ionospheric electron density retrieval is minor and negli-
gible because only TEC below the orbit is utilized and the

quantity of plasmaspheric TEC is small. The F7/C2 C2El
and C2E6 RO LOS geometries during September 2020 are
utilized to obtain sufficient spatial and temporal coverages
and evaluate the errors at ~540 and ~715 km orbit altitudes,
respectively. We further calculate the synthetic TEC,,;, and
the synthetic orbit electron density can be estimated using
Eq. (2) by fitting a square root function of TEC,,(r,) for
the uppermost ~10 km (Syndergaard et al. 2006). The sys-
tematic errors in OSSE orbit electron density, therefore, can
be evaluated by comparing the OSSE orbit electron density
with the OSSE truth (i.e., IRI ion density).

Figure 8 shows the OSSE truth ion density, OSSE or-
bit electron density, density difference (Ne-Ni), and rela-
tive difference [(Ne-Ni)/Ni x 100%] maps as a function of
magnetic latitude and local time at ~540 km (left column)
and ~715 km (right column) orbit altitudes. At low orbit
altitude, the density differences range from -1 x 10* to -2.5
x 10* cm™ around the EIA region and are nearly zero after
midnight. The relative differences are about £10%. At high
orbit altitude, the density differences range from -0.5 x 10*
to -1.5 x 10* cm™ around the EIA region and are nearly zero
bias after midnight. The relative errors are about -30 to 0%.
The OSSE results reveal that the RO retrieved orbit elec-
tron density tends to be smaller than the truth ion density
in the daytime EIA region and is nearly the same during
the nighttime at both orbit altitudes. The density differences
around the EIA region at high orbit are smaller than those
at low orbit, which is consistent with the F7/C2 observa-
tions (Figs. 6 and 7). Significant errors in the EIA region are
visible because the spherical symmetry assumption fails to
account for the regions where the horizontal gradients are
large and prominent. Additionally, the calibration error in
TEC,, due to the same LEO-GNSS plane assumption and
the uncertainty of least-square fitting of TEC,, may also
lead to errors in orbit electron density estimation. The error
caused by the same LEO-GNSS plane assumption will be
investigated in the future.

Figure 9 shows the histograms of relative differences
for the OSSEs and F7/C2 observations at high and low or-
bits. It is noteworthy that the F7/C2 errors exceeding 100%
due to decreased IVM sensitivity in low density environ-
ments after midnight are excluded in the histogram to bet-
ter represent the average and standard deviation. We found
that the average OSSE errors tend to be smaller than the F7/
C2 observations by ~5%, implying that the F7/C2 IVM ion
density may be underestimated by ~5% at both orbit alti-
tudes. However, the OSSE truth, which is based on the IRI
empirical model, shows a wider latitudinal extension of the
EIA, indicating that the F7/C2 could include more positive
errors due to the actual EIA being narrower compared to the
IRI-simulated one. This may affect the spatial error distribu-
tion and mean value. Overall, the OSSE histograms show
that the systematic errors are around -8.27 + 18.5% and 0.21
+ 17.41% at ~715 and ~540 km altitudes. These quantities
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are comparable to the F7/C2 relative error distributions of
about -14.89 + 14.76% and -5.77 = 13.48%. Observations
and simulations allow us to conclude that the F7/C2 IVM
ion density should be accurate and reliable.

5. CONCLUSIONS

In this study, we compare the F7/C2 IVM total ion
density with the collocated TGRS orbit electron density for
six F7/C2 satellites at orbit altitudes of ~540 and 715 km
throughout the year 2020. Both IVM and TGRS payloads
onboard the F7/C satellites provide unprecedented collo-
cated observations for mutual validations. The comparison
shows that the TGRS orbit electron densities are consistent
with the IVM ion density with high correlation coefficients
of 0.92 - 0.96. The mean density differences for each of the
satellites are around -0.03 x 10* to 0.02 x 10* cm™ with stan-
dard deviations ranging from ~0.91 x 10* to 2.18 x 10* cm’
3, demonstrating a good agreement between the TGRS and
IVM observations. We also examine the spatial and tem-
poral variations of TGRS and IVM density observations.
The morphologies of EIA in both TGRS and IVM density
observations are found to be nearly identical. However, sig-
nificant density differences occur around the daytime EIA
region. The TGRS electron density tends to be smaller than
the IVM ion density by ~0.5 x 10* to 2.5 x 10* cm™ and
0.5 x 10* to 1 x 10* at low and high orbits. The density dif-
ferences are within -1 x 10* cm™ or nearly zero between
~18:00 - 08:00 LT at low and high orbit altitudes. We sug-
gest that the spherical symmetric assumption used in TGRS
orbit electron density estimation could lead to significant
errors in the daytime EIA region and lower orbits where
the horizontal gradients are relatively large and prominent.
The IVM ion density also has significant degradation when
the background densities reach a minimum after midnight
(~04:00 LT). Additionally, by comparing the error distribu-
tions of OSSEs with the F7/C2 results, our results reveal
that the systematic errors in OSSEs are comparable to the
errors in the F7/C2 observations, indicating that the differ-
ences between F7/C2 orbit electron densities and IVM ion
densities are primarily due to errors in the retrieval of the
orbit electron density. We therefore conclude that the F7/
C2 IVM ion density should be accurate and reliable for the
topside ionosphere research.
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