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Abstract
Industrial symbiotic networks (ISNs) can support the transition from a conventional linear 
economy to a circular economy by using industrial waste and by-products as resources. 
However, the early design and development stages of ISNs are fraught with challenges as 
a result of limited information (supply, demand, potential synergies, etc.), and the need to 
consider conflicting sustainability objectives. ISN development is a combinatorial problem 
and can be expressed as a Multi Objective Optimization (MOO) model, the solution of 
which can aid practitioners in early decision-making and the identification of appropriate 
industrial synergistic partners. Inspired by the principles of self-organization among stake-
holders to further sustainability, an ISN resulting by applying a hybrid MOO approach to 
tackle end of life photovoltaic (PV) modules in Arizona has been modeled. The hybrid 
MOO method is capable of balancing the sustainability objectives, while allocating mate-
rial strategically such that resources do not get landfilled. The resulting ISN is compared 
with alternate ISN configurations arising from different scenarios. For instance, sim-
ply landfilling EoL PVs can result in economic losses of close to 3 million USD and a 
significant environmental burden (~27 thousand ton CO2 eq). In contrast, an ISN where 
recovered material is consumed completely results in cost savings of 53 million USD and 
avoided environmental impacts of 18 thousand-ton CO2 eq. Sensitivity analyses to account 
for the uncertainty related to landfilling and warehousing costs, and the distances between 
synergistic partners have been undertaken.
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Introduction

Industrial symbiotic networks (ISNs) provide significant opportunities for achieving reduc-
tion in industrial waste streams and greenhouse gases, while enhancing resource conserva-
tion [37, 40]. Analogous to exchanges between actors in naturally occurring systems, ISNs 
function on the principle of symbiotic relationships among industrial partners as a result 
of exchange of industrial wastes and by-products [24, 36]. In addition to strong collabora-
tions between regional industries, the success of an ISN depends on several factors such as 
knowledge of industrial waste streams, current disposal practices and potential feedstock, 
and an understanding of the regional economy. Demand quantities and cost-effectiveness 
while remaining cognizant of the environmental impacts are important additional fac-
tors. In general, the success and longevity of an ISN hinges on addressing the economic, 
environmental, and social pillars of sustainability concomitantly [23, 51]. An ISN may be 
designed as, one that is brand new or, alternatively, it could be developed as a retrofitted 
ISN in an industry-dense region [6, 22, 58].

Ideally, an ISN will develop as a result of synergistic associations that mitigate envi-
ronmental impacts and material acquisition costs (when compared to virgin resources) 
[53]. However, the development of recovery and recycling infrastructure can, on occasions, 
exceed the cost of manufacturing a product from virgin resources, such as, solar photovol-
taics (PV) [15]. This becomes evident when volumes of end of life (EoL) product remain 
low making it difficult to economically motivate material recovery. Nonetheless, indiscrim-
inate disposal in the form of landfilling can be expensive because of incurred landfill tip-
ping fees, and as a result of loss of potentially valuable materials and embedded resources. 
ISNs are built on the notion of industrial symbiosis (IS), and thus, by definition promote 
open loop recycling. Understanding the life cycle benefits by implementing efficient indus-
trial partnerships becomes critical for an ISN, as the approach would offer multiple path-
ways for the utilization of recycled streams in a localized or regional economy. Given that 
several possible synergistic associations could arise, the identification of the optimum syn-
ergies while maintaining adequate participation (through efficient allocation) and simulta-
neous optimization of conflicting sustainability objectives remain challenging.

Various techniques have been investigated to identify suitable industrial synergies. 
In one study, a network was designed that facilitates water exchange in an ISN based on 
regional industrial synergies keeping in mind several possible scenarios, such as sea-
sonal changes using the weighted-sum (WS) method [4]. Hein et  al. (2015) employed 
the use of Design Structure Matrices (DSM) to find industrial symbiosis opportunities 
and subsequently used genetic algorithms to evaluate the performance of the Kalund-
borg eco-industrial park (EIP) [25]. It should be noted that per literature EIPs are a spe-
cial case of ISNs, i.e., a network of synergies between co-located partners. Karlsson and 
Wolf (2008) used an optimization model to evaluate the economic benefits of industrial 
symbiosis in the forest industry using mixed integer linear programming (MILP) [31]. 
Gu et al. (2013) recognized the need to model material and energy flow exchanges and 
provided a generalized theoretical optimization model for material exchanges [22]. In 
contrast, Cao et al. (2009) used agent-based modeling and optimization on a hypotheti-
cal EIP to understand industrial symbiotic behavior and concluded that IS can greatly 
reduce raw material consumption and waste [8]. Hu et al. (2020) reported an empirical 
study for optimizing a wastewater system within an EIP for the specific purpose of reus-
ing organic food waste as a reagent to treat this industrial wastewater [27]. Interestingly, 
according to Boix et al. (2015), although, several studies on the exchange of water and 
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energy have been carried out, there are limited studies on the use of multiple objective 
optimization (MOO) techniques in the context of ISNs [6]. The methods used to design 
water networks in EIPs are based on MILP, Mixed Integer Non-Linear Programming 
(MINPL) and nonlinear models [10, 38, 41]. Boix et al. (2012) applied the ε-constraint 
MOO method to the design of a water network in an EIP, and they were able to deter-
mine several reasonable solutions using careful trade-off criteria. Fuzzy optimization 
and game theory have also been used to address the same problem [4, 11, 12]. Other 
studies highlight the importance of efficient resource allocation to promote the develop-
ment of ISNs [2, 6, 19, 22]. Thus, few studies have used MOO techniques in the context 
of incorporating the 3 pillars of sustainability (economic, environmental, and social) for 
ISN creation.

Recently, Mathur et  al. (2020) quantified the environmental benefits and reduced 
resource consumption patterns (water and energy) as a result of implementing Life Cycle 
Symbiosis (LCS) utilizing PV waste [44]. Adoption of PVs continues to grow rapidly, and 
it is estimated that by 2050, 60–78 million tons of PV waste will be generated globally. In 
the US alone, the cumulative mass of decommissioned PV panels will be between 7.5 and 
10 million tons [29, 44]. It is therefore not unreasonable to state that globally there will be 
a tremendous requirement for ISNs to be developed around recovered PV waste. The pre-
sent work demonstrates the application of the hybrid MOO method (a combination of exact 
and heuristic MOO methods) to enable ISN development specifically around PV waste in 
Arizona, US [17].

MOO techniques can be categorized fundamentally into 2 types: exact (Weighted-
Sum method, Compromise Programming, Ranking, and epsilon-constraint (ε-constraint) 
method), and heuristic methods (Evolutionary Algorithms such as Genetic Algorithms, 
Simulated Annealing, and Tabu search). Several studies do undertake a thorough analysis 
on the mechanics of the WS method and compare the WS method to other exact solu-
tion and even heuristic optimization methods [30, 43, 57]. For instance, Gerandinetti et al. 
compare the ε-constraint method with the WS method in optimizing job scheduling in the 
context of cloud computing, a MOO problem that balanced waiting times and number of 
hosts [21]. They found that the ε-constraint method performed better by providing a greater 
number of non-dominated solutions than the WS method. Copado-Mendez et al. demon-
strate the use of an enhanced ε-constraint MOO optimization problem to plan sustainable 
supply chains for ethanol and hydrogen respectively [13]. Hong et al. apply the ε-constraint 
method in improving airline safety through better conflict resolution by minimizing the 
number of maneuvers an aircraft must make, and also by minimizing the number of air-
crafts that need to make maneuvers in the first place while in flight [26]. The ε-constraint 
MOO method has been demonstrated to forecast the stock market and also applied to 
implementing a decision-making framework for an electricity retailer [1, 48]. Tosarkani 
& Amin have used it to design a wastewater system [54]. Specifically, in the domain of 
manufacturing, Moussavi et al., use the ε-constraint method to enhance job rotation in a 
seamless manner, while others use it to a flowshop problem [3, 46].

Heuristic methods include evolutionary algorithms (EAs) such as genetic algorithms 
(GAs) and particle swarm. Recently, researchers demonstrated the use of a modified GA 
on optimizing an IS system in China resulting in potential savings in energy consump-
tion, emissions and costs [9]. Zhang et  al. demonstrated the use of MOO through EAs, 
specifically GAs for the purpose of urban wastewater reuse to analyze the costs, supplies, 
demands and pollutant reduction [60]. Similarly, Dandy et al. also used GAs to optimize 
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water distribution networks in Australia [14]. On the whole, however, the research liter-
ature has used other methods such as MILP, Analytic Hierarchy Process (AHP), Multi-
criteria decision analysis (MCDA), Analytical Network Process (ANP) for optimizing and 
evaluating systems for sustainability [20, 42, 47, 55, 56].

This paper proposes a sustainable strategy for effectively addressing renewable energy 
technology waste (PVs). We describe MOO as a decision-making methodology that can 
avert a potential high-consumables waste crisis similar to that observed for electronics 
waste. In doing so, we address the following identified research gaps:

1.	 Identify a method for early ISN development and continuous performance evaluation.
2.	 Demonstrate through a case study the advantages and disadvantages of this method in 

the application of ISN development.
3.	 Via scenario analyses compare the impacts of alternative synergetic combinations rela-

tive to the ISN developed using the proposed method.

The  “Methods” section proposes a hybrid MOO approach to aid in the development 
of an ISN that balances conflicting economic and environmental objectives as a result of 
forming regional synergies. The “Results and discussion” section presents and discusses 
scenario analyses comparing various ISN designs in terms of economic and environmental 
dimensions relative to one another for our case study. We have summarized our findings 
and conclusions in the “Summary & conclusions” section.

Methods

With a view to maximize cost savings, this study is an allocation problem to material recov-
ery pathways maximizing avoided environmental and minimizing transportation impacts. It 
also proposes a method that may be effective in early design decision-making, considering 
several combinatorial possibilities within an ISN based on a case study (EoL PV panels).

System planning and ISN participants

Our case study, which demonstrates a MOO hybrid optimization approach for ISN plan-
ning, focuses on seven different material streams that result from treatment of EoL PVs 
[44]. The aim is the optimal allocation of each of these recovered seven material streams 
across five potential consumers and a storage site (Fig. 1).

From a design perspective, the potential network structure is predefined by identify-
ing connections and the problem is reduced to the allocation of recovered material in a 
manner that encourages industrial partnerships while promoting the consumption of recov-
ered material in an environmentally and economically sustainable way. The total supply 
(as a result of materials recovered) is based on the projected EoL PVs generated in the 
year 2030. As per projections it is estimated that in 2030 EoL c-Si PV products (at pre-
sent treated as waste) will range between 1,564,000 (regular-loss) and 7,360,000 (early-
loss) tons globally. In the U.S., this is expected to be between 156,400 (regular-loss) and 
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920,000 (early-loss) tons. Regular loss implies that the PV panels operate over their life-
time of approximately 30  years [28, 29, 44]. Early – loss refers to “infant, mid-life and 
wear-out failures” that result in a panel being retired before they fulfill their assumed life-
time [28, 29, 44].

Arizona (AZ) has approximately 5.8% of the total PV capacity of the US [49] sug-
gesting, that by 2030, AZ will generate anywhere between 9071 tons (regular-loss) 
and 53,360 tons (early-loss) of c-Si PV waste. Using these values and the information 
on c-Si PV recovery, the quantities for each of the available material flows in 2030 to 
establish a PV-centric ISN in Arizona have been calculated (See S.I. 1, Table S1.1) [35, 
44]. The design of the ISN is a MOO problem based on potential uses of these material 
streams.

Problem formulation

A MOO problem can be represented in the following mathematical form:

K is the number of objective functions and m is the number of inequality constraints.
In designing the ISN, we utilize two (K = 2) objectives; maximization of cost savings 

(Eq. 1), and the maximization of avoided environmental impacts (through use of recovered 
sources as opposed to virgin resources while taking into account transportation impacts as 
a result of industrial synergies) (Eq. 2, Table 1).

Minimize, x ∶ f (x) =
[

f1(x), f2(x),… .., fk(x)
]

K

Subject to ∶ gj(x) ≤ 0, j = 1, 2,… ,m

Table 1   Other parameters used in the proposed model

Parameter Unit Description

1,..i,..I – 1,..i,..I: number of material streams isolated from EoL PVs
1,..j,..J – number of collaborating partners participating in the ISN
Cv,i USD Cost of virgin material, i
Cr,i USD Cost of recovered material, i
CS,i USD Cost of storing material, i
Cl USD Cost of landfilling material
Ct USD/km Cost of material transport by road
Xai ton CO2 eq Impacts avoided as a result of recovering material, i
XS ton CO2 eq Impacts as a result of transportation to offsite warehouse for material storage
Xt ton CO2 eq/ ton Transportation impacts per of material using a 32 t truck
Xl ton CO2 eq Landfilling impacts
xi,j ton Mass of material, i, allocated to the collaborating industries, j
di,j km Transport distance for material, i between source and collaborator, i,j
xis ton Mass of material, i allocated specifically to the storage site, s
Di,j ton Maximum demand of material i by firm j
Ti ton Total supply of material, i (recovered from EoL PVs)
CIi ton Inventory capacity for material i
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Cost savings:

Net avoided impacts:

Both of the objectives have been expressed as minimization problems (using a neg-
ative sign), following the standard convention of optimization approaches [7]. The 
key decision variables to be optimized are the amounts of material flows to synergis-
tic partners (xij) and to a storage facility (xis). These need to assume meaningful levels 
so as to maintain adequate supply and demand while also optimizing the objective 
functions (Eqs. 1 and 2).

Constraints  The objectives in eqs. 1 and 2 are subject to the following constraints:

a.	 The demand (Di) by industries is less than or equal to the supply of recovered materials 
(Ti) (Eq. 3)

b.	 The amount of inventory that can be stored (CIi) is, at most, 5% of the amount of material 
supplied (Ti) (Eq. 4).

Assumptions  In the proposed ISN, there is one source of recovered material, which 
is the origin of seven different material streams as a result of EoL PV recovery. 
For each of these 7 material streams available, five industries (per material stream) 
have been identified in the given region. If the supply is not entirely consumed by 
the industries or if the storage of material is considered more beneficial, an off-site 
storage facility to store a limited amount of inventory has been added. To offset the 
additional cost of excess inventory, we have assumed that the maximum allowable 
storage amount is 5% of the material supply, thus driving the material streams to be 
consumed promptly. In reality, storing material can mitigate supply risks (for instance 
due to transport delays). At this time, however, and owing to lack of data on main-
taining industrial synergies for ISNs, we assume the recovered material should get 
consumed. This could also serve to encourage making recovery infrastructure for EoL 
PVs and certainly other consumables more efficient. Also, low quantities of allowable 
inventory of recovered materials mean lower storage costs, while fulfilling a funda-
mental prerequisite of a functional ISN, which is, ensuring symbiotic partnerships 
among and participation by industries in a given region.

This egalitarian approach with more than one consumer per material stream is 
inspired by the notion of self-organizing communities [50]. Disruption in supply and/
or demand quantities in combination with limited partnerships can result in a brittle 
or less resilient ISN. We assume that the carrying cost of inventory storage is 25% of 
the material value [32, 52]. Material storage in the context of industrial supply and 
demand is not a trivial task. Several factors must be considered and the resulting costs 
encompass the impacts of no sales, cost of physical storage, labor, infrastructural 

(1)y(1) = −
(

∑I

i=1

(

∑J

j=1
xi,j ∗

(

Cv,i − Cr,i

)

+
(

xis ∗ Cs

)

)

−
(

Ti −
∑J

j=1
xi,j

)

∗ Ci −
(

∑J

j=1
xi,j ∗ di,j

)

∗ Ct

)

(2)y(2) = −
((

∑I

i=1
(
∑J

j=1
xi,j ∗ Xai )−( xis ∗ Xs

)

−
(

Xt ∗
(

(
∑J

j=1
xi,j ∗ di,j

)

−
(

Ti − (
∑J

j=1
xi,j

)

∗ Xl

)

(3)Di < Ti

(4)CIi ≤ .05 ∗ Ti
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requirements, material depreciation, etc. [32, 52]. Material that is not allocated to 
the industries is assigned to the landfills. The costs (Cl) and impacts (Xl) of landfill-
ing have been accounted for in eqs.  1 and 2. Finally, we assume that a well-estab-
lished infrastructure for EoL PV recovery exists, and recovered materials can be used 
directly as feedstock [34, 44].

Data collection

The model is based on real industry data from the greater-Phoenix region; a region of 
high industrial output and industrial diversity. This contributes to establishing the syn-
ergies for the proposed case study. The share of demand of the consuming firms for 
each material stream is modeled as industry-wise consumption shares for the estimated 
amount of EoL PVs generated in 2030 (S.I. 1, Table 2). Other data related to building 
the case study, i.e., the cost parameters, and environmental impact parameters are pro-
vided in S.I. 1. This data has been determined using reports based on commodity price 
forecasts [33, 45]. The cost of recovery for each material stream has been computed 
using economic-value allocation (S.I. 1, Table S12) [11]. Landfilling tipping fees have 
been obtained from literature as have the cost of carrying inventory [16, 32, 52]. Finally, 
avoided environmental impacts refers to the net environmental benefit of using recovered 
resources as opposed to virgin feedstock. These values have been estimated in our previ-
ous study (S.I. 1, Table S13) [44].

Solving the MOO problem

Genetic Algorithms (GAs) can be particularly useful in supporting decisions at the very 
early stages of complex real world problems, where limited information, multiple param-
eters and conflicting goals need to be overcome by exploring a wide range of possible solu-
tions best suited for a set of circumstances or constraints [39, 58, 59]. The present study 
has therefore looked at the application of GAs to design an ISN such that the minimum 
criteria of participation are fulfilled and each participating industry has access to recovered 
material from the source. Here, the problem is expressed as an allocation problem where 
the GA explores the possible solution space with the aim of simultaneously assessing mul-
tiple objectives. The problem was solved using the MATLAB GA toolbox. The perfor-
mance of the ISN considers the cumulative performance based on the GA MOO method 
being applied to the 7 different material streams.

A population of good solutions (GAs use the principle of natural selection) was gener-
ated while considering both objective functions (Eqs.  1 & 2) [18]. For effective design 
and development under rapidly changing scenarios, higher-level decision-making will be 
required to identify one solution for a given set of circumstances (in this case from the 
solution set). We propose the use of the ε-constraint method to identify this solution. Thus, 
the proposed hybrid method aims to leverage the strong exploratory nature of GAs in com-
bination with the ε-constraint method to converge on one solution to efficiently allocate 
resources in the ISN.

The ε-constraint method is an exact solution scalarization MOO method. The 
problem is expressed as a single objective optimization problem by expressing other 
objectives as constraints. Especially useful for multi combinatorial problems, the 
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ε-constraint method employs the use of epsilon, ε, a vector that is the upper bound 
of a particular constraint. Varying the ε value enables the generation of a Pareto front 
(PF) [5]. Given that our problem has two objectives, we can theoretically carry out 
the ε-constraint problem for two instances on the population of solutions generated 
using the GA. The first would involve expressing objective 2 (by specifying the desired 
net avoided impacts) as a constraint and determining the optimal value of for objec-
tive 1 (the maximum cost savings accrued). The alternative scenario is that the prac-
titioner expresses objective 1 as a constraint (specifying the desired cost savings) and 
determines the optimal solution for the objective (which is now objective 2, i.e., the 
maximum net avoided impacts). Below, we have illustrated the implementation of 
ε-constraint method, i.e., prioritizing one objective function while expressing the other 
objective function as a constraint. While prioritizing one objective function, ε rep-
resents the upper bounds of the new objective function constraint, and is simply the 
corresponding solution of the auxiliary objective function(s) generated using the GA. 
Given below is the generic representation of the ε -constraint method for 2 objective 
functions.

Mathematical representation of the ε ‑constraint method for objective functions, 
y(1) and y(2)

Case 1: Maximize Cost Savings: Using standard practice, we minimize the -ve of cost 
savings function which is equivalent to maximizing cost savings. Hence,

Case 2: Maximize Net Avoided Impacts: Again, using standard practice, we solve the 
minimization problem for -ve of net avoided impacts. Hence,

Scenario analysis

This study compares the ISN resulting from the proposed hybrid MOO (Scenario D) 
method with alternative ISN outcomes (Scenarios A through C). These are described 
briefly below:

1.	 Scenario A: Business as Usual (BaU), i.e., EoL PVs are landfilled (Fig. 2).
2.	 Scenario B: Recovered material is consumed 100% (supply is equal to demand) by 

geographically close and distant industries (Fig. 3).

(Minimize)y(1)

s.t.

Di < Ti
CIi ≤ .05 ∗ Ti
y(2) ≤ ε2

(Minimize)y(2)

s.t.

Di < Ti
CIi ≤ .05 ∗ Ti
y(1) ≤ ε1
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3.	 Scenario C: Recovered material is not consumed 100% (supply is not equal to demand) 
by geographically close and distant industries (Figs. 4, 5(c) and (d)) and a need for 
excess inventory storage arises. The economic and environmental impacts of distance 
between source and consumer are investigated using sensitivity analyses (Fig. 5(a) and 
(b)).

4.	 Scenario D: Recovered material (supply is not equal to demand) is allocated to partner-
ing industries, landfilled and/or warehoused using the proposed hybrid MOO method 
(Fig. 6(a)).

Fig. 2   (a) A lack of industrial synergies resulting in EoL PVs (~31,000 tons in 2030) being disposed to 
the landfill; (b) A probability distribution of possible EoL PV waste generated in 2030 (based on regular 
(~9071 tons) and early loss (~53,360 tons) estimates, and standard deviation of 5000 tons); (c) The impact 
of varying EoL PV quantities on the environment from landfilling (d) The impact of varying EoL PV quan-
tities on costs (USD) (e) A probability distribution function of possible landfilling costs (USD/ton) (f) The 
impact of varying landfill ‘tipping’ fees on the cost of disposal (USD)
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It should be noted that scenarios A through C represent a non-egalitarian approach to ISN 
design, i.e., each material stream is assigned to just one consumer per material stream. In real-
ity, it is possible that within a region several industries have a demand for cheaper feedstock. 
In such a scenario, it becomes essential to develop a tool to assess the economic and envi-
ronmental tradeoffs associated with fulfilling demands across multiple consumers. Scenario 
D (Fig.  6(a)) investigates an egalitarian ISN where cheaper feedstock/resources are shared 
among industries within a region by developing a hybrid MOO model. The resulting ISNs 
from Scenarios A through D are compared relative to cost and environmental burdens.

Fig. 3   (a) Supply equals demand (one consumer per material stream) resulting in industrial syner-
gies between the source S, and geographically near industries (Cost savings = USD 53,384,945; Avoided 
impacts = 20,590.99 ton CO2 eq); (b) Supply equals demand (one consumer per material stream) result-
ing in industrial synergies between the source S, and geographically distant industries (Cost savings = USD 
53,381,543; Avoided impacts = 16,314.34 ton CO2 eq)

Journal of Remanufacturing (2022) 12:281–301 291
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Results & discussion

1The proposed hybrid method has been tested for designing an EoL PV-centric ISN. 
The performance of the resulting ISN in terms of balancing sustainability trade-offs and 
resource allocation using the hybrid MOO method (Scenario D) is evaluated and com-
pared with alternative scenarios (Scenarios A through C). Figures  2 through 6 illus-
trate the hypothetical ISN under different scenarios. The node S in ISN are the source 
of recovered feedstock, (EoL PV installation/ decommissioning unit); W, the storage 
warehouse (offsite) for excess material; L, the landfill and the participating industries. 
Entities Al1 through Al5 represent aluminum consuming industries. Similarly, Gl1-Gl5, 
Ag1-Ag5, Cu1-Cu5, MG-Si1-MG-Si5, CaN1-CaN5, and F1–F5 represent industries 
that use glass, silver, copper, metallurgical grade silicon, calcium nitrate, and fly ash as 
feedstock respectively. The width of the flows is based on the material quantity being 
transported between the various participating stakeholders. It should be noted that the 

Fig. 4   (a) Supply surfeit resulting in warehousing needs in combination with industrial synergies (one 
consumer per material) between the source S, and geographically near industries (Cost savings = USD 
46,742,536.52, Avoided impacts = 22,366.91 ton CO2 eq); (b) Supply surfeit resulting in warehousing needs 
in combination with industrial synergies (one consumer per material) between the source S, and geographi-
cally distant industries (Cost savings = USD 34,394,945.04, Avoided impacts = 21,066.4 ton CO2 eq)
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computations are based on the data presented in S.I. 1, and the transportation costs and 
impacts considerations have been integrated in the mathematical model.

Scenario A: The impact of landfilling EoL PVs

EoL related regulations for EoL PVs is presently in the nascent stages. This means that 
in several parts of the United States EoL PVs can be classified as non-hazardous waste 
resulting in them being landfilled. Scenario A assumes that EoL/broken PVs when decom-
missioned are transported back to the solar PV installation/decommissioning facility, S, 
in Fig. 2(a), where PV cells are sorted from other auxiliary material (e.g., Balance of Sys-
tem (BoS) material), and subsequently sent to the landfill. Under this scenario, it is likely 
that about 31,000 tons of EoL PVs could possibly be landfilled in Arizona by 2030. This 
translates to about 3 million USD in costs and 28 thousand ton CO2 eq in global warming 
potential (GWP) impacts on average. Depending on whether EoL PVs are generated as 
a consequence of early-loss due to breakage, or regular-loss after more than two decades 

Fig. 6   (a) The ISN resulting from applying the hybrid MOO method (EoL PVs waste directed to landfills 
is down to 6%–9%); (b) A comparison of average cost savings (losses in case of Scenario A) and average 
net avoided impacts (incurred environmental impacts in case of Scenario A) resulting from discussed ISN 
scenarios
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of operational life, the cost of landfilling EoL PVs could be between 1.35 and 4.5 million 
USD (Fig. 2(d)). Similarly, the range of the associated environmental impacts was found 
to be 15 to 43 thousand ton CO2 eq (Fig. 2(c)) (See S.I. 2). We also considered the uncer-
tainty associated with the landfill tipping fees. By varying this parameter (Fig.  2(e)) we 
have assessed its impact on disposal costs incurred. It was observed that varying the land-
fill tipping fees resulted in total EoL PV landfilling costs in the range of 2.46 and 3.45 mil-
lion USD (Fig. 2(f)).

Scenario B: Recovered material is consumed wholly within the ISN (supply equals 
demand)

In contrast to Scenario A, Scenario B represents two cases where EoL PVs are recovered 
as 7 individual material streams and subsequently fulfill raw material demands in the form 
of secondary feedstock by local industries. Figure 3(a) represents the case where the recov-
ered materials are consumed as a consequence of industrial synergies developed with firms 
closest to the source, S (See S.I. 1 for list of identified industries). Figure 3(b) represents 
the alternate extreme case of industrial synergies with firms farthest away from S (see 
S.I. 1). Supply equals demand and therefore it is assumed that no material is landfilled or 
stored. This means that the resulting differences in impacts, both economic and environ-
mental are the result of differences in the transportation differences. While the cost savings 
as a result of developing industrial synergies for both cases is comparable, the net avoided 
impacts as a consequence of recovered material being transported under 3 (a) is about 4300 
ton CO2 eq higher than those observed for 3 (b) (See S.I. 2).

Scenario C: The impact of material storage on the ISN (supply is not equal 
to demand)

Under the circumstances of supply being greater than demand, it is assumed that the ISN 
should accommodate excess supply in storage. For the present case, it is assumed that the 
warehouse is located offsite and storing excess material incurs a fee called a carrying cost. 
We have assumed this to be 25% of the material value (See S.I. 1) [32, 52]. As in Scenario 
B, Scenario C also examines the cost savings and avoided environmental impacts of recov-
ered material consumption for industries closest (Fig. 4(a)) and furthest away (Fig. 4(b)) 
geographically. The impact of material storage as a result of it not being ‘sold’ or con-
sumed with differences in transport distances results in significant differences in cost sav-
ings (~ 12 million USD) between the two cases. On taking a closer look at the results 
of individual material streams, it was seen that lower sales of recovered material to the 
geographically close partnering firms resulted in overall positive cost savings and positive 
net environmental impacts. This was not the case when material was sold to firm that were 
geographically distant. In this case, both glass and fly ash incurred an economic loss (nega-
tive cost savings), thus driving down the overall profitability of the ISN (See S.I. 4).

Sensitivity analyses: Transport distance and storage cost

In order to understand the impact of uncertainty associated with storage costs (we have 
assumed storage costs are 25% of the cost of virgin resources as a base case) and the criti-
cal distances at which synergistic partners should be located (particularly for low value 
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materials such as glass and fly ash), we have carried out sensitivity analyses on both these 
parameters.

A Monte Carlo (MC) simulation was carried out to vary the distances the recovered 
materials from EoL PVs could possibly need to be transported across. The total range 
of the distance all seven materials would need to be transported varied between 185 km 
and 1085 km (Fig. 5(a)). On average, the total cost savings decreased from about 47 mil-
lion USD to 37 million USD, and the associated avoided GWP impacts were found to 
decrease from 20.65 thousand to 19.57 thousand ton CO2 eq as the transportation distance 
increased. Specifically for glass, transportation beyond 30 km results in economic losses. 
The net avoided impacts of developing a regional synergy for glass were found to be nega-
tive, indicating that the best possible option for glass should be closed-loop and/or internal 
recycling by the PV manufacturers themselves (See S.I. 4). With regard to glass, it should 
be noted that it is a low-value commodity and is extremely energy-intensive to recycle. The 
very high quantities of glass in PVs means recovered glass quantities too are extremely 
high and impacts (cost and environmental) associated with transporting them will be sig-
nificant given its mass and low-value. Similarly, in the case of fly ash, the critical distance 
beyond which a synergy was not economically profitable was 197 km. Like glass, fly ash 
too incurred negative net avoided impacts as a consequence of recovery and subsequent 
transport to a consumer, indicating internal consumption (as construction fillers) may be 
the most suitable option (See S.I. 4 for material-wise analysis).

Given the uncertainty associated with storage costs, a MC simulation was carried out on 
the storage cost parameter (Fig. 5(c)). A range was chosen to account for lack of accurate 
warehousing cost data (storage costs = storage cost factor * cost of material; storage cost 
factor ranges from 0.08–0.4). The average overall cost of storage was in the range of 700 
thousand USD. As mentioned earlier, these costs take into account the uncertainty associ-
ated with non-sales and material depreciation, apart from warehousing costs.

Scenario D: The impacts of applying an MOO method to developing an ISN

Finally, we consider a more complex scenario of several stakeholders in an ISN with 
different material demand for each firm participating in ISN and total supply being 
unequal to total demand. As before, the creation of industrial synergies were for all 7 
material streams that were recovered from EoL PVs. An egalitarian approach such as 
this, can address the potential brittleness as consequence of identifying and developing 
merely one synergy per material stream. This brittleness could potentially translate to 
losses (both economic and also goodwill among collaborators) if there is a disruption 
in supply, and/or lack of demand, which could in turn result in excessive inventory 
costs and/or material landfilling. Built-in contingencies in the form of a distributed 
network can help address such uncertainty. A MOO approach to balance sustainability 
objectives while also addressing material allocation requirements may provide insight 
into creating synergies that are profitable and also potentially long-lasting. A heuristic 
MOO method, GA, was applied to this case. The model considered the cost saving and 
net avoided environmental impacts while also working towards efficiently allocating 
material between multiple consumer, storage, and the landfill. Using GAs resulted in 
the generation of a population of ‘reasonable’ solutions. The average cost savings were 
in the range of 42 million USD, at an average environmental cost of 3.25 thousand ton 
CO2 eq. It was observed that while the demands for high value material streams were 
being satisfied, medium (calcium nitrate solution) and low value materials (glass and 
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fly ash) were getting landfilled. On analyzing the solution set more closely and observ-
ing each individual material stream allocation, it was found that the quantity of land-
filled material ranged from 10,885 to 17,197.45 tons (34% - 54% of total material) out 
of about the total 31,000 tons of EoL PV that was initially in circulation, thus explain-
ing the poor fulfillment of the environmental objective (Fig. 6(b)(See S.I. 5, Table S5.3 
and Fig. S5.1).

A hybrid MOO was applied to the population of generated GA solutions using the ε 
constraint approach. In the first instance (Case 1), we aim to maximize the cost savings. 
The amount of material assigned the landfill is reduced to 2833.27 tons (~9% of EoL 
PVs in circulation) with cost savings now approximately ~47 million USD, but with 
avoided environmental impacts much higher than what was observed before with the 
GAs (~16 thousand ton CO2 eq). Most notably glass, copper and metallurgical grade 
silicon were being allocated to industries more strategically. In the next instance (Case 
2), the reverse was carried out by expressing maximization of net avoided impacts as 
the primary objective. Figure 6(a) depicts the ISN resulting from applying the hybrid 
MOO method with avoided impacts being expressed as the objective function (hybrid-
MOO Case 2). Although cost savings were ~ 43 million USD and the avoided environ-
mental impacts were at more than 18 thousand ton CO2 eq. It should be noted, that the 
material landfilled was observed be less than 6% in this case (See S.I. 5, Table S5.4). 
The hybrid MOO method allocating material to the landfill indicates backup synergies 
need to be created, or alternatively ISNs must have be able to accommodate potential 
feedstock in larger storage facilities till such time as further demand is created.

The hybrid MOO scenario considers the transportation of material from the source to 
each industry. An alternative analysis on pooling materials is considered. This was found 
to be significantly more efficient in terms of transportation impacts in that the total trans-
portation impacts as result of material pooling was a mere 4% of the originally considered 
transportation scenario (See S.I. 6).

While the overall performance in terms of maximizing the avoided environmental 
impacts is better for the non-egalitarian scenarios, we believe Scenario D, where multi-
ple consumers could potentially be interested in purchasing low-cost recovered material is 
realistic. Specifically, the hybrid MOO method, is found to be particularly useful in its abil-
ity to allocate recovered resources effectively taking into account cost and environmental 
impact. Thus, apart from the model’s ability to balance different objectives, in this case, it 
also serves to solve a combinatorial problem (material allocation between industries, ware-
house, and/or landfilling).

The main advantage of using the hybrid optimization method is that it leverages the 
strengths of both heuristic and exact solution optimization methods, i.e. a thorough explo-
ration of the search space followed by aggressively converging on an optimal solution 
based on possibly changing circumstances and constraints. In summary, this study high-
lights the importance of judicious of higher-level decision-making when it comes to deter-
mining which objective to consider as the primary objective and which objective(s) to 
express as auxiliary constraints. This could potentially be challenging when users are faced 
with numerous objective functions and constraints.
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Summary & conclusions

This study models the development of industrial synergistic networks using the case 
of EoL PVs. By analyzing different scenarios, the study highlights the challenges and 
considerations associated with developing and evaluating ISNs. A hybrid MOO model 
has been proposed to create ISNs from a self-organizing, egalitarian perspective to 
minimize risks related with supply and demand differences, or other disruptions that 
could affect industrial synergies. The model also highlights the different combinatorial 
possibilities in an ISN to effectively balance profitability and environmental impacts 
based on demand and distance parameters. Importantly, it successfully balances the 
economic and environmental goals by diverting resources away from the landfill. 
Though less profitable in the short-term (owing to storage and transport costs), this is 
important as demand and supply are dynamic and material storage could be an impor-
tant factor in mitigating supply chain risks and in maintaining industrial synergies.

Other issues the model sheds light on is the importance of considering the economic 
value of each recovered material stream and the role this plays in the overall performance 
of the model. The choice of which objective to consider and which objective(s) to express 
as objective function constraints calls for judicious decision-making too. The model has 
some obvious limitations. It does not consider the social and/or behavioral aspects of 
developing synergies. Further study into regulatory measures related to evolving landfill-
ing costs, disposal penalties and policies should be accounted for. This is especially rel-
evant to clean technologies owing to their growing demand and need for proper disposal 
infrastructure. Infact, more work to model alternative transportation scenarios needs to 
be carried out keeping in mind that this decade will present greater access to electric 
vehicles and considering that manufacturing could be supported in a greater degree by 
electricity generated less by fossil fuels and more from renewables. This could result in 
tangibly higher environmental benefits that in turn could further drive material recovery 
and the development of complex ISNs. In future it would be beneficial to also analyze 
remanufacturing scenarios. Unfortunately, at this time, the authors were limited in this 
regard owing to insufficient data on PV disassembly relative to the sub-assemblies and/
or components that can potentially be recovered. Specific data needs to facilitate such an 
analysis would include understanding the lifetimes and extents of degradation of individ-
ual components and sub-assemblies. In addition, it would also be important to determine 
whether a market could be created for remanufactured EoL PV components and sub-
assemblies. This study is limited only to optimizing global warming impacts (because of 
recovery processes and transportation) and recovery costs in the context of developing 
industrial synergies in a region. The proposed model can be expanded and should simul-
taneously account for optimizing other environmental impact categories such as water 
footprint, ozone depletion, eutrophication, acidification potential, etc. and not just global 
warming potential by constructing additional objective functions and modeling other 
constraints.

Finally, from a technical point of view, further complexity with regard to the con-
straints governing disposal and storage are required. Bi-directional material exchanges 
and a greater number of material sources also need to be considered. Unfortunately, the 
size of the model prevents us from accurately determining the impact of the choice of ε 
value on the model behavior (relatively small changes occur in relation with overall ISN 
performance since it is mainly the allocation of low value materials that need to further 
optimization). Scaling up the model (whether in the context of EoL PVs or other EoL 
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consumables) to include more nodes (industries), and other objectives and constraints 
will help understand related uncertainties and associated sensitivities better. In this study 
we have analyzed individually recovered material streams from EoL PVs recovery.
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