
Clustering of Trajectories using Non-Parametric Conformal
DBSCAN Algorithm

Haotian Wang
Rutgers University
hw487@rutgers.edu

Jie Gao
Rutgers University
jg1555@rutgers.edu

Min-ge Xie
Rutgers University

mxie@stat.rutgers.edu

ABSTRACT

Technology innovation has provided the opportunity to study the

characteristics of natural human mobility. In this paper, we look

at how to identify interesting clusters (by di!erent individuals or

other naturally defined groups) in a family of trajectory traces. We

focus on coarse-grained, sparsely sampled trajectories inferred from

sporadic occurrences in an unsupervised setting. This is a challeng-

ing setting due to difficulties in selecting features and similarity

measures, and due to lack of prior knowledge of data distribution.

We propose a non-parametric clustering algorithm, which makes

little assumptions on prior knowledge of both data distribution and

cluster properties. Our algorithm, Conformal DBSCAN, combines

density-based DBSCAN clustering with the statistical conformal

prediction framework. We first identify groups of highly similar

trajectories as the initial seeds of clusters, similar to DBSCAN. Then

we include additional trajectories that belong to this cluster, with a

guaranteed statistical confidence level, derived by an improved con-

formal prediction framework. This allows the clustering algorithm

to automatically adapt to di!erent data distributions. Our algo-

rithms are shown to significantly outperform alternative clustering

algorithms on several artificial and real-world datasets.

1 INTRODUCTION

Technology innovation has enabled the possibility to collect a large

number of human trajectories. These trajectory traces reveal in-

teresting characteristics of natural human mobility that are of sig-

nificance both on an individual level (personal mobility profiling)

and on a population level (for gathering and group motion) with

numerous applications such as traffic engineering [35, 40], civil

planning [23] and public health domains [25]. Trajectory data has

been collected by vastly di!erent sensing modalities and has a high

variation of spatial and temporal resolution. With dedicated sensors

either carried by the agents (e.g., GPS) or carefully instrumented

in the environment (e.g., in smart buildings), one can obtain high-

resolution spatial-temporal trajectories [11, 29]. On the other hand,

a larger category of trajectory traces are inferred from sporadic,

discrete occurrences with or without timestamps or orderings –

for example, trajectories inferred from proximity with WiFi access

points, cellular towers, highway toll stations or public transit ticket

booths [26, 28, 42, 48]. This kind of trajectory data is sparse, not

uniformly sampled or even disconnected, and lacks details.

Many methods on analysis of trajectory data focus on high-

quality trajectory data. There are a lot of rich details and geometric

features one can extract, especially with supervised learning. Past

work has studied the prediction of the transportationmodes [49, 50],

turning mode in the crossroad [27], and destination of the trips [5],

These supervised learning methods rely on detailed discriminative

statistical features such as velocity [49] and acceleration [19, 50],

which can only be extracted from fine-grained trajectories with

very dense sampling intervals.

The work in this paper focuses on coarse-grained, sparsely sam-

pled trajectories, or sparse samples of occurrences. We also take

an unsupervised setting without any training data or labels. We

ask whether one can still infer meaningful clusters in a given set

of trajectory traces. A cluster can correspond to trajectories by the

same individual or other naturally defined groups (e.g., the same

animal species). On the scientific front, we believe that di!erent

individuals or species move in a di!erent way and there are hidden

features in the traces that can be used to separate them.

1.1 Challenges

The immediate challenges in handling sparsely sampled trajectories

are to decide on feature selection, distance measurement policies,

and clustering algorithms.

Feature selection. The first challenge is to find a good representa-

tion of an input trajectory. Existing techniques mainly use spatial

and temporal features of the trajectory [17, 22]. These low-level

position based features are sometimes insufficient to distinguish dif-

ferences in a small region [46]. Semantic information is taken into

consideration, such as the categories of check-in locations [6, 44]

and transportation mode parameters [49, 50]. But advanced seman-

tic information requires external labels which are not always avail-

able. Advanced deep learning techniques can be used to train distin-

guishing feature vectors [43, 47], but falls short in transparency and

interpretability. In general, feature design for clustering trajectories

is still a non-trivial problem. Although we do expect that mobility

trajectories of the same individual tend to be repetitive and regular,

there are clearly daily variations and outlier behaviors. It is unclear

what are the most discriminating features that separate the mobility

patterns of di!erent individuals.

Trajectory similarity. To compare two trajectories, classical geo-

metric measures for distances of curves use geometric definitions

such as the Hausdor! distance and Fréchet distance [38]. These

measures are more suitable on trajectories that are aligned, uni-

formly and consistently sampled, such as trajectories derived from

video footage [3, 24, 46]. For sparsely sampled trajectories with

potential missing data and outliers, these measures face challenges.

Specifically, these distance measures are extreme measures (of the

min-max or max-min type) and capture the worst-case scenario.

On a real-world human trajectory dataset, it is nearly impossible

for two trajectories to be close to each other all the time. These

geometric measures often turn out to be too large (e.g, comparable

to the radius of the city) to be interesting [13]. Even for two trajecto-

ries of the same individual on two consecutive days, the Hausdor!

distance and Fréchet distance are on average in the order of several

kilometers [42] and thus can not be e!ectively used to di!erentiate

20
22

 2
1s

t A
CM

/IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

fo
rm

at
io

n
Pr

oc
es

sin
g

in
 S

en
so

r N
et

w
or

ks
 (I

PS
N)

 |
 9

78
-1

-6
65

4-
96

24
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IP

SN
54

33
8.

20
22

.0
00

43

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2022 at 21:27:10 UTC from IEEE Xplore. Restrictions apply.

trajectories from di!erent agents. Motivated by this, several recent

works [33, 39, 42] define similarity measures for real-world trajec-

tories, by relaxing the dependency on extreme conditions (e.g., by

considering partial similarity measures).

Clustering algorithm. Existing clustering algorithms are not par-

ticularly suitable for trajectory data. Most clustering algorithms in

the literature fall into the following two categories. The first one is

model-based. One of classical methods is centroid-based methods.

The clusters are inherently assumed to be round and the problem

is often formulated as an optimization problem to minimize the

maximum size of each cluster, such as !-center [15] or !-means

clustering [31]. These algorithms generate less meaningful results

when the ground truth has other ‘shapes’ or of di!erent sizes [12].

Another model-based approach assumes the distribution of data

points inside each cluster [9], e.g., in the mixed Gaussian model.

The clustering algorithm explicitly uses this assumption on input

data, which is not applicable for trajectory data.

The other class is density-based methods, e.g., density-based

spatial clustering of application with noise (DBSCAN) [10]. The

idea is to first identify the core points where the number of points

within distance " from each core point is more than a given thresh-

old. Then the cluster grows by including all points that are within

distance " from at least one core point in the cluster. The clustering

results are influenced by parameter selection and these parameters

need to be determined beforehand [2]. A few variations of DBSCAN

choose the input parameters automatically. For example, a hybrid

DBSCAN algorithm incorporates Binary Di!erential Evolution and

Gaussian Means to determine the parameters [36]. Additional re-

search works discuss this automatic selection process, using grid

partition technique [18], affinity propagation clustering [7], domain

sets [16] and other methods [20, 37, 51]. These methods mainly help

to choose appropriate fixed parameters for clusters before the grow-

ing process. The parameters are not changed during the growing

process.

We propose our method, which follows the general framework of

DBSCAN, but adapts the parameter " automatically in the growing

process. We grow a cluster # by including the points that are, sta-

tistically, believed to be taken from the same distribution that gen-

erated# with high confidence. This allows the clustering algorithm

to adapt to di!erent cluster distributions and leads to improved

clustering performance (measured by the Adjusted Rand Index) on

di!erent trajectory datasets. We highlight our contributions below.

1.2 Our Contribution

Our goal is to take a non-parametric approach – as we do not

have any prior knowledge of the ground truth clusters of trajectory

traces (e.g., cluster labels, the number of clusters, the distribution

of clusters) – and support a wide range of features and similar-

ity measures on real-world trajectory datasets. Our cluster shall

move beyond a centroid-based definition and shall tolerate vari-

ation in data density, the existence of outliers, and variations in

distributions.

We first take a look at Figure 1 to understand where current algo-

rithms fall short. The figure shows three sample datasets and four

algorithms: !-means algorithm, Gaussian mixture models (GMM),

DBSCAN and our conformal DBSCAN algorithm. !-means fails to

Figure 1: Four algorithms: !-means, Mixture of Gaussian

(GMM), DBSCAN and conformal DBSCAN on three syn-

thetic datasets. The clusters are shown in di!erent colors.

identify high-density clusters that are not of a round shape and

have varying densities. GMM successfully finds the three Gauss-

ian clusters but shares similar limitations with !-means for other

non-round clusters. DBSCAN, on the other hand, can successfully

recognize ‘gaps’ between clusters. But the algorithm is local – a

new data point $ will join an existing cluster # if $ is considered

to be similar (within distance " for some distance measures) to

an existing core data point $ ′ in # , while " is a fixed value. Thus,

low-density points (in the second and third columns) are either

lumped together with the high-density points (if " is too big) or not

recognized by any cluster at all (if " is too small).

Then, let’s discuss the challenge in trajectory clustering. For

trajectory data, there is no standard definition of clusters and we

do not have any prior knowledge of the distribution of trajectories

that belong to the same individual. For supervised learning, one

can use an empirical distribution of the history data, but this is

unavailable for the unsupervised setting. Here we assume that there

are ! clusters #1,#2, · · · ,#! , with ! unknown, and the points in

#" are uniformly randomly sampled from a distribution %" , which

is also unknown. Notice that the distributions %" for di!erent &

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2022 at 21:27:10 UTC from IEEE Xplore. Restrictions apply.

are sufficiently separated; otherwise, they shall have already been

merged to fewer clusters.

We take the DBSCAN algorithm but improve the growing step

significantly – starting from an initial set of high-density points, we

include new ones with an adaptive radius " , which is determined

by the current cluster properties. This is achieved by using the

conformal prediction framework, a statistical framework to quantify

the likelihood of a new data point belonging to a distribution %

by comparing with random samples independently and identically

taken from % . Thus our algorithm is called conformal DBSCAN

algorithm.

The conformal prediction framework [41] is a recent develop-

ment in statistics and machine learning that quantifies the likeli-

hood of a new data object $ belonging to an unknown distribution

D, where the only information needed is a set # of data objects

randomly sampled from the distribution. The framework does not

need any assumption on the knowledge of the distribution D. The

conformal prediction framework uses a discrepancy score A($,')

which characterizes how di!erent a data object $ is relative to a

reference set' . If two data objects are similar, they will have similar

discrepancy scores with respect to the same reference set. Thus, we

compare the new data object $ with each object (∈ # (with respect

to the rest of objects in # as the reference set) – if $ is also likely

randomly chosen from D, roughly a similar amount of the objects

in # are expected to have discrepancy scores higher or lower than

$. The rank of its discrepancy score among all the objects in #

provides a rigorous framework to quantify the likelihood of $ being

an element from D, which also controls the type-I error of labeling.

Notice that this allows a wide range of designs for the discrepancy

score and covers a wide range of (unknown) distribution D.

To handle the growing phase in DBSCAN we need to modify the

conformal prediction framework. Here the initial cluster includes

a set of high-density points, instead of randomly selected from a

cluster, which is required in the conformal prediction framework.

We provide confidence analysis for this more general and distorted

setting. We reformulate the conformal prediction test and include

a new point $ if it is within distance " from a point (∈ # whose

discrepancy score ranks within [) |# |, (1−)) |# |] among all points in

, where * is a small number and is interpreted as the significance

level in our work. We prove that a newly included object belongs to

the current cluster with a high significance level * . In other words,

the type-I error of this labeling, false positive rate, is controlled

below * in the growing process. Our modified conformal prediction

framework is applied in an iterative manner to group objects into

several clusters. Our work is the first one to combine the conformal

prediction framework and unsupervised clusteringmethod together,

with theoretical analysis for the growing step in the DBSCAN

method.

We also tested our algorithm for di!erent trajectory datasets. For

identifying meaningful clusters, we use three di!erent trajectory

similarity measures that are robust to missing data and outliers .

They can capture di!erent innate features (spatial and temporal fea-

tures) of mobility trajectories. Three trajectory datasets, including

synthetic trajectories and real-world trajectories (wild animal trajec-

tories and individual electric bike trajectories), are tested. Through

the experiments, our method significantly outperforms other base-

line algorithms (!-means and DBSCAN [10]). In the animal species

trajectory dataset, our method can separate the trajectories by their

species, with Adjusted Rand Index (ARI) value as 0.7449, much

higher than the other methods. In the bike trajectory dataset, our

goal is to group each individual’s daily trajectories without any

prior label. Our method performs well using di!erent similarity

measures.

In the rest of this paper, we start by reviewing the previous work,

DBSCAN and the conformal prediction framework, in Section 2. In

Section 3, we proposed our conformal DBSCAN algorithm with the-

oretical analysis. The relationship with DBSCAN is also discussed.

The experiments with di!erent trajectory datasets are presented in

Section 4 and Section 5 concludes this paper.

2 REVIEW OF DBSCAN AND CONFORMAL
PREDICTION

In this section, we will review DBSCAN and the conformal predic-

tion framework. We also discuss their limitations for clustering.

2.1 DBSCAN

DBSCAN is a heuristic algorithm widely used in data mining and

clustering. The main idea of DBSCAN is the following: given a col-

lection of data objects and two predetermined fixed parameters, the

radius of neighborhood " (in a distance measure) and the threshold

for the number of neighbors+&,-./ , the points are gradually placed

into clusters. To find one cluster # we take the following steps:

(1) Find the core set: First, if $ has at least+&,-./ points within

radius " (including $ itself), $ and all points within distance

" from $ are put in # . $ is called a core point.

(2) Gradually include reachable points:A point $ not yet included

in any clusters is added to # if $ has at least one core point

of # within distance " .

The above procedure finds one cluster # in DBSCAN. When #

cannot grow anymore, we find another high-density region and

repeat. The procedure stops when nomore clusters can be identified.

The points that are not recognized by any clusters are considered

as noise or outlier.

The two parameters in DBSCAN are fixed for all clusters. Later

variants to DBSCAN choose di!erent parameters, i.e., the radius "

and the threshold+&,-./ , for di!erent clusters but the parameters

are fixed throughout the growing phase for one cluster. In our

algorithm, we use an adaptive parameter " in the growing phase.

The choice of " is guided by the points in the current cluster# . This

is determined by using a revised conformal prediction framework,

which is introduced below.

2.2 Conformal Prediction

The conformal prediction framework is a statistical test to deter-

mine whether a new object belongs to a distribution with i.i.d.

observation objects. Our discussion focuses on the Jackknife+ con-

formal prediction framework [4], introduced below.

Let # = {(1, (2, · · · , (#} be a given set of objects from a single

cluster with underlying distribution D. which is unknown. We

would like to check whether or not a new object (#+1 ∉ # is also a

uniform random sample from the same distribution D.

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2022 at 21:27:10 UTC from IEEE Xplore. Restrictions apply.

First, we define the notion of discrepancy score computed by

an algorithm or a function A($,'), which characterizes the data

object $ with respect to a reference dataset ' , $ ∉ ' . Notice that

there is no assumption on this discrepancy score in this framework

and our following clustering algorithm. It can be any meaningful

measure that characterizes the distance of $ with ' , the role of

$ within set ' , the influence of $ upon ' , etc. This discrepancy

score can be derived from certain distance measures using extracted

features, or as an application specific score (e.g., as the output of

a preprocessing algorithm such as regression or neural network

models). While the conformal prediction framework works with

any real-value function A($,') as the discrepancy score, when an

appropriate discrepancy score is chosen, the prediction could be

more informative. There are some popular choices in the literature,

such as the !-nearest neighbors algorithm [41], (kernel) ridge re-

gression [41], SVM [41], neural networks [30], random forest [8]

and genetic algorithms [21].

Next, we compare the discrepancy score of all the objects to

quantify the probability that a new object belongs to the same

distribution as the reference set. If the new object (#+1 belongs to

the cluster # , we can compare the discrepancy score 0
(")
#+1 and 0" ,

where 0
(")
#+1 = A((#+1,#

−") and 0" = A((" ,#
−") with respect to

the same leave-one-out set #−"
= #\{(" }, and (" ∈ # is a randomly

selected object from the cluster # . If both (#+1 and (" are random

samples from the same distribution, the order of 0
(")
#+1 and 0" would

take a 50-50 chance. In other words, when the new object (#+1

is similar to the objects in the cluster # , we expect the value of

0
(")
#+1 is comparable to a sizeable fraction of the value of 0" , for all

& = 1, 2, · · · ,,. In the cases when 0
(")
#+1 is larger or smaller than the

majority of 0" values, we would reject the claim that (#+1 is the

same or similar to the objects in # .

Formally, we count the numbers of values 0" for all & , that 0
(")
#+1 <

0" and 0
(")
#+1 > 0" , respectively. Then we define a conformity score

in the range of [0, 1] as

1 ((#+1) = 2min{2− ((#+1),2
+ ((#+1)} (1)

where

2− ((#+1) =

∑#
"=1 1{0

(")
#+1 < 0" }

+
+

∑#
"=1 1{0

(")
#+1 = 0" }

2+

2+ ((#+1) =

∑#
"=1 1{0

(")
#+1 > 0" }

+
+

∑#
"=1 1{0

(")
#+1 = 0" }

2+

(2)

and 1(·) is the indicator function. When (#+1 is similar to (" , we

expect that 0
(")
#+1 ≤ 0" or 0

(")
#+1 ≥ 0" holds by roughly the 50-50

chance. So, if either 2− ((#+1) or 2
+ ((#+1) is close 0, it means (#+1

is likely di!erent than majority objects in # . In either of the two

cases, the conformity score 1 ((#+1) is small and close to 0.

An example is provided in Figure 2, where # contains points

on a circle. When new points are o! the circle (e.g., (9, (10), both

the conformity scores 1 ((9) and 1 ((10) ≈ 0. For new points on the

circle (e.g., (11), the conformity score 1 ((11) ! 0.

1
2

3

4

5
6

7

8
1

2

3

4

5
6

7

8

9

10

1
2

3

4

5
6

7

8

11

Figure 2: Illustration of the conformity score. There are 8

points, (1, . . . , (8 in the reference set #, with the underlying

distribution on a circle (shown in pink). The points (9 and

(10 are checked against a randomly chosen point (say (4).

A($,') is the sum of distances from $ to all points in ' .

0
(4)
9 > 04; 0

(4)
10 < 04 and 0

(4)
11 ≈ 04. In fact, both 1 ((9) and

1 ((10) are close to zero; while 1 ((11) are away from 0.

In the case when (1, . . . , (# , the points in # , as well as the new

object (#+1 are all independent random draws from the same dis-

tribution, it can be shown [4, 14] that

Pr(1 ((#+1) ≤ *) ≤ *, (3)

where * is a pre-specified small number in (0, 1). That is, if we use

the detection rule to declare “(#+1 is a sample point from the same

distribution as those in #” if and only if “1 ((#+1) > *”, then the

type-I error to mistakenly reject (#+1 is less than * . In fact, some

researchers suggested to interpret the conformity score 1 ((#+1)

as a p-value for the hypothesis test problem 30: (#+1 is conformal

with # versus 3$: (#+1 is not conformal with # [14, 45].

The above guarantee often requires that the points in# and new

point (#+1 are drawn fromD at random. Intuitively, for a randomly

drawn $ fromD, the discrepancy scoreA($,#) forms a distribution

% in R1. Regardless of what % or D look like, randomly drawing

+ samples from D will give us a random sample of discrepancy

scores from % . Thus, we can use the ranking of A((#+1,#) with a

random sample from % to estimate the likelihood that (#+1 is also

taken from the same distribution D. Notice that using the ranking

rather than the discrepancy score itself allows for a wide variety

of discrepancy functions and embraces inherent robustness. The

Jackknife+ framework made a slight adjustment with# replaced by

#−" when we compare (#+1 against an object (" from# , to avoid the

influence of (" ∈ # in the discrepancy calculation, which ensures a

rigorous mathematical proof of the statistical claims.

However, for the clustering problem, we have no prior knowl-

edge of the distributions and the cluster labels. Thus we do not

have a reference set to start with. Generally, we can guess the label

of random samples from a truncated distribution – with density

function higher than a threshold – and use them as the reference

set. This is similar to the first step of DBSCAN of discovering the

high-density regions. The issue is that the samples identified from

the truncated distribution are not a uniformly random sample from

the ground truth cluster. This violates the assumption of conformal

prediction. For a new object on the boundary of this truncated

distribution, its discrepancy score is likely to be far away from

the majority of the discrepancy score of objects in the reference

set. In the following work, we will extend the conformal prediction

framework and provide the mathematical explanation for the newly

added objects with respect to a truncated distribution.

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2022 at 21:27:10 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Conformal DBSCAN

Input: The set of data objects 4 = {(1, . . . , (%};

A small number * ∈ (0, 1);

Any radius value 5 to select the initial seeds;

Output: The set of clusters {#1,#2, . . . }

1 ! = 1; // Index of the current cluster

2 while 4 is not empty set do

// Initial members

3 6 (&) ← {(& |7 ((" , (&) ≤ 5}, for (" ∈ 4 ;

4 . ← 8"9+8$" |6 (&) |;

5 #! ← 6 (.);

6 repeat

// Core objects determination

7 0
(&)
" = A((" ,#! \ {(" , (& }), for (" , (& ∈ #! ;

8 1 ((") =

∑
!" ∈#$,"≠%

1{'
(%)
" ≤'

(")
% }

|($ |−1
;

// Adapted radius and growth

9 " = : (#!) ;

// Radius adaption function

10 for (" ∈ #! do

11 for (& ∈ 4\#! do

12 if 1 ((") ≥ * and 7 ((" , (&) ≤ 5 then

13 #! = #! ∪ {(" };

14 until There is no (∈ 4\#! added into #! ;

15 ! → ! + 1;

16 4 = 4\#! ;

3 CONFORMAL DBSCAN

In this section, we propose Conformal DBSCAN, which combines

DBSCANwith the conformal prediction framework.We first present

the algorithm design and then extend the conformal prediction

framework to provide theoretical analysis for our algorithm. Last,

we discuss the relation with DBSCAN and provide a mathematical

explanation for DBSCAN.

3.1 Algorithm

Given a collection of data objects 4 = {(1, · · · , (%}, the function

7 ((" , (&) describes the di!erence between two data objects (" and

(& . Notice that this function does not need to be a metric function.

We provide the pseudo-code of our conformal DBSCAN algorithm

in Algorithm 1. Our algorithm proceeds in three phases.

Initial Members. Similar to DBSCAN, we find the high-density

region as the initial members of a cluster. Given 5 , which is the

initial radius for initial seeds, we find the point $ with the highest

number of points within distance 5 . If we cannot find such a point

$ (i.e., 5 is too small) we increase 5 until we can find one. Then

this object and its neighbors are selected as the initial member of a

cluster. This step is in Line 3-5 of Algorithm 1.

Core Objects Determination. Based on the current cluster mem-

bers, we include new elements in an iterative manner. In each

iteration, we first define the core objects as those whose conformity

score is larger than a pre-specified significance level * ∈ (0, 1). A

smaller value * results in a larger number of core objects. Gener-

ally, we set * as 5% or 10%. In Algorithm 1 lines 7-8 calculate the

discrepancy scores and conformity scores. The first condition in

Line 12 is to determine the core objects.

Adapted Radius and Growth. Based on the core objects in the

current cluster, whose discrepancy scores are ranked in the appro-

priate range, we include new objects within proximity from the

core objects. Our algorithm adapts the radius according to the cur-

rent cluster, represented by the function " = : (#), which depends

on the current core objects, e.g., density, average distance and the

maximum distance between any pair of closest objects in # . Then,

all the objects within distance " from the core objects are included

in the cluster, as shown in Line 9-13 of Algorithm 1. We will show

in the next subsection that these newly included objects have a

similar discrepancy score and they are believed to belong to this

cluster with a high significance level.

Implementation. To apply this algorithm, the most important

thing is to decide on the discrepancy scoreA and the adapted radius

" = : (#). If we have some intuitions about the cluster structure,

one can apply a data-dependent function as the discrepancy score.

Otherwise, the !-nearest neighbors method is a good choice. The

adapted radius depends on the distribution of objects in the clusters.

Our method starts from the high-density region. Thus, the adapted

radius is increased as the cluster grows. In our implementation,

we take a data-driven method for " = : (#). For each object in the

current cluster, we compute the distance to its ! nearest neighbor

and the largest distance is set as the radius " . This radius is re-

calculated when # grows and adapts to the property of the current

cluster.

Suppose the discrepancy score is the sum of the distance to !

nearest neighbors in the reference set. When a new data point is

added in the cluster, we need to compute its discrepancy score

and update the other existing objects’ discrepancy scores. We can

maintain a min heap for each data point to store the ! smallest

distance. Each data point needs to compute the discrepancy score

once in; (, log!) time, where , is the number of objects. Then we

can use the hash sort to select the core set, which is done in linear

time.

Regarding the asymptotic behavior on ,, the number of trajecto-

ries, DBSCAN has a running time of; (,2) and conformal DBSCAN

has running time ; (,2 log!), where the extra factor, log! , comes

from using the min-heap to compute the discrepancy scores. In

implementation we take ! as a small constant thus log! can be

skipped in the asymptotic running time.

3.2 Theoretical Analysis

In our iterative algorithm, we grow the cluster# one object at a time.

Since we start with points in high-density regions (i.e., represented

by a truncated distribution), the new point (#+1 may not follow the

truncated distribution that characterizes the current reference set

. Recall that (#+1 is within distance " from a point in the core set

of # , we denote by < = < (#, ") the upper bound on the di!erence

of the discrepancy scores of (#+1 and points of# within distance " .

Definition 3.1. If a new object (#+1 and an object (" ∈ # are

within distance " of each other, de!ne the upper bound on the difference

between their discrepancy scores based on the reference set #−(", &)
=

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2022 at 21:27:10 UTC from IEEE Xplore. Restrictions apply.

#\{(" , (& } by < = < (#, "):

|A((#+1,#
−(", &)) −A((" ,#

−(", &)) | ≤ < . (4)

< = < (#, ") may depend on the reference set # and the radius " .

It suggests that the discrepancy scores of two objects in a " -

neighborhood, with respect to remaining points in# , are controlled

with an upper bound < . For instance, suppose a cluster is formed by

randomdraws from a certain distribution, for the sake of illustration,

say a Gaussian distribution. If the initial cluster and the reference

set# contain points in the high-density region, then the points in#

are from a corresponding truncated Gaussian distribution. The new

object (#+1 in the neighborhood of # and some points at or close

to the boundary of # will be very similar. The discrepancy score of

(#+1 and the scores of these close-by boundary points, with respect

to the remaining points of # , will not be too far and have an upper

bound. It provides a nice feature for the growth process that we do

not actually need to calculate the discrepancy score of all the new

data objects.

With this definition we modify the conformal prediction frame-

work to handle the truncated distribution. Suppose, for a new object

(#+1, there exists a random draw (̃ ∈ # such that (#+1 and (̃ are in

a " -neighborhood. We define a modified conformal score of (#+1:

1̃ ((#+1) = 2min{2̃− ((#+1), 2̃
+ ((#+1)} (5)

where

2̃− ((#+1) =

∑

":)"≠)̃,1≤"≤#
1{0̃

(")
#+1 ≤ 0̃" + <}

+ − 1

2̃+ ((#+1) =

∑

" :)"≠)̃,1≤"≤#
1{0̃

(")
#+1 ≥ 0̃" − <}

+ − 1

(6)

and 0̃
(")
#+1 = A((#+1,# \ {(" , (̃}) and 0̃" = A((" ,# \ {(" , (̃}), for

& ∈ {& : (" ≠ (̃}. Then we have the following theorem.

Theorem 3.1. Under the setting discussed above, we have

Pr(1̃ ((#+1) ≤ *) ≤ * .

Thus, the type-I error (i.e., the probability of not identifying (#+1 as a

sample in the cluster when in fact (#+1 is in the cluster) is less than * .

Proof. Without loss of generality, suppose (̃ = (1. We define

#̃ = # \ {(̃} = {(2, . . . , (#}. Since (̃ = (1 and (#+1 are in a 5-

neighborhood, by Definition 3.1 we have,

|0̃
(")
#+1 − 0̃

(")
1 | ≤ <, for 2 ≤ & ≤ + (7)

where 0̃
(")
#+1 = A((#+1, #̃ \ {(" }) and 0̃" = A((" , #̃ \ {(" }), for

& = 2, . . . ,+.

Furthermore, (̃ = (1 is one of the random objects in the set # ,

so (1 is conformal with objects in set #̃ . By treating (1 as a ‘new’

object and comparing it to reference set #̃ , the regular conformity

score defined in Equation (1) and (2), is

1 ((1) = 2min{2− ((1),2
+ ((1)} (8)

where

2− ((1) =

∑#
"=2 1{0̃

(")
1 < 0̃" }

+ − 1
+

∑#
"=2 1{0̃

(")
1 = 0̃" }

2(+ − 1)

2+ ((1) =

∑#
"=2 1{0̃

(")
1 > 0̃" }

+ − 1
+

∑#
"=2 1{0̃

(")
1 = 0̃" }

2(+ − 1)

(9)

It is followed by Equation (3) that Pr(1 ((1) ≤ *) ≤ * .

Now, we check the modified conformal score 1̃ ((#+1). We first

compare the relationship between 2̃− ((#+1) and 2
− ((1).

2̃− ((#+1) =

∑#
"=2 1{0̃

(")
#+1 ≤ 0̃" + <}

+ − 1

=

∑#
"=2 1{0̃

(")
1 − 0̃" ≤ 0̃

(")
1 + < − 0̃

(")
#+1}

+ − 1

≥

∑#
"=2 1{0̃

(")
1 − 0̃" ≤ 0}

+ − 1

=

∑#
"=2 1{0̃

(")
1 ≤ 0̃

(1)
" }

+ − 1

≥

∑#
"=2 1{0̃

(")
1 < 0̃" }

+ − 1
+

∑#
"=2 1{0̃

(")
1 = 0̃" }

2(+ − 1)

= 2− ((1)

The variable 0̃
(")
1 is inserted on the both sides on Line 3. According

to Equation (7), the right side of Line 3 is not less than 0 and Line 4

is obtained. Similarly, we can get 2̃+ ((#+1) ≥ 2+ ((1). It leads to

1̃ ((#+1) = 2min{2̃− ((#+1), 2̃
+ ((#+1)}

≥ 2min{2− ((1),2
+ ((1)}

= 1 ((1)

(10)

then, we can conclude this theorem, i.e.,

Pr(1̃ ((#+1) ≤ *) ≤ Pr(1 ((1) ≤ *) ≤ *

!

Based on this theorem, when the object (#+1 is close enough to

one of the randomly selected conformal objects in the reference set,

its discrepancy score is bounded. Then, its corresponding modified

conformity score is also controlled. If we reject the neighboring

(#+1 to be included in the cluster when its modified conformity

score 1̃ ((#+1) < * , then the type-I error of this labeling is controlled

to be less than * .

Theorem 3.1 holds for any bound < in Definition 3.1. If < is too

large the detecting rule based on the corresponding 1̃ ((#+1) can be

overly conservative, but the way Algorithm developed allows us to

define the modified conformity score 1̃ ((#+1) used in our detection

rule as the one computed using the tightest bound that satisfies

Definition 3.1.

3.3 Relation with DBSCAN

Conformal DBSCAN can be considered as a generalization and

improvement to vanilla DBSCAN. In both DBSCAN and conformal

DBSCANwe define core points and include new points by proximity

to these core points. Suppose we define the discrepancy score for $

as the distance to the (+&,-./)th nearest neighbor in the reference

set# . For DBSCAN, the core points have discrepancy scores of less

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2022 at 21:27:10 UTC from IEEE Xplore. Restrictions apply.

Dataset Synthetic Animal Human

Agents 260 102 633,194

Clusters 5 3 Varying

Records 4,160 14,990 50,873,192

Avg # Records/Agent 16 147 80

Table 1: Dataset Description

than " . For conformal DBSCAN, the core objects have conformity

score 1 (() larger than * . The directly-reachable objects in DBSCAN

are similar to the objects whose modified conformity score 1̃ (() are

larger than * .

4 EVALUATION BY SIMULATION

In this section, we present experimental evaluations of conformal

DBSCAN algorithm for trajectory clustering. Section 4.1 is about

the setup of our experiments including datasets and baseline algo-

rithms as references. The clustering performance is discussed in

Section 4.2. We also presented the application of conformal predic-

tion framework for supervised classification tasks in Section 4.3.

In Section 4.4, we provide some discussions and observations on

trajectory clustering, classification with respect to sampling rate

and similarity measures.

4.1 Experimental Setup

Hardware.We implemented our algorithm in Python with version

3.8. We ran the experiments on the machine equipped with Intel(R)

Core(TM) i7-8700 CPU @ 3.20GHz, and 32GB of RAM.

Dataset.We used three trajectory datasets, with di!erent collection

methods and features. The description of them is shown in Table 1

and the details are introduced below:

(1) Synthetic Trajectory: A public dataset1 of simulated trajec-

tories was previously created by Piciarelli et al. [32]. It consists of

1,000 randomly generated datasets. Each of these datasets contains

260 2-dimensional trajectories of length 16, i.e., exactly 16 points.

There are 5 di!erent clusters, and each one contains 250 normal tra-

jectory. The remaining 10 are stray trajectories that do not belong

to any cluster. Figure 3 shows three cases of this dataset.

(2) Animal Trajectory: The animal movement dataset2 was

generated by the Starkey project. This dataset contains the radio-

telemetry location (with other information) of elk, deer, and cattle

from spring through fall for the year 1993 through 1996. It includes

more than 287,000 observations acquired from animals in a natural

setting. We extract the coordinates, as well as the record time in-

formation, from the telemetry data observed in June 1995, shown

in Figure 4(a). The trajectories can be divided into three classes by

species. In the Elk category there are 38 trajectories and 7,117 data

points; in the deer category there are 30 trajectories and 4,333 data

points; and in the cattle category there are 34 trajectories and 3,540

data points. Therefore, there are on average 147 points for each

animal over one month.

(3) Human Trajectory: The trajectories are collected from elec-

tric motorbikes in Wenzhou, China. The datasets include a list of

1http://avires.dimi.uniud.it/papers/trclust/
2http://www.fs.fed.us/pnw/starkey/data/tables/

points with vehicle ID, system time, longitude, and latitude. For

each vehicle, there are 30-days trajectories in June 2018. The loca-

tion on the trajectory is taken as the location of the checkpoints that

have recorded such an appearance. There are 5,228 checkpoints in

the city with an area 110!+ × 70!+. A total of 633,194 trajectories

are recorded and each person has about 80 points on average in

one day. In the experiment, we randomly select a subset of vehicles

and run clustering for all trajectories of these vehicles.

Baseline Algorithms. For trajectory clustering, we have imple-

mented the classical unsupervised clustering algorithms, !-means,

DBSCAN and DBSCAN-GM [2], to obtain the baseline results. The

distance between trajectories is defined as 1 minus their similarity.

We use three similarity measures proposed in recent work [42]:

Time-Sensitive Similarity (TSS), Order-Sensitive Similarity (OSS)

and Order-Insensitive Similarity (OIS). Note that these three simi-

larity measures are non-metric functions. We also use two classical

similarity measures, Hausdor! distance and Fréchet distance. A

brief introduction of these similarities is shown:

(1) Time-Sensitive Similarity: Each trajectory is a sequence

of time-stamped locations visited by the agent. Two tra-

jectories are 0-Time-Sensitive similar if at least 0 fraction

of samples on the shorter trajectory are the same ones (or

nearby with a specified distance/time threshold) on the other

trajectory, including time stamps and locations.

(2) Order-Sensitive Similarity: Each trajectory is an ordered

sequence of locations visited by the agent. Two trajectories

are 0-order-sensitive similar, if an 0 fraction of samples on

the shorter trajectory are matched with the samples on the

other trajectory in the corresponding order. This could be

considered as a partial measure for Fréchet distance.

(3) Order-Insensitive Similarity: Each trajectory is a set of

visited locations. Two trajectories are 0-Order-Insensitive

similar if at least 0 fraction of locations on the shorter tra-

jectory are matched with the other trajectory. It ignores

the time dimension and visiting order issue. This could be

considered as a partial measure for Hausdor! distance.

(4) Hausdor! Distance: Let = and ' be two non-empty sub-

sets of ametric space (>,7). Their Hausdor! distance7* (= ,')

is defined as

7* (= ,') = max{max
+ ∈,

min
-∈.

7 ($,?),max
-∈.

min
+ ∈,

7 ($,?)}

where 7 ($,?) quantifies the distance between points $ ∈ =

and ? ∈ ' .

(5) Fréchet Distance: Let @ : [0,+] → R! and 9 : [0,,] → R!

be two polygonal curves or sequences. The Fréchet distance

is defined as

7/ (@ ,9) = min
',0

max
1∈ [1,#+%]

{7 (@ (0 (/)),9(< (/)))}

where 0 and < range over all discrete non-decreasing onto

mappings of the form 0 : [1 : + + ,] → [0 : +], < : [1 :

+ + ,] → [0 : ,].

Evaluation Metric. To evaluate the classification results, we use

precision and recall to measure the performance. Precision (also

called positive predictive value) is the fraction of relevant instances

among the retrieved instances, while the recall (also known as

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2022 at 21:27:10 UTC from IEEE Xplore. Restrictions apply.

sensitivity) is the fraction of the total number of relevant instances

that are retrieved.

For the trajectory clustering tasks, adjusted for chance measures

are widely used to compare partitions/clustering of the same dataset.

The Rand Index (RI) computes a similarity measure between two

clusterings by considering all pairs of samples and counting pairs

that are assigned in the same or di!erent clusters in the predicted

and true clusterings. It can be viewed as a measure of the percentage

of correct decisions made by the algorithm, computed by

AB =
C- +C6

C- + D- +C6 + D6

where C- is the number of true positives, C6 is the number of

true negatives, D- is the number of false positives, and D6 is the

number of false negatives. The Adjusted Rand Index (ARI) is the

corrected-for-chance version of the Rand Index. It is thus ensured

to have a value close to 0 for random labeling independently of the

number of clusters and samples, and exactly 1 when the clusterings

are identical (up to a permutation). In addition, the Adjusted Mutual

Information (AMI) based on Shannon information theory is another

popular metric in the clustering community. Simone et al. [34]

proposed that ARI should be used when the reference clustering

has large equal size clusters; AMI should be used when the reference

clustering is unbalanced and there exist small clusters. Our three

trajectory datasets are much suitable for the ARI metric, as our

evaluation metric, because all the clusters in our datasets have a

similar size.

Evaluation Step.We implemented the proposed algorithms based

on Python and our source code are publicly shared on Github [1].

We provide a tool-chain of our framework, including data cleaning,

similarity computation and clustering algorithms. Here are the

main steps in our tool-chain:

(1) Data Preprocessing: For the human trajectory dataset, the

sampling rate is about 10 seconds. There are many outliers in the

trajectories, such as unrealistic speed or impossible locations. We

need to clean these human trajectory data to make them realistic.

(2) Similarity Computation: For three partial similarity mea-

sures, the corresponding efficient algorithms are introduced in

the previous work [42]. When the number of data points and the

number of trajectories are large, we could use uniform sampling

to obtain an approximation of the partial similarity measure, to

reduce computational time.

(3) Clustering Algorithm: Based on the similarity matrix, we

implemented !-means, DBSCAN and conformal DBSCAN to output

the clustering results. Compared with the ground truth, we analyze

the performance (ARI, recall, and precision).

4.2 Trajectory Clustering

First, we test our algorithm under the unsupervised settings without

any prior knowledge. Thus, for the !-means algorithm, we use the

“elbow” method to select the optimal number of clusters. It plots

the explained variance as a function of the number of clusters and

picks the elbow of the curve as the number of clusters to use. For

DBSCAN, all reasonable parameters combinations (the radius of

neighborhoods and the minimum number of points within radius)

are enumerated to find the best performance. In our algorithm, we

use the sum distance to! nearest neighbors as the discrepancy score.

(a) Ground Truth (b) !-means (c) DBSCAN (d) Conformal DBSCAN

Figure 3: Clustering for synthetic trajectories: The first col-

umn is the ground truth of three cases. 250 trajectories be-

long to 5 clusters in di!erent colors, and the outliers are in

black. The clustering results by !-means, DBSCAN, Confor-

mal DBSCAN are shown in the following columns.

Method !-Means DBSCAN Conformal DBSCAN

OSS 0.5792 0.8703 0.8970

OIS 0.5774 0.8196 0.8507

Table 2: Clustering result for synthetic trajectories

For any pair of trajectories within the di!erence " for these three

similarity measures, the bound < in Definition 3.1 can be written as

the function < (#, ") = !2
1−2 . The radius is adjusted with the largest

[!2]-nearest neighbor distance to include more trajectories. Then

the performance of three datasets are shown below.

Synthetic Trajectory. Given that trajectories are generated with-

out specific time information, we only compute the order-sensitive

similarity and order-insensitive similarity between trajectories.

There are three cases are shown in Figure 3. In Figure 3(a), the

distribution of raw trajectories is demonstrated, including normal

trajectories in 5 clusters with di!erent colors and outliers (black).

The ground truth takes the normal trajectories in five clusters and

one cluster for all outliers.

The clustering results by !-means algorithm are shown in Fig-

ure 3(b). We can see that the size of clusters are not even. Some

trajectories in the same reference cluster are grouped into di!erent

clusters, and some in the di!erent reference clusters are mixed. In

addition, it cannot distinguish the outlier trajectories. Figure 3(c)

shows the clustering results by DBSCAN. It is much better than the

results of !-means. However, we can still findmisplaced trajectories,

in the second and third case. The good thing is that outlier trajec-

tories can be distinguished. The clustering results by conformal

DBSCAN algorithm are shown in Figure 3(d). In general our results

are better than the result of DBSCAN. Some outlier trajectories are

put in a separate cluster.

The overall performance on 1,000 trajectories using two similar-

ity measures is shown in Table 2. It is obvious that the results of

conformal DBSCAN algorithm are the best, with a higher ARI value.

In addition, the performance using the order-sensitive similarity is

better than that of using the order-insensitive similarity, because

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2022 at 21:27:10 UTC from IEEE Xplore. Restrictions apply.

(a) Trajectories of all animal species

(b) Reference cluster of each animal specie

(c) Cluster results of each animal specie by DBSCAN

(d) Cluster results of each animal specie by conformal DBSCAN

Figure 4: Clustering results for animal trajectories. (a) and

(b) are the trajectories of three species of animals (Red: Elk,

Blue: Deer, andGreen: Cattle). (c) and (d) show the clustering

results by DBSCAN and conformal DBSCAN algorithm.

the traversal order is a good factor not only for separating di!erent

clusters, but also enlarging the di!erence between trajectories in

one cluster in this dataset. In the following experiment, we will fo-

cus on the comparison between DBSCAN and conformal DBSCAN

algorithm.

Animal Trajectory. Figure 4(a) shows all the trajectories of these

three animal species in one month. Their activity regions partially

overlapped. The trajectory distribution of each species, i.e., ground

truth, is shown in Figure 4(b).

Here, we use time-sensitive similarity to compare two animals’

trajectories. We notices that each animal has about 15 data points

per trajectory trace, but these data points are not recorded evenly.

Thus, we set the time slot as one day, which means that if two

animals visit the same region on the same day, it should be counted

into the similarity measure. First, the clustering result by DBSCAN

is shown in Figure 4(c). The trajectories of deer and elk are not sep-

arated. While using conformal DBSCAN algorithm, the clustering

results are much better in Figure 4(d), separating deer and elk. The

Figure 5: Clustering results using Hausdor! distance and

Fréchet distance

Trajectories 200 500 1,000 2,000

DBSCAN (ms) 3.242 23.119 97.401 398.054

Conformal DBSCAN (ms) 5.312 38.798 173.452 711.248

Table 3: The running time of DBSCAN and conformal DB-

SCAN for human trajectories

ARI value for DBSCAN is 0.6020, while the ARI for our algorithm

is 0.7449.

Human Trajectory In this dataset, each person has about 30 daily

trajectories, representing regular daily routine. We randomly select

a subset of subjects and retrieve all the trajectories of these subjects

from the dataset. Our goal is to separate all the trajectories into

clusters, each belonging to a single subject.

First, the performance of using Hausdor! distance and Fréchet

distance as the similarity measures is shown in Figure 5. In terms

of the ARI score, conformal DBSCAN using Hausdor! distance

and Fréchet distance performs much worse than that using Time-

Sensitive similarity especially when the number of agents in the

dataset is increased. The reason is that even for the same subject,

her trajectories in two days have a large Hausdor! distance and

Fréchet distance, making it hard to group trajectories of the same

person.

We vary the number of subjects from 10 to 200, and show results

in Figure 6. It shows the ARI value of clustering by DBSCAN and

conformal DBSCAN algorithm using three similarity measurements.

First, with the increasing number of subjects, the ARI value is re-

duced. This is natural, as it is more likely to have similar trajectories

from di!erent subjects when the number of subjects increases, mak-

ing it harder to separate the subjects. We made an assumption that

trajectories of the same individual are separable. This assumption

is more likely to break down as there are more subjects. When

there are 200 people selected, DBSCAN can only generate about 60

clusters and conformal DBSCAN algorithm gets about 130 clusters,

which is a significant improvement.

Second, using the same similarity measure, conformal DBSCAN

outperforms DBSCAN and DBSCAN-GM [2], especially when the

number of subjects is large. The reason is that DBSCAN has a pre-

determined and fixed radius to include trajectories. It is hard to

select an appropriate radius manually. Although the DBSCAN-GM

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2022 at 21:27:10 UTC from IEEE Xplore. Restrictions apply.

Figure 6: Clustering results of DBSCAN, DBSCAN-GM and conformal DBSCAN algorithm using di!erent similarity measures

algorithm combines the Gaussian-Mean method to select the cen-

ters and radius, this radius is not perfect due to variation in cluster

density. Subjects vary significantly in terms of the similarity of their

trajectories. Conformal DBSCAN can adapt the radius according

to clusters’ growing process. It performs better in the cases with

clusters of varying density.

In addition, the same clustering algorithm shows di!erent per-

formance with three similarity measures. Clustering with time-

sensitive similarity performs better than that with order-sensitive

and order-insensitive similarity. This suggests that the traversal

order and time information can enlarge the gap between the similar-

ity of the same subject and the similarities of two di!erent subjects,

which improves clustering accuracy.

Running time. Table 3 shows the running time of two methods,

DBSCAN and conformal DBSCAN, after the similarity matrix is

obtained. As suggested by the theoretical analysis, the running time

of conformal DBSCAN is only modestly higher than the classical

DBSCAN with essentially the same scaling behavior in the number

of trajectories.

4.3 Trajectory Classification

In this section, we present the application of conformal prediction

framework for (supervised) classification problem. For each dataset,

we select a part of trajectories as the reference set, and the rest as

the test set. The discrepancy score is the sum distance to ! nearest

neighbors. With di!erent significance levels * , we compute the

conformity score for a test trajectory with respect to each reference

cluster. If the conformity score is larger than * , it will carry the

cluster label. In this way, one trajectory might have multiple labels

and we check the precision and recall metrics.

Synthetic Trajectory. For each cluster of 50 trajectories, we ran-

domly choose 20 trajectories as the reference cluster. The rest and

the outlier trajectories are the test set. The significance level *

is set as 0.05, 0.1 and 0.15, respectively. The classification results

with order-sensitive and order-insensitive similarity are shown in

Table 4.

First, the recall value is higher than 1 − * . It is guaranteed by

the framework that the prediction set contains the true cluster

label with (1 − *)100% significance level. Then, with a higher sig-

nificance level * , the precision value is increased. The reason is

Similarity OSS OIS

* 5% 10% 15% 5% 10% 15%

Precision 0.8067 0.9385 0.9652 0.7329 0.9021 0.9455

Recall 0.9617 0.9237 0.8842 0.9617 0.9237 0.8842

Table 4: Classification result of synthetic trajectories

that the prediction set becomes smaller, so the fraction of relevant

trajectories among retrieved trajectories becomes higher. In addi-

tion, using order-sensitive similarity has a better precision than

the order-insensitive similarity, because considering traversal order

enlarges the gap between di!erent clusters, reducing the number

of false positive instances.

Human Trajectory. For each subject, 15 daily trajectories are

taken as the reference set, with which we wish to successfully

identify the other 15 trajectories of the same subject. Given a sig-

nificance level * = 0.1, we check the number of subjects from 10 to

200 with three similarity measures. The recall value is about 0.82, a

little lower than the expected result 0.9. The reason is that 30 daily

trajectories of one person in the ground truth are probably not a

sufficiently representative cluster in practice.

The precision results are shown in Figure 7. With the number of

subjects increasing, the precision result using time-sensitive similar-

ity is reduced substantially, while the precision with other measures

still remains high (above 0.7). The Order-Sensitive Similarity and

Order-Insensitive Similarity seem to be good for this task when the

number of subjects is above 150. The reason is that the variance of

the discrepancy scores of conformal trajectories are large, making

it easy for the test trajectory to get a comparable discrepancy score

in di!erent reference sets.

On the other hand, with trajectories of 200 agents, if each tra-

jectory is simply labeled by the label of the reference cluster with

highest conformity score, the accuracy is still reasonable (around

60% – i.e., 60% trajectories are assigned the correct label) .

4.4 Discussion

Our experiments show that the three partial similarity measures

have respective merits in di!erent tasks and datasets. The pattern

is persistent when we reduce the sampling rate. Similar clustering

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2022 at 21:27:10 UTC from IEEE Xplore. Restrictions apply.

Figure 7: Precision results for human trajectory classifica-

tion with di!erent similarity measures.

results are obtained. Thus, it is important to choose appropriate

measures to analyze the mobility trajectories.

With technology innovation, trajectory collection e!orts often

strive for fine-grained mobility data with accurate localization and

dense sampling intervals. High sampling rate increases computa-

tion time. The experiments carried out here do not observe signif-

icant benefit with increases in sampling rate, for the purpose of

recognizing trajectories of di!erent individuals.

Similarly, it is tempting to incorporate more features, in order to

improve the performance of clustering and classification tasks. Our

experimental results suggest that we should take this with caution.

The main factor is to recognize the gap between similarity of two

trajectories within the same clusters and across di!erent clusters.

With an increasing number of participants, the performance of

time-sensitive similarity actually drops, while the performance of

order sensitive and order insensitive similarities remain high. This

suggests that the time-sensitive information could be too detailed

to recognize mobility patterns of di!erent individuals.

5 CONCLUSION

In this paper, we proposed an algorithm combining DBSCAN al-

gorithm and the conformal prediction framework. Conformal DB-

SCAN improves DBSCAN algorithm by automatically adapting the

parameters to the data being handled, guided by theoretical anal-

ysis of an improved conformal prediction framework. Conformal

DBSCAN shows superior performance on a variety of artificial and

real-world trajectory datasets. We remark that conformal DBSCAN

is a generic unsupervised clustering algorithm that has potential

on other unstructured, messy data. In future work we plan to test

conformal DBSCAN on other datasets, by incorporating more so-

phisticated discrepancy scores such as those obtained from deep

learning encoders.

Acknowledgement The authors would like to acknowledge sup-

ports fromNSFDMS-2015373, NSFDMS-2027855, NSFDMS-1812048,

NSF OAC-1939459 and NSF CCF-2118953.

REFERENCES
[1] Code. https://github.com/SBUhaotian/Conformal_DBSCAN.
[2] Patricia S. Abril and Robert Plant. 2007. The patent holder’s dilemma: Buy, sell,

or troll? Commun. ACM 50, 1 (Jan. 2007), 36–44. https://doi.org/10.1145/1188913.
1188915

[3] Gianluca Antonini and Jean-Philippe Thiran. 2006. Counting pedestrians in video
sequences using trajectory clustering. IEEE Transactions on Circuits and Systems
for Video Technology 16, 8 (2006), 1008–1020.

[4] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani.
2019. Predictive inference with the jackknife+. arXiv preprint arXiv:1905.02928
(2019).

[5] Philippe C Besse, Brendan Guillouet, Jean-Michel Loubes, and Francois Royer.
2017. Destination prediction by trajectory distribution-based model. IEEE Trans-
actions on Intelligent Transportation Systems 19, 8 (2017), 2470–2481.

[6] Meng Chen, Yang Liu, and Xiaohui Yu. 2015. Predicting next locations with object
clustering and trajectory clustering. In Paci!c-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 344–356.

[7] X. Chen, W. Liu, H. Qiu, and J. Lai. 2011. APSCAN: A parameter free algorithm
for clustering. PATTERN RECOGNITION LETTERS (2011).

[8] D Devetyarov and I Nouretdinov. 2008. Prediction with confidence based on a
random forest classifierlearning for medical diagnosis. In Proceedings of 6th IFIP
WG, Vol. 12. 37–44.

[9] Gal Elidan. 2013. Copulas in machine learning. In Copulae in mathematical and
quantitative !nance. Springer, 39–60.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.. In
Kdd, Vol. 96. 226–231.

[11] Liangji Fang, Qinhong Jiang, Jianping Shi, and Bolei Zhou. 2020. Tpnet: Trajectory
proposal network for motion prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 6797–6806.

[12] Ana Fred and Anil K Jain. 2002. Evidence accumulation clustering based on the k-
means algorithm. In Joint IAPR International Workshops on Statistical Techniques
in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition
(SSPR). Springer, 442–451.

[13] Andre Salvaro Furtado, Laercio Lima Pilla, and Vania Bogorny. 2018. A branch
and bound strategy for Fast Trajectory Similarity Measuring. Data & Knowledge
Engineering 115 (2018), 16–31.

[14] Min ge Xie and Zheshi Zheng. 2022. Homeostasis phenomenon in conformal pre-
diction and predictive distribution functions. International Journal of Approximate
Reasoning 141 (2022), 131–145. https://doi.org/10.1016/j.ijar.2021.09.001

[15] Teofilo F Gonzalez. 1985. Clustering to minimize the maximum intercluster
distance. Theoretical computer science 38 (1985), 293–306.

[16] Jian Hou, Huijun Gao, and Xuelong Li. 2016. DSets-DBSCAN: A parameter-
free clustering algorithm. IEEE Transactions on Image Processing 25, 7 (2016),
3182–3193.

[17] Weiming Hu, Xi Li, Guodong Tian, Stephen Maybank, and Zhongfei Zhang. 2013.
An incremental DPMM-based method for trajectory clustering, modeling, and
retrieval. IEEE transactions on pattern analysis and machine intelligence 35, 5
(2013), 1051–1065.

[18] D Huang and W. Peng. 2012. Grid-based DBSCAN Algorithm with Referential
Parameters. Physics Procedia 24, part-PB (2012), 1166–1170.

[19] Arash Jahangiri and Hesham A Rakha. 2015. Applying machine learning tech-
niques to transportation mode recognition using mobile phone sensor data. IEEE
transactions on intelligent transportation systems 16, 5 (2015), 2406–2417.

[20] W. Lai, M. Zhou, F. Hu, K. Bian, and Q. Song. 2019. A New DBSCAN Parameters
Determination Method Based on Improved MVO. IEEE Access 7 (2019), 104085–
104095.

[21] Antonis Lambrou, Harris Papadopoulos, and Alex Gammerman. 2009. Evolution-
ary conformal prediction for breast cancer diagnosis. In 2009 9th international
conference on information technology and applications in biomedicine. IEEE, 1–4.

[22] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. 2007. Trajectory clustering: a
partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD inter-
national conference on Management of data. 593–604.

[23] Qingquan Li, Zhe Zeng, Bisheng Yang, and Tong Zhang. 2009. Hierarchical
route planning based on taxi GPS-trajectories. In 17th International Conference
on Geoinformatics. IEEE, 1–5.

[24] Xi Li, Weiming Hu, and Wei Hu. 2006. A coarse-to-fine strategy for vehicle
motion trajectory clustering. In 18th International conference on pattern recognition
(ICPR’06), Vol. 1. IEEE, 591–594.

[25] Xiaojiang Li, Paolo Santi, Theodore K Courtney, Santosh K Verma, and Carlo Ratti.
2018. Investigating the association between streetscapes and human walking
activities using Google Street View and human trajectory data. Transactions in
GIS 22, 4 (2018), 1029–1044.

[26] Yang Li, Qixing Huang, Michael Kerber, Lin Zhang, and Leonidas Guibas. 2013.
Large-scale joint map matching of GPS traces. In Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems. 214–223.

[27] Weiyao Lin, Yang Zhou, Hongteng Xu, Junchi Yan, Mingliang Xu, Jianxin Wu,
and Zicheng Liu. 2016. A tube-and-droplet-based approach for representing and
analyzing motion trajectories. IEEE transactions on pattern analysis and machine
intelligence 39, 8 (2016), 1489–1503.

[28] Shengzhong Liu, Shuochao Yao, Xinzhe Fu, Huajie Shao, Rohan Tabish, Simon
Yu, Ayoosh Bansal, Heechul Yun, Lui Sha, and Tarek Abdelzaher. 2021. Real-Time
Task Scheduling for Machine Perception in In Intelligent Cyber-Physical Systems.
IEEE Trans. Comput. (2021), 1–1. https://doi.org/10.1109/TC.2021.3106496

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2022 at 21:27:10 UTC from IEEE Xplore. Restrictions apply.

[29] Brendan Morris and Mohan Trivedi. 2009. Learning trajectory patterns by clus-
tering: Experimental studies and comparative evaluation. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 312–319.

[30] Harris Papadopoulos, Volodya Vovk, and Alex Gammerman. 2007. Conformal
prediction with neural networks. In 19th IEEE International Conference on Tools
with Arti!cial Intelligence (ICTAI 2007), Vol. 2. IEEE, 388–395.

[31] José M Pena, Jose Antonio Lozano, and Pedro Larranaga. 1999. An empirical
comparison of four initialization methods for the k-means algorithm. Pattern
recognition letters 20, 10 (1999), 1027–1040.

[32] Claudio Piciarelli, Christian Micheloni, and Gian Luca Foresti. 2008. Trajectory-
based anomalous event detection. IEEE Transactions on Circuits and Systems for
video Technology 18, 11 (2008), 1544–1554.

[33] Moonsoo Ra, Chiawei Lim, Yong Ho Song, Jechang Jung, and Whoi-Yul Kim.
2015. E!ective trajectory similarity measure for moving objects in real-world
scene. In Information Science and Applications. Springer, 641–648.

[34] Simone Romano, Nguyen Xuan Vinh, James Bailey, and Karin Verspoor. 2016.
Adjusting for chance clustering comparison measures. The Journal of Machine
Learning Research 17, 1 (2016), 4635–4666.

[35] Govind Salvi. 2014. An automated nighttime vehicle counting and detection
system for traffic surveillance. In 2014 International Conference on Computational
Science and Computational Intelligence, Vol. 1. IEEE, 131–136.

[36] Abir Smiti and Zied Elouedi. 2012. Dbscan-gm: An improved clustering method
based on gaussian means and dbscan techniques. In 2012 IEEE 16th international
conference on intelligent engineering systems (INES). IEEE, 573–578.

[37] N. Soni and A. Ganatra. 2016. AGED (Automatic Generation of Eps for DBSCAN).
In International Journal of Computer Science and Information Security (IJCSIS).

[38] Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. 2020. A
survey of trajectory distance measures and performance evaluation. The VLDB
Journal 29, 1 (2020), 3–32.

[39] Na Ta, Guoliang Li, Yongqing Xie, Changqi Li, Shuang Hao, and Jianhua Feng.
2017. Signature-based trajectory similarity join. IEEE Transactions on Knowledge
and Data Engineering 29, 4 (2017), 870–883.

[40] Mohammed M Vazifeh, Paolo Santi, Giovanni Resta, Steven H Strogatz, and Carlo
Ratti. 2018. Addressing the minimum fleet problem in on-demand urban mobility.

Nature 557, 7706 (2018), 534–538.
[41] Vladimir Vovk, Alex Gammerman, and Glenn Shafer. 2005. Algorithmic learning

in a random world. Springer Science & Business Media.
[42] Haotian Wang and Jie Gao. 2020. Distributed Human Trajectory Sensing and

Partial Similarity Queries. In 2020 19th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN). IEEE, 253–264.

[43] Wei Wang, Feng Xia, Hansong Nie, Zhikui Chen, Zhiguo Gong, Xiangjie Kong,
andWeiWei. 2020. Vehicle trajectory clustering based on dynamic representation
learning of internet of vehicles. IEEE Transactions on Intelligent Transportation
Systems (2020).

[44] Ruizhi Wu, Guangchun Luo, Junming Shao, Ling Tian, and Chengzong Peng.
2018. Location prediction on trajectory data: A review. Big data mining and
analytics 1, 2 (2018), 108–127.

[45] Minge Xie and Zheshi Zheng. 2020. Discussion of Professor Bradley Efron’s
Article on, “Prediction, Estimation, and Attribution”. J. Amer. Statist. Assoc. 115,
530 (2020), 667–671.

[46] Hongteng Xu, Yang Zhou, Weiyao Lin, and Hongyuan Zha. 2015. Unsupervised
trajectory clustering via adaptive multi-kernel-based shrinkage. In Proceedings of
the IEEE International Conference on Computer Vision. 4328–4336.

[47] Di Yao, Chao Zhang, Zhihua Zhu, Jianhui Huang, and Jingping Bi. 2017. Trajectory
clustering via deep representation learning. In 2017 international joint conference
on neural networks (IJCNN). IEEE, 3880–3887.

[48] Huijing Zhao, Chao Wang, Yuping Lin, Franck Guillemard, Stephane Geronimi,
and Francois Aioun. 2016. On-road vehicle trajectory collection and scene-based
lane change analysis: Part i. IEEE Transactions on Intelligent Transportation
Systems 18, 1 (2016), 192–205.

[49] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. 2008. Under-
standing mobility based on GPS data. In Proceedings of the 10th international
conference on Ubiquitous computing. 312–321.

[50] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. 2008. Learning transportation
mode from raw gps data for geographic applications on the web. In Proceedings
of the 17th international conference on World Wide Web. 247–256.

[51] H. Zhou, P.Wang, andH. Li. 2012. Research on adaptive parameters determination
in DBSCAN algorithm. Journal of Xi’an University of Technology (2012).

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2022 at 21:27:10 UTC from IEEE Xplore. Restrictions apply.

