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and also introduce the concepts of upper and lower predictive distributions and predictive
curve to establish connections to left-, right- and two-tailed hypothesis testing problems
as well as the developments in confidence distributions. The homeostasis property is very

Keywords: attractive, since it states that under some conditions the prediction results remain valid
Confidence even if the model used for learning is completely wrong. We show explicitly why the
Predictive distribution property holds in a model-based setup and also explore the boundary when the property
Robustness breaks down. Beside the typical assumption used in conformal prediction that the response
Machine learning and covariate pairs (y,X) of all subjects are iid distributed, we also study the classical
Model mis-specification regression setting in which the design is fixed with given (non-random) covariates x. The

trade-offs among learning model accuracy, prediction valid and prediction efficiency are
discussed, leading to an emphasis of more efforts on developing better learning models.
© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Suppose we have n + 1 subjects sq,...,S; and Spew. For the first n subjects, we have an observed data set D =
{(xi, yi),i=1,...,n}. The new subject speyw has values (Xpew, Ynew), Where we are given only X, and need to predict
the unknown ypew. Denote by X’ the sample space of x and ) the sample space of y. A typical “exchangeable” condition in
conformal prediction is that, if a randomly selected pair (x;, y;) from D is replaced by (Xnew, Ynew), the joint distribution of
D U {(Xnew, Ynew)} \ {(Xi, ¥i)} remains the same as the distribution of D [1,23]. For simplicity, we assume that the samples
of the n+ 1 subjects are independently identically distributed (iid) random samples from an unknown population F, i.e.,

iid
(xl,}’l),---s(xny}'n)y(xnew»}’new)NJ'-, (1)
which is the simplest and also most commonly used special case in conformal prediction. Later in Section 3 to further
study the impact of a learning model in a model-based setup, we also relax the iid requirement in (1) to only assume that
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Vnew|Xnew relates to Xpey the same way as y;|x; relates to x;, but X;.,, may be fixed or follow a marginal distribution that
is different from that of x;, i.e.,

Ynew |Xnew relates to Xpew the same way as y;|x; relates to X; but Xpew ~ X;. (2)

The second condition includes the typical assumption used in the classical regression analysis in statistics where the design
covariates x are fixed (cf,, e.g., [5,17]). Under condition (2), we will typically consider conditional predictive inference using
conformal prediction procedure. Although the article focuses on studies in the two special cases as expressed in (1) and (2),
the conclusions reached also have implications to more general exchangeable cases.

The idea behind the conformal prediction development has an intuitive interpretation. In order to make a prediction
of the unknown yp.., we examine a potential value y* of the true yn., and see how “conformal” the pair (Xp+1,y*) is
among the observed n pairs of iid data D = {(x;, yi),i =1, ..., n}. The higher the “conformity”, the more likely yp.w takes
the potential value y*. Frequently, a learning model, say y; ~ u(x;) fori=1...,n and i =new, is used to assist prediction.
However, it is well-known in the literature that the learning model is not essential; cf,, [23]. As we will see later in this
article, even if w(-) is totally wrong, a conformal prediction can still provide us valid prediction, as long as assumption (1)
holds or when (2) holds but with additional strict conditions. This robustness against wrong learning model is referred to
as the homeostasis property in this article, since it has a “self-rebalance” phenomenon to correct the predictive bias caused
by the wrong learning model. An explicit formula of this self-rebalancing correction in regression setting is provided in
Section 3.

The homeostasis property is attractive, since it provides an assurance of the outcome even if the learning model used is
wrong. It may reduce the burden of model building, a “more difficult task” than prediction [9]. However, there is a trade-off
between the use of a wrong learning model and the prediction efficiency, even when the validity is preserved. If the learning
model is poorly fit, the predictive result, even if valid, comes with a large uncertainty. Sometime, the large uncertainty can
render the prediction result useless in practice. Furthermore, the conditions such as that in (1) play a key role in preserving
the homeostasis property. Under a general regression setting, including the case when the covariate variables x are fixed,
we explore the boundary beyond which the homeostasis property breaks down.

Most publications in conformal prediction so far report prediction intervals (or sets) with a pre-specified confidence level.
To provide a fuller picture of the predictive inference, we elevate the interval estimation to a predictive function on the
space of ypew. Vovk et al. [24] introduced the concept of conformal predictive distribution function with the frequentist (non-
Bayesian) interpretation. In this article, to deal with the discrete nature of conformal prediction, we define three further
predictive inference functions, leading to a set of finer concepts of upper- and lower-conformal predictive distributions
and predictive curve. We investigate the connections of these functions to hypothesis testing problems and also to the
developments in confidence distributions.

The remaining of the article is arranged as follows. Section 2 reviews a general conformal prediction procedure, de-
fines upper- and lower-conformal predictive distributions and predictive curve, and establishes connections to confidence
distributions and hypothesis testing problems. Section 3 investigates the model-based conformal prediction and provides
a detailed study of the homeostasis phenomenon. Section 4 contains a numerical study example, and Section 5 provides
further remarks and discussions. Throughout the paper two commonly-used conformal prediction procedures, known as
split-conformal and jackknife-plus approaches, are used as examples to illustrate the investigation.

2. Conformal prediction, hypothesis testing and confidence distribution
2.1. Conformal prediction and three relevant predictive functions on )

Given Xpey and for a potential value of the unknown ynew, say y*, we would like to know how “conformal” the pair
(Xnew, ¥*) is among the observed n pairs of iid data D = {(x;, y;),i =1, ..., n}. To quantitatively measure the “conformity”,
we make the following (minimal) assumption:

(A1) For each i=1,...,m, m <n, we can compute a statistic R; = R;(D) (referred to as a conformity score of object s;)
based on the observed data D. If (x;, y;) is replaced by (Xpew, y*), we can use the same algorithm to calculate the
corresponding statistic R} = R;(Dj) based on the data set D} =D U {(Xnew, ¥*)} \ {(Xi, ¥i)}.

Different approaches have different ways to compute the statistics R;. Two concrete examples are provided at the end of
this subsection.

Under (1), the pair (Xpew, Ynew) has the same distribution as any pair (X;, y;), i=1,...,m. Here, m <n is any given
integer number less than or equal to n. Thus, R; and R} have the same marginal distribution, if y* = yn.w. We expect that
the pair of values R; and R} are similar, if y* is close to ynew. This consideration leads us to define the following function
from ) — [0, 1],

1« 1
QY= — 3 AR > R) + 53 ARF =Ry, for y* €,
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where the second summation term is for potential tie cases. The function Q (y*) provides an assessment for the degree of
“conformality” for the potential value y*: too large or too small a value of Q (y*) (i.e, Q(¥y*)~ 0 or ~ 1) indicates that
y* is less likely “conformal” with the observed values in D. Often, Q (y*) is a monotonically increasing function in y*, as
seen the examples in Section 3. In this case, it can be shown that the Q (-) function is a frequentist asymptotic predictive
function in the sense of Shen et al. [20], when m — oo.

However, for finite sample data and to handle the discreteness in conformal prediction, we consider the following two
functions from )+ [0, 1],

EARIZROFT o S 1R > R).
m+1 m+1
Note that Q ~(y*) > Q (¥*) > Q T (y*), with the point-wide maximum difference between any pair of functions at the order
of O(mLH). When there are no ties, the maximum difference is bounded by m+r1 The two functions in (3) provide a point-
wise envelope box for Q (y*), similar to the so-called probability-box (p-box) development in uncertainty quantification and
imprecise probability (cf,, e.g., [12]). The box formed by Q ~(y*) and Q *(y*) can help handle inference uncertainty and the
discreteness in a conformal prediction procedure. Here, we shift a step of size ﬁ instead of % to reflect the nature of
discreteness in conformal prediction; cf,, [24]. The development of the two inference functions is also similar to that of the
so-called lower and upper confidence distributions in statistics for making exact inference of parameters (cf., e.g., [15,7]).
We further define the function

Q (= (3)

PV (y*) =2min{Q " (y*),1- Q™ (y")}, (4)
for y* € V. Based on the function PV (y*), we can define an interval (or set) on ):
a={y":PV(y") 20}, (5)

for a given « € (0, 1). Under an appropriate choice of algorithm R;(-), the set Cy is typically a frequentist prediction interval
of ynew with a confidence level that is equal (or related) to 1 — ¢. In fact, all the three functions Q ~(-), QT (-) and PV ()
have meaningful interpretations in predictive inference. Further details are provided in Section 2.2.

Throughout the article we elaborate our discussions using two versions of R;(-), both of which are commonly used
conformal prediction procedures in the literature.

Split conformal prediction (cf.,, [14]). In a split conformal prediction procedure, the observed data set D is randomly
split into two subsets D1 = {(X;, ¥i)}iez; and D = {(X;, ¥i)}iez, Where ZyUZ; ={1,2--- ,n} and |Z;| = m < n. Without loss
of generality, let us assume that Z; = {1, ..., m}. Then, we train a model fi(- | D) based on the subset D,. Fori=1,...,m,
we calculate

Ri=yi—[Xi|D2) and R} =y* — L(Xnew | D2). (6)

Here, R} is the same for all i. A prediction interval by (5) typically has a level-(1 — o) coverage.
The split conformal prediction is also known as inductive conformal prediction in the machine learning literature; cf., e.g.,
[22].

Jackknife plus conformal prediction (cf,, [3]). In the jackknife plus conformal prediction pr_ocedure, we do not split the
observed dataset D but utilize the idea of the so-called deleted residuals. Specifically, let £~ (- | D;) be the fitted model
based on the data set D; =D\ {(xi, yi)}, for i =1, ..., m. Here, m =n. Then, we calculate

Ri=yi—RBT7x | D)) and Rf=y* — BT Xnew | D), 7)

fori=1,...,m. A prediction interval by (5) typically has a level-(1 — 2«) coverage.
2.2. Conformal predictive distributions and predictive curve

The three functions defined in (3) and (4) are associated with the notion of frequentist predictive distributions. A predictive
distribution in Bayesian inference is well known, but the development of a predictive distribution with confidence interpre-
tation is relatively new; cf., [13,20]. Vovk et al. [24] used conformal prediction to derive predictive distributions and defined
the so called conformal predictive distribution using randomization. The randomization allows to have an exact confidence
statement, i.e., coverage interpretation at the exact 1 — « level. Although mathematically clean, the randomization however
introduces an additional artificial uncertainty (randomness) into inference statements. Following the development of impre-
cise probability (cf., e.g., [19,12,16]) and recent work on upper and lower confidence distributions (cf., e.g. [25,7,15]), we
define the concepts of upper- and lower- predictive distributions and the associated predictive curve function. Together, the
three newly defined predictive distributions can handle the discrete nature of the conformal prediction regardless of the
size and the type of data. They provide full information for predictive inference.

A prediction interval obtained by a conformal prediction procedure has the same frequency interpretation as a confidence
interval. excent that it is develoned for a random v.... instead of a narameter of interest. That is if we reneatedlv use
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a level-(1 — ) conformal prediction interval 100 times, the intervals are expected to cover ypew (1 — )100 times or
more. Similarly, a frequentist predictive distribution (with a confidence interpretation) can be viewed as an extension of a
confidence distribution but developed for the random ye, instead for a parameter of interest. Cox [6] suggested that a
confidence distribution be introduced “in terms of the set of confidence intervals of all levels”. To better understand the
concept of predictive distributions and predictive curve, especially how to relate them to prediction intervals of all levels
and hypothesis testing problems, it is prudent to briefly take a look at confidence distribution and confidence curve, and
then move on to prediction. We consider a toy example below.

iid _
Example 1. We assume in this toy example that yi,...,yn ~ N(©,1). Instead of using a point (y = %Z?:l yi) or a
level-(1 — @) interval (y £+ ﬁcb“ 1- %)) to estimate the unknown parameter 6, a confidence distribution suggests to use a

sample-dependent function N(y, %), or more formally in the cumulative distribution function form H, () = ®(/n(6 —¥)), to
estimate the unknown parameter 6; cf., e.g., [25,18]. A nice feature of a confidence distribution is that it can represent confi-
dence intervals of all levels. For example, the level-(1 —«) one-tailed interval (—oo, y + %4)_1 (1—a))=(—o0,H; T1-a))

and the level-(1 — ) two-tailed interval (y + ﬁcb‘](%), y+ ﬁdr‘(l — %) =MH (%), Hy1(1 = $)). Here, H; () is the
inverse function of Hy(-).
A closely related concept is confidence curve

CV,(0) =2min{H,(0),1 — Hp(0)},

which was first introduced by Birnbaum [4] as an “omnibus form of estimation” that “incorporates confidence limits and
intervals at all levels.” For any « € (0, 1), {6 : CV,(0) > &} is a level-(1 — &) two-tailed confidence interval. We could view
the function CV,(0) as a result of stacking up two-tailed confidence intervals of all levels 1 — « for o going from 0 to 1;
cf,, Fig. 1 (a). The plot of confidence curve function CV,(6) = 2min{®(/n(0 — ¥)), 1 — ®(+/n(6 — ¥))} provides a full picture
of confidence intervals of all levels 1 — « € (0, 1), with a peak point corresponding to a median unbiased estimator 6y =y
with P(Ay <) > J and P(dy > 6) > J. Note that, here, the probability P and the coverage statements on 6 are with
regard to the joint distribution of (y1,..., yn).

For an unobserved new sample ynew ~ N(0, 1), the task of prediction focuses on ynew instead of 6 = E(ynew). A predic-

tive distribution is N(y,1 + %), or in its cumulative distribution function form Q,(y) = Q(J_E—Ll/n) Parallel to confidence
curve, we can define a predictive curve

PVa(y) =2min{Qu(¥), 1 — Qn(y)} = 2min {¢(%),1 - q,(%)], (8)

Fig. 1 (b) is a plot of the predictive curve in (8). Again, we can view the function PV,(y) as a result of stacking up
two-tailed prediction intervals of all levels 1 — o for o going from 0 to 1. The plot of the predictive curve PV,(y) =

2min{¢(J—]L;_;ﬁ), 1-— Q(J—]L;_h)} provides a full picture of prediction intervals of all levels 1 — « € (0, 1). The peak point

in Fig. 1(b) corresponds to a median unbiased point predictor yy = ¥ with P(¥m < Ynew) > % and P(Ym > Ynew) > %
Here, the probability IP and the coverage statements on y,e, are with regard to the joint distribution of (y1,..., ¥n, Ynew),
including ynew.

Note that, in Example 1 and for a fixed t € ® = (—00, 00), Hy(t) is the p-value for the one-tailed test H, : & <t versus
Hgy:0 >t and CVy(t) is the p-value for the two-tailed test H, : & =t versus H, : 0 #t; cf, e.g, [21,25,18]. Thus, H,(0)
and CVp(0) can be interpreted as the same quantities of p-value functions of one-tailed and two-tailed tests, respectively.
Similarly, the predictive function Q,(y) and predictive curve PV,(y) also have the corresponding interpretation of p-value
functions of right-tailed test Hy : ynew < ¥ versus Hg : ynew > ¥ and two-tailed test Hy : Ynew = y versus Hg : Ynew # Y,
respectively.

The example illustrates how these relevant concepts provide inferential information in both estimation and prediction
under a continuous and parametric distribution model. In the case of conformal prediction (often with unknown underlying
distribution F) and with a finite sample size, we need to deal with discrete functions. To handle the discreteness and
following the developments in uncertainty quantification with imprecise probability, we define upper- and lower-predictive
distribution functions and, additionally, predictive curve function. These definitions are analogs of the upper- and lower-
confidence distributions and confidence curve of parameter estimation, respectively (cf,, e.g., [15,7]).

Definition 1. A function Q T(-) = Q (D, Xnew, ) on (X x Y)"1 — [0,1] is said to be an upper-predictive distribution
Junction for yney, if

(i) For observed D and given Xpew, Q T(-) is a monotonic increasing function on ) with values ranging within (0, 1);

(ii) As a function of the random sample D and random (Xpew, Ynew),» QT (¥new), is stochastically less than or equal to a
uniformly distributed random variable U ~ U(0, 1), i.e.,

Priot(ve..) <ty >t forallt e (0. 1) (9)
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Fig. 1. Plot of (a) confidence curve function CV,(9) = 2min{d>("1—_ﬁz), 1- ¢(%2)}: (b) predictive curve function PVy(y) = 2min{¢(%), 1—¢(J—]L%%)).

The plots provide a full picture of (a) confidence intervals and (b) prediction intervals of all levels. In particular, the curves can be formed as stacking up the
endpoints of (a) the conﬁdencg intervals or (b) the prediction intervals at all levels of 1 — « for @ from 0 to 1. The peak point corresponds to the median
unbiased (a) point estimator 6y of @ and (b) point prediction yp of ynew, respectively. The sample data used to generate the plots are from N(1.35,1)
with n=5.

where the probability Pr calculation is for random quantities D U {(Xpew, Ynew)} € (X x Y)*t1.

A lower-predictive distribution function Q ~(-) = Q ~ (D, Xpew, -) for ynew can be defined similarly, but with (9) replaced
by Pr{Q~ (ynew) <t} <t for all t € (0, 1).

A predictive curve for yy.,, is defined by the upper and lower predictive functions as PV (y) =2min{Q ~(y), 1—Q ()}
for any y € ).

Remark. In condition (i) above, we do not require Q *(-) or Q ~(-) to be a surjective function onto [0, 1]. So, strictly speak-
ing, Q*(-) and Q ~(-) may not need to be a cumulative distribution function on ). However, we still refer to Q *(-) and
Q ~(-) as a upper- and lower-predictive distribution, respectively. The reason is that, because of the stochastic dominance
inequalities in the definition of upper- and lower-predictive distributions, we have

Pr(ynewe{y:1-Q (¥ >a})>1-a and Pr(ypewe{y:Q () >a})>1-a,
for any a € (0, 1). Thus, a level-(1 — &) upper prediction interval {y : Q *(y) <1 — «}, or lower prediction interval {y :
Q ~(y) > «a}, or two-sided prediction interval {y : PV (y) > «} has guaranteed coverage rate of at least (1 — «)100%.

We have the following two propositions for the split and jackknife-plus conformal prediction procedures. Their proofs
are provided in Appendix. Based on the propositions, the three functions defined in (3) and (4) are lower-, upper-predictive
distributions and predictive curve, respectively. These functions can be used to construct one-sided and two-sided prediction
intervals (sets) at any levels.

Proposition 1 (Split conformal prediction procedure). Assume condition (1) holds. In a split conformal prediction procedure defined in
(6), if the conformity score R} is increasing in y*, then Q*(y), Q ~(y) are increasing in y, and we have

Pr(ynew€{y: QT (y) <)) >a and Pr(ynewe{y:Q () <a}) <a.
In addition,

Pr(ynew e{y:PV(y)zah) >1-a.

Proposition 2 (Jackknife-plus conformal prediction procedure). Assume condition (1) holds. In a jackknife plus conformal prediction
procedure defined in (7), if the conformity score R} is increasing in y*, then Q™ (y), Q ~(y) are increasing in y, and we have

Pr(ynew €{y: QT (¥) <@/2}))>a and Pr(ynew€{y:Q (¥) <@/2}) <a.
In addition,

Pr(Veow € {lv:PV(W>a /20 >1 — .
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The upper- and lower-predictive distributions as well as the predictive curve are associated with hypothesis testing
problems. Note that the so-called p-value functions are a special type of confidence distributions and confidence distributions
can also in turn be utilized to obtain p-values for testing hypotheses [25]. In Example 1, for instance, the confidence
distribution H(t) and the confidence curve CV (t) are the p-value functions of right-tailed and two-tailed tests, respectively.
More generally, it can be shown that the lower-CD function H~ () and one minus the upper-CD function 1 — H*(6) can
be treated as a p-value functions of the right-tailed test H, : & <t versus H,: 6 >t and the left-tailed test H, : 6 >t versus
Hq : 6 <t, respectively; the associated confidence curve can be treated as a p-value function of the two-tailed test H, : 6 =t
versus Hg : 0 #t (cf, [7,15]). For prediction, the testing problem concerns about the unknown random quantity yne, instead
of an unknown parameter 6. Similar to the confidence distribution developments, the lower predictive distribution function
Q ~(y), one minus the upper predictive distribution function 1 — Q *(y) and the predictive curve PV (y) also have the
corresponding interpretation of p-value functions of the right-tailed test

Ho: Ynew <y versus Hg: Ypew > Y,

the left-tailed test

Ho: Ynew >y Vversus Hg: Ynew <Y

and two-tailed test

Ho: Ynew =1y versus Hg:Ynew #Y,

respectively. By Proposition 1, the tests derived based on Q ~(y), 1—Q*(y) and PV (y) are guaranteed to control the Type-I
error less than «, if the split conformal procedure is used. Similarly, by Proposition 2, the tests derived based on Q ~(y),
Q*(y) and PV (y) are guaranteed to have the Type-I error less than 2, if the jackknife plus conformal procedure is used.

3. Model-based prediction and homeostasis phenomenon

In order to have a in-depth understanding of the homeostasis phenomenon and its boundary, we consider in this section
a model-based setup. Specifically, we assume that the observed data D = {(X1, ¥1), ..., Xn, ¥n)} and (Xnpew, Ynew) are from
the following model:

Vi=MnoX;) +¢€;, fori=1,...,nandnew, (10)

where wo(-) is the unknown true model. In addition, we assume the error terms €; = y; — o(X;) are independent draws
from an unknown distribution with mean 0. Here, €; may or may not depend on X;. For instance, in a regular Gaussian
regression model, €; ~ N(0,0%) are iid copies that are free of X;; however, in a Poisson regression model, the ¢; terms
depend on Xx;.

Since wo(-) is unknown, a learning model is often used, say,

y=umx) +e. (11)
Note that the true model can be re-written as y = wo(X) + € = w1(X) + {to(x) — 1 (X)} + €. It follows that e = {uo(x) —
H1(X)} + €.

Often, the error term e under the training model has a larger variance than that of the error term € under the true
model, i.e., var(e) > var(¢). For example, when € is independent of x, var(e) = var({io(X) — ®1(x)}) + var(e) > var(e) and
the larger var({uo(X) — w1 (x)}) is the larger var(e) is. A larger error variance typically translates to less accurate inference
in estimation and prediction.

In conformal prediction, the discrepant w1 (x) and po(x) appears only affect efficiency but not validity of the prediction
under the iid setup. We have an intuitive explanation why the prediction is still valid even when a totally wrong learning
model is used. In particular, when we use a wrong model w1(x), the corresponding point predictor will be biased by the
magnitude of 1 (Xnew) — Lo(Xnew), but at the same time the error term e absorbs the bias, thus producing residuals with
a shift by the magnitude of po(x;) — w1 (Xi) = —{1(Xi) — wo(X;)}. In a conformal prediction algorithm, the residuals are
typically added back to the point prediction to form an overall predictive inference. If X; and X,e,, are iid, then the bias is
offset by the shift. Along with the greater residual variance associated with var(e), the offsetting helps ensure the validity
of the conformal prediction. The self-balancing offset to maintain validity is the key of the homeostasis phenomenon.

However in the non-iid case, the self-balancing offset is no longer valid, as the bias @1 (Xpew) — o(Xnew) can be quite
different from the negative shift pq(x;) — wo(X;) for some Xpew. In this case, the conformal prediction algorithm does not
produce a valid predictive inference in general. However, it can still be valid in a special case when the bias and shift are
relatively small compared to the error term €. For instance, when we use correct (or asymptotically correct) model, we can
correctly estimate the distribution of error term. If the error distribution is independent of X, the estimated error terms are
conformal and thus we can still get valid nredictive interval for a new suhiect. More details are nrovided later in the section.
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We can express the above discussion in explicit and rigorous mathematical forms under a linear regression model setup:
Suppose D = {(Xi, ¥i),i=1,...,n}, and (Xnew, Ynew) are from

Yi=po(Xi) + € =X] B +€;, (12)

where B is the unknown regression coefficient and ¢; are iid random errors with mean 0. We would like to compare the
performances of conformal prediction procedure under the true model (12) versus under the wrong learning model

yi=pix) +ei=z'y +e;, (13)

where z; is the first g elements of the p covariates of Xx;, ¢ < p, and y is the corresponding g x 1 unknown regression
coefficient. In the following, we consider two cases: 1) under the typical assumption used in conformal prediction that the
response and covariates pairs (y, X) of all subjects are iid distributed; 2) under the classical regression setup of fixed design
with given (non-random) covariates x or the classical regression setup of stochastic X’s. In case 2), we also consider two
scenarios that (i) ¢; is free of the covariate x; and (ii) €; depends on Xx;.

3.1. Split conformal procedure

In a split conformal procedure, the dataset D = D; U D, is randomly split into two subsets Dy of size m and D, of
size n —m. In each subset Dy, k=1, 2, we define Y, the response vector. We further define X, the design matrix of p
columns and Z, the design matrix of g columns, corresponding to model (12) and (13), respectively. We also have a matrix
partition Xy = (Z), W), where Wy is a matrix of (p —q) columns.

Under the true learning model (12) and from the least squares estimation, we have

Ri=yi—RoXi; D2) =yi —X] By and R} =y* — RXnew | D2) = y* — X1, B2, (14)
for i e Dy ={1,...,m}, where ﬁ(z) = (X(TZ)X(Z))“X(TZ)Y(Z) is the least squares estimator based on D,. It follows that
Y Wy 2 XewBe) + i - X B} +1 Q+(y*) = Yt 1{y* > XfewP) + i — X! By}

m+1 m+1
Based on (5), the level-(1 — &) prediction interval of ypew:

Q (M=

Ca= [xgew/é(z) +{yi— x;rB(Z)}[ﬂ"'z_‘Hl]_p XrewB2) +{vi — X,-Tﬁ(z)}[u—%)(mﬂ)])] ’ (15)

where {y; —XiTB(z)}K is the Kth sample quantile of yq —xlTB(z), ey ¥Ym —x,T,,,é(z) and [a] is the largest integer that does
not exceed a. Note that, given Xpew, the point predictor x,{ewﬁ(z) is an unbiased estimator of E(Ynew |Xnew) =x,fewﬂ. Also,
E(y; —x{ﬁ(z)) =0, for i=1,...,m. This prediction interval (18) is “centered” at the unbiased point predictor x,fewﬁ(z) and
its width is determined by the “spread” of the mean-zero “noises” {y; — xiT ﬁ(z), i=1,...,m}.

Under the wrong learning model (13),

Ri=yi — B1(zi; D2) = yi — 2] Yoy and R} = y* — Bznew | D2) = ¥* — 200, V02, (16)
fori=1,...,m, where yp) = (Z(TZ)Z(Z))‘1Z(72)Y(2). It follows that

Y 1{y* > 2w Vo) + Vi — 2 Py} +1 and Q+(y*) = Y 1y > 2w Vo) + i — 2 Y)
m+1 m+1 '
and the corresponding prediction interval of ypew is

Q - (yH=

Ca= [z,few)?a) +{yi—2] )7(2)}[@"%11]_1, z}ow V) + (Vi — Z,-T?(z)}[a_%)(mﬂ)])] . (17)

Given Xpew, the point predictor z[,,, 72y when using model (13) is biased due to missing the covariates w;’s in model (13),
ie.,

bias =E [zr-{ew )9(2)|X, xﬂeW] - x;l;ewﬁ = Z:ew(Z{Z)Z(Z))_IZZZ) Z2)p1 +W2)B2) — xzewﬂ

T T T —15T
= —WpewB2 + Znew Z(2)Z2)) " ZW(2) B2,

where 81 and B, are the first p and the last (p —q) elements of B, respectively. Meanwhile, there is a non-zero shift in the
“residual” Rj = y;i —z] Y2):

shift(i) = E [ yi — 2] Do) X, Xnew | = X[ B — 2] @]y 22)) 2]y @) 1 + Wi B2)

=W, B2 — 2] (Z{;Z@2)) 'Z{» W) b2,
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for i=1,...,m. The shift(i) and bias often have the opposite signs and thus, when added together as in (17), they cancel
each other at some amount. The amount of cancellation depends on whether or not Xneyw = (Znew, Wnew) resembles x; =
(zi, w).

3.1.1. The iid case where Xpew ~ Xi

In this iid case, by Proposition 1, both predictive intervals in (15) and (17) are valid. Here, we would like to explain why
(17) still has the valid coverage even though it is derived based on the wrong model (13). Let us start with a hypothetical
case that the new individual is the “average individual” of the observed data with X,y =X = %Z,’-"ﬂ X; = (W, Z). Then,
the bias of the point predictor is bias = —wW' g, + iT(Z(Tz)Z(z))‘IZ(TZ)W(z)ﬂz and the average shift of the residual terms is

,}12}":1 shift(i) = —bias. They exactly cancel each other out in the prediction interval (19). This cancellation explains why
the prediction interval (19) is still on target, even if the learning model is wrong. The cancellation is not as complete, when
New Xpew ~ X; (not the “average individual” Xpew = X). It appears that the combination of an enlarged interval and the
cancellation of the bias and shift helps ensure the validity of conformal prediction.

The wrong learning model (13) has an impact on the length of the prediction interval. The proposition below states that
the width of the prediction interval based on the wrong model 1(-) is expected to be wider than that based on the correct
model wo(-). A proof can be found in Appendix.

Proposition 3. Under model (12), assume €; o N(0, 6%), x;'s are iid from a normal distribution and /327 ZwizB2 > 0, where Xy, =
var(wj1 |z1), then

lim 11”({}'1' —Z,-T)'/\(z)}[(]_%)(mﬂ)] —{yi— Z;T?(Z)}[a<rv12+1>]_1

m,n—m—o00

>{yi— X,-Tﬂ(z)}[(1_%)(m+1)] —{yi— X,-Tﬂ(z)}[a(mz_m]_l) =1
That is, with probability tending to 1, the length of prediction interval (15) is greater than that of prediction interval (17).

3.1.2. The non-iid case where Xnpew ~ X;

The iid assumption is crucial to ensure the validity of a prediction when using a wrong learning model. If Xpey ~ X; Or
Xnew and X; are fixed, Proposition 1 does not apply and the prediction performance of (15) and (17) is quite different than
before. Our discussion is around two specific scenarios: (i) €; and €,y are iid and independent of X’s; and (ii) €; and €pew
are independent but €; depends on X; (for example, in the Poisson model €; depends on wo(X;)).

Under scenario (i) and if we use the true model wo(-) in the training, we have based on (14) that R; =¢; +xiT (ﬁ(z) —-B) =

€ + Op(ﬁ). Similarly, when y* = ynew, we have RY = €new + Xloy, (B2) — B) = €new + Op(Jn+_m). Since €; and €pey are
iid under scenario (i), the R; and R} are approximate conformal (up to O p(ﬁ)). The statement of approximate conformal

holds as long as x,f (5(2) —B) = 0p( ﬁ), for k € Z; U {new}, a condition that typically holds under the standard design
conditions imposed in the classical regression models. In this case, the prediction is still valid with a correct confidence
statement. The result is summarized in the following proposition and a proof is given in the Appendix. In the proposition,
the standard conditions of classical regression are used to ensure that B\(Z) is consistent, two of which considered in the
proof are: (i) for fixed covariates x;, we assume ,\mm(x{z)x(z)) — 00 and Anpin(-) denotes the smallest eigenvalue of the
target matrix; (ii) for random covariates x;, we assume X; is iid, compact and ]E(x,-x,T ) is invertible, for i =1, ..., n. See, e.g.,
[8], [10] and [11] for further details of the standard conditions.

Proposition 4. Under model (12), assume €1, ..., €n, €new are iid from some continuous distribution G(-) and the design matrix of
X;'s follows the aforementioned standard conditions imposed in the classical regression. For C,, defined in (15), we have

Hm  P(Vnew € Ca | X1, ..., Xn, Xpew) > 1 — .
(n—m)—o00
In Proposition 4, the probability statement IP(-|X1, ..., Xn, Xnew) is with regard to the joint distribution of (€1, ..., €, €new)
at the fixed covariates Xi,...,Xn,Xpew. That is to say, for any given new target, the predictive interval obtained by
the split conformal procedure using the correct training model wo(-) has asymptotic right coverage, if (n — m) — oc.
Note that, if the covariates Xx’s are random, this probability statement IP(:|X1,...,Xn,Xnew) is for the conditional prob-

ability of (y1,...,¥n, Ynew), given (Xi...,Xn,Xnew), Or equivalently, the conditional probability of (e€1,...,€n, €new),
given (Xj...,Xn,Xnew). Otherwise, if x’s from a fixed design with non-random covariates, the probability statement
P(:|X1,...,Xn, Xnew) is just with regard to the joint distribution of (y1,..., ¥n, ¥new), Or equivalently, the joint distribu-
tion of (€1, ..., €n, €new).-

The above conditional probability statement (when the covariates x’s are random) is different from that discussed in
[21. In [21. the authors assumed that the ohserved samnles D = {(x:_ vi).i=1.___ . n} and the testing data (Xasu. Vaouw)
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are all iid random samples from the same unknown distribution P; ie., (Xi,Yi), Xnew; Ynew) i P. They studied predic-
tion intervals with “distribution-free conditional coverage” in the sense that P (¥new € Ch(Xnew) | Xnew = %) > 1 — o for all
P and almost all x. In particular, the probability P(- | Xsew = X) in their article is with regard to the joint probability of
{(X1,¥1),---> Xn, ¥n)> Xnew, Ynew)} conditioned only on Xpew = x. On the contrary, in our random design case with random
covariates x’s, we only need the assumption (2) specified on page 2 and the distribution of X,,, does not need to be the
same as X;. This is weaker than the assumption that (Xpew, Ynew) has the same joint distribution as (X;, y;) adopted by Bar-
ber et al. [2]. More importantly, our conditional probability statement is for {(X1, ¥1),.-., Xn, ¥n),> Xnew, Ynew)} conditioned
on all covariates (X1, ...,Xn, Xnew), Which is stronger than that discussed in [2]. Our conditional coverage implies theirs. The
same discussion holds for the Jackknife plus conformal procedure in the next subsection.

Under scenario (i) but the wrong training model wi1(-) is used, we have based on (16) that R; =€ + (w,-T o
2] (Z(,Z2))"'Z(,,W(2))B2 and, With y* = ynew, R} = €new + (Wyioy, — Zney (Z()Z2) ™' 2, W2)) B2. When Xpew = X;, the dif-
ference between R; and Rpeyw can be very large and they are not conformal. The prediction does not provide us a valid
inference with a correct confidence statement, which is confirmed in the numerical study in Section 4.

Under scenario (ii) and since Xpew ~ X;, we have €pey ~ €;. Regardless which training model is used, the difference
between R; and Ry can be very large and they are not conformal. The prediction no longer provides us a valid inference
with a correct confidence statement.

3.2. Jackknife plus conformal procedure

The jackknife plus conformal procedure does not need to split the dataset D and m =n. We define notations: Y is the
m x 1 response vector of the training (observed) data, X and Z are the m x p and m x q design matrices, respectively, and
we have a matrix partition X = (Z, W).

Under the true learning model wo(X;) and from the least squares estimation, we have,

(—) T 3T T\—1 /4T Yi —xirlé
A (—1 —
Ri=yi— [y "XilDi) =yi —x; X' X—xiX; ) (XY —Xjy;) = T _h U
—in
for i=1,...,m=n, where B: (XTX)‘leY is the least squares estimator using entire set of observed data D, h; =
T4
xI XTX)~'x; and u; = w is the deleted residual. Similarly, we have

R =y* — A5 Gnew|Di) = y* — X0y, XX — X)) TV XTY — %;yi) = y* — XL\ B + i newti,

where h; pew = X1, (X" X)~1x;. It follows that

i 1y > XhewB + (1 — hi new)ui} + 1 1ok i 1y > XbewB + (1 — hi new)ui }
and Q" (y*) = ‘
m+1 m+1

By (5), the prediction interval of ypey is:

Q (=

Ca = [XfewB + {1 = himew)tid atmen) ;. X B+ {1 = hinew)tidi— g m i1 - (18)
Note that, given X;ey, the point predictor x,fewﬁ is an unbiased estimator of E(Ynew| Xnew) = x,{ew B and E{(1 —
hi new)UilXnew} =0, for i =1,...,n. The prediction interval (18) is “centered” at the unbiased predictor x,few ﬁ and its width
is determined by the “spread” of the mean-zero “noises” {(1 — hj pew)ui,i=1,...,m=n}.

When the wrong training model w1 (z) is used, we can use a similar derivation to get

ZL] l{y* < zr{ew}; +(1 - gi,new)Vi} +1 +ox Z:n:1 l{y* = zrrew? +(1- gi,new)Vi}
and Q7 (¥y) =
m+1 m+1

Q- (yH=

’

where p = (Z7Z)"1ZTY is the least squares estimator using the wrong model, g; = z] (Z'Z)~', g new =2\, (272)"'z;

ol D
and v; = y'l—_zgl—y In this case and by (5), a prediction interval of ypew is
un

Ea = [erlew? +{(1 - gi,new)Vi}[a(mzﬂ)]_], zrrew); +{(1 - gi,new)vi}[(l—%)(m+1)]:| . (19)

As in the split conformal case, due to missing the covariates w;, the point predictor z,few}? under the wrong training model
(13) is biased:

bias = E [ 21y, 71X, Xnew | = Xloy B = ~Whey, 2 + 204, (272) 12T W,,

where 8- is the last (n — a) elements of B. Furthermare. the exnectations of the residual terms have also nonzero shifts:
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1—g; 1—g;
&i new (sz _ ziT (ZTZ)_]ZTW),BZ _ &i new (W,-J')Tﬂz
1-gii 1—gii
where w;" is the ith row of the matrix W+ = {I — Z(Z"Z)~1ZT}W. Again, the shift(i) and bias often have the opposite signs
and thus, when added together in (19), they cancel each other to some extent, but the amount of cancellation depends on

Xnew = (Znew, Wnew) and X; = (z;, W;).

Shift(i) = ]E{(l — Zinew)VilX, xnew} =

3.2.1. Theiid case where Xpew ~ X;

In this iid case, by Proposition 2, both predictive intervals in (18) and (19) are valid with a guaranteed coverage of
(1 — 2)100% or more. We would like to explain why (19) still has the valid coverage even though it is derived based
on the wrong model (13). Again, we start with the hypothetical case that the new individual is the “average individual”
with Xpew =X = %Z?’:] Xi = (W, z). In this case, the bias of the point predictor and the average shift of the residual

terms are bias = —(WH)T 8, and average shift = %ZL] {%%(wilfﬂz}, respectively. Since % ~ 1 when z;’s are iid
(cf, Lemma A1 in Supplementary), the average shift ~ (W-)T B, = —bias, thus they are approximately canceled out in the

prediction interval (19). This cancellation explains in part why the prediction interval (19) is still roughly on target, even
if the training model is wrong. The cancellation is not as complete, when the testing data Xpey is just an iid sample and
not the “average” X. Again, as in the split conformal prediction procedure discussed before, the combination of an enlarged
interval and the cancellation of the bias and shift helps ensure the validity of conformal prediction under a wrong model in
the iid case.

A wrong learning model also impacts the lengths of the prediction intervals. The proposition below is for a jackknife plus
conformal procedure. It states that the width of the prediction interval using the wrong training model () is expected to
be wider than that based on the correct model wo(-), if Xpew = X. A proof can be found in the Supplementary.

Proposition 5. Under model (12), assume €4, ..., €n, €new LY N(0,02), X;’s and Xpe, are iid from a normal distribution and
ﬁZT ZwizB2 > 0, where Xy, = var(wy|z1). Suppose Xpew = X, then

nl_i)ngoll’ <{(1 — Zinew)Vilja-¢)m+1y — {(1 — gi,new)Vi}[DL(mzjl]_1

> {(1 — hinew)Ui}1—g)m+1y — {(1 — hi,new)ui}[ﬂmziz]_l) =1
That is, with probability tending to 1, the length of prediction interval (18) is greater than that of prediction interval (19).

3.2.2. The non-iid case where Xpew ~ X

The discussion is very similar to that under the split conformal prediction procedure. We again consider two specific
scenarios: (i) €; and €.y, are iid and independent of x’s; and (ii) €; and €pey are independent but €; depends on X;.

Under scenario (i) and if we use the true model wo(-) in training, we have R; = y; — xirﬁ(‘i) =€ +x,-T B - ﬂ‘”) =
€ + Op(ﬁ). Similarly, with y* = Ynew, R¥ = €new + Xnew (B — BU) = €new + Op(ﬁ). Here, B is the least squared
estimator of B based on the data set DED =D \ {(xi, yi)}. Since €; and €pew are iid, the R; and R} are approximate con-
formal (up to O p(ﬁ)). Thus, the prediction is still valid with a correct confidence statement. This result is summarized

in the following proposition and a proof is given in the Appendix. In the proposition, to ensure that 8" is consistent, the
standard conditions imposed in classical regression are the same as those in Proposition 4 except that the design matrix
X(2) for the split conformal method is replaced by the entire design matrix X for the jackknife plus conformal method.

Proposition 6. Under model (12), assume €1, ..., €n, €new are iid from some continuous distribution G(-) and the design matrix of
x;'s follows the aforementioned standard conditions imposed in the classical regression. For C,, defined in (18), we have

nl_i}ngo]P(Yneweca |x1,---,xn,xnew) >1-2a.

Similar to Proposition 4, the probability statement P(-|Xq, ..., Xn, Xnew) in Proposition 6 is with regard to the joint dis-
tribution of (€1, ..., €n, €new) at the fixed covariates X,ey (and also fixed x;'s). That is to say, for any given new target, the
predictive interval obtained by the Jackknife plus procedure using the correct training model wuo(-) has asymptotic right cov-
erage, as n — oo. Note that, this probability statement P (-|X1, ..., Xn, Xnew) is a conditional probability of (€1, ..., €n, €new),
given (X ..., Xy, Xnew), if the covariates X’s are random; otherwise it is just the joint probability of €’s.

Under scenario (i) but a wrong training model w1(-) is used, we prove in the appendix that we can express R; =
€ + %g"{wf -21 @) 'Z"W}B, + Op(ﬁ). Similarly, with y* = ynew, we can show that R} = €new + 1+g“{wr{ew -
zl,,2'2)7'2"W}B, + Op(ﬁ). When Xpew = (2], Wl )T = X; = (2], wl)T, the scores R; and R} are typically not
conformal with each other. thus the nrediction does not nrovide us a valid inference with a correct confidence statement.
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Table 1

A summary on whether a conformal prediction procedure can provide us with a valid confidence statement under different assumption and scenarios. Yes!
is only for the joint distribution of D U {(Xnew Ynew)} = {(X1, ¥1)s -+ Kns Yn)s Knew Ynew)}. If X’s are random, Yes? covers both the joint distribution of
D U {(Xnew> Ynew)} = {(X1, Y1) -+, (Xn, ¥n)s Xnew, Ynew)} and the conditional distribution of (yq,..., Yns Ynew) | (X1, ..., Xn, Xpew)- If the covariates x’s are
fixed and non-random, Yes? is only for the joint distribution of (y1, ..., Yn, Ynew). For the conditional statement or in the case that the covariates x’s are
from a fixed design, the YES statement is for an asymptotic coverage requiring a large enough sample size.

Training model

True model Wrong model
1) The iid case with Xpew ~ X; Both scenarios (i) & (ii) Yes! Yes!
2) The non-iid case with Xpew ~ X; Scenario (i): € is independent of x Yes? No
Scenario (ii): € is not independent of x No No

Under scenario (ii) with Xpeyw ~ Xj, we have €pey < €;. Again, regardless which training model that we use, the difference
between R; and Ry can be very large and they are not conformal. The prediction no longer provides us a valid inference
with a correct confidence statement.

To end this section, we summarize our overall findings in Table 1. Note that in the iid case with Xpew ~ X;, the valid
statement is regarding to the coverage of the joint distribution of D U {(Xnew, Ynew)} = {(X1, ¥1), - - -» Xn, ¥n)> Knew, Ynew)}-
In scenario (i) of the non iid case with Xpew ~ X;, if X’s are random, the valid statement is regarding to the coverage of
both the joint distribution of D U {(Xnew, Ynew)} = {(X1, ¥1), .-, Xn, ¥n), Knew, Ynew)} and the conditional distribution of
(Y1, --+»Yn> Ynew)|(X1, ..., Xn, Xnew). For the conditional case, the statement refers to an asymptotic coverage for a large
sample size. If X’s are from a classical design with fixed non-random covariates, the valid statement is only regarding to the
joint distribution of (y1, ..., ¥n, Ynew), Or equivalently, the joint distribution of (€1, ..., €, €new).

4. Numerical studies

We conduct a numerical study in two examples, one is under the regular linear regression setting with a continuous
response variable y and the other under a Poisson model with a categorical response variable y. The linear regression
example covers the scenarios in the first two rows of Table 1 and the Poisson example covers the scenarios in the first and
the third rows of Table 1. Both examples together cover all cases and scenarios in Table 1 and provide empirical evidence
that supports our discussions.

Example 2 (Linear regression). Consider a linear model of two covariates with the true model
iid
Vi = Ro(Xi) + € = fo + B1zi + fowi + €, € ~ N(0,0?) (20)

i=1,...n, where ¢; and x; are independent. In our numerical study, (Bo, B1, B82) = (-1, 2, 2) and x; = (z;, wi)T e N(ux, x)
with ux = (0,0)T, 02 =1 and the (k, k')-element of =, equal to 0.5%¥1/2, k, k' € {1,2} and n = 500.

For the new data, we consider two cases. Case 1: under the iid assumption that Xp.w ~ X; and, given Xpew, (Xnew, Ynew)
follows (20); Case 2: the marginal distribution of Xpew ~ X; With Xpew ~ N(fix, f:x) and, given Xpew, (Xnew, Ynew) follows
(20). Here, fix = px + (2,2)7 and the (k, k')-element of £, is 0.8%¥1/2, k k' {1,2}.

In addition to the correct model (a) wo(X;) = Bo + B1zi + B2wi, three wrong learning models are considered:

(b) wm1(Xi)) =y0+y1zi (partially correct, without covariate w;);
() maXi) =&0+ & zi2 (a wrong regression form).
(d) wm3(xi)=mno (without any covariates);

For model fitting, we use the least squares method in all three cases.

Reported in each cell of Table 2 are the coverage rate and average length (inside brackets) of 95% conformal prediction
intervals for ynew, computed based on 500 repetitions. As expected, in the iid case, all learning models can provide valid
prediction results, with the smallest interval length obtained under the true model. In the non-iid case, only the true model
can provide a valid prediction. The other three learning models do not provide valid predictive inference in terms of a
correct coverage rate, even though their prediction intervals are wider. The results in both cases underscore the importance
of using a correct learning model for prediction.

In order to get the full picture of the prediction intervals of all confidence levels under different scenarios and different
learning models, we plot in Fig. 2 the predictive curves obtained using the split and jackknife plus conformal procedures.
Each of the six plots (a1)-(c1) and (a2)-(c2) are based on one simulated data set from 500 repetitions (other simulation data
sets provide similar plots with the same messages). Plots (a1)-(a2) are for Xpew = (—0.009, 0.006) = % ;'=1 X;, (b1)-(b2)

are for X.o... =(0.111. —-0.637 ',l‘fx_. and (c1)-(c2) Xun = (1.948.0.592) ~ x:. In each nlot. we have four nredictive curves
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Table 2

Performance of 95% prediction intervals under four learning models and in two scenarios (coverage rates (before brackets) and average interval lengths
(inside brackets)). Model 1 (-) is a partially wrong model, w,(-) is a completely wrong model and f3(-) does not use any covariates. Training data size =
500; Testing data size = 1; Repetition = 500.

Split conformal prediction

True model Wrong model

Ho() ©1() 17710 ©3()
1) The iid case with Xpe,, ~ X; .956 (3.96) 962 (6.25) 956 (10.52) 954 (10.39)
2) The non-iid with Xpew ~ Xi .95 (3.97) 724 (6.27) 254 (10.54) .248 (10.48)
Jackknife+ conformal prediction

True model Wrong model

Ho(-) ma() H2() m3()
1) The iid case with Xpew ~ X; .96 (3.96) .966 (6.24) 944 (10.50) 958 (10.46)
2) The non-iid with Xy = X; .942 (3.96) 726 (6.25) .236 (10.28) .238 (10.42)

corresponding to four working models, plus the target (oracle) predictive curve of PV (y) =2 max{®(y — Unpew), 1 — @ (¥ —
Inew)} obtained by pretending that we know exactly ypew's distribution: ypew ~ N(inew, 0.5) With tpew = —14 (2, 2)Xnew-
In each of the plots, the predictive curves trained with the correct learning model (black solid curves) are very close to the
target oracle predictive curves (lightest gray solid curves), indicating that if we use the true model as the learning model, we
are able to provide accurate prediction at all confidence levels. Under the wrong models, however, the results are different.
In plots (a1)-(a2) with Xpew being the “average individual”, we see an almost complete cancellation of bias and shift as
described earlier. However, the predictive curves are much wider than those based on the correct model. Plots (b1)-(b2)
are for the iid case of Xpew ~ X;. In this case the curves are similar to those in plots (a1)-(a2), although the cancellations
are not as complete as for the “average individual.” Nevertheless, the enlarged interval widths help maintain the coverage.
Plots (c1)-(c2) are for the non-iid case, in which the cancellations of bias and shift are not effective when wrong learning
models are used, leading to wrong predictions. In all plots, we can also see that a partially correct model w1(-) performs
better than the other two completely wrong models @3 (-) and w3 (-).

In summary, when we train prediction algorithms using a wrong model, the iid assumption is essential for the validity
of prediction, and using a wrong model often results in wider, sometimes much wider, prediction intervals. When we train
the same algorithms using the correct model, the validity and efficiency of the predictions are observed in both the iid and
non-iid scenarios conditional on x’s. The results provide numerical support for the first two rows in Table 1.

Example 3 (Poisson regression). Suppose that the response y is a Poisson count that follows a generalized linear model:
yilxi ~ Poisson(uo(X;)) with po(X;) = E(yi|x;) = efotPizith2Wi for i =1, ... n and new. In the form of (10), we have

Yi=po(Xi) + € = eforPrETRI 4 ¢ (21)
where €; = y; — no(X;) is a mean O error term that deponents on X;. In our numerical study, (8o, B1,82) = (—1,1,1),

X = (zi, w)T o N(ix, Tx) with = (1, 1)T and the (k, k’)-element of =, equal to 0.5k=K1/5 k k' € {1,2} and n = 500.
For the new data, we consider two cases (Table 3). Case 1: under the iid assumption that Xpew ~ N(ux, Xx) and
Vnew | Xnew, follows (21); Case 2: the marginal distribution of Xpew is instead from Xpew ~ N(fix, £x) and Vnew|Xnew fol-
lows (21). Here, jix = ux+ (1,1)T and £, =2%,.
In addition to the correct model (a) po(x;) = efotP1zitFaWi three wrong learning models are considered:

(b) m1(x;) =eY*t1% (partially correct, without covariate w;);
() m2(x) = ebo+éiz) (a wrong regression form).
(d) wm3(x;) =€ (without any covariates).

For model fitting, we use the maximum likelihood method in all cases.

Since the Poisson count ype, is discrete, we report in each cell of Table 2 the coverage rate and average cardinality
(inside brackets) of 95% conformal predictive sets for ynew, using the split conformal procedure, computed based on 500
repetitions. As expected, in the iid case, all learning models provide valid prediction coverages and the smallest set is
observed under the true model. In the non-iid case, all four models do not provide valid predictive inference in terms of a
correct coverage rate, even for the true model.

Same as in Example 2, we plot in Fig. 3 the predictive curve functions obtained using the split conformal prediction
procedure and based on a simulated data set. Other simulated data sets (in 500 repetitions) and also the jackknife conformal
procedure produce more or less the same plots. Note that ) is a discrete space containing all non-negative integers, the plots
resemble bar charts. Plot (a1)-(a3) is for X.... = (0.63.0.79) (a realization from X....~X:) and (h1)-(h3) X..... = (2.31.1 84)
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Fig. 2. Plots of predictive curves for (al) & (a2): Xpew =X = % 1 Xi; (b1) & (b2): Xnew l'lgxi and (c1) & (€2): Xpew ~ Xi. In each plot, the lightest gray solid
curve is the target (oracle) predictive curve PV, (y) =2 max{®(y — tnew), 1 — (¥ — Wnew)}, Obtained assuming that the distribution of ynpew is completely
known. The predictive curves in black and darker gray are obtained using the four working models, respectively. The solid black curve is for learning model
o(+), the dotted black for w1(-), dashed gray for p2(-) and solid gray for w3(-). Each of the six plots (al)-(c1) and (a2)-(c2) are based on a simulated data
set (out of 500 repetitions). Plots (a1)-(c1) are obtained using the split conformal prediction procedure, and plots (a2)-(c2) are obtained using the jackknife
plus conformal prediction procedure.

Table 3

Performance of 95% prediction intervals under four learning models and in two scenarios (coverage rates (before brackets) and average cardinality (inside

brackets)). Model w1(-) is a partially wrong model, p>(-) is a completely wrong model and p3(-) does not use any covariates. Training data size = 500;
Testing data size = 1; Repetition = 500.

Split conformal prediction

True model Wrong model
Mo() |210) m2 () m3()
1) The iid case with Xpew ~ Xi .946 (7.078) .942 (9.502) 94 (9.65) 978 (14.57)
2) The non-iid with Xpey = X; .566 (7.81) 438 (10.52) .396 (10.79) 382 (14.6)

(a realization from Xuew ~ X;). In each plot, we have two predictive curves corresponding to the true working models wo(-)
and one of the wrong models w1(-)-u3(-), plus the target (oracle) predictive curve of PV (y) = Zmin(Q‘(y),l - Q+(y))
obtained by pretending that we know exactly ypew's distribution: ypew ~ P0i(inew) With tpew = €Xp ( —-1+4(, 1)x,,ew).

In plot (a1)-(a3) with xpew ~ X;, we see that the predictive curves are close to the target oracle curve in each plot, and
the curve obtained from the true model is more concentrated than the others using the wrong training models, meaning
that the confidence set obtained is smaller.

Plot (b1)-(b3) is for the non-iid case with X,y ~ X;. None of the confidence curves is close to the target oracle predictive
curve and they do not provide sufficient coverage for ynew. In this simulation setup, we find that the prediction intervals
obtained using the correct training model are too narrow. Also, the predictions by a wrong model have large biases and,
even though their interval lengths are longer, they still can not sufficiently cover ypew. The results can also be seen in the
Fig. 4, where we plot the corresponding level-95% predictive sets for ypew in Fig. 3 using the four different training models
and the target prediction intervals obtained using the oracle predictive curve.

In summary, when we train prediction algorithms with the training error depending on the covariates, the iid assumption
is essential for the validity of prediction. Even if the training model is true, the coverage is not correct. In addition, using a

wrong model often results in wider, sometimes much wider, prediction interval. The messages are consistent with those in
Tahle 1.
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Fig. 3. Plots of predictive curves for (a1)-(a3): Xpew "'\'«ixi and (b1)-(b3): Xpew ~ Xi. In each plot, the lightest gray line is the target (oracle) predictive curve
PVn(y) =2max{Q*(y),1— Q(y)}, obtained assuming that the distribution of ynpew is completely known. The black curve is for learning model po(-)
and darker gray for p1(-) in (a1),(b1); for u2(-) in (a2),(b2) and for w3(-) in (a3),(b3). The plots in each row are based on the same simulated data set (a
data set out of 500 repetitions). This figure is obtained using the split conformal prediction procedure. Similar figures are obtained using the jackknife plus
procedure (not included in the paper).
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Fig. 4. Plots of level-95% predictive sets under different training models for (a): Xpew lE’x,v and (b): Xpew ~ X;. They are compared to the oracle level-95%
prediction interval assuming we know the actual predictive distribution of ynew. These two plots correspond to the two rows of Fig. 3, respectively.
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5. Conclusion

“The 21st Century has seen the rise of a new breed” of “stunningly successful prediction algorithms” [9]. The conformal
prediction algorithm is one of such successful stories that have been attracting increased interest. Different than a conven-
tional prediction algorithm in computer science, a conformal prediction procedure provides inference conclusions with a
quantified uncertainty and a clear frequentist interpretation. Conformal prediction is non-parametric and distribution free.
It has a wide range of applications. When the condition is right, an inference conclusion from a conformal prediction proce-
dure is resistant to the use of wrong learning models. This robust homeostasis property provides an assurance for problems
whose models are difficult to fit. It opens the door for us to use data-driven black-box approaches to tackle many complex
and difficulty problems.

In this article, we have specifically studied in details the homeostasis property under a general regression setup. To
deal with the discrete nature of the typically conformal prediction problems, we also introduced the concepts of upper
and lower predictive distributions and predictive curve to establish connections to left-, right- and two-tailed hypothesis
testing problems as well as the developments of confidence distributions. Our study explores the boundary at which the
homeostasis property breaks down. Beside the typical assumption used in conformal prediction that the response and
covariate pairs (y,X) of all subjects are iid distributed, we study the classical regression setting that the design is fixed with
given (non-random) covariates X. The trade-off among learning model accuracy, prediction valid and prediction efficiency is
discussed, leading to an emphasis of more efforts on developing better learning models and also better understanding of
the impact of error assumptions.
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