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Abstract

A common approach for compressing large-scale data is through matrix sketching. In this work, we
consider the problem of recovering low-rank matrices from two noisy sketches using the double sketching
algorithm discussed in Fazel et al. (2008). Using tools from non-asymptotic random matrix theory, we
provide the first theoretical guarantees characterizing the error between the output of the double sketch
algorithm and the ground truth low-rank matrix. We apply our result to the problems of low-rank matrix
approximation and low-tubal-rank tensor recovery.

1 Introduction

The prevalence of large-scale data in data science applications has created immense demand for methods
that can aid in reducing the computational cost of processing and storing said data. Oftentimes, data such
as images, videos, and text documents, can be represented as a matrix, and thus, the ability to efficiently
store matrices becomes an important task. One way to efficiently store a large-scale matrix X ∈ Rm×n is to
store a sketch of the matrix, i.e., another matrix Y ∈ Rm1×n1 such that two goals are accomplished. Firstly,
the sketch of X must be cheaper to store than X itself, i.e., we want m1n1 � mn. Second, the matrix X
must be recoverable from its sketch.

A variety of works have been produced for the setting in which X is a low-rank matrix, and one wishes to
recover X using its sketch [13, 26]. However, in certain settings, one may only have access to noisy sketches.
For example, suppose a sketch Y is stored on a hard disk drive. Over time, the hard drive experiences data
degradation due to bits losing their magnetic orientation or extreme fluctuations in temperature affecting
the physical hard drive itself [12]. As another example, the matrix being sketched can be a noisy version of
the data one is trying to preserve [4]. One can even consider the low-rank approximation problem as one
such instance.

In this work, we analyze the noisy double-sketch algorithm originally proposed but not theoretically
studied in [13]. We show that when the sketching matrices are i.i.d. complex Gaussian random matrices,
one can recover the original low-rank matrix X with high probability where the error on the approximation
depends on the noise level for both sketches. Here, we do not assume that one has access to the exact rank
of X but instead an approximate rank r > r0. We also remark on the utility of our theoretical guarantees
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for when the double sketch algorithm is used not for low-rank matrix recovery but instead for low-rank
approximation with noise. Lastly, we present results for the application of this work to a more extreme
large-scale data setting in which one wants to recover a low-tubal-rank tensor.

A key step in our robust recovery analysis is to control the perturbation error of a low-rank matrix under
noise. A standard way is to apply Wedin’s theorem, or Davis-Kahan theorem [34, 8, 7, 22] which results
in a bound that depends on the condition number of the low-rank matrix. However, our proof is based on
an exact formula to calculate the difference between output and the ground truth matrix and a detailed
analysis of the random matrices (extreme singular value bounds of Gaussian matrices [32, 25, 28] and the
least singular value of truncated Haar unitary matrices [3, 9]) involved in the double sketch algorithm. This
novel approach yields a bound independent of the condition number of the low-rank matrix (Theorem 2).
Due to the Gaussian structure of our sensing matrices, our results are non-asymptotic, and all the constants
involved in the probabilistic error bounds are explicit.

1.1 Low-rank matrix recovery

A double sketching algorithm was proposed in [13] to recover low-rank matrices. This approach was also
called bilateral random projection and analyzed in [40] to obtain a low-rank approximation of matrix X
using two sketched matrices from X in the noiseless situation. A similar approach was analyzed in [29].
The so-called problem of compressive PCA was studied in [26] and [1]. It can be interpreted as a variant of
sketching where only the columns of a matrix are sketched. However, this problem is not directly comparable
to the setting in the paper at hand, as in compressive PCA, a different sketching matrix is used for each
column.

1.2 Low-tubal-rank tensor recovery

The notion of a low-tubal-rank tensor stems from the t-product, originally introduced by [18]. We state the
relevant definitions for order-3 tensors, and more general definitions for tensors of higher orders can be found
in [17, 19].

Definition 1 (Operations on tensors). Let A ∈ Cn1×n2×n3 . The unfold of a tensor is defined to be the
frontal slice stacking of that tensor. In other words,

unfold(A) =


A1

A2

...
An3

 ∈ Cn1n3×n2 ,

where Ai = A:,:,i denotes the ith frontal slice of A. We define the inverse of the unfold(·) as fold(·) so that
fold(unfold(A)) = A. The block circulant matrix of A is:

bcirc(A) =


A1 An3

An3−1 . . . A2

A2 A1 An3
. . . A3

...
...

...
. . .

...
An3

An3−1 An3−2 . . . A1

 ∈ Cn1n3×n2n3 .

The conjugate transpose of a tensor A ∈ Cn1×n2×n3 is the tensor A∗ ∈ Cn2×n1×n3 obtained by conjugate
transposing each of the frontal slice and then reversing the order of transposed frontal slices 2 through n3.

Definition 2 (Tensor t-product). Let A ∈ Cn1×`×n3 and B ∈ C`×n2×n3 then the t-product between A and
B, denoted A ∗ B, is a tensor of size n1 × n2 × n3 as is computed as:

A ∗ B = fold(bcirc(A)unfold(B)). (1)
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Definition 3 (Mode-3 fast Fourier transformation (FFT)). The mode-3 FFT of a tensor A, denoted Â, is
obtained by applying the discrete Fourier Transform matrix, F ∈ Cn3×n3 , to each Ai,j,: of A:

Âi,j,: = FAi,j,:. (2)

Here, F is a unitary matrix, Ai,j,: is an n3-dimensional vector, and the product is the usual matrix-vector
product.

Definition 4 (t-SVD). The Tensor Singular Value Decomposition (t-SVD) of a tensor M ∈ Cn1×n2×n3 is
given by

M = U ∗ S ∗ V∗, (3)

where U ∈ Cn1×n1×n3 and V ∈ Cn2×n2×n3 are unitary tensors and S ∈ Rn1×n2×n3 is a tubal tensor (a tensor
in which each frontal slice is diagonal), and ∗ denotes the t-product.

Definition 5 (Tubal rank). The tubal rank of a tensor M = U ∗ S ∗ V∗ is the number of non-zero singular
tubes of S.

Definition 6 (CP rank). The CP rank of an order three tensor M is the smallest integer r such that M is
a sum of rank-1 tensor:

M =
r∑

i=1

ui ⊗ vi ⊗ wi,

where ui ∈ Cn1 , vi ∈ Cn2 , wi ∈ Cn3 , 1 ≤ i ≤ r.

Remark 1. If a tensor M has CP rank r then its tubal rank is at most r, see [39, Remark 2.3].

Definition 7 (Tensor Frobenius norm). Let M∈ Cn1×n2×n3 . The Frobenius norm of M is given by

‖M‖F =

 ∑
i1,i2,i3

|Mi1,i2,i3 |2
1/2

.

Other low-rank tensor sketching approaches have been proposed for low-CP-rank tensors [16] and low-
Tucker-rank tensors [27]. In the following, we focus on low-tubal-rank tensors since this is the topic of this
paper.

In the related line of work [20, 38, 37], the authors consider recovering low-tubal-rank tensors through
general linear Gaussian measurements of the form y = Avec(X). This can be seen as a generalization of
the low-rank matrix recovery problem [24] to low-tubal-rank tensors. The proof of tensor recovery under
Gaussian measurements in [20, 38, 37] relies crucially on the assumption that the entries of the measurement
matrix A are i.i.d. Gaussian. In this setting, it was shown that the tensor nuclear norm is an atomic norm,
and a general theorem from [6, Corollary 12] for i.i.d. measurements for atomic norms was used to establish
recovery guarantees. In [33] a non-convex surrogate for the tensor nuclear norm was proposed and studied.

An extension of the matrix sketching algorithm in [30] to a low-tubal-rank approximation of tensors was
considered in [23]. However, their setting does not cover noisy sketching, which is the topic of this paper.
Streaming low-tubal-rank tensor approximation was considered in [36].

Notations We define a standard complex Gaussian random variable Z as Z = X + iY, where X ∼
N(0, 1/2),Y ∼ N(0, 1/2) and X,Y are independent. By σi(A) we define the i-th largest singular value
of a matrix A. By σmin(A) we denote the smallest non-zero singular value of a matrix A. ‖A‖2→2 is the
spectral norm of a matrix A, and ~A~ is a general norm of A. A∗ is the complex conjugate, and A† is the
pseudo-inverse of A. Let U be a matrix with orthonormal columns. U⊥ is the orthogonal complement of U ,
which means the column vectors of U and the column vectors of U⊥ form a complete orthonormal basis.

3



Organization of the paper The rest of the paper is organized as follows. We state our main results and
corollaries of robust recovery of low-rank matrix and low-tubal-rank tensors in Section 2. The proof of all
theorems and corollaries are given in Section 3, and auxiliary lemmas are provided in Appendix.

2 Main Results

2.1 Low-rank matrix recovery

Let X0 ∈ Cn1×n2 be a matrix of rank r0. S ∈ Cr×n1 , S̃ ∈ Cr×n2 be two independent complex Gaussian
random matrices with r ≥ r0. Define

Y = SX0 + Z, Ỹ = S̃X∗0 + Z̃, (4)

where Z ∈ Cr×n2 , Z̃ ∈ Cr×n1 are of full rank, and Z̃ is independent of S. The double sketch algorithm
outputs

X = Ỹ ∗(SỸ ∗)†Y. (5)

When Z, Z̃ = 0, we denote the output of (5) as X. In this case, the output will be

X = X0S̃
∗(SX0S̃

∗)†SX0. (6)

We first show that without noise, the algorithm exactly recovers X0, i.e., X = X0 with probability 1.

Theorem 1 (Exact recovery). Let S ∈ Cr×n1 , S̃ ∈ Cr×n2 be two independent complex standard Gaussian
random matrices. Furthermore, let X0 ∈ Cn1×n2 be a matrix with rank r0. If r ≥ r0 and Z, Z̃ = 0 then with
probability one X = X0, where X is as defined in (6).

Our Theorem 1 generalized the exact recovery result [13, Lemma 6], where r is assumed to be exactly
r0. Our Theorem 1 implies the exact value of r0 is not needed for the double sketch algorithm, and one can
always use the parameter r ≥ r0. In fact, our robust recovery result (Theorem 2) suggest choosing a larger
r makes the output of the double sketch algorithm more robust to noise.

When Z, Z̃ are not all zero, the robust recovery guarantee is given as follows.

Theorem 2 (Robust recovery). Assume r0 < r < n1, Ỹ is of rank r and Z̃ is independent of S. For any
δ1, δ2, ε > 0, with probability at least 1− δ1 − δ2 − ε, the output X from the double sketch algorithm given in
(5) satisfies

~X −X0~ ≤
√
r(n1 − r)~Z̃~

√
δ1(
√
r −√r0 −

√
log(1/δ2))

+

√
r~Z~√

log(1/(1− ε))
,

where ~ · ~ is any matrix norm that satisfies for any two matrices A and B, ~AB~ ≤ ‖A‖2→2~B~, and
~A~ = ~A∗~. In particular, it holds for ‖ · ‖2→2 and ‖ · ‖F .

Remark 2. The condition that Ỹ is of rank r can be easily verified in different settings. For example, it
holds when Z̃ is independent of S̃, or Ỹ = S̃(X∗0 + Ẑ), where X∗0 + Ẑ is of full rank. In the second case,
when Ẑ is a matrix with independent entries generated from a continuous distribution, we cover “low-rank
plus noise” sketching.

Remark 3. Our proof of Theorem 2 works for r = r0 or r = n1, but the error bounds are slightly different.

• When r = r0 < n1, (14) is replaced by the estimate that σmin(S̃V0) ≥
√

log(1/(1− δ2))r−1/2 with
probability 1− δ2. This implies with probability at least 1− δ1 − δ2 − ε,

~X −X0~ ≤ r
√
n1 − r~Z̃~√

δ1(log(1/(1− δ2))
+

√
r~Z~√

log(1/(1− ε))
.
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• When r = n1, UA defined in (8) is a unitary matrix and S is invertible. We find X̃ = X0 in (11) and
following the rest of the proof we obtain with probability at least 1− ε,

~X −X0~ ≤
√
n1~Z~√

log(1/(1− ε))
.

2.2 Low-rank matrix approximation

When X0 is not low-rank, we can write X0 = X1 + E, where X1 is the best rank-r1 approximation of X0.
Letting r0 > r > r1, we can use the noisy double sketch model in (4) to consider the sketches

Y = SX0 + Z = SX1 + (SE + Z),

Ỹ = S̃X∗0 + Z̃ = S̃X∗1 + (S̃E + Z̃).

When Z = Z̃ = 0, such a problem was considered in [13, 35] using the double sketch algorithm and an
extra step of truncated r-term SVD of Y and Ỹ . See [13] for more details. The noiseless version of the
algorithm was also analyzed in [29] and a power scheme modification of the algorithm was analyzed in [40].
In the noiseless setting, a direct application of the double sketch algorithm without the truncation steps
yields a weaker error bound from Corollary 1 when compared to [29]. We can handle noise in the double
sketch, while the proofs from [29, 40] are not applicable. The proofs in [29, 40] heavily rely on the assumption
Z = Z̃ = 0 to use properties of orthogonal projections, which only hold in this noiseless scenario. See for
example [29, Fact A.2]. The proof of Corollary 1 is given in Section 3.3.

Corollary 1 (Low-rank approximation with noisy sketch). Let X0 ∈ Cn1×n2 . Let r1 be an integer such that
r1 < r < n1. Consider the algorithm

Y = SX0 + Z, Ỹ = S̃X∗0 + Z̃, X = Ỹ ∗(SỸ ∗)†Y.

Suppose Ỹ is of rank r. For any δ1, ε > 0 and δ2 > exp(−(
√
r−√r1)2), with probability at least 1−δ1−3δ2−ε,

the output X satisfies

‖X −X0‖2→2 ≤ σr1+1·√r(n1 − r)(
√
r +
√
n2 +

√
log(1/δ2))

√
δ1(
√
r −√r1 −

√
log(1/δ2))

+

√
r
(√

r +
√
n1 +

√
log(1/δ2)

)
√

log(1/(1− ε))
+ 1


+

√
r(n1 − r)‖Z̃‖2→2√

δ1(
√
r −√r1 −

√
log(1/δ2))

+

√
r‖Z‖2→2√

log(1/(1− ε))
.

Remark 4. Although our error bound depends on σr1+1, the output X is a rank-r approximation of the
ground truth matrix X0. This bound is true for any r1 < r. Therefore one can optimize r1 to find the best
bound in terms of the failure probability and the approximation error.

2.3 Application to sketching low-tubal-rank tensors

The approach set forth in (5) can be used to sketch and recover low-tubal-rank tensors. For such an
application, one considers the low-tubal-rank tensor X ∈ Rn1×n2×n3 with tubal rank r. Taking the mode-
3 FFT of X , one obtains X̂ which is composed of a collection of n3 matrices (frontal slices) of dimension
n1×n2 with rank at most r. As such, (5) can be used to sketch each of the n3 frontal slices of X . Corollary 2
captures the approximation error for such an approach, and its proof is given in Section 3.3.

Corollary 2 (Recovering low tubal-rank tensors). Let X0 ∈ Cn1×n2×n3 be a low-tubal-rank tensor with rank
r0. Furthermore, let r0 < r < n1, S ∈ Cr×n1 , S̃ ∈ Cr×n2 be two independent complex standard Gaussian
random matrices. Consider the measurements

Y = S ∗ X0 + Z, Ỹ = S̃ ∗ X ∗0 + Z̃, (7)

where S1 = S, S̃1 = S̃ and Sk = S̃k = 0 for all k ∈ {2, . . . , n3}.
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1. (Exact Recovery) If Z = 0 and Z̃ = 0 then with probability 1, X = X0.

2. (Robust Recovery) If for all k ∈ [n3], Yk = SX̂0k + Zk is of rank r, then for any δ1, ε > 0, and
δ2 > exp(−(

√
r −√r1)2), with probability at least 1− (δ1 + δ2 + ε)n3,

‖X − X0‖2F ≤
2r(n1 − r)‖Z̃‖2F

δ1(
√
r1 −

√
r −

√
log(1/δ2))2

+
2r‖Z‖2F

log(1/(1− ε))
.

Remark 5. In the closely related work [23], the authors considered low-tubal-rank tensor approximation from
noiseless sketches, extending the results from [29], while our setting here is to recover low-tubal-rank tensors
from noisy sketches. In addition, [23] requires two sketching tensors S, S̃ with i.i.d. Gaussian entries in the
sketching procedure, whereas here we only require two sensing matrices S and S̃ with independent Gaussian
entries to sketch the low-tubal-rank tensors.

3 Proof of main results

Our proof for robust matrix recovery, presented in Theorem 2, derives an upper bound for the difference
between the output X and the ground truth matrix X0. To accomplish this, the approximation error, X−X̃0,
is decomposed into two components. The first part depends on Z̃ and can be written as PX0 for a projection
matrix P , and we used the oblique projection matrix expression in Lemma 3 to simplify the expression. We
then control the error by relating it to the smallest singular value of a truncated Haar unitary matrix. Here
we use the crucial fact that when Ỹ is full-rank, Im(P ) = kerS is uniformly distributed on the Grassmannian
of all (n−r)-dimensional subspaces in Cn. When Ỹ is not full rank, Im(P ) does not have such nice property,
and our proof technique cannot be directly applied. This part of the proof is summarized in Lemma 1.

The second part of the component in the decomposition of the error depends on Z is simpler to handle.
For this part, a lower bound on the smallest singular value of Gaussian random matrices is utilized.

Remark 6. The distribution of the smallest singular value of truncated Haar unitary matrices was explicitly
calculated in [9, 3]. For a more general class of random matrices (including Haar orthogonal matrices),
such a distribution was derived in [9, 11, 2] in terms of generalized hypergeometric functions. By using the
corresponding tail probability bound [2, Corollary 3.4] for truncated Haar orthogonal matrices, our analysis
can be extended to real Gaussian sketching matrices S and S̃.

3.1 Proof of Theorem 1

Proof. Let X0 = U0Σ0V
∗
0 be the SVD of X0 where U0 is n1 × r0, V0 is n2 × r0 and Σ0 is an invertible,

diagonal r0 × r0 matrix. Now we can write X as

X = U0Σ0V
∗
0 S̃
∗(SU0Σ0V

∗
0 S̃
∗)†SU0Σ0V

∗
0 .

Note that since S, S̃ are Gaussian matrices and since U0 and V0 are orthonormal, SU0 ∈ Cr×r0 and S̃V0 ∈
Cr×r0 have linearly independent columns with probability 1 and by Lemma 2,

(SU0)†SU0 = I, V ∗0 S̃
∗(V ∗0 S̃

∗)† = I.

So with probability 1,

X = U0Σ0V
∗
0 S̃
∗(V ∗0 S̃

∗)†Σ−10 (SU0)†(SU0)Σ0V
∗
0 = U0ΣV ∗0 = X0.

6



3.2 Proof of Theorem 2

The double sketch algorithm outputs

X = Ỹ ∗(SỸ ∗)−1(SX0 + Z) = X̃ + Ỹ ∗(SỸ ∗)−1Z

where X̃ := Ỹ ∗(SỸ ∗)−1SX0.
Let A be such that

A := Z̃∗ +X0S̃
∗ ∈ Cn1×r.

Since A = Ỹ ∗ is of rank r from the assumption in Theorem 2, we denote the SVD of A as

A = UAΣAV
∗
A,

UA ∈ Cn1×r,ΣA ∈ Cr×r, VA ∈ Cr×r. (8)

Furthermore, since S and Z̃ are independent, SUA is invertible with probability 1. Therefore,

Ỹ ∗(SỸ ∗)† = A(SA)†

= (UAΣAV
∗
A)(SUAΣAV

∗
A)†

= UAΣAV
∗
AVAΣ−1A (SUA)−1

= UA(SUA)−1. (9)

Using this notation, the output of (5) simplifies to

X = X̃ + Ỹ ∗(SỸ ∗)−1Z = X̃ + UA(SUA)−1Z.

Then
X −X0 = X̃ −X0 + Ỹ ∗(SỸ ∗)−1Z = (X̃ −X0) + UA(SUA)−1Z,

and since our goal is to bound the approximation error, we consider

~X −X0~ ≤ ~X̃ −X0~ + ~UA(SUA)−1Z~.

Lemma 1 allows us to bound the first term in this inequality.

Lemma 1. If Z = 0, then with probability at least 1 − δ1 − δ2 with δ1 > 0, δ2 > exp(−(
√
r − √r1)2), the

output X̃ of the algorithm in (5) satisfies

~X̃ −X0~ ≤
√
r(n1 − r)~Z̃~

√
δ1(
√
r −√r0 −

√
log(1/δ2))

. (10)

Proof. From (9) and Theorem 1,

X̃ −X0 = Ỹ ∗(SỸ ∗)†SX0 −X0

= UA(SUA)−1SX0 −X0 (11)

= −(I − UA(SUA)−1S)X0

= −PX0,

where we have set P := I − UA(SUA)−1S. We observe that P is a projection, i.e. P 2 = P which satisfies

ker P = UA,

Im P = ker S =: Ṽ ∈ Cn1×(n1−r).

7



Recall that X0 = U0Σ0V
∗
0 is the SVD of X0. From Lemma 3,

PX0 = Ṽ (U∗A,⊥Ṽ )−1U∗A,⊥X0

= Ṽ (U∗A,⊥Ṽ )−1U∗A,⊥U0Σ0V
∗
0 .

Then we can bound

~X̃ −X~ = ~Ṽ (U∗A,⊥Ṽ )−1U∗A,⊥U0Σ0V
∗
0 ~

≤ ‖(U∗A,⊥Ṽ )−1‖2→2~U∗A,⊥U0Σ0V
∗
0 ~. (12)

We focus our efforts on simplifying the second term of (12). Writing A in terms of the SVD of X0, one
obtains

A = Z̃∗ +X0S̃
∗ = UAΣAV

∗
A = Z̃ + U0Σ0V

∗
0 S̃
∗.

Rearranging terms yields
U0Σ0V

∗
0 S̃
∗ = A− Z̃∗.

Since S̃V0 is of size r × r0, S̃ is complex Gaussian and V0 has orthonormal columns, then from Lemma 2,
with probability 1, S̃V0 has linearly independent columns. Thus V ∗0 S̃

∗ has linearly independent rows and

(V ∗0 S̃
∗)(V ∗0 S̃

∗)† = I.

This implies that

U0Σ0 =
(
A− Z̃∗

)(
V ∗0 S̃

∗
)†
.

We note that

~U∗A,⊥U0Σ0V
∗
0 ~ = ~U∗A,⊥U0Σ0~

= ~U∗A,⊥

(
A− Z̃∗

)(
V ∗0 S̃

∗
)†

~

= ~U∗A,⊥Z̃
∗
(
V ∗0 S̃

∗
)†

~

≤ ~U∗A,⊥Z̃
∗~‖

(
V ∗0 S̃

∗
)†
‖2→2

=
~U∗A,⊥Z̃

∗~

σmin

(
V ∗0 S̃

∗
) ≤ ~Z̃~

σmin

(
V ∗0 S̃

∗
) .

Using the fact that ‖(U∗A,⊥Ṽ )−1‖ = 1/σmin(U∗A,⊥Ṽ ) for the first term of (12), we then obtain the following
bound:

~X̃ −X~ ≤ ~Z̃~

σmin(U∗A,⊥Ṽ )σmin

(
S̃V0

) , (13)

which holds with probability 1.
We now derive a probabilistic bound from (13) using concentration inequalities from random matrix

theory. Since Ṽ can be seen as the n1 × (n1 − r) submatrix of a Haar unitary matrix (Ṽ , Ṽ⊥). By unitary
invariance property,

M :=

[
U∗A,⊥
U∗A

]
(Ṽ , Ṽ⊥)

8



is also a Haar unitary matrix, and U∗A,⊥Ṽ is exactly the upper left (n1 − r)× (n1 − r) corner of M . We can
apply Lemma 4 to get

P

(
‖(U∗A,⊥Ṽ )−1‖ ≤

√
r(n1 − r)√

δ1

)
≥ 1− δ1

for any δ1 > 0. Since S̃V0 is distributed as a r × r0 complex Gaussian random matrix, if r > r0, by Lemma
5, for any δ2 > 0, with probability at least 1 − δ2,

σmin(S̃V0) ≥
√
r −
√
r0 −

√
log(1/δ2). (14)

Combining the two probability estimates, with probability at least 1 − δ1 − δ2,

~X̃ −X~ ≤
√
r(n1 − r)~Z̃~

√
δ1(
√
r −√r0 −

√
log(1/δ2))

.

For the second term, by the independence between S and Z̃, SUA is distributed as an r × r standard
complex Gaussian matrix it follows from Lemma 6 that with probability at least 1 − ε,

σmin(SUA) ≥
√

log(1/(1− ε))r−1/2.

Thus, with probability at least 1 − ε,

~UA(SUA)−1Z~ ≤ ‖UA‖2→2‖(SUA)−1‖2→2~Z~

=
1

σmin(SUA)
~Z~

≤
√
r√

log(1/(1− ε))
~Z~. (15)

Combining (10) and (15) yields the desired result.

3.3 Proof of Corollaries

Proof of Corollary 1. Write X0 = X1 + E, where X1 is the best rank-r1 approximation to X0. We obtain

Y = SX0 + Z = SX1 + (SE + Z),

Ỹ = S̃X∗0 + Z̃ = S̃X∗1 + (S̃E + Z̃).

Applying Theorem 2 to X1 and two error terms (SE + Z) and S̃E + Z̃, the following error bound holds
with probability at least 1 − δ1 − δ2 − ε,

‖X −X0‖2→2 ≤ ‖X −X1‖2→2 + ‖E‖2→2

≤
√
r(n1 − r)‖S̃E + Z̃‖2→2√

δ1(
√
r −√r1 −

√
log(1/δ2))

+

√
r‖SE + Z‖2→2√
log(1/(1− ε))

+ ‖E‖2→2

≤

( √
r(n1 − r)‖S̃‖2→2√

δ1(
√
r −√r1 −

√
log(1/δ2))

+

√
r‖S‖2→2√

log(1/(1− ε))
+ 1

)
‖E‖2→2

+

√
r(n1 − r)‖Z̃‖2→2√

δ1(
√
r −√r1 −

√
log(1/δ2))

+

√
r‖Z‖2→2√

log(1/(1− ε))

=

( √
r(n1 − r)‖S̃‖2→2√

δ1(
√
r −√r1 −

√
log(1/δ2))

+

√
r‖S‖2→2√

log(1/(1− ε))
+ 1

)
σr1+1 (X0)

+

√
r(n1 − r)‖Z̃‖2→2√

δ1(
√
r −√r1 −

√
log(1/δ2))

+

√
r‖Z‖2→2√

log(1/(1− ε))
.
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From concentration the of operator norm of S̃ and S in Lemma 5, with probability 1 − 2δ2, we have that

‖S‖2→2 ≤
√
r +
√
n1 +

√
log(1/δ2), ‖S̃‖2→2 ≤

√
r +
√
n2 +

√
log(1/δ2).

We then obtain the desired bound.

Proof of Corollary 2. Consider the double sketch tensor approach described in (7):

Y = S ∗ X0 + Z, Ỹ = S̃ ∗ X ∗0 + Z̃

where S1 = S, S̃1 = S̃ and Sk = S̃k = 0 for all k ∈ {2, . . . , n3}. With this construction, after performing a

mode-3 Fourier transformation (2) on the tensors, the measurements Ŷ and ̂̃Y can be decomposed into n3
low-rank matrix sketches:

Ŷi = ŜiX̂0i + Ẑ, ̂̃Yi = ̂̃Si ∗ X̂ ∗0 i + ̂̃Zi, i ∈ [n3]. (16)

Notice that it follows from the definition of mode-3 Fourier transformation in (2), Ŝ1 and ̂̃S1 are two complex
Gaussian random matrices with independent entries by the unitary invariance of the complex Gaussian
distribution. Thus, the results of Theorem 1 and Theorem 2 can be applied to produce recovery guarantees
for the double sketch tensor approach. In particular, when Z = Z̃ = 0, by Theorem 1, each of the n3
transformed frontal slices Xi can be recovered with probability 1 from the sketches given in (16).

For general noise, we start by noting that

‖X − X0‖2F =

n3∑
k=1

‖Xk − (X0)k‖2F

≤
n3∑
k=1

2‖X̂k − X̂ k‖2F + 2‖X̂ k − (X̂0)k‖2F ,

where X̂k, (X̂0)k ∈ Cn1×n2 are kth frontal slices of the the mode-3 FFT of X and X0, and X̂ k is the recovered
frontal slice in the noiseless setting. For the first term, we can use the same argument as in the proof of
Theorem 2 and for the second term, we simply invoking Lemma 1. Thus, the approximation error is:

‖X − X0‖2F ≤
n3∑
k=1

2‖X̂k − X̂ k‖2F + 2‖X̂ k − (X̂0)k‖2F

≤
n3∑
k=1

2r(n1 − r)‖̂̃Zk‖2F
δ1(
√
r1 −

√
r −

√
log(1/δ2))2

+
2r‖Ẑk‖2F

log(1/(1− ε))

≤ 2r(n1 − r)
δ1(
√
r1 −

√
r −

√
log(1/δ2))2

n3∑
k=1

‖̂̃Zk‖2F +
2
√
r

log(1/(1− ε))

n3∑
k=1

‖Ẑk‖2F

≤ 2r(n1 − r)
δ1(
√
r1 −

√
r −

√
log(1/δ2))2

‖ ̂̃Z‖2F +
2r

log(1/(1− ε))
‖Ẑ‖2F

=
2r(n1 − r)‖Z̃‖2F

δ1(
√
r1 −

√
r −

√
log(1/δ2))2

+
2r‖Z‖2F

log(1/(1− ε))
.

4 Experiments

We complement our theoretical findings with numerical experiments examining the empirical behavior of the
approximation error using the double sketch algorithm for recovering low-rank matrices from noise sketches.
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In these experiments, we fix the dimension of the rank r0 matrix to be 100× 100, initialized by multiplying
two i.i.d. complex Gaussian matrices of size 100×r0 and r0×100. Empirical approximation error represents
the median error over 20 trials where the sketching matrices change with each trial. The entries of error
matrices (or tensors) Z and Z̃ (Z and Z̃) are drawn i.i.d. from a standard Gaussian distribution and then
normalized to achieve the desired norm. For these numerical experiments, all norms and errors are measured
in the Frobenius norm.

Figure 1 demonstrates the performance of the double sketch algorithm for recovering a low-rank matrix
when r0 = 10 and r ∈ {r + 1, 2r, n − 1} (left to right). For each tuple (r0, r), we plot the approximation
error while varying the noise levels ε1 = ‖Z‖F and ε2 = ‖Z̃‖F . Going from left to right in Figure 1, we
observe that the approximation error is robust with respect to ε1 when r is close to r0 and then transition
to being robust with respect to ε2 when r approaches n. This is expected as the error bound represented in
Theorem 2 depends on n − r. In particular, if we pick r = n, the error bound becomes independent of ε2.
Similarly, picking r close to r0, the term involving of ε2 becomes the dominant term in the error bound.

Figure 1: Numerical results demonstrating the empirical performance of the double sketching algorithm
while varying ‖Z‖F = ε1 and ‖Z̃‖F = ε2 when n = 100, r = 10, and (left) r1 = r+ 1 (center) r1 = 2r (right)
r1 = n− 1.

In our next experiment, we consider the recovery of low-tubal-rank tensors. Figure 2 presents the empirical
approximation errors obtained when using the double sketch algorithm 7 to recover low-tubal-rank tensors.
To initialize the underlying low-rank tensor, we multiple two tensors of dimension n× r×n3 and r×n×n3.
Thus, the tubal rank of the tensor is r and X ∈ Rn×n×n3 . Similar to the experiment presented for the matrix
case, the approximation error is the median error from 20 trails where new sketching matrices are drawn for
each trial. We also vary both the choice of r and the size of the tensor n3. In Figure 2, we can see that
increasing n3 has no impact on the approximation error. Based on the upper bound shown in Corollary 2,
this behavior is expected. We also obverse that as r1 approaches n, the double sketch method becomes more
robust to the noise in Z̃.

5 Conclusion

In this paper, we study the robust recovery of low-rank matrices and low-tubal-rank tensors from sketched
matrices. Our main results show that, without making assumptions on the distribution of the noise Z and Z̃,
one can reconstruct the low-rank matrix using the double sketch algorithm discussed in [24] with theoretical
guarantees. This analysis is also applicable to low-tubal-rank tensor recovery. Numerical experiments support
our theoretical results.

A possible extension is to analyze the truncated version of the noisy sketching algorithm in [24, 35] for
low-rank approximation. It will also be interesting to see whether our analysis can be extended to the scenario
when more structured sketching matrices such as subsampled randomized Hadamard transforms [5] are used.
These more structured sketching matrices have the advantage of reducing the computational burden and
the memory footprint compared to Gaussian sketching matrices. Note that while our deterministic formula

11



Figure 2: Numerical results demonstrating the empirical performance of the double sketching algorithm
while varying ‖Z‖F = ε1 and ‖Z̃‖F = ε2 when n = 100, r = 10, (left column) r1 = r + 1 (center column)
r1 = 2r (right column) r1 = n− 1. Each row presents the numerical results for different values of n3: (first
row) n3 = 10 and (second row) n3 = 50.

for the difference between the output of the sketching algorithm and the ground truth matrix also holds in
this setting, it is not known to us whether some of the involved concentration inequalities still hold in this
scenario. We believe that this is an interesting avenue for future research.

Appendix

Lemma 2 (Properties of the pseudo-inverse, [14]). The following properties hold for pseudo-inverse.

1. (AB)† = B†A† if A has orthonormal columns or B has orthonormal rows.

2. (AB)† = B†A† if A has linearly independent columns (A†A = I) and B has linearly independent rows
(BB† = I).

3. If A has orthonormal columns or orthonormal rows, then A† = A∗.

Lemma 3 (Oblique projection matrix, Theorem 2.1 in [15], see also Equation (7.10.40) in [21]). Let P ∈
Cn×n be a projection matrix, i.e. P 2 = P . We note that P is uniquely characterized by the subspaces V1
and V2 given by

V1 := Im P,

V2 = Ker P.

and dim V1 + dim V2 = n. By some abuse of notation, we denote by V1 a matrix with orthonormal columns,
whose column span is equal to the subspace V1. Analogously, we denote by V2 a matrix with orthonormal
columns, whose column span is equal to the subspace V2. It holds that

P = V1(V ∗2,⊥V1)−1V ∗2,⊥.
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Lemma 4 (Smallest singular value of a truncated Haar unitary matrix, Proposition D.3 in [3]). Let A be
the upper left (n− r)× (n− r) corner of a Haar unitary matrix U . Then for any δ > 0

P

(
σmin(A) ≥

√
δ√

r(n− r)

)
≥ 1− δ.

Lemma 5 (Extreme singular value of Gaussian random matrices, Corollary 5.35 in [31]). Let A be a random
m× n random matrix with independent standard complex Gaussian entries and m > n, then for any δ > 0,
with probability at least 1− δ,

σmin(A) ≥
√
m−

√
n−

√
log(1/δ).

Similarly, with probability at least 1− δ,

σmax(A) ≤
√
m+

√
n+

√
log(1/δ).

Proof. This lemma was proved in [31] for real Gaussian matrices. We include a proof for complex Gaussian
matrices for completeness. We have

σmin(A) = min
u∈Sn−1

max
v∈Sm−1

〈Au, v〉,

where Sn−1 is the unit sphere in Cn. Let Xu,v = 〈Au, v〉 and Yu,v = 〈g, u〉+〈h, v〉, where g ∈ Cn, h ∈ Cm are
independent standard complex Gaussian random vectors. We find for any x,w ∈ Sn−1 and any y, z ∈ Sm−1,

E|Xu,v −Xw,z|2 = ‖uv∗ − wz∗‖2F ≤ ‖u− w‖22 + ‖v − z‖22 = E|Yu,v − Yw,z|2.

From Gordon’s inequality ([32, Exercise 7.2.14]) and [32, Exercise 7.3.4],

Eσmin(A) ≥ E‖h‖2 − E‖g‖2.

Since E‖g‖2 ≤ (E‖g‖22)1/2 =
√
n,

Eσmin(A) ≥ (E‖h‖2 −
√
m) +

√
m−

√
n.

We also have ‖h‖22 =
∑m

i=1 |hi|2 = 1
2W , where W ∼ χ2(2m). So

E‖h‖2 −
√
m =

1√
2

(
E
√
W −

√
2m
)
≥ 0,

where the last inequality is due to the fact that f(n) = E‖g‖2 −
√
n is an increasing function in n, where

g ∼ N(0, In), and ‖g‖22 ∼ χ2(n).
Since σmin(A) is a Lipschitz function of 2mn independent real Gaussian random variables with mean zero

and variance 1/2, then the probability estimate follows from Gaussian concentration of Lipschitz functions
(see [31, Proposition 5.34]). The largest singular value σmax(A) can be estimated in a similar way using the
Sudakov-Fernique inequality [32, Theorem 7.2.11].

Lemma 6 (Smallest eigenvalue of a square Gaussian random matrix, [10] and Theorem 1.1 in [28]). Let A
be an n× n complex standard Gaussian random matrix. Then

P
(
σmin(A) ≥ εn−1/2

)
= e−ε

2

.
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