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Abstract
Solving linear systems of equations is a fundamental problem in mathematics. When
the linear system is so large that it cannot be loaded intomemory at once, iterativemeth-
ods such as the randomized Kaczmarz method excel. Here, we extend the randomized
Kaczmarz method to solve multi-linear (tensor) systems under the tensor–tensor t-
product. We present convergence guarantees for tensor randomized Kaczmarz in two
ways: using the classical matrix randomized Kaczmarz analysis and taking advan-
tage of the tensor–tensor t-product structure. We demonstrate experimentally that the
tensor randomized Kaczmarz method converges faster than traditional randomized
Kaczmarz applied to a naively matricized version of the linear system. In addition, we
draw connections between the proposed algorithm and a previously known extension
of the randomized Kaczmarz algorithm for matrix linear systems.
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1 Introduction

Methods for processing and analyzing large datasets have seen rapid development
and use in signal processing and machine learning. Data are often organized in a
two dimensional (user-item, pixel-frame, etc.) fashion because a vast majority of the
existing methods operate on data that are stored as matrices and vectors [17,18,21].
However, in reality, data can be higher-order multidimensional arrays and this restric-
tion to the one or two dimensional representations often destroys inherent structure
(for example, spatial or temporal structure) Tensor methods aim to retain and take
advantage of natural multidimensional structure.

Here, we consider the fundamental problem of solving large linear systems of equa-
tions for third-order tensors under the t-product. In the matrix linear system setting,
randomized iterative methods are a popular choice for solving or finding approximate
solutions to systems that are too large to load into memory at once [7,20,34]. One such
randomized iterative method is known as the randomized Kaczmarz method. The ran-
domized Kaczmarz method (MRK)1 is closely related to other popular randomized
iterative methods such as stochastic gradient descent and coordinate descent and is
commonly used in computed tomography (CT imaging) and other signal processing
applications [10,26]. In this work, we extend the Kaczmarz method to tensor linear
systems under the t-product. Before summarizing our contributions, we first present
the Randomized Kaczmarz method, it’s related works, and briefly motivate the use of
the tensor–tensor t-product.

1.1 Randomized Kaczmarz

Randomized Kaczmarz is an iterative method for approximating solutions to linear
systems of equations [13]. For a linear system Ax = b, a row Ai : is chosen at each
iteration of MRK and the current iterate x (approximate solution) is projected onto
the solution space

Ai :x = bi .

The RK method is advantageous for very large linear systems that cannot be loaded
into memory at once due to its low memory footprint. Extensions to MRK include
greedy [1,4,6,11,23,28,29] and block [25] variants to speed convergence and versions
for inconsistent linear systems [24,41].

For a fixed sampling distribution over row indices i , MRK converges exponentially
in expectation [10,34]. The standard MRK update for a linear systemAx = b is given
by

xt+1 = xt − A∗
it :

〈Ait :, xt 〉 − bit
∥
∥Ait :

∥
∥2

, (1.1)

1 While the randomizedKaczmarz literature typically abbreviates randomizedKaczmarz asRK, throughout
this work, MRK is used to distinguish the matrix and tensor versions of randomized Kaczmarz.
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where it is the row index selected at iteration t and A∗
it : is the transpose of the it th row

of A.
Randomized Kaczmarz is closely related to the popular optimization technique,

stochastic gradient descent (SGD) [26] which has been considered under tensor frame-
works. For example, a tensor stochastic gradient descent was recently implemented to
train tensor neural networks under the t-product [27]. The emphasis of the aforemen-
tioned work is a tensor neural network framework for multidimensional data and not
the algorithmic analysis of SGD under the t-product, whereas this work focuses on
analyzing tensor RK for tensor linear systems and connecting the extended algorithm
to existing methods.

This and other tensor-based approaches are motivated by the fact that tensors arise
in many applications and working with tensors directly, as opposed to naively flatten-
ing tensors into matrices can preserve significant structures and have computational
advantages. A popular approach for working with tensors is to use the tensor–tensor
t-product.

1.2 Tensor linear systems

The tensor–tensor t-product [16] is a bilinear operation between tensors, that allows
for a linear algebraic-like framework. A tensor linear system under the t-product is
formulated as follows. LetX ∈ C

�×p×n be an unknown third-order tensor represent-
ing a three-dimensional data array. For example, this three-dimensional data could
represent a video, color image, temporal data, or three-dimensional density values. A
tensor linear system under the t-product is written as:

AX = B, (1.2)

with A ∈ C
m×�×n , X ∈ C

�×p×n and B ∈ C
m×p×n .

Initially motivated for tensor factorization, use of the t-product has become promi-
nent in the tensor and signal processing community. The t-product has proved useful in
applications such as dictionary learning [32,37], low-rank tensor completion [31,38–
40], facial recognition [12], and neural networks [27,36]. T-product tensor linear
systems also arise when using the Boundary Element Method2 for analyzing elec-
tromagnetism and acoustic properties of spherically symmetric objects [2,5,35]. We
provide further details about the t-product in Sect. 2.2.

1.3 Contributions

We extend the randomized Kaczmarz method to solve linear systems of third-order
tensors under the t-product and denote the method TRK. To the best of our knowledge,
no other works have considered solving large-scale t-product linear tensor systems
with stochastic iterative methods. We provide theoretical guarantees for the TRK
method and demonstrate its performance empirically. Furthermore, we remark on

2 These linear systems are typically written as linear systems with block circulant matrices which are
equivalent to the t-product as discussed in Definition 2.2.
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(a) (b)

Fig. 1 Horizontal slice Mi :: and frontal slice M::k of tensor M

connections between TRK and the existing block-variant of MRK (BRK) [9], when
working in the Fourier domain. This work serves as an example for extending methods
for tensors under the t-product and how the properties of the t-product in the Fourier
domain can be used to analyze convergence in this setting. Lastly, we demonstrate
the computational advantage of using TRK over MRK for real and synthetic data by
considering performance comparisons of the TRK method with a naively matricized
MRK applied to a flattened tensor system as well as systems with equivalent memory
constraints.

2 Background and notation

In this section, we present notation and several linear algebraic definitions for tensors
under the t-product.

2.1 Notation

Throughout, calligraphic capital letters represent tensors, bold capital letters represent
matrices, and lower case letters represent vectors and scalars. The index i is reserved
for indexing horizontal slices of tensors (see Fig. 1a), rows of matrices, and entries of
vectors. The index j is similarly reserved for indexing column slices of tensors and
columns of matrices. The index k is reserved for indexing frontal slices of tensors as
illustrated in Fig. 1b.

For matrices M, we use the notation Mi : and M: j to represent the i th row and j th
column respectively. We useMi :: to represent horizontal slices andM::k to represent
frontal slices of a third-order tensor M as shown in Fig. 1. Because frontal slices of
tensors are heavily used throughout this work, to condense notation, bold sub-scripted
capital letters, Mk , represents the kth frontal slice of M equivalently given by M::k ,
unless otherwise stated (for example, the n × n discrete Fourier transform (DFT)
matrix Fn and n × n identity matrix In).

The squared Frobenius norm || · ||2F for matrices and tensors denotes the sum of
squares of all scalar elements. For amatrixM, ||M||2F = ∑

i j M
2
i j and for a third-order

tensor M , ||M ||2F = ∑

i jk M
2
i jk . We use σ+

min(M) to denote the smallest nonzero

singular value and M† to denote the pseudoinverse of the matrixM.
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Randomized Kaczmarz for tensor linear systems 175

Equation (2.1) shows how a third-order tensor M ∈ C
m×�×n is unfolded into a

C
m�×n matrix:

unfold (M ) =
⎛

⎜
⎝

M::0
...

M::n−1

⎞

⎟
⎠ =

⎛

⎜
⎝

M0
...

Mn−1

⎞

⎟
⎠ . (2.1)

To revert the unfolding of a tensor M we can fold the matrix in Eq. (2.1) such that
fold (unfold (M )) = M . To condense notation, when using both indices and trans-
poses, the transpose are applied to the tensor or matrix slice, that isM∗

i : = (Mi :)∗ and
M ∗

i :: = (Mi ::)∗.
The tensor product of tensorsA ∈ C

m×�×n andB ∈ C
�×p×n is written asAB ∈

C
m×p×n . Similarly, for matrices A,B, their matrix product is written as AB. We do

not consider the products between tensors and matrices. Throughout, we use A and
A to represent the measurement tensor and matrix, X , X, and x to represent signal
tensor, matrix and vector andB, B, and b to represent the observed measurements for
the linear systems

AX = B, AX = B, and Ax = b.

Lastly, the index t is reserved only to indicate iteration number and the shorthand
i ∈ [m − 1] denotes i ∈ {0, 1, 2, ...,m − 1}.

2.2 Tensor linear algebra

We now provide background on the tensor–tensor t-product. Under the t-product one,
can recover many standard linear algebraic properties such as transposes, orthogonal-
ity, inverses and projections [16].

The t-product is defined in terms of block-circulant matrices.

Definition 2.1 For A ∈ C
m×�×n , let bcirc (A ) denote the block-circulant matrix

bcirc (A ) =

⎛

⎜
⎜
⎜
⎝

A0 An−1 An−2 . . . A1
A1 A0 An−1 . . . A2
...

...
...

. . .
...

An−1 An−2 An−3 . . . A0

⎞

⎟
⎟
⎟
⎠

∈ C
mn×�n .

While the definitions and results here are specific to the t-product which uses the
Fourier transform, this product has been generalized to a class of tensor products that
use arbitrary invertible linear operators [14,33].

Definition 2.2 The tensor–tensor t-product is defined as

AB = fold (bcirc (A ) unfold (B)) ∈ C
m×p×n,

where A ∈ C
m×�×n and B ∈ C

�×p×n .
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176 A. Ma, D. Molitor

Definition 2.3 A tensor X ∈ C
�×p×n is said to be in the row space of tensor A ∈

C
m×�×n if ALL the columns of unfold (X ) are in the row space of bcirc (A ). We

denote this as X ∈ rowsp (A ).

Definition 2.4 The m × m × n identity tensor, denoted I , is the tensor whose first
frontal slice is the m × m identity matrix and whose remaining entries are all zeros.

The identity tensor satisfies MI = IM = M for all tensors M with compatible
sizes.

Definition 2.5 The conjugate transpose of a tensorM ∈ C
m×�×n is denotedM ∗ and

is produced by taking the conjugate transpose of all frontal slices and reversing the
order of the second to last frontal slices 1, . . . , n − 1.

Note that this definition ensures (M ∗)∗ = M and (AB)∗ = B∗A ∗. A tensor is
symmetric ifM ∗ = M .

Definition 2.6 A tensor M is invertible if there exists an inverse tensor M−1 such
that

MM−1 = M−1M = I .

Note that for an invertible tensor M ,

M ∗ (M−1
)∗ = M−1M = I and

(

M−1
)∗

M ∗ = MM−1 = I .

Thus, we have (M ∗)−1 = (

M−1
)∗
.

Definition 2.7 A tensor Q ∈ C
m×p×n is orthogonal if

Q∗Q = I = QQ∗.

3 Tensor randomized Kaczmarz

Tensor randomized Kaczmarz is a Kaczmarz-type iterative method designed for t-
product tensor linear systems. One notable difference between the t-product tensor
and matrix linear systems is the interaction of the measurements Ai :: and Ai : with
the signals X and x . For the products Ai :x = bi and Ai :X = Bi :, each value in the
signal X or x is multiplied by a single element of the measurement Ai :. In the tensor
measurement product,

Ai ::X = fold (bcirc (Ai ::) unfold (X )) ∈ C
1×n×p.

Since bcirc (Ai ::) ∈ C
n×�n , each element of X is multiplied by n elements in Ai ::

and affects n entries of the resulting product Bi ::. Equivalently, each frontal face of
X is multiplied by each frontal face of Ai ::. See Kilmer and Martin [16] for more
details and intuition for the t-product.
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Randomized Kaczmarz for tensor linear systems 177

Algorithm 1 Tensor RK
Input: X 0 ∈ C

�×p×n , A ∈ C
m×�×n , B ∈ C

m×p×n , and probabilities p0, . . . , pm−1 corresponding
to each horizontal slice of A
for t = 0, 1, 2, . . . do

Sample it ∼ pi

X t+1 = X t − A ∗
it ::
(

Ait ::A ∗
it ::
)−1 (

Ait ::X t − Bit ::
)

.

Output: last iterate X t+1

Making use of the algebraic properties of the t-product, we can write the TRK
update for tensor linear systems as

X t+1 = X t − A ∗
it ::
(

Ait ::A ∗
it ::
)−1 (

Ait ::X t − Bit ::
)

. (3.1)

TheAi :: are horizontal slices of the tensorA as depicted in Fig. 1a. The index it used
at each iteration is selected according to a probability distribution over the row indices
i ∈ [m − 1]. The TRK algorithm is detailed in Algorithm 1.

At each iteration, the current iterateX t is projected onto the solution space of the
sub-sampled systemAit ::X = Bit ::. Note that this is the natural analogue of theMRK
update, which projects the current iterate xt onto the solution space of Ait x = bit .
Tensor orthogonal projections under the t-product are discussed briefly by Kilmer et
al. [15] and in more detail by Miao et al. [22].

The multiplication by
(

Ait ::A ∗
it ::
)−1

in the TRK update serves an analogous role

to normalization by the squared row norms,
∥
∥Ait :

∥
∥
2in the MRK update. We assume

throughout thatAi ::A ∗
i :: is invertible for all i ∈ [m − 1]. The matrix bcirc

(

Ai ::A ∗
i ::
)

is
invertible if and only if the tensor Ai ::A ∗

i :: is. Its inverse can be calculated explicitly
as follows.

Lemma 3.1 The inverse of Ai ::A ∗
i :: under the t-product is

(

Ai ::A ∗
i ::
)−1 = fold

(
1√
n
F∗
n diag

(

D−1
))

,

where Fn is the n × n Discrete Fourier Transform (DFT) matrix and D is a diagonal
matrix such that bcirc

(

Ai ::A ∗
i ::
) = F∗

nDFn.

The inverse,
(

Ai ::A ∗
i ::
)−1, can be derived using the definition t-product generalization

of the Moore-Penrose pseudoinverse bcirc
(

M †
) = bcirc (M )† [22].

With the convergence analysis modeling that of MRK, one can derive analogous
convergence guarantees for TRK. This result, stated in Theorem 3.1, shows that in
expectation, theTRKalgorithmwill converge linearly to the solution of least Frobenius
norm under mild conditions.

Theorem 3.1 LetX ∗ be the tensor of minimal Frobenius norm such thatAX ∗ = B
andX t be the tth approximation ofX ∗ given by the updates of Eq. (3.1) with initial
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178 A. Ma, D. Molitor

iterateX 0 whereX 0 ∈ rowsp (A ). Let indices i ∈ [m−1] be sampled independently
from a probability distribution D at each iteration. Denote the orthogonal projection
Pi = A ∗

i ::
(

Ai ::A ∗
i ::
)−1

Ai ::. The expected error at the tth iteration satisfies

E

[∥
∥X t − X ∗∥∥2

F

∣
∣
∣X 0

]

≤ (1 − σ+
min(E [bcirc (Pi )]))

t
∥
∥
∥X 0 − X ∗

∥
∥
∥

2

F
,

where the expectation is taken over the probability distribution D , σ+
min(M) denotes

the smallest nonzero singular value ofM, and ‖M ‖2F is the sum of squared entries of
the tensor M .

The proof of Theorem 3.1 mirrors the standard analysis of MRK making use of the
linear algebra mimetic properties of the t-product. The original proof of linear con-
vergence of MRK requires the assumption that the matrix A have full column rank to
ensure convergence [34]. This requirement can be relaxed by adding the assumption
that the initial iterate reside in the row space of A [30,41]. For TRK, this requirement
becomes X 0 ∈ rowsp (A ). Note that this condition can be satisfied by choosing an
initial iterate X 0 of all zeros.

In addition to using this standard analysis, one can also take advantage of the
block-diagonal structure of tensor linear systems in the Fourier domain and prove
convergence in this setting. We proceed with this approach in the following section.

4 Analysis of TRK in the Fourier domain

The t-product can be computed efficiently using the Fast Fourier Transform (FFT),
since circulant matrices are diagonalized by the DFT. In this section, we describe
how the TRK update can be performed efficiently in the Fourier domain. We derive a
convergence guarantee for TRK and additionally demonstrate that TRK is equivalent
to performing block MRK with specific block structure on the linear system in the
Fourier domain.

4.1 Notation and preliminary facts

Wefirst introduce some additional notation and basic facts that will be used throughout
this section. The notation and definitions are adopted from [16]. LetM ∈ C

m×�×n and
M̂ denote the tensor resulting from applying the DFT matrix to each of the 1× 1× n
tube fibers ofM . In previous literature, this operation is referred to as a mode-3 FFT.
Fact 2 of [16], guarantees that

bdiag
(

M̂
) := (Fn ⊗ Im) bcirc (M )

(

F∗
n ⊗ I�

) =

⎛

⎜
⎜
⎜
⎝

M̂0

M̂1
. . .

M̂n−1

⎞

⎟
⎟
⎟
⎠

, (4.1)
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where M̂k ∈ C
m×� is the kth frontal face of M̂ , ⊗ denotes the Kronecker product, Fn

is the n × n DFT matrix, and bdiag
(

M̂
)

is the block diagonal matrix formed by the
frontal faces of M̂ .

This fact allows us to reformulate the tensor linear system Equation 1.2 as:

⎛

⎜
⎜
⎜
⎝

Â0

Â1
. . .

Ân−1

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

X̂0

X̂1
...

X̂n−1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

B̂0

B̂1
...

B̂n−1

⎞

⎟
⎟
⎟
⎠

, (4.2)

where ÂkX̂k = B̂k can be solved as individual sub-systems that can be solved inde-
pendently.

The following fact is useful for working with the t-product in the Fourier domain.
A proof of this fact can be found in the appendix.

Fact 1 For appropriately sized tensors A and B,

1. bdiag (̂·) is a multiplicative function

bdiag
(

Â B
)

= bdiag
(

Â
)

bdiag
(

B̂
)

.

2. Addition and ·̂ are commutative Â + B = Â + B̂.
3. The conjugate transpose commutes with bdiag ( ·̂ ), bdiag

(

Â ∗
)

= bdiag
(

Â
)∗
.

Additionally, if bcirc (A ) is symmetric, bdiag
(

Â
)

is also symmetric.

4. The inverse commutes with bdiag ( ·̂ ), bdiag
(

Â −1
)

= bdiag
(

Â
)−1

.

4.2 TRK convergence guarantee

Now, it is clear that Eq. (4.2) can be solved by applying MRK to every sub-system
ÂkX̂k = B̂k independently (asynchronously). However, when only the i th horizontal
slice of A is available, each sub-system is solved synchronously, i.e., in such a way
that MRK uses the i th row in every sub-system to iterate on the approximate solution.
This case arises naturally when the tensor A is so large that only single horizontal
slices ofA can be accessed at a time or in an online setting in which horizontal slices
of the tensorA are streaming in one at a time. This synchronous setting is equivalent
to TRK (Algorithm 1) with calculations performed in the Fourier domain and has
the convergence guarantees provided by Theorem 4.1. The proof of Theorem 4.1 is
deferred to Appendix B.

Theorem 4.1 LetX ∗ be the tensor of minimal Frobenius norm such thatAX ∗ = B
andX t be the tth approximationofX ∗ givenbyapplyingRK to eachof the subsystems
ÂkX̂k = B̂k synchronously. Furthermore, suppose the initial iterateX 0 ∈ rowsp (A )

and indices it ∈ [m − 1] are sampled uniformly at random at each iteration and each
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subsystem. The expected error at the t th iteration satisfies

E

[∥
∥X t − X ∗∥∥2

F

∣
∣
∣X 0

]

≤
⎛

⎝1 − min
k∈[n−1]

[

σ+
min

(

Âk
)]2

m
∥
∥Âk

∥
∥
2
∞,2

⎞

⎠

t
∥
∥
∥X 0 − X ∗

∥
∥
∥

2

F
,

where
∥
∥Âk

∥
∥
2
∞,2 :=maxi

[(

Âi ::Â ∗
i ::
)

k

]

, Âk is the kth frontal slice of Â , and σ+
min(·)

denotes the smallest nonzero singular value.

When we are not restricted to using the same row it ∈ [m − 1] for all subsystems
ÂkX̂k = B̂k , Eq. (4.2) can be solved by applying RK individually to each subsystem.
Such an approach results in the following Corollary.

Corollary 4.1 LetX ∗ be the tensor of minimal Frobenius norm such thatAX ∗ = B
and X t be the tth approximation of X ∗ given by applying an iteration of RK to
each of the subsystems ÂkX̂k = B̂k synchronously with initial iterate X 0 where
X 0 ∈ rowsp (A ) and indices it ∈ [m − 1] sampled uniformly at random at each
iteration and each subsystem. The expected error at the (t)th iteration satisfies

E

[∥
∥X t − X ∗∥∥2

F

∣
∣
∣X 0

]

≤
(

1 − min
k∈[n−1]

[

σ+
min

(

Âk
)]2

∥
∥Âk

∥
∥
2
F

)t
∥
∥
∥X 0 − X ∗

∥
∥
∥

2

F
,

where σ+
min(·) denotes the smallest nonzero singular value.

The result stated in Theorem 4.1 is a direct result of the the convergence guarantees
from the randomizedKaczmarz literature [30,34,41]. In particular, for over-determined
consistent linear systems of the form Ax = b with initial iterate x0 in the row space
of A,

E

[

‖xt − x‖2
]

≤
(

1 −
[

σ+
min(A)

]2

‖A‖2F

)t

‖x0 − x‖2. (4.3)

Applying RK to each of the sub-systems ÂkX̂k = B̂k , and taking the minimum
expected decrease in error over k, obtains Corollary 4.1.

4.3 Equivalence of TRK and block MRK applied in the Fourier domain

TRK can be interpreted as the previously studied block MRK algorithm [25] with
additional structural restrictions. In block MRK, one projects the current iterate onto
the solution space of a set of constraints (set of rows of the linear system) as opposed
to the solution space with respect to a single row. In practice, block MRK can lead to
a significant speed up over MRK [25].

Here we show the equivalence of TRK and block MRK performed in the Fourier
domain with specific block partitions and remark on the convergence rate implications
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Randomized Kaczmarz for tensor linear systems 181

in the block MRK setting. Making use of the equivalence of TRK and block MRK in
the Fourier domain, TRK can be implemented efficiently using methods for matrices
as detailed in Algorithm 2. Using Eq (4.1), the tensor linear system can be rewritten
as a block diagonal system in the Fourier domain as shown in Eq. (4.2).

The system shown in Eq. (4.2) can be solved using block MRK such that the
resulting iterate is equivalent to the TRK iterate in the following way. Let

τi = {km + i | k ∈ [n − 1]}, (4.4)

denote in set of indices corresponding to a randomly selected block of themeasurement
matrix in Eq. (4.2). This choice of τi corresponds to selecting the i th row of each Âk

in bdiag
(

Â
)

, i.e., each row of Âi :: appears along the diagonal of bdiag
(

Â
)

τi
and

therefore, bdiag
(

Â
)

τi
= bdiag

(

Âi ::
)

.
For a randomly selected row index it ∈ [m−1], the blockMRKupdate for Eq. (4.2)

is aptly written as:

unfold
(

X̂ t+1
)

= unfold
(

X̂ t)− bdiag
(

Â
)†
τit

(

bdiag
(

Â
)

τit
unfold

(

X̂ t)− unfold
(

B̂
)

τit

)

= unfold
(

X̂ t)− bdiag
(

Âit ::
)†
(

bdiag
(

Âit ::
)

unfold
(

X̂ t)− unfold
(

B̂
)

τit

)

.

(4.5)

Using Eq. (4.1) and Fact 1, we can show

bdiag
(

Âit ::
)† = bdiag

(

Âit ::
)∗ (

bdiag
(

Âit ::
)

bdiag
(

Âit ::
)∗)−1

= bdiag
(

Â ∗
it ::
(

Âit ::Â ∗
it ::
)−1
)

Therefore, noting the following equalities and folding the right and left sides of the
equation into tensors, we derive the iterate update for X̂ t+1 from the block MRK
update:

unfold
(

X̂ t+1
)

= unfold
(

X̂ t )− bdiag
(

Â ∗
i ::
(

Âit ::Â ∗
it ::
)−1
) (

bdiag
(

Âit ::
)

unfold
(

X̂ t )− unfold
(

B̂
)

τit

)

= unfold
(

X̂ t )− (Fn ⊗ I�)unfold
(

Ait ::∗
(

Ait ::Ait ::∗
)−1 (

Ait ::X t − Bit ::
))

= unfold
(

X̂ t )− unfold
(

Â ∗
it ::
(

Âit ::Â ∗
it ::
)−1 (

Âit ::X̂ t − B̂it ::
))

⇒ X̂ t+1 = X̂ t − Â ∗
it ::
(

Âit ::Â ∗
it ::
)−1 (

Âτit ::X̂
t − B̂it ::

)

. (4.6)

Since the FFT is applied to each tube fiber ofA independently, Âi :: = Âi ::. To see
that Eq. (4.6) is equivalent to Eq. (3.1) one can use Fact 1 to show that X̂ t+1 = X̂ t+1,

that is taking the inverseFFTon the tubes ofX̂ t+1 will return theTRKupdateEq. (3.1).
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Remark 4.1 The contraction rate for block MRK applied to the linear system Eq. (4.2)
with iterates as shown in Eq. (4.5) is

ρBRK = 1 −
[

σ+
min

(

bdiag
(

Â
))]2

mnmaxi λmax

(

bdiag
(

Â
)

τi
bdiag

(

Â
)∗
τi

) . (4.7)

The contraction coefficient ρBRK is a direct result of the theoretical guarantees for block
MRK shown in [25,30]. Note that due to the block-diagonal structure, the numerator
of the second term of Eq. (4.7) can be simplified to

σ+
min

(

bdiag
(

Â
)) = min

k∈[n−1] σ
+
min(Âk).

Using the fact that bdiag
(

Â
)

τi
= bdiag

(

Âi ::
)

along with Fact 1, it can be easily

shown that bdiag
(

Â
)

τi
bdiag

(

Â
)∗
τi

= bdiag
(

Âi ::Â ∗
i ::
)

. Thus, the denominator of
Eq. (4.7) can be simplified to:

max
i

λmax

(

bdiag
(

Â
)

τi
bdiag

(

Â
)∗
τi

)

= max
i

λmax
(

bdiag
(

Âi ::Â ∗
i ::
))

= max
i

max
k

[

Âi ::Â ∗
i ::
]

k

= max
k

∥
∥Âk

∥
∥
2
∞,2 ,

where the norm in the last equality is as defined in Theorem 4.1. Putting this all
together, the contraction rate for block MRK applied to Eq. (4.2) is

ρBRK = 1 − mink
[

σ+
min(Âk)

]2

mnmaxk
∥
∥Âk

∥
∥
2
∞,2

. (4.8)

Compared to the convergence rate derived for TRK in Theorem 4.1, the standard
block MRK convergence guarantee is weaker (slower). However, it should be noted
that the standard analysis for the convergence of block MRK is not restricted to block
diagonal systems. Thus, although blockMRK applied to Eq. (4.2) with predetermined
blocks τi is equivalent to the proposed TRKupdate, the standard blockMRKguarantee
is weaker since the TRK analysis takes advantage of the block diagonal structure of
the system in the Fourier domain.

Remark 4.2 The block-diagonal system in Eq. (4.2) is highly parallelizable. Specifi-
cally, each component block of the system ÂkX̂k = B̂k for k ∈ [n − 1] can be solved
independently. For m extremely large, however, loading a single Âk into memory
maybe be impossible. In such settings, a randomized iterative method such as TRK is
advantageous. The block-diagonal structure of the subsampled system in the Fourier
domain also allows the update for each component block to be computed in parallel.
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Algorithm 2 Tensor RK computed in the Fourier domain

Input: A ∈ C
m×�×n , B ∈ C

m×p×n , X 0 ∈ C
�×p×n with X 0 ∈ rowsp (A ), and probabilities

p0, . . . , pm−1 corresponding to each horizontal slice of A

ComputêX 0, Â , B̂ as in Eq. (4.1)
for t = 0, 1, 2, . . . do

Sample it ∼ pi
for k = 0, 1, . . . , n − 1 do

̂Xt+1
k = ̂Xt

k −
(

Âk it :
)† (

Âk it :
̂Xt
k − B̂it :

)

RecoverX t+1 from ̂X t+1

Output: last iterate X t+1

Remark 4.3 The equivalence between TRK and block MRK with blocks indexed by
Eq. (4.4) also reveal a straightforward analysis for the comparison of the computational
complexity between TRK and MRK. The per iteration complexity of MRK using
rows Ai : ∈ R

1×�n is O(�n) and the per iteration complexity of TRK using rows
Ai :: ∈ R

1×�×n is O(�n2).

5 Experiments

In this section, we present numerical experiments comparing MRK and TRK. The
implementation of the TRK algorithm used is as outlined in Algorithm 1, unless other-
wise noted. First,we showempirically thatwith an increasingnumber ofmeasurements
m, the contraction coefficient for TRK is smaller than that ofMRK indicating a stronger
convergence guarantee. Next, we compare the performance of TRKwith that of MRK
applied to a matrix linear system where the memory complexity of the measurement
matrix is preserved. Then, we move on to the setting in which one is given tensor
measurementsB and compare the performance of TRK with that of MRK applied to
the unfolded tensor system

bcirc (A ) unfold (X ) = unfold (B) .

These experiments demonstrate the computational benefits of using TRK given by
Eq. (3.1) over applying standard MRK to an unfolded system.

5.1 Contraction coefficients of TRK andMRK

In this experiment, the contraction coefficient of the proposed TRK is compared to that
of MRK. In order to apply the standardMRKmethod to recover the three-dimensional
signal X , we unfold the tensor X into the matrix unfold (X ) ∈ C

�n×p and collect
measurements B ∈ C

μ×p of the signal X via the measurement matrix A ∈ C
μ×n�,

resulting in the matrix linear system

Aunfold (X ) = B. (5.1)
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After each iteration of MRK applied to Eq. (5.1), the iterate unfold
(

X t+1
)

satisfies

Ait :unfold
(

X t+1
)

= unfold (B)it : .

Thus, the constraint is applied to each column of unfold (X ) or equivalently each
column slice ofX independently. Note that the measurement matrix A will have the
same number of elements as the measurement tensor A if μ = m.

Assuming that the rows ofA are normalized, MRK applied to matrix linear systems
has a contraction coefficient of

1 − [

σ+
min(A)

]2
/m. (5.2)

For TRK, the contraction coefficient from Theorem 4.1 is

1 − min
k∈[n−1]

[

σ+
min

(

Âk
)]2

m
∥
∥Âk

∥
∥
2
∞,2

. (5.3)

In this experiment, horizontal slices Ai:: have unit Frobenius norm and indices i ∈
[m − 1] are selected uniformly at random at each iteration.

The measurement matrix A ∈ C
m×�n and measurement tensor A ∈ C

m×�×n

are generated as follows. The entries of A ∈ C
m×�n are drawn i.i.d. from a standard

Gaussian distribution and then each row is normalized to have unit norm. The entries of
A ∈ R

m×�×n are also drawn i.i.d. from a standardGaussian distribution but horizontal
slices Ai :: (as opposed to matrix rows) of A are normalized to have unit Frobenius
norm. Note that both the tensor A and matrix A in this experiment have the same
memory complexity of O(m�n). The contraction coefficients, computed via Eq. (5.2)
for matrices A and Eq. (5.3) for tensors A , with a varying number of measurements
m are presented in Fig. 2. Here, the dimensions � = 20 and n = 10 are fixed. For each
number of measurementsm, the contraction coefficients are averaged over 50 random
realizations of the measurement tensor or matrix.

In this experiment, the contraction coefficients for MRK and TRK differ, with TRK
being smaller (i.e., faster convergence) for larger m. Thus, in the large-scale setting
where m 
 �n, TRK is expected to converge faster than MRK, as we will see in the
experiments of Sect. 5.2. When a small number of measurements m are used, MRK
has a smaller contraction coefficient than TRK, however, we are primarily concerned
with the setting in whichm 
 �n as this is the typical use case for Kaczmarz methods.

5.2 Empirical performance of TRK andMRK

We now compare the empirical performance of MRK and TRK on linear systems
AX = B andAX = Y. Similar to the previous experiment, the dimensions ofA and
A are selected to require a similarmeasurement complexitywhile solving for unknown
signals of comparable dimensions. More specifically, for the tensor system we have
A ∈ C

m×�×n and X ∈ C
�×p×n , while for the matrix system, we have A ∈ C

m×�n
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Fig. 2 Comparison between
contraction coefficients of MRK
(Eq. 5.2) applied to a matrix
linear system and TRK (Eq. 5.3)
applied to a tensor system

and X ∈ C
�n×p. The entries of A and A are initialized with i.i.d. standard Gaussian

entries then normalized to have unit horizontal slice and matrix row Frobenius norm
respectively. The entries of the signals X and X are drawn i.i.d. from a standard
Gaussian distribution and the empirical results presented here are averaged over 20
random runs of TRK and MRK. For TRK, we use the implementation outlined in
Algorithm 2.

Figure 3 compares the empirical performances of the two algorithms for an over-
determined system with m = 500, � = 20, n = 10, and p = 10. We refer to a tensor
linear system as over-determined if the Fourier transformed systems of Eq. (4.2) is
over-determined, i.e., ifm ≥ �. In the over-determined setting,we plot the convergence
of the algorithms with respect to iterations (left plot) as well as CPU time (right plot).
We observe that in both settings, TRK outperforms MRK in terms of iterations and
CPU times. While, visually, MRK does not seem to be making progress towards the
solution in either setting, it is in fact converging slowly. This should not be surprising
given the equivalence between TRK and block MRK. In particular, one can think of
TRK as block MRK acting on n rows at a time (whereas MRK only works on on row
at a time).

We additionally consider the setting in which one is immediately provided the
measurement tensor A ∈ C

m×�×n and corresponding measurements B ∈ C
m×p×n

and can choose between performing signal recovery using TRK or by unfolding the
tensor system and solving bcirc (A ) unfold (X ) = unfold (B) using MRK.

The tensorA is initializedwith i.i.d. standardGaussian entries and themeasurement
matrix A is taken to be A = bcirc (A ). Here, m = 100, � = 15, n = 10, and p = 30.
Fig. 4 plots the resulting empirical performance averaged over 20 random runs of TRK
and MRK when choosing between signal recovery using TRK or MRK for a given
tensor measurement system. We again see that TRK converges at a much faster rate
than MRK in this setting.
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Fig. 3 Comparison MRK and TRK when the measurement matrix (or tensor) has a fixed memory budget
of O(m�n) bits when m = 500, � = 20, and n = 10

Fig. 4 Performance comparison of MRK on matricized linear system and TRK on tensor linear system

5.3 Empirical performance of TRK and block MRK

To support the theoretical guarantees and remarks regarding the equivalence of TRK
and blockMRK, experimental results comparing the empirical performance of the two
algorithms are presented in this section. In Fig. 5, TRK and block MRK are used to
solve a tensor linear system. TRK solves the tensor system via the update in Eq. (3.1)
while blockMRK is performed on the transformed system in the Fourier domain given
in Eq. (4.2) with predetermined blocks τi = {km + i | k ∈ [n− 1]}. The measurement
tensor A ∈ R

100×30×5 and signal tensor X ∈ R
30×15×5 contains i.i.d. standard

Gaussian entries. All approximation errors are averaged over 20 runs of the respective
algorithm. The theoretical upper bounds, titled in the legend with ‘UB’, are computed
using Theorem 4.1 for TRK and Eq. (4.8) for block MRK. Figure 5 clearly shows that
TRK and block MRK perform similarly across iterations as expected since the two
methods are shown to be equivalent in Sect. 4.3. As remarked, the TRK upper bound
shown in Theorem 4.1 has a slight advantage over the general blockMRKconvergence
guarantees as these do not make use of the block diagonal structure of Eq. (4.2).
Experiments comparing CPU times for TRK and block MRK are omitted, as the two

123



Randomized Kaczmarz for tensor linear systems 187

Fig. 5 Performance of TRK and
block MRK on a tensor linear
system. ‘TRK-UB’ and
‘BRK-UB’ indicate the
theoretical upper bounds of TRK
and block MRK respectively

methods are equivalent as shown in Sect. 4.3 and highly optimized algorithms exist
for the matrix implementation.

5.4 Performance on CT and video Data

In the following experiments, we evaluate the performance of TRK on real world CT
and video data sets.

In the first experiment, the underlying signalX is a 512× 512× 11 tensor where
each 512×512 frontal slice is a 2-dimensional slice of theC1-vertebrae. The images for
this experiment were obtained from the Laboratory of Human Anatomy and Embry-
ology, University of Brussels (ULB), Belgium [3]. To set up the tensor linear system,
we randomly generate a Gaussian matrix A ∈ R

10000×512×11 and take the t-product
between A and X to get the the measurement tensor B. We compare the perfor-
mance of TRK on this system with a similar matrix linear system where the memory
complexity of the measurement matrix is fixed (i.e., A ∈ R

10000×(512·11)). The results
of this experiment are provided in Fig. 6. Here we can see that a tensor system with
measurement tensor A ∈ R

10000×512×11 equipped with TRK can more efficiently
recover the underlying signal X compared to a matrix linear system with matrix
A ∈ R

10000×(512·11) in terms of the number of FLOPS required. Furthermore, even
before reaching an error of 100, the recovered scan looks visually identical to the
ground truth.

Next, we demonstrate the performance of TRK on video data where the frontal
slices of the tensor X are frames from the 1929 film “Finding His Voice” [8]. Each
video frame is 181 × 251 and there are a total of 20 frames. For the measurement
tensor, similar to the previous experiment, we randomly generate the tensor by pop-
ulating its entries with i.i.d. samples from a standard Gaussian distribution and the
number of measurements m = 5000 for TRK. Figure 7 presents the results from this
experiment. Again we see here that that a tensor system, with measurement tensor
A ∈ R

5000×181×20, can more efficiently recover the underlying signal X compared
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Fig. 6 (Left) ground truth slice from CT data set. (Center) recovered CT slice from TRK. (Right) evolution
of approximation error with respect to FLOPS

Fig. 7 (left) Ground truth slice from Video data set. (center) Recovered Video slice from TRK. (right)
Evolution of approximation error with respect to FLOPS

to a matrix linear system, with measurement matrix A ∈ R
5000×(181·20), when the the

storage requirement of the measurement tensor or matrix is fixed.

6 Conclusion

This work extends the randomized Kaczmarz literature to solve large-scale tensor
linear systems under the t-product. The proposed tensor randomized Kaczmarz (TRK)
algorithm solves large-scale tensor linear systems and is guaranteed to convergence
exponentially in expectation.Connections to the block randomizedKaczmarz aremade
and empirical results are provided to support derived theoretical guarantees. This work
further provides a framework to extend other stochastic iterative methods that arise in
literature such as the randomized extended Kaczmarz algorithm, randomized Gauss-
Seidel algorithm, coordinate descent, sketch-and-project [10], and many more.

A Proof of Fact 1

The following properties of block circulant matrices will be useful in proving Fact 1.

Fact 2 (Lemma 1.iii [19]) For tensorsA andB, bcirc (AB) = bcirc (A ) bcirc (B).
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Fact 3 (Theorem 6.ii [19]) The block circulant operator bcirc (·) commutes with the
conjugate transpose,

bcirc
(

M ∗) = bcirc (M )∗ .

1. Part 1 of Fact 1 states

bdiag
(

Â B
)

= bdiag
(

Â
)

bdiag
(

B̂
)

.

Proof Let A ∈ C
m×�×n and B ∈ C

�×p×n , then

bdiag
(

Â B
)

(4.1)= (Fn ⊗ Im) bcirc (AB)
(

F∗
n ⊗ Ip

)

Fact 2= (Fn ⊗ Im) bcirc (A ) bcirc (B)
(

F∗
n ⊗ Ip

)

= (Fn ⊗ Im) bcirc (A )
(

F∗
n ⊗ I�

)

(Fn ⊗ I�) bcirc (B)
(

F∗
n ⊗ Ip

)

(4.1)= bdiag
(

Â
)

bdiag
(

B̂
)

.

��
2. Part 2 of Fact 1 states

Â + B = Â + B̂.

Proof Let A ∈ C
m×�×n and B ∈ C

m×�×n , then

bdiag
(

Â + B
)

(4.1)= (Fn ⊗ Im) bcirc (A + B)
(

F∗
n ⊗ I�

)

= (Fn ⊗ Im) (bcirc (A ) + bcirc (B))
(

F∗
n ⊗ I�

)

= (Fn ⊗ Im) bcirc (A )
(

F∗
n ⊗ I�

)+ (Fn ⊗ Im) bcirc (B)
(

F∗
n ⊗ I�

)

(4.1)= bdiag
(

Â
)+ bdiag

(

B̂
)

.

��
3. Part 3 of Fact 1 states that

bdiag
(

M̂ ∗
)

= bdiag
(

M̂
)∗

.

Additionally, it states that if bcirc (M ) is symmetric, bdiag
(

M̂
)

is also symmetric.
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Proof Let M ∈ C
m×�×n . Then

bdiag
(

M̂ ∗
)

(4.1)= (Fn ⊗ I�) bcirc
(

M ∗) (F∗
n ⊗ Im

)

Fact 3= (Fn ⊗ I�) bcirc (M )∗
(

F∗
n ⊗ Im

)

= [(Fn ⊗ Im) bcirc (M )
(

F∗
n ⊗ I�

)]∗

(4.1)= bdiag
(

M̂
)∗

.

To see that bdiag
(

M̂
)

is also symmetric when bcirc (M ) is symmetric, note that

bdiag
(

M̂
)∗ (4.1)= [

(Fn ⊗ Im) bcirc (M )
(

F∗
n ⊗ In

)]∗
.

��
4. Finally, part 4 of Fact 1 states

bdiag
(

M̂−1
)

= bdiag
(

M̂
)−1

.

Proof Let M ∈ C
m×m×n . Note that bcirc (Im) = Imn . Using Fact 2 and Eq. (4.1),

bdiag
(

M̂−1
)

bdiag
(

M̂
)

(4.1)= (Fn ⊗ Im) bcirc
(

M−1
) (

F∗
n ⊗ Im

)

(Fn ⊗ Im) bcirc (M )
(

F∗
n ⊗ Im

)

= (Fn ⊗ Im) bcirc
(

M−1
)

bcirc (M )
(

F∗
n ⊗ Im

)

Fact 2= (Fn ⊗ Im) bcirc (Im)
(

F∗
n ⊗ Im

)

=Imn .

Analogously, one can show bdiag
(

M̂
)

bdiag
(

M̂−1
)

= Imn . ��

B Proof of Theorem 4.1

We now prove Theorem 4.1.

Proof Let P̂i be the tensor formed by applying FFTs to each tube fiber of Pi =
A ∗

i ::
(

Ai ::A ∗
i ::
)−1

Ai :: and E t = X t − X ∗. By Eq. (4.1), we have that

bdiag
(

P̂i
) = (Fn ⊗ I�) bcirc (Pi )

(

F∗
n ⊗ I�

)

,
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is a block diagonal matrix with blocks
(

P̂i
)

k , where
(

P̂i
)

k is the kth frontal slice of

the tensor P̂i . We note that the projected error can be rewritten as

E

[∥
∥PiE

t
∥
∥2
F

]

=
p
∑

j=1

〈E [bcirc (Pi )] unfold
(

E t )

: j , unfold
(

E t )

: j 〉

=
p
∑

j=1

E

[

〈(Fn ⊗ I�) bcirc (Pi )
(

F∗
n ⊗ I�

)

(Fn ⊗ I�) unfold
(

E t )

: j , (Fn ⊗ I�) unfold
(

E t )

: j 〉
]

=
p
∑

j=1

E

[

〈bdiag (P̂i
)

(Fn ⊗ I�) unfold
(

E t )

: j , (Fn ⊗ I�) unfold
(

E t )

: j 〉
]

.

Note that the rows of bcirc (Ai ::) are also rows of bcirc (A ). Thus, X t+1 ∈
rowsp (A ). Since X ∗ is the tensor of least Frobenius norm, X ∗ ∈ rowsp (A ).
Therefore E =X t − X ∗ ∈ rowsp (A ) as long as X 0 ∈ rowsp (A ).

Now, since E
[

bdiag
(

P̂i
)]

is symmetric and E t ∈ rowsp (A ), by Fact 1,

E

[∥
∥PiE

t
∥
∥
2
F

]

≥ σ+
min

(

E
[

bdiag
(

P̂i
)]) ∥
∥(Fn ⊗ I�) unfold

(

E t)
∥
∥
2
F . (B.1)

Note that,

∥
∥(Fn ⊗ I�) unfold

(

E t)
∥
∥2
F =

p
∑

j=1

〈(Fn ⊗ I�) unfold
(

E t)

: j , (Fn ⊗ I�) unfold
(

E t)

: j 〉

=
p
∑

j=1

〈unfold (E t)

: j , unfold
(

E t)

: j 〉

= ∥
∥unfold

(

E t)
∥
∥
2
F

= ∥
∥E t

∥
∥2
F .

Since bdiag
(

P̂i
)

is block diagonal,

σ+
min

(

E
[

bdiag
(

P̂i
)]) = min

k∈[n−1] σ
+
min

(

E
[(

P̂i
)

k

])

.

Factoring bdiag
(

P̂i
)

and using Fact 1,

bdiag
(

P̂i
) = bdiag

(

Â ∗
i ::
)

bdiag

(
(

Ai ::A ∗
i ::
)−1
∧)

bdiag
(

Âi ::
)

= bdiag
(

Âi ::
)∗

bdiag
(

Ai ::A ∗
i ::
∧)−1

bdiag
(

Âi ::
)

= bdiag
(

Âi ::
)∗ [

bdiag
(

Âi ::
)

bdiag
(

Â ∗
i ::
)]−1

bdiag
(

Âi ::
)

.
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Noting that bdiag
(

Âi ::
)

bdiag
(

Â ∗
i ::
)

is a diagonal matrix, one can see that
(

P̂i
)

k is

the projection onto
(

Âi ::
)

k by rewriting the kth frontal face of P̂i as

(

P̂i
)

k =
(

Âi ::
)∗
k

(

Âi ::
)

k
(

Âi ::Â ∗
i ::
)

k

.

We can thus rewrite Eq. (B.1) as

E

[∥
∥PiE

t
∥
∥
2
F

]

≥ min
k∈[n−1] σ

+
min

⎛

⎜
⎝E

⎡

⎢
⎣

(

Âi ::
)∗
k

(

Âi ::
)

k
(

Âi ::Â ∗
i ::
)

k

⎤

⎥
⎦

⎞

⎟
⎠

∥
∥E t

∥
∥
2
F . (B.2)

The expectation of Eq. (B.1) can now be calculated explicitly. For simplicity, we
assume that the row indices i are sampled uniformly. As in MRK extensions and
literature, many other sampling distributions could be used.

To derive a lower bound for the smallest singular value in Eq. (B.2), define

∥
∥Âk

∥
∥
2
∞,2 :=max

i

[(

Âi ::Â ∗
i ::
)

k

]

. (B.3)

The values
(

Âi ::Â ∗
i ::
)

k
are necessarily positive for all k ∈ [n − 1] when Ai ::A ∗

i :: is
invertible for all i ∈ [m − 1]. as

(

Âi ::Â ∗
i ::
)

k
= bdiag

(

Âi ::Â ∗
i ::
)

kk

= bdiag
(

Âi ::
)

k bdiag
(

Â ∗
i ::
)

k

= (Fn)k: bcirc (Ai ::) bcirc
(

A ∗
i ::
)

(Fn)
∗
k:

= (Fn)k: bcirc (Ai ::) bcirc (Ai ::)∗ (Fn)
∗
k:

= ∥
∥bcirc (Ai ::)∗ (Fn)

∗
k:
∥
∥2
2 .

Now, it can be easily verified that

σ+
min

⎛

⎜
⎝E

⎡

⎢
⎣

(

Âi ::
)∗
k

(

Âi ::
)

k
(

Âi ::Â ∗
i ::
)

k

⎤

⎥
⎦

⎞

⎟
⎠ ≥ σ+

min

⎛

⎝
1

m

m−1
∑

i=0

(

Âi ::
)∗
k

(

Âi ::
)

k
∥
∥Âk

∥
∥
2
∞,2

⎞

⎠

=
[

σ+
min

(

Âk
)]2

m
∥
∥Âk

∥
∥
2
∞,2

.
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The projected error of Eq. (B.2) then becomes

E

[∥
∥PiE

t
∥
∥2
F

]

≥ min
k∈[n−1]

[

σ+
min

(

Âk
)]2

m
∥
∥Âk

∥
∥
2
∞,2

∥
∥E t

∥
∥2
F .,

We can thus rewrite the guarantee in Theorem 4.1 for uniform random sampling of
the row indices i as

E
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∥
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∥
∥
∥

2

F

∣
∣
∣
∣
X 0

]

≤
⎛
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k∈[n−1]

[
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(

Âk
)]2

m
∥
∥Âk

∥
∥
2
∞,2

⎞

⎠

t+1
∥
∥
∥X 0 − X ∗

∥
∥
∥

2

F
.
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