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Abstract

Solving linear systems of equations is a fundamental problem in mathematics. When
the linear system is so large that it cannot be loaded into memory at once, iterative meth-
ods such as the randomized Kaczmarz method excel. Here, we extend the randomized
Kaczmarz method to solve multi-linear (tensor) systems under the tensor—tensor t-
product. We present convergence guarantees for tensor randomized Kaczmarz in two
ways: using the classical matrix randomized Kaczmarz analysis and taking advan-
tage of the tensor—tensor t-product structure. We demonstrate experimentally that the
tensor randomized Kaczmarz method converges faster than traditional randomized
Kaczmarz applied to a naively matricized version of the linear system. In addition, we
draw connections between the proposed algorithm and a previously known extension
of the randomized Kaczmarz algorithm for matrix linear systems.
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1 Introduction

Methods for processing and analyzing large datasets have seen rapid development
and use in signal processing and machine learning. Data are often organized in a
two dimensional (user-item, pixel-frame, etc.) fashion because a vast majority of the
existing methods operate on data that are stored as matrices and vectors [17,18,21].
However, in reality, data can be higher-order multidimensional arrays and this restric-
tion to the one or two dimensional representations often destroys inherent structure
(for example, spatial or temporal structure) Tensor methods aim to retain and take
advantage of natural multidimensional structure.

Here, we consider the fundamental problem of solving large linear systems of equa-
tions for third-order tensors under the t-product. In the matrix linear system setting,
randomized iterative methods are a popular choice for solving or finding approximate
solutions to systems that are too large to load into memory at once [7,20,34]. One such
randomized iterative method is known as the randomized Kaczmarz method. The ran-
domized Kaczmarz method (MRK)' is closely related to other popular randomized
iterative methods such as stochastic gradient descent and coordinate descent and is
commonly used in computed tomography (CT imaging) and other signal processing
applications [10,26]. In this work, we extend the Kaczmarz method to tensor linear
systems under the t-product. Before summarizing our contributions, we first present
the Randomized Kaczmarz method, it’s related works, and briefly motivate the use of
the tensor—tensor t-product.

1.1 Randomized Kaczmarz

Randomized Kaczmarz is an iterative method for approximating solutions to linear
systems of equations [13]. For a linear system Ax = b, a row A;. is chosen at each
iteration of MRK and the current iterate x (approximate solution) is projected onto
the solution space

The RK method is advantageous for very large linear systems that cannot be loaded
into memory at once due to its low memory footprint. Extensions to MRK include
greedy [1,4,6,11,23,28,29] and block [25] variants to speed convergence and versions
for inconsistent linear systems [24,41].

For a fixed sampling distribution over row indices i/, MRK converges exponentially
in expectation [10,34]. The standard MRK update for a linear system Ax = b is given
by

w2t gy i) 2y i
A

! While the randomized Kaczmarz literature typically abbreviates randomized Kaczmarz as RK, throughout
this work, MRK is used to distinguish the matrix and tensor versions of randomized Kaczmarz.
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where i, is the row index selected at iteration ¢ and A;“t: is the transpose of the i;th row
of A.

Randomized Kaczmarz is closely related to the popular optimization technique,
stochastic gradient descent (SGD) [26] which has been considered under tensor frame-
works. For example, a tensor stochastic gradient descent was recently implemented to
train tensor neural networks under the t-product [27]. The emphasis of the aforemen-
tioned work is a tensor neural network framework for multidimensional data and not
the algorithmic analysis of SGD under the t-product, whereas this work focuses on
analyzing tensor RK for tensor linear systems and connecting the extended algorithm
to existing methods.

This and other tensor-based approaches are motivated by the fact that tensors arise
in many applications and working with tensors directly, as opposed to naively flatten-
ing tensors into matrices can preserve significant structures and have computational
advantages. A popular approach for working with tensors is to use the tensor—tensor
t-product.

1.2 Tensor linear systems

The tensor—tensor t-product [16] is a bilinear operation between tensors, that allows
for a linear algebraic-like framework. A tensor linear system under the t-product is
formulated as follows. Let 2~ € C**P*" be an unknown third-order tensor represent-
ing a three-dimensional data array. For example, this three-dimensional data could
represent a video, color image, temporal data, or three-dimensional density values. A
tensor linear system under the t-product is written as:

AY =B, (1.2)

with o7 € C"*0" 27 e CH*P*" and B € C™*P>n,

Initially motivated for tensor factorization, use of the t-product has become promi-
nent in the tensor and signal processing community. The t-product has proved useful in
applications such as dictionary learning [32,37], low-rank tensor completion [31,38—
40], facial recognition [12], and neural networks [27,36]. T-product tensor linear
systems also arise when using the Boundary Element Method? for analyzing elec-
tromagnetism and acoustic properties of spherically symmetric objects [2,5,35]. We
provide further details about the t-product in Sect. 2.2.

1.3 Contributions

We extend the randomized Kaczmarz method to solve linear systems of third-order
tensors under the t-product and denote the method TRK. To the best of our knowledge,
no other works have considered solving large-scale t-product linear tensor systems
with stochastic iterative methods. We provide theoretical guarantees for the TRK
method and demonstrate its performance empirically. Furthermore, we remark on

2 These linear systems are typically written as linear systems with block circulant matrices which are
equivalent to the t-product as discussed in Definition 2.2.
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(a) Horizontal slice .#;.. of tensor ./ . (b) Frontal slice .#..;, of tensor .Z .

Fig. 1 Horizontal slice .#;.. and frontal slice .Z..; of tensor .#

connections between TRK and the existing block-variant of MRK (BRK) [9], when
working in the Fourier domain. This work serves as an example for extending methods
for tensors under the t-product and how the properties of the t-product in the Fourier
domain can be used to analyze convergence in this setting. Lastly, we demonstrate
the computational advantage of using TRK over MRK for real and synthetic data by
considering performance comparisons of the TRK method with a naively matricized
MRK applied to a flattened tensor system as well as systems with equivalent memory
constraints.

2 Background and notation

In this section, we present notation and several linear algebraic definitions for tensors
under the t-product.

2.1 Notation

Throughout, calligraphic capital letters represent tensors, bold capital letters represent
matrices, and lower case letters represent vectors and scalars. The index i is reserved
for indexing horizontal slices of tensors (see Fig. 1a), rows of matrices, and entries of
vectors. The index j is similarly reserved for indexing column slices of tensors and
columns of matrices. The index k is reserved for indexing frontal slices of tensors as
illustrated in Fig. 1b.

For matrices M, we use the notation M;. and M.; to represent the ith row and jth
column respectively. We use .#;.. to represent horizontal slices and .#..; to represent
frontal slices of a third-order tensor .# as shown in Fig. 1. Because frontal slices of
tensors are heavily used throughout this work, to condense notation, bold sub-scripted
capital letters, My, represents the kth frontal slice of .# equivalently given by .#-.,
unless otherwise stated (for example, the n x n discrete Fourier transform (DFT)
matrix F,, and n x n identity matrix I,).

The squared Frobenius norm || - ||%7 for matrices and tensors denotes the sum of
squares of all scalar elements. For a matrix M, ||[M]| |2 =), j Ml.2j and for a third-order

tensor A, ||A||% =Y

singular value and M to denote the pseudoinverse of the matrix M.

ijk ,///3,{ We use o, (M) to denote the smallest nonzero
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Equation (2.1) shows how a third-order tensor .2 € C™*®*" is unfolded into a
CMEx" matrix:

M My
unfold (#) = = . 2.1)
</{::n71 Mnfl

To revert the unfolding of a tensor .# we can fold the matrix in Eq. (2.1) such that
fold (unfold (.#)) = .# . To condense notation, when using both indices and trans-
poses, the transpose are applied to the tensor or matrix slice, that is M}, = (M;.)* and
'//,* = (Jﬂz ::)*-

The tensor product of tensors &7 € C™*¢*" and % € C**P*" is written as .o/ & €
Cm>p>xn_ Similarly, for matrices A, B, their matrix product is written as AB. We do
not consider the products between tensors and matrices. Throughout, we use <7 and
A to represent the measurement tensor and matrix, 2", X, and x to represent signal
tensor, matrix and vector and %, B, and b to represent the observed measurements for
the linear systems

AdX =%, AX =B, and Ax = b.

Lastly, the index ¢ is reserved only to indicate iteration number and the shorthand
i €m—1]denotesi € {0,1,2,...,m — 1}.

2.2 Tensor linear algebra

We now provide background on the tensor—tensor t-product. Under the t-product one,
can recover many standard linear algebraic properties such as transposes, orthogonal-
ity, inverses and projections [16].

The t-product is defined in terms of block-circulant matrices.

Definition 2.1 For .7 € C"™**" let beirc (/) denote the block-circulant matrix

Ay A1 Ayn .. A
) Al Ay A A '
beirc(ay=| . . e
A1 A2 An—3 cee AO
While the definitions and results here are specific to the t-product which uses the
Fourier transform, this product has been generalized to a class of tensor products that
use arbitrary invertible linear operators [14,33].

Definition 2.2 The tensor—tensor t-product is defined as
o 9B = fold (bcirc (&) unfold (AB)) € C"*P*",

where &7 € C"*xn gnd B € CE*P>n,
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176 A. Ma, D. Molitor

Definition 2.3 A tensor 2~ € CY*P*" is said to be in the row space of tensor &/ €
Cm>Exn if ALL the columns of unfold (.27) are in the row space of beirc (<7). We
denote this as 2~ € rowsp ().

Definition 2.4 The m x m x n identity tensor, denoted .#, is the tensor whose first
frontal slice is the m x m identity matrix and whose remaining entries are all zeros.

The identity tensor satisfies # .% = % .4 = .# for all tensors .# with compatible
sizes.

Definition 2.5 The conjugate transpose of a tensor .# € C"™*¢*" is denoted .#* and
is produced by taking the conjugate transpose of all frontal slices and reversing the
order of the second to last frontal slices 1, ...,n — 1.

Note that this definition ensures (.#Z*)* = .# and (&/ B)* = PB*./*. A tensor is
symmetric if 4% = .

Definition 2.6 A tensor .7 is invertible if there exists an inverse tensor .#Z ! such
that

MM =M =T
Note that for an invertible tensor .#,
Ve (,///-‘)* — W=7 and (,///—1)*,///* Ry =

Thus, we have (Z*)~' = (.#~")".

Definition 2.7 A tensor 2 € C"*P*" is orthogonal if

D2=9=229".

3 Tensor randomized Kaczmarz

Tensor randomized Kaczmarz is a Kaczmarz-type iterative method designed for t-
product tensor linear systems. One notable difference between the t-product tensor
and matrix linear systems is the interaction of the measurements <7%.. and A;. with
the signals 2" and x. For the products A;.x = b; and A;.X = B;., each value in the
signal X or x is multiplied by a single element of the measurement A;.. In the tensor
measurement product,

.. & = fold (bcirc (#..) unfold (2)) € CV"*P,

Since bcirc (7..) € C"*", each element of 2 is multiplied by n elements in .7..
and affects n entries of the resulting product %;... Equivalently, each frontal face of
Z is multiplied by each frontal face of <7... See Kilmer and Martin [16] for more
details and intuition for the t-product.
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Randomized Kaczmarz for tensor linear systems 177

Algorithm 1 Tensor RK

Input: 270 € CXPXn_ o7 € Cmxtxn g e CM*P*N_and probabilities po, . . . , Pm—1 corresponding
to each horizontal slice of .o/
fortr=0,1,2,... do

Sample i; ~ p; |

‘%.H_l =2" - Q{zf (dlt‘?{:> ('Q{itii‘%-[ - ’%izil)'

Output: last iterate 271

Making use of the algebraic properties of the t-product, we can write the TRK
update for tensor linear systems as

X = 2 o () (A 2~ B G.1)

The 7. are horizontal slices of the tensor .«7 as depicted in Fig. 1a. The index i; used
at each iteration is selected according to a probability distribution over the row indices
i € [m — 1]. The TRK algorithm is detailed in Algorithm 1.

At each iteration, the current iterate 2™ is projected onto the solution space of the
sub-sampled system .«7,.. 2" = %;,... Note that this is the natural analogue of the MRK
update, which projects the current iterate x’ onto the solution space of A;x = b;,.
Tensor orthogonal projections under the t-product are discussed briefly by Kilmer et
al. [15] and in more detail by Miao et al. [22].

The multiplication by (%,,%:‘) in the TRK update serves an analogous role

A, ||2in the MRK update. We assume
throughout that <7..<7” is invertible for all i € [m — 1]. The matrix bcirc (,sz%,,;z{l*) is
invertible if and only if the tensor ﬂflxzfl* is. Its inverse can be calculated explicitly
as follows.

Lemma 3.1 The inverse of ..o/, under the t-product is

(h./?)”" = fold <7FZ diag (D‘)) ,

where F,, is the n x n Discrete Fourier Transform (DFT) matrix and D is a diagonal
matrix such that bcirc (,527,4271*) = FDF,.

The inverse, (%%*)71 , can be derived using the definition t-product generalization
of the Moore-Penrose pseudoinverse bcirc (/// T) = bcirc (A )T [22].

With the convergence analysis modeling that of MRK, one can derive analogous
convergence guarantees for TRK. This result, stated in Theorem 3.1, shows that in
expectation, the TRK algorithm will converge linearly to the solution of least Frobenius
norm under mild conditions.

Theorem 3.1 Let Z7* be the tensor of minimal Frobenius norm such that &/ 2* = B
and X" be the tth approximation of 2°* given by the updates of Eq. (3.1) with initial
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iterate 2”0 where 2°° € rowsp (7). Let indicesi € [m— 1] be sampled independently
from a probability distribution 9 at each iteration. Denote the orthogonal projection

—1 . . .
P = ;z{l* (42/,;2{1*) ;... The expected error at the tth iteration satisfies

E [H 2t — %*HH%O] < (1= ot (Elbcire (Z))) | 270 — 27 i

where the expectation is taken over the probability distribution 9, Gn';n (M) denotes
the smallest nonzero singular value of M, and || .# ||% is the sum of squared entries of

the tensor M .

The proof of Theorem 3.1 mirrors the standard analysis of MRK making use of the
linear algebra mimetic properties of the t-product. The original proof of linear con-
vergence of MRK requires the assumption that the matrix A have full column rank to
ensure convergence [34]. This requirement can be relaxed by adding the assumption
that the initial iterate reside in the row space of A [30,41]. For TRK, this requirement
becomes 2 ¥ € rowsp (.<7). Note that this condition can be satisfied by choosing an
initial iterate 2°° of all zeros.

In addition to using this standard analysis, one can also take advantage of the
block-diagonal structure of tensor linear systems in the Fourier domain and prove
convergence in this setting. We proceed with this approach in the following section.

4 Analysis of TRK in the Fourier domain

The t-product can be computed efficiently using the Fast Fourier Transform (FFT),
since circulant matrices are diagonalized by the DFT. In this section, we describe
how the TRK update can be performed efficiently in the Fourier domain. We derive a
convergence guarantee for TRK and additionally demonstrate that TRK is equivalent
to performing block MRK with specific block structure on the linear system in the
Fourier domain.

4.1 Notation and preliminary facts

We first introduce some additional notation and basic facts that will be used throughout
this section. The notation and definitions are adopted from [16]. Let M € Cm¥Exn gnd
M denote the tensor resulting from applying the DFT matrix to each of the 1 x 1 x n
tube fibers of .. In previous literature, this operation is referred to as a mode-3 FFT.
Fact 2 of [16], guarantees that

My R
M;
bdiag (./7) := (F, ® I,,) beirc (.4) (F} @ I) = _ @

2

n—1
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where Mk € C™*t is the kth frontal face of /// ® denotes the Kronecker product, F,
is the n x n DFT matrix, and bdlag A) is the block diagonal matrix formed by the
frontal faces of /7.

This fact allows us to reformulate the tensor linear system Equation 1.2 as:

Ko XO i-)’\O
Ay X B,
) = s 4.2)
Kn—l 32n—l is\n—l

where Kkik = ﬁk can be solved as individual sub-systems that can be solved inde-
pendently.

The following fact is useful for working with the t-product in the Fourier domain.
A proof of this fact can be found in the appendix.

Fact1 For appropriately sized tensors </ and B,

1. bdiag () is a multiplicative function
bdiag (@) = bdiag (,52?) bdiag (@ .

2. Addition and = are commutative m =+ B
3. The conjugate transpose commutes with bdiag (-), bdiag (Zf?) = bdiag (&Z)*

Additionally, if bcire (&) is symmetric, bdiag (@?} is also symmetric.
4. The inverse commutes with bdiag (™), bdiag (sz_l) = bdiag (&Z)_l

4.2 TRK convergence guarantee

Now, it is clear that Eq. (4.2) can be solved by applying MRK to every sub-system
AX; = By independently (asynchronously). However, when only the i** horizontal
slice of &7 is available, each sub-system is solved synchronously, i.e., in such a way
that MRK uses the i’ row in every sub-system to iterate on the approximate solution.
This case arises naturally when the tensor <7 is so large that only single horizontal
slices of &7 can be accessed at a time or in an online setting in which horizontal slices
of the tensor .7 are streaming in one at a time. This synchronous setting is equivalent
to TRK (Algorithm 1) with calculations performed in the Fourier domain and has
the convergence guarantees provided by Theorem 4.1. The proof of Theorem 4.1 is
deferred to Appendix B.

Theorem 4.1 Let Z°* be the tensor of minimal Frobenius norm such that &7 Z* = A
and . 21 be the tthapproximation of Z* given by applying RK to each of the subsystems
Aka = Bk synchronously. Furthermore, suppose the initial iterate 2°° € rowsp ()
and indices i; € [m — 1] are sampled uniformly at random at each iteration and each
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180 A. Ma, D. Molitor

subsystem. The expected error at the t'" iteration satisfies

W20 = 1= min —[ Tnin (A4)] IH%O—%* ’

El||2" -2
=l (B R ‘

where ||Kk ||C2>O 5 i=Max; [(m ] Ak is the k'™ frontal slice ofxzf and on':m( 4

denotes the smallest nonzero singular value.

R \/’\Vhen ‘we are not restricted to using the same row i; € [m — 1] for all subsystems
A Xy = By, Eq. (4.2) can be solved by applying RK individually to each subsystem.
Such an approach results in the following Corollary.

Corollary 4.1 Let 2™ be the tensor of minimal Frobenius norm such that o 2™ = A
and 2" be the tth approximation of Z* given by applying an iteration of RK to
each of the subsystems Aka Bk synchronously with initial iterate 2°° where
20 € rowsp () and indices i; € [m — 1] sampled uniformly at random at each
iteration and each subsystem. The expected error at the (1) iteration satisfies

o RO :
17~ 7)) = (1 g, 2L [0

’

F

where Unfl . () denotes the smallest nonzero singular value.

The result stated in Theorem 4.1 is a direct result of the the convergence guarantees
from the randomized Kaczmarz literature [30,34,41]. In particular, for over-determined
consistent linear systems of the form Ax = b with initial iterate x° in the row space
of A,

[or W]\

B[ —x?] = (11— B ) g - g, 43)
Al

Applying RK to each of the sub-systems A«X: = By, and taking the minimum

expected decrease in error over k, obtains Corollary 4.1.

4.3 Equivalence of TRK and block MRK applied in the Fourier domain

TRK can be interpreted as the previously studied block MRK algorithm [25] with
additional structural restrictions. In block MRK, one projects the current iterate onto
the solution space of a set of constraints (set of rows of the linear system) as opposed
to the solution space with respect to a single row. In practice, block MRK can lead to
a significant speed up over MRK [25].

Here we show the equivalence of TRK and block MRK performed in the Fourier
domain with specific block partitions and remark on the convergence rate implications
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Randomized Kaczmarz for tensor linear systems 181

in the block MRK setting. Making use of the equivalence of TRK and block MRK in
the Fourier domain, TRK can be implemented efficiently using methods for matrices
as detailed in Algorithm 2. Using Eq (4.1), the tensor linear system can be rewritten
as a block diagonal system in the Fourier domain as shown in Eq. (4.2).

The system shown in Eq. (4.2) can be solved using block MRK such that the
resulting iterate is equivalent to the TRK iterate in the following way. Let

={km+i|keln—1]}, 4.4)

denote in set of indices corresponding to arandomly selected block of the measurement
matrix in Eq. (4.2). This choice of 7; corresponds to selecting the ith row of each A
in bdiag (% i.e., each row of .. appears along the diagonal of bdiag (;a?)r and

therefore, bdiag ( ,sa?) = bdiag ().
For arandomly selected row index i i; € [m—1], the block MRK update for Eq. (4.2)
is aptly written as:

unfold ( ﬁ“)
= unfold (3/&;7 — bdiag ( f) (bdiag (ﬂa , unfold (27 ) — unfold (@) . )

= unfold (Z7) — bdiag ()" (bdiag (7,..) unfold (Z”) — unfold ()., ).
(4.5)

Using Eq. (4.1) and Fact 1, we can show

— —~ — -1
bdiag (- ) = bdiag (<%,.)" (bdiag (- ) bdiag (<7, .) )
= bdiag (.QZ (;zZ;::QZt*:)—I)
Therefore, noting the following equalities and folding the right and left sides of the

equation into tensors, we derive the iterate update for 2 2711 from the block MRK
update:

unfold (f“
= unfold (3?’) — bdiag (o/* (zs?i/,»\,;;;/\*i,;;)_l) (bdiag (;42,) unfold (5?7) — unfold (@nr)
= unfold (Z7) — (F, ® Ig)unfold< (o) (A — 33,«,,))
= unfold (Z7) — unfold ( NToei1) " (o BT — 32?,.,;;))
= T = T - (i) (g T = By (4.6)
Since the FFT is applied to each tube fiber of .o independently, ;fl\ = szZ To see

that Eq. (4.6) is equivalent to Eq. (3.1) one can use Fact 1 to show that QL = g+l
thatis taking the inverse FFT on the tubes of 27/+! will return the TRK update Eq. (3.1).
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182 A. Ma, D. Molitor

Remark 4.1 The contraction rate for block MRK applied to the linear system Eq. (4.2)
with iterates as shown in Eq. (4.5) is

[0 (bdiag (7))] '
mn maxi max (bdlag "Q%)T,- bdlag (b@ j,)

=1- 4.7)

IOBRK

The contraction coefficient pg,, is a direct result of the theoretical guarantees for block
MRK shown in [25,30]. Note that due to the block-diagonal structure, the numerator
of the second term of Eq. (4.7) can be simplified to

mm ( min

bdlag ,52?) erl]G (Ak)
Using the fact that bdiag (@T = bdiag (ﬁz\) along with Fact 1, it can be easily

shown that bdiag (,52?\)r bdiag (422)? = bdiag (522;1;\*1) Thus, the denominator of
Eq. (4.7) can be simplified to:

max Amax (bdiag (427'») . bdiag (;22) j) = Max Amax (bdl (Jz? bQZ ))
i ! t i
= max max E2E74P
1
= max [y 2

00,2’

where the norm in the last equality is as defined in Theorem 4.1. Putting this all
together, the contraction rate for block MRK applied to Eq. (4.2) is

. + K 2
o = 1 — e [ ’ﬁ] . 48)
mn maxy [ Ax | 5

Compared to the convergence rate derived for TRK in Theorem 4.1, the standard
block MRK convergence guarantee is weaker (slower). However, it should be noted
that the standard analysis for the convergence of block MRK is not restricted to block
diagonal systems. Thus, although block MRK applied to Eq. (4.2) with predetermined
blocks 7; is equivalent to the proposed TRK update, the standard block MRK guarantee
is weaker since the TRK analysis takes advantage of the block diagonal structure of
the system in the Fourier domain.

Remark 4.2 The block-diagonal system in Eq. (4.2) is highly parallelizable. Specifi-
cally, each component block of the system Kkik = ﬁk for k € [n — 1] can be solved
independently. For m extremely large, however, loading a single Ay into memory
maybe be impossible. In such settings, a randomized iterative method such as TRK is
advantageous. The block-diagonal structure of the subsampled system in the Fourier
domain also allows the update for each component block to be computed in parallel.
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Randomized Kaczmarz for tensor linear systems 183

Algorithm 2 Tensor RK computed in the Fourier domain

Input: o7 € C">xtxn_ g e cmxpxn g0 ¢ cbxpxn with 270 e rowsp (), and probabilities
PO, - - - » Pm—1 corresponding to each horizontal slice of &7

Compute 20, Jf, A as in Eq. (4.1)

forr=0,1,2,... do
Sample i; ~ p;
fork=0,1,...,n—1do

X/ﬁ =X} - <§kiri>l (7;’%:;(z -, )

te

Recover 21 from 271+1
Output: last iterate 2771

Remark 4.3 The equivalence between TRK and block MRK with blocks indexed by
Eq. (4.4) also reveal a straightforward analysis for the comparison of the computational
complexity between TRK and MRK. The per iteration complexity of MRK using
rows A;. € R is ¢(¢n) and the per iteration complexity of TRK using rows
.. € RO is 0(en?).

5 Experiments

In this section, we present numerical experiments comparing MRK and TRK. The
implementation of the TRK algorithm used is as outlined in Algorithm 1, unless other-
wise noted. First, we show empirically that with an increasing number of measurements
m, the contraction coefficient for TRK is smaller than that of MRK indicating a stronger
convergence guarantee. Next, we compare the performance of TRK with that of MRK
applied to a matrix linear system where the memory complexity of the measurement
matrix is preserved. Then, we move on to the setting in which one is given tensor
measurements % and compare the performance of TRK with that of MRK applied to
the unfolded tensor system

beirc (&) unfold (Z7) = unfold (£) .

These experiments demonstrate the computational benefits of using TRK given by
Eqg. (3.1) over applying standard MRK to an unfolded system.

5.1 Contraction coefficients of TRK and MRK

In this experiment, the contraction coefficient of the proposed TRK is compared to that
of MRK. In order to apply the standard MRK method to recover the three-dimensional
signal 2", we unfold the tensor .2 into the matrix unfold (2") € C*"*? and collect
measurements B € CH*P of the signal .2 via the measurement matrix A € CH*"¢,
resulting in the matrix linear system

Aunfold (Z7) = B. 5.1
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184 A. Ma, D. Molitor

After each iteration of MRK applied to Eq. (5.1), the iterate unfold (5&” ! “) satisfies
A;,.unfold (3&”’“) — unfold ();,,

Thus, the constraint is applied to each column of unfold (:2") or equivalently each
column slice of 2~ independently. Note that the measurement matrix A will have the
same number of elements as the measurement tensor .«7 if u = m.

Assuming that the rows of A are normalized, MRK applied to matrix linear systems
has a contraction coefficient of

1= [oF A] /m. (5.2)

min

For TRK, the contraction coefficient from Theorem 4.1 is

+ < 2
1 — min M (5.3)
A ]
In this experiment, horizontal slices .o7;.. have unit Frobenius norm and indices i €
[m — 1] are selected uniformly at random at each iteration.

The measurement matrix A € C”*¢" and measurement tensor &/ € C"*txn
are generated as follows. The entries of A € C”*" are drawn i.i.d. from a standard
Gaussian distribution and then each row is normalized to have unit norm. The entries of
o € R™*X" are also drawn i.i.d. from a standard Gaussian distribution but horizontal
slices .«7;.. (as opposed to matrix rows) of </ are normalized to have unit Frobenius
norm. Note that both the tensor .7 and matrix A in this experiment have the same
memory complexity of &'(m£n). The contraction coefficients, computed via Eq. (5.2)
for matrices A and Eq. (5.3) for tensors .7, with a varying number of measurements
m are presented in Fig. 2. Here, the dimensions £ = 20 and n = 10 are fixed. For each
number of measurements m, the contraction coefficients are averaged over 50 random
realizations of the measurement tensor or matrix.

In this experiment, the contraction coefficients for MRK and TRK differ, with TRK
being smaller (i.e., faster convergence) for larger m. Thus, in the large-scale setting
where m > ¢n, TRK is expected to converge faster than MRK, as we will see in the
experiments of Sect. 5.2. When a small number of measurements m are used, MRK
has a smaller contraction coefficient than TRK, however, we are primarily concerned
with the setting in which m >> £n as this is the typical use case for Kaczmarz methods.

5.2 Empirical performance of TRK and MRK

We now compare the empirical performance of MRK and TRK on linear systems
o X = PBand AX = Y. Similar to the previous experiment, the dimensions of <7 and
A are selected to require a similar measurement complexity while solving for unknown
signals of comparable dimensions. More specifically, for the tensor system we have
o € Cm¥Enand 2 e CY*P*" while for the matrix system, we have A € C"*"
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Fig.2 Comparison between 1 —+ T e
contraction coefficients of MRK " » I e
(Eq. 5.2) applied to a matrix 4 ’/
linear system and TRK (Eq. 5.3) 098 ;
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c 1
§e] i
= 0.96 i
© i
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6094 i
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and X € C*P_ The entries of <7 and A are initialized with i.i.d. standard Gaussian
entries then normalized to have unit horizontal slice and matrix row Frobenius norm
respectively. The entries of the signals 2" and X are drawn i.i.d. from a standard
Gaussian distribution and the empirical results presented here are averaged over 20
random runs of TRK and MRK. For TRK, we use the implementation outlined in
Algorithm 2.

Figure 3 compares the empirical performances of the two algorithms for an over-
determined system with m = 500, £ = 20, n = 10, and p = 10. We refer to a tensor
linear system as over-determined if the Fourier transformed systems of Eq. (4.2) is
over-determined, i.e.,if m > £.Inthe over-determined setting, we plot the convergence
of the algorithms with respect to iterations (left plot) as well as CPU time (right plot).
We observe that in both settings, TRK outperforms MRK in terms of iterations and
CPU times. While, visually, MRK does not seem to be making progress towards the
solution in either setting, it is in fact converging slowly. This should not be surprising
given the equivalence between TRK and block MRK. In particular, one can think of
TRK as block MRK acting on n rows at a time (whereas MRK only works on on row
at a time).

We additionally consider the setting in which one is immediately provided the
measurement tensor .7 € C"***" and corresponding measurements % € C"*P*"
and can choose between performing signal recovery using TRK or by unfolding the
tensor system and solving bcirc (<) unfold (2") = unfold (%) using MRK.

The tensor ¢/ is initialized with i.i.d. standard Gaussian entries and the measurement
matrix A is taken to be A = bcirc («). Here, m = 100, £ = 15, n = 10, and p = 30.
Fig. 4 plots the resulting empirical performance averaged over 20 random runs of TRK
and MRK when choosing between signal recovery using TRK or MRK for a given
tensor measurement system. We again see that TRK converges at a much faster rate

than MRK in this setting.
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Fig. 3 Comparison MRK and TRK when the measurement matrix (or tensor) has a fixed memory budget
of & (mtn) bits when m = 500, £ = 20, and n = 10
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Fig.4 Performance comparison of MRK on matricized linear system and TRK on tensor linear system

5.3 Empirical performance of TRK and block MRK

To support the theoretical guarantees and remarks regarding the equivalence of TRK
and block MRK, experimental results comparing the empirical performance of the two
algorithms are presented in this section. In Fig. 5, TRK and block MRK are used to
solve a tensor linear system. TRK solves the tensor system via the update in Eq. (3.1)
while block MRK is performed on the transformed system in the Fourier domain given
in Eq. (4.2) with predetermined blocks 7; = {km +i | k € [n — 1]}. The measurement
tensor o7 € R109%30%5 and signal tensor 2~ € R39*15%3 contains i.i.d. standard
Gaussian entries. All approximation errors are averaged over 20 runs of the respective
algorithm. The theoretical upper bounds, titled in the legend with ‘UB’, are computed
using Theorem 4.1 for TRK and Eq. (4.8) for block MRK. Figure 5 clearly shows that
TRK and block MRK perform similarly across iterations as expected since the two
methods are shown to be equivalent in Sect. 4.3. As remarked, the TRK upper bound
shown in Theorem 4.1 has a slight advantage over the general block MRK convergence
guarantees as these do not make use of the block diagonal structure of Eq. (4.2).
Experiments comparing CPU times for TRK and block MRK are omitted, as the two
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Fig.5 Performance of TRK and 105
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methods are equivalent as shown in Sect. 4.3 and highly optimized algorithms exist
for the matrix implementation.

5.4 Performance on CT and video Data

In the following experiments, we evaluate the performance of TRK on real world CT
and video data sets.

In the first experiment, the underlying signal .2 isa 512 x 512 x 11 tensor where
each 512 x 512 frontal slice is a 2-dimensional slice of the C1-vertebrae. The images for
this experiment were obtained from the Laboratory of Human Anatomy and Embry-
ology, University of Brussels (ULB), Belgium [3]. To set up the tensor linear system,
we randomly generate a Gaussian matrix .7 € R!0000x312x11 3 take the t-product
between &7 and 2 to get the the measurement tensor %. We compare the perfor-
mance of TRK on this system with a similar matrix linear system where the memory
complexity of the measurement matrix is fixed (i.e., A € R10000xG12:1D) The results
of this experiment are provided in Fig. 6. Here we can see that a tensor system with
measurement tensor &7 € RI0000x312x11 eqyipped with TRK can more efficiently
recover the underlying signal 2~ compared to a matrix linear system with matrix
A ¢ R10000xG12:1D) in terms of the number of FLOPS required. Furthermore, even
before reaching an error of 10°, the recovered scan looks visually identical to the
ground truth.

Next, we demonstrate the performance of TRK on video data where the frontal
slices of the tensor .2~ are frames from the 1929 film “Finding His Voice” [8]. Each
video frame is 181 x 251 and there are a total of 20 frames. For the measurement
tensor, similar to the previous experiment, we randomly generate the tensor by pop-
ulating its entries with i.i.d. samples from a standard Gaussian distribution and the
number of measurements m = 5000 for TRK. Figure 7 presents the results from this
experiment. Again we see here that that a tensor system, with measurement tensor
o € RI00xI81x20 "can more efficiently recover the underlying signal .2~ compared
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Fig.6 (Left) ground truth slice from CT data set. (Center) recovered CT slice from TRK. (Right) evolution
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Fig. 7 (left) Ground truth slice from Video data set. (center) Recovered Video slice from TRK. (right)
Evolution of approximation error with respect to FLOPS

to a matrix linear system, with measurement matrix A € RSOOOX(181'2O), when the the
storage requirement of the measurement tensor or matrix is fixed.

6 Conclusion

This work extends the randomized Kaczmarz literature to solve large-scale tensor
linear systems under the t-product. The proposed tensor randomized Kaczmarz (TRK)
algorithm solves large-scale tensor linear systems and is guaranteed to convergence
exponentially in expectation. Connections to the block randomized Kaczmarz are made
and empirical results are provided to support derived theoretical guarantees. This work
further provides a framework to extend other stochastic iterative methods that arise in
literature such as the randomized extended Kaczmarz algorithm, randomized Gauss-
Seidel algorithm, coordinate descent, sketch-and-project [10], and many more.

A Proof of Fact 1

The following properties of block circulant matrices will be useful in proving Fact 1.

Fact2 (Lemma 1.iii [19]) For tensors </ and 9B, bcirc (<7 9B) = bcirc () beire (4).
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Fact 3 (Theorem 6.ii [19]) The block circulant operator bcirc () commutes with the
conjugate transpose,

bcire (///*) = bcirc (M)* .
1. Part 1 of Fact 1 states
bdiag (@) = bdiag (42?’) bdiag (@ .

Proof Let of € C"*t*n and B € C*P*" then

bdiag (/%) ‘= (F, @ 1) beire (/%) (F} @ 1,)

"2 (B, © 1,,) beire () beirc () (F ©1,)
= (F, ® Iy) beire (/) (Fy; ® I) (F, @ L) beire () (F; @ 1)

@ )bdiag (@a bdiag (9?) .

2. Part 2 of Fact 1 states
T+ B=dF+ B
Proof Let of € C"*txn and B € C™*4>"  then

bdiag (7 + 2) ‘= (F, @ 1)) beire (o + ) (F} @ 1)
= (F, ® L) (beirc (/) + beire (8)) (Fi ® 1)

= (F, ® Iy) beire (&) (F; ® I) + (F, ® L) beire (2) (F @ 1)

(g)bdiag (422) + bdiag (@) .

3. Part 3 of Fact 1 states that
. o\ . A*
bdiag (./// *) = bdiag (%) .

Additionally, it states that if bcirc (.#) is symmetric, bdiag (/Z/-j is also symmetric.
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Proof Let .# € C™*¢>"_Then

bdiag (7/7) (¥, ® 1) beire (4*) (F: @ L,)

Faet3 (g, @ 1p) beire (4)* (F: @ 1)
=[(F, ® L) beirc (#) (Fi @ 1)
Whdiag (7).

To see that bdiag (////\) is also symmetric when bcirc (.#) is symmetric, note that

bdiag (.7)" = [(F, @ 1,,) beirc () (F: @ )] .

4. Finally, part 4 of Fact 1 states
bdiag (//ﬁl) = bdiag (7).
Proof Let.# € C™*™*" Note that bcirc (.%,,) = I,,,. Using Fact 2 and Eq. (4.1),

bdiag (/7/?1 )bdiag (4)
@D (F, ® I,) beirc (///_1) (F; ® L) (F, ® L) birc (#) (F; ® L)
— (F, ® I,) beirc (///—1) beire () (F* @ 1,,)

P2 (F, @ 1,) beire (F,) (F: @ 1,,)

=Imn-

Analogously, one can show bdiag (/le bdiag (/// —1> = Lun. O

B Proof of Theorem 4.1

We now prove Theorem 4.1.

Proof Let ﬁ be the tensor formed by applying FFTs to each tube fiber of &7, =
o, (m%*)_l . and & = 2 — 27*. By Eq. (4.1), we have that

bdiag (7;) = (F, ® Iy) beire (2) (F: @ 1) ,
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is a block diagonal matrix with blocks (P ) where (P ) is the kth frontal slice of
the tensor ,§5’ We note that the projected error can be rewritten as

P
E[|2:6" 3] = Yot lbeirc ()] unfold (£7).; , unfold (£7), ;)
j=1

Mv

E[((F, ® 1) beire () (F; ® 1) (F, ® L) unfold (£),, , (F, @ I,) unfold (6”). )]
1

-
~

= ) E[(bdiag (7) (F, & L) unfold (£"); , (F, & L) unfold (£”), )]
1

-
Il

Note that the rows of bcirc (7..) are also rows of beirc (7). Thus, 27+ €
rowsp (). Since Z™* is the tensor of least Frobenius norm, 2* € rowsp ().
Therefore &= 2" — 2" € rowsp (&) as long as 20 e rowsp ().

Now, since E [bdiag (27;)] is symmetric and & € rowsp (), by Fact 1,

E[ 263 = o (B [bdiag (7))]) | (Fy @ L) unfold (6") [ (B.1)

Note that,
p
| (F, ® 1) unfold (67 |3 = Y ((F, @ I unfold (&), , (F, ®1¢) unfold (&), )
j=1
P

(unfold (&), , unfold (£"). )

~
—_

— |lunfold (£7) | %
2
=&

Since bdiag (@ ) is block diagonal,

Gmm ( [bdlag (gz )]) = min Ur;lLin (E [(E)k]) .

keln—1]
Factoring bdiag (Z7; ) and using Fact 1,
bdiag (77;) = bdiag (77 ) bdiag <(,5af,~;:4a7i’f:)l> bdiag (7. )
-1 .
= bdiag ()" bdiag (.7 ) bdiag ()

o
= bdiag (7;)" [ baiag (7;) bdiag (Zfﬁ)]_l bdiag (7-.)
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Noting that bdiag (gf,\) bdiag (Efl\*) is a diagonal matrix, one can see that (l/)\,) Rt

the projection onto (JZZ ) i by rewriting the kth frontal face of ,/97, as

(E)k _ (52{’); (&’\)k

(7.7),
We can thus rewrite Eq. (B.1) as
k-
. ot |2 : + ("inii)k (%:5)k 112
E[[|2:61;] 2 min of, | E T l6 ®2
i),

The expectation of Eq. (B.1) can now be calculated explicitly. For simplicity, we
assume that the row indices i are sampled uniformly. As in MRK extensions and
literature, many other sampling distributions could be used.

To derive a lower bound for the smallest singular value in Eq. (B.2), define

“Kk Hioz = miax [(Elg\;%?)k] (B.3)

The values (%\'&’\*% are necessarily positive for all k € [n — 1] when 7.7 is
invertible for all i € [m — 1]. as
(), = bding ()
= bdiag (7..), bdiag (%),
= (F,);. beire (#7..) beire (7%) (Fp).
= (F,,);. beirc () beirc (,527,)* (Fn)z;
= [[beire ()" |3

Now, it can be easily verified that

o g | R, LY (5 (),
UL @), ) TS A
_ [oain BOT
- <~ 2
m Al 5
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The projected error of Eq. (B.2) then becomes

-~ 2
B[|#&] 2 min Lmn @D e
C o e &,

We can thus rewrite the guarantee in Theorem 4.1 for uniform random sampling of

the row indices i as

PN
F |:H%t+l — 2 ‘%’0} < _ [Umin (Ak)] H (%/'0 — ¥ 2
= o~ 2 .
F keln—1] F
m Ak
O
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