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Abstract

We study a geometric property related to spherical hyperplane tessellations in R, We first
consider a fixed x on the Euclidean sphere and tessellations with M > d hyperplanes passing
through the origin having normal vectors distributed according to a Gaussian distribution.
We show that with high probability there exists a subset of the hyperplanes whose cardinality
is on the order of dlog(d)log(M) such that the radius of the cell containing x induced by these
hyperplanes is bounded above by, up to constants, dlog(d)log(M)/M. We extend this result
to hold for all cells in the tessellation with high probability. Up to logarithmic terms, this
upper bound matches the previously established lower bound of Goyal et al. (IEEE T. Inform.
Theory 44(1):16-31, 1998).

I. INTRODUCTION

Suppose we have a collection of non-zero vectors ¢W,..., 0™ e R4 and we consider the
hyperplane tessellation these vectors induce on the unit sphere S?~'. One might be tempted to
believe that the number of cells formed by the hyperplane tessellation —that is, for x € $%~! with
(¥, x) #0 for all i e [M], sets of the form {ye S4 ! :sign((x, ")) = sign((y,?)) for all i € [M]}-
is exponential in M. However, it is not difficult to see that this is far from the truth when M
is much larger than d, i.e., M > d. In this setting and when the ¢ are in general position, or
when any d of them are linearly independent, Schlifli proved, in the 1800s, that the number
of cells is exactly
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See [1] for a version of Schlifi's proof and for further references. To tease out what the
asymptotic properties of this quantity are in terms of M and d, note that for any M; 1 > d the
leading term in the sum is the final summand. Notice that

(@) +(5)+-+ i( )jz M-d+1 2)
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Therefore, we see that ¥4 (%) < (V) 2=4tl

When M > d, we can upper bound (1) by C;(¥~) which by a Sterling bound is bounded
above by C,(eM/d)%, where C;,C, >0 are absolute constants. With so much redundancy a
natural question to ask is how many faces! delimit a cell in such a tessellation? Further, how
large are the radii of the cells? The first question has seen a recent resurgence of interest
[2]-[4] and was initially addressed by Cover and Efron [5]. More specifically, it was shown in
[5, Eq. (4.1)] that under the assumption that the ¢ are in general position, the expected
number of faces for a cell drawn uniformly at random from the tessellation is
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Using (2) to upper bound (3) gives us
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where, again, C;,C4 >0 are absolute constants. In other words, we can expect there to be no
more than on the order of d hyperplanes to form a cell drawn uniformly from our tessellation
when there are M > d hyperplanes. In fact, we can find a matching lower bound by a similar
argument which proves that the average cell has a number of faces that scales like d.

Unlike the setting of [5] we consider these two questions in the specific case when the ¢
are distributed according to a Gaussian distribution. We seek an upper bound (that holds
with high probability on the draw of the ¢”) on the radius of cells formed by a collection of
hyperplanes whose cardinality, up to constants and logarithmic terms, matches the bound
(4). Initially, we refer to a fixed cell by first fixing a point x € S?~!, drawing the vectors ¢
independently of x, and considering the cell containing x. We then pass to a uniform result
where the result holds with high probability for all points x on the sphere.

II. BACKGROUND AND CONNECTIONS

The geometric questions listed above play an important role in the theory of quantization for
finite frame expansions (see, e.g., [6], [7]) and binary classification with linear separators [8].
These two contexts are dual to one another in the sense that for binary classifiers with linear
separators the vector x is thought of as normal to a separating hyperplane which classifies the
vectors ¢, into one of two classes, under the mapping ¢ — sign((x,p?)). Notice that the

1Here, we are referring to faces of maximal dimension, which are referred to as facets in other works.



mapping ¢ — sign((x,¢”)) is invariant under positive scalings of x so that we may assume
without loss of generality ||x|, = 1. Frame quantization on the other hand views this problem
in the setting as we have phrased it where the ¢’ induce a spherical hyperplane tessellation
and the goal is to recover an approximation of x from quantized measurements sign({x, p")).
For example, such an approximation may take the form of a vector x* from the same cell as
X.

Our geometric intuition concerning the radii of the cells in the tessellation is guided
by a result from quantization of finite frame expansions. In that context, the so-called
measurement vectors ¢ are independently and randomly distributed, exhibit a correlation
structure arising from structured random matrix ensembles, or arise from some deterministic
construction. It was in this setting that Goyal et al. proved that if the ¢ form a frame (i.e.,
a spanning set for R?), not necessarily random, and x is taken to be random according to
some distribution p over a set D then the root mean-squared error for recovering x using
M quantized frame coefficients (sign((x,¢”?)))¥  can decay no faster than C; where C is a
constant that depends on d, p,D, but not M [6, Proposition 2]. The ¢ form a frame with
probability 1 when they are i.i.d. Gaussian. Consequentially, this result essentially tells us
that the largest cell in the induced tessellation has an inscribed ball of radius on the order
of i-. The fact that the quantization error can only decay linearly, rather than exponentially
with M, has motivated the design of more sophisticated quantization schemes, such as XA or
noise shaping quantizers (see, e.g, [7], [9]), and non-adaptive universal one-bit quantizers
[10]. Herein, we will demonstrate that for any x € $9-1 there exists a sub-collection of
Csdlog(d)log(M) hyperplanes such that the radius of the cell containing x induced by this
sub-collection is at most on the order of dlog(d)log(M)/M. In other words, relatively few
vectors ¢ identify the cell.

Binary classification with linear separators is often known under the moniker of the support
vector machine. The support vector machine was first proposed in [8]. Various works have
analyzed this related problem. Importantly, the results that we are aware of differ slightly from
the geometric context that we have posed. Namely, most support vector machine results
are concerned with the scenario where the spherical hyperplane tessellation is not fixed
beforehand. In this dual setting, results are typically formulated in terms of how many point
samples ¥ with labels sign((¢?, x)) are required to learn a separating hyperplane with normal
vector x* so that the probability of a new point ¢, being incorrectly classified according
to sign({@ar+1, %)) is less than . In the primal setting, a separating hyperplane x! is any point
in the same cell as x induced by the spherical tessellation from ¢,...,¢™)  Learning an
e-accurate classifier amounts to a choice of x' so that with probability less than ¢ a newly
drawn hyperplane with normal vector 9™+ excludes x* from the new cell with x in it. For
further reading, one may look at [11]-[16] for example.

ITI. NOTATION

Henceforth, (.-} denotes the standard inner product over R?. S9! and Bf(x,e) denote the
unit sphere and the ball of radius ¢ centered at x in R?, respectively. The vector e; € S9!
denotes the i’" standard basis vector in R? and the matrix I; denotes the d x d identity
matrix. For any vector z € R?, define the vector z_; € R"! to be the projection of z which
removes the first coordinate and let z; € R denote the j'" entry of z. For any integer neN, we



let [n] ={1,2,...,n}. The relation a = b denotes that there exists some universal constant C >0
so that a = Cb. Similarly, the relation a > b denotes that there exists some universal constant
C>1 so that a= Cb. In order to avoid cumbersome notation, we reserve the symbols C,C’,¢,c’
and so forth for universal constants. For a random variable X, we define the Orlicz norm (see
[17, Section 2.7.1]) as

I Xy, = inf{w >0:FeX " < 2},
while for a random vector X € R¢, we define it as

1 Xlly, = sup <X, X)ly,.
xeSd-1
With this notation, we define and approach our problem as follows. Let x € 4~ be some
fixed unit vector in R, and suppose we draw M > d i.i.d. vectors g ~._#(0,d~'I) at random
and are given the sign pattern

yi =sign((g'?, x)), ie[M].

The discussion in the introductory section tells us that the M measurements are highly
redundant and that one should be able to infer which cell x is in from much fewer
measurements. Given the derivation in (4) we might expect the number of hyperplanes
forming the cell containing x to scale like d. In light of this, we consider sub-selecting a
set Sc [M] of size m < M from the i.i.d. vectors g so that with high probability

® D ) VieS = |x—yll, is small

sign((g""’, x)) = sign((g

More specifically, we consider sets of the form
Tpxi={i € [M]: (g, 0| < 7). (5)

Our goal is to choose 7 so that T; . is large enough to define a spherical polytope containing
x with a radius on the order of the smallest cell containing x. That is, we would like to
choose 7 so that {ye 4! :sign((p?, x)) = sign((p?, y)) for all i € [M]} c {y € S47! : sign((p?, x)) =
sign((p®, y)) for all i € T; ,}. On the other hand, we also wish T; , to have cardinality roughly
on the order of d. Our main results show that, indeed, this is possible with high probability.

IV. RESULTS

The main result of [6, Proposition 2] tells us that using M hyperplanes there exists a point
x€ 89! and a point z in the same cell as x which satisfy [|x -z, > %. Theorem IV.1 shows
that if we were to have access to the sign patterns from the set T; , then it is possible to find
a matching upper bound up to an additional factor of log(d)log(M) with only Cdlog(d)log(M)
hyperplanes.

Theorem IV.1. Fix x € S*' and draw i.i.d. vectors g ~ ¥ (0,d"'1;) for i € [M] with log% >
dlog(d). Select once and for all a collection of Cidlog(d) indices independent of x without
replacement from [M] and put them in a set called V. Choose

Y \/ﬁlog(]@)log(M)
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and define the sets W, . :={i € [M]: -7 < (g®,x) <0}, S;x:= W; ,UV. Then, with probability at
least 1 -3 exp(—cdlog(d)) — exp(—c'dlog(M)) the following is true:

Csdlog(d)log(M) < |S; x| < Csdlog(d)log(M),

and if, for ye §971, sign((g'?, x)) = sign((g?, y)) for all i € S then

Csdlog(d)log(M) (6)

lx—yl2= .
\/ M2 + d2log?(d) log?(M)

We can understand Theorem IV.1 using some simple geometric intuition. The vectors g
whose inner products with x are the smallest in absolute value determine the normal
hyperplanes which are closest to x. So, these hyperplanes are the most informative with
respect to determining the faces of the cell in the full tessellation induced by all of the
vectors g,..., g™, However, because we only have finitely many g we need to choose 1
carefully so that the set W; , = {i € [M]: -7 < (g, x) <0} is non-empty.

Our proof of Theorem IV.1 relies on reducing the bound (6) to a lower bound on
the minimal singular value of a particular random matrix. To see how, we provide the
following quick sketch. By rotation invariance of the g(?, let's assume x = e;. Notice we
have ||x-yl2 =2-2y, for any y e S%°L. So, to control max,|x- yl> where y is such that
sign((g\¥, x)) = sign((g®, y) for all i € S; , we just need a uniform lower bound on y, for such
y. This lower bound will come from the feasibility condition
@ D yy>0 forall ieS;,

(g, x(g",y)=g"(g
(0)

=" (g{i))zyl > —gii) (&l =), for all ie S; ;. (7)

Now, assuming gi") # 0, if we could preserve (7) by squaring both sides — for example if both

sides were both positive — we would end up with an inequality of the form

. i - 2
gi”zy%>||y[u||§<g{i’n,”yy[[_—ll]]”2> , forall ies . (8)

Using the fact that |y ||§ =1- yf and | g{”l < 7 on the subset of vectors W; , < S; , as defined
in Theorem IV.1, we could collect like terms to get
2

2 T .
1=1- 5 , forall ie W; xc S; 1.

(i) Y[-1] 2
<gPHWWFMD> tT

From here, all we would need to do is find a uniform lower bound for <g[(f)1], i yy[ [_‘11]]”2 >2 which
is where random matrix theory would come into play. The only way this strategy works is if
we could show that the inequalities (7) and (8) were essentially equivalent. Of course, if both
sides of (7) were positive we would be in great shape. The terms we have to worry about
are y; and (g[(f)u, ¥i-11)- Our goal is to show that we can throw away a constant proportion
of the vectors in S; where the two conditions y; >0 and (g[(i)n,y[,l]) > 0 do not hold and
still get the result of Theorem IV.1. Lemma IV.3 handles the condition y; >0 and Corollary
IV.4 handles the condition (g{”;,y;-1)) > 0. Besides these two results, proving Theorem IV.1
requires two main ingredients. First, Lemma IV.2 characterizes how t should be chosen to

ensure that, with high probability, |S; .| is about dlog(d)log(M). This, along with Lemma IV.5

y




finish the heavy lifting needed to lower bound <g[(i)1], 0 yy[:l]]nz >2. If not defined explicitly in the

statements below, we note that variables are as in Theorem IV.1.

Lemma IV.2. If 7 = ng, then with probability at least 1 — exp(—cdlog(d)log(M)) we
have Csdlog(d)log(M) < |S; x| < Cydlog(d) log(M).

Proof. As in the statement of Theorem IV.1 let W;, := {i € [M]: -7 < (g, x) < 0}. Note that
W;r x € S7,x and

M . .
Wesl= 2. 1(167 201 <718, <0). ©)

We remark that the events defined in the indicator functions are independent. Further, each
1(Kg®,x)l <7) is a Bernoulli random variable with mean P (|(g'?,x)|<). By our choice of
normalization, (g'?,x) ~ A4(0,d™1), so we have P(|(g?,x)|<71) = erf(%), where erf denotes
the Gauss error function

erf(t) = Lft e dx
V-t '

Using a multiplicative Chernoff bound [17] for any se (0,1]
M vd M vd
[P’( [Wr x| — 7erf( 7 )‘ >5s— erf(f))

2
d
=2exp (—cszMerf(%)) =2exp (—CSZMT\/EQ—TZWZ) '

More specifically, this tells us that with high probability |W;,l = ¢M erf(%f) >
¢'Mtvdexp(-12d/2) = ¢" dlog(d)log(M) using a lower Riemann sum estimate to lower bound
erf in the penultimate inequality. Notice that the term e 742 does not pose any problems,
since 12d/2 = Chdlog(d)log(M)/2M and we assume that M > dlog(d)log(M). Analogously,
we also have using an upper Riemann sum estimate |W;,| < CMerf izﬁ < C'MtVd =

C"dlog(d)log(M). Since S; ,=W; UV and |V|=C;dlog(d), the claim then follows.

Lemma IV.3. Let Ae RO8D*d phe q matrix whose rows are populated with the vectors in
V, which is defined in the statement of Theorem IV.1. Then for any x,y € S*', the following
is true with probability exceeding 1— e ¢?1°8(@: sign(Ax) = sign(Ay) implies |x - yll, < V2, and
consequently (x,y) > 0.

Proof. This is a direct application of Theorem 2 in [18] considering the measurements formed
using the matrix A. O

Recall that to achieve our goal to transition from (7) to (8), it would suffice to have y; >0
and (g[(f)l],y[_m >0 for all i € S;, and all y in the same cell as x. By nature of the latter
condition being a “for all y” statement, we will follow a relatively standard argument relying
on a probabilistic union bound coupled with a continuity argument. To make the continuity
argument work, we will use the slightly stronger condition (g[(f)u,y[,l]) >n >0 for n to be
defined below.

Corollary IV.4. Let x = ey, the first standard basis vector, fix y € $%', and suppose that

lyyl? = # Define W, ; c S; . as in Theorem IV.1, and set n = Cs IO%\/D. Consider the subset




SPYi=1i € Wrx: (g, ), -1 > n} € Sy . Then with probability at least 1— e~°?°8@1080 e have
Csdlog(d)log(M) < |S)| < Cydlog(d)log(M).

Proof. As before, we have

1S23= Y -1 =8P, 0 <010, v > m).
i€[M]
Notice that IP((g[ Ve > n) =P (y > nM\/E), where y ~ A4(0,1) and that, as in (9), the events
defined in the indicator functions are independent. Using a Riemann sum to approximate this

probability, we have that this aforementioned probability is lower bounded by 3 - c¢'nMvd =
1 _ ¢ YdlogM) vd log(M)

3 ¢>0. So, we find [EIS?)}C/I = CE|W; x|, and using a Chernoff bound as in Lemma
IV.2 the clalm follows. O

The proof of the Lemma IV.5 depends on the following intermediate computation, whose
statement and proof are provided in Lemma VII.1, Section VII.

Lemma IV.5. Fix x = e;. Then the following is true for all y € S*™' with ||yi_|% = 25 : define

S .= {z € Wy : (g yio1) > 0, and define the matrix Gy RISTL*@-1) Py populatmg its rows
with g[ 1], where i € S} .. Then with probability 1 —e™° dl‘)g(d”og(M) 2e=¢"d18M) )0 have

min ||GyZ||2 2 log(d)log(M).

zeSd-

log(M

Proof. To start, fix y and set n = Cs
is parallel to e; € R4, Define the matrix G, € RIStxx@-D by populating its rows with
g[(f)u, where i € S7J and S?J is defined in Corollary IV.4. By that very same corollary,
Csdlog(d)log(M) < |ST]| < Cydlog(d)log(M) with probability at least 1— e~<14108(@108(M) - Gince
any orthogonal projection of a standard Gaussian random vector is itself a Gaussian random
vector, the rows of Gy are independent and identically distributed. Within each row, the first
entry is distributed according to the conditional law g|g > m and the remaining entries are
i.i.d. Using Lemma VIL.1 with ¢ = /c,dlog(M), we have with probability at least 1—e~®4108(M),

< CK crdlog(M)
ST] yl Sﬂ Y ’
0]

where K = max{[| g lly, : i € ST;x} is the maximal Orlicz 2-norm of the rows and X = [EgH]g[T_H €
R@-1x@-D We will control both of these quantities shortly. For now though, notice that this
immediately gives us the following lower bound on the minimal singular value of G,, which
holds with high probability, by the following algebra:

. By rotational invariance, we may assume y_j

GIG, -

“|S”y|

1
inf G G,z

177 ||| Inf 16y = 1S77] 2l 16y Gyl
= inf G, Gy—Z+2

Izl>=1 (|S’”| ! ) )

1 T~

= inf |XZzll, — sup GyG -2z

lzll2=1 lzll2=1

> 1nf IZz]l, — CK?

llzll2=1

czdlog(M)
|STx '



Now, we quickly calculate what the minimal singular value of X is. In the following calcula-
tions, let y ~ A4(0,1):

a
d—l
Z=[Eg[—1]g[T,1] = . ,
d71
1 1 oo 5 — 22
a= x“e 2a7! dx.
( Y_ Iy 1]||2) Ty-nlz 1]"2
We can use integration by parts to expand this integral as
oo e A iza T o 2
Remax="T - vat [ e (10)
[Tt Iy-1ll2 =iz
Notice that when we multiply the second term in (10) by 7 L_ it simplifies to
(V rzEgC ||2) 2md-
o0 2
! ! -1 e 271 dx
— - n
IP( d-ly = —Ily[11llz) 2md~! T-1T2
1
=d”! 1 P(”dlpn i ) T
-1 v
P( d~’y=z ||y[—1]||2) yenlz
Therefore, we have
1 n__\?
VT o~z ()
a=d '+ L >d
an]:"( Y ~ ly- 1]||2)

As for K, by independence of the entries of g[(i)l] we have using Lemma 2.6.8 and Lemma
3.4.2 from [17]

gt 1]uwsc max gy,

so it suffices to upper-bound the Orlicz 2-norm of the first entry g . By definition, we have

[-11,1
2 2
18211l = inf{w > 0: EeSiinn®’ < 2}.
Note that when o =2vd~1, we have
: o x2 _x2
. e ; 1 -1 n eswTe2 T dx
(\/_Y_ I1yi- 11||2) 2nd [
V2 1 o »

e2V2d 22

( Y— lyi- 1]||2) \/ 27r(\/§d‘1/2)2 ‘[II)/[_nl]IIZ

vER(VETTy = ty) VR (r= )

= lly- 1]||2 ly-nllav2

(‘/_Y— 7 1]||2) 'P(Y S )

Tycalz




One may numerically check that the above quantity is less than 2 provided IIJZ:/jIz < C‘/ajl\‘/}g(M) <

1. Since M > dlog(d)log(M), the latter inequality will hold provided the constant in the lower
bound of M is large enough. Hence, IIg[ 1”1//2 < Vd~l. Consequentially, we have shown with
probability at least 1 — e~®24108(M) _ e‘cl‘”"g(d) log(M) that

1. ~ _ _ c dlog(M)
f 1Gyzli=dt-ca 2
7T 1| 12 (\/IS \/
>df1-C
( (\/log(d)log(M) \/log(d)))

S ||zi|f§£1 1Gyzl5 2 d~'|STY| > log(d) log(M). (11)

To get the uniform result over all y, condition on the event & where max;e lg@, <
C'\/log(M), which occurs with probability at least 1—-exp(-czdlog(M)) [17]. Let & = 1z and .4 be
an e-net of S9!, We know that the cardinality of this net is bounded by |.#| < (3M2)d < gcadlog(M)
[17]. Union bounding over this net, we have that the event &, the result of Corollary IV.4 and
(11) hold for G; for all ¢ € 4 simultaneously with probability at least

—csdlog(M)

1- efcldlog(d) log(M) —c3dlog(M)

—-e —-e

Here, c¢5 = ¢ — ¢4 > 0 provided we choose c¢; > ¢4 in our choice of parameter ¢ in Lemma VIIL.1.
On this event, for any y € S*"'\.# we have some ¢ € 4 with ||y —¢||, <& and therefore for any
i€S; ,, we have

@Gy =@ e - g e
,v/1og(M)
MZ
where the above inequality holds, for example, provided Cs in 1= Cslog(M)/M? satisfies Cs >
C'. So, in other words, we have S;, c S} .. This immediately implies that inf),-; [Gyzl3 =
inf) z1,=1 1Gezll5 = d 7S5 4| 2 log(d) log(M). O

=n-C >0,

Proof of Theorem IV.1. We are now ready to make our heuristic proof sketch rigorous. We
focus on bounding max|x - y|l, where the maximum is taken over all y € S4~! which satisfy
sign((g®, x)) = sign((g'?, y)) for all i € S;,. By rotational invariance, we may assume without
loss of generality that x = e;. Note that if ||y;_y) ||§ < M~2 then our result automatically holds, so
we focus only on those y for which said inequality is violated. Since max|/x— yllg =2-2minyj,
we turn to finding a lower bound on miny,. By feasibility, we know for any ie S,

(g9, 08", =" >0
(0

= (gii))zh > —gi” (g 1y Y-

where S, is as defined in Lemma IV.5. By construction, both sides of this inequality are
positive, as gﬁ” is negative and y; > 0 with probability at least 1 —exp(—c""dlog(d)) for all y in
the same cell as x by Lemma IV.3. Squaring both sides of the inequality, using |g§”| <7 for
i€S] Wy, and |ly1l3 = (1 - y?) means the set of feasible y's necessarily satisfy

2 7
121-

= 2
(1) V-1 2
<g[ 1 Ty 1]||2> tT

y , forall iesy,.




In other words, to control max||x—y|l, for y in the same cell as x induced by S; 4, it is sufficient
to find a lower bound on the quantity
: W \?
min max(g,2) -
ze§d-2 i€S¥,x

Letting G, be as defined in Lemma IV.5, notice that we may lower bound this quantity by

. 2 B} 2
. (i) . Yy -1 (1)
min max <g[_1]) Z> = Zlgéilr_lz |STyx| Zy <g[_1]’ Z>

ze84-2 jes] .
7,x i€Sy

y -1 .. 2
=187 |7 min ||G,zl5.
DY egd-2 yele

By Lemma IV.5, and Corollary IV.4 we know with probability at least 1— e~¢'@log@log _
2e~¢"4108M) min__cs, [|Gyzl1% > log(d)log(M) and |SY | < dlog(d)log(M) for all y. Therefore,

~

. 2
min max <g[(i)1],z> >dt.
z€8472 jes) |
Combining our results from this section, we have with high probability
2
) L —
Nn=tca e

With our choice of 7= Czw, this means

B=1-C dlog?(d)log? (M)
UM dlog?(d) log? (M)

This concludes the proof of Theorem IV.1.

V. UNIFORM RESULTS

As a result of working so hard to get uniform control on (g[(f)u,y[,l]) for all y in the same
cell as x using a union bound argument, we can get a uniform result for all x € $~! nearly
for free. The consequence of uniformly bounding the radius of the cell around x induced
by the vectors selected according to S; , gives an upper bound on the radii for all cells in
the tessellation induced by the entire collection of vectors gWV,...,g™. This follows from
the inclusion {y € gd-1. sign((g(i),y)) = sign((g(i),x)), forallie [Ml}c{ye gd-1. sign((g(i),y)) =
sign((g\?, x)), for all i € S; ).

Corollary V.1. Ler g e R? be drawn from 4 (0,d™'I), and set T = Czw. Then with
probability at least 1-3exp(—cdlog(d)) — 2exp(—c'dlog(M)) the result of Theorem IV.1 holds
uniformly for all x € S97 1.

Proof. As was the case in our previous lemmata that used a union bound argument and
continuity, we will need to initially introduce some small modifications to our definitions to
allow ourselves some wiggle room. As before, this will help us move from an argument that
works for points on an e-net to arbitrary points. Consider for fixed xe S4~! the subset

Sex=tlieM]: -1 <(g¥ xy<-1/2}.

Using a similar argument to that used in the proof of Lemma IV.2, we can show with high
probability that Csdlog(d)log(M) < |S; x| < C;dlog(d)log(M) for any fixed x. Indeed, the expected
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value is E|S; x| = MIP(\/F g€ (—T,—T/Z)) which means we can use upper and lower Riemann
sum estimates to get analogous bounds as in Lemma IV.2. Lemma IV.3 already holds uniformly
so there’s no need to use a union bound for that event. The arguments in Corollary IV.4 and
Lemma IV.5 hold without any modifications because they concern the projected random
variables P, g, the projections of g on the orthogonal complement of the span of x.
These random variables are independent of the event associated with S; .. Therefore, the
statement of Theorem IV.1 also holds if S; , is replaced with S, .

With that matter settled, condition on the event that max;ea g ll2 < C'y/log(M) which oc-

. i1 _ Y _ GVdlog(d)logM) _; _ T
curs with probability at least 1—exp(—c’'dlog(M)) [17]. Now, let 7 = v , T = YN

and let .# be a 7’ covering of $%~!. Note that |.#| < (3)? < M¢", By a union bound argument,
we have the result of Theorem IV.1 using S, in place of S;, holding for all y e 4 with
probability at least 1—3exp (—cdlog(d)) — exp(—c'dlog(M)).

For an arbitrary x € s-1 let ye N satisfy |x—yll, <7’. Then for any i € Sr,y we have

(g, xy =gV, )+ (g, x— y) < =112+ C'\/log(M) | x — ¥
<-1/2+71/2=0,

and, additionally, using a similar argument
(g",xy > -37/2.

In other words, we've just shown that S;, c Ss;/2,x, and furthermore that sign((g'”,x)) =
sign((g®, y)) for all i € §; . The inclusion §; , < S5, tells us that the cell containing x induced
by the hyperplanes in S3;/, has a radius no larger than the radius of the cell containing x
induced by the hyperplanes from S, ,. Denote the former cell by ¢ and the latter by €. By
triangle inequality and Theorem IV.1

max|[x—zllz <max|x -zl < [x—yl> + max|ly - z|
Ze€ ZEE ZEE

< dlog(d)log(M)

- VM2 + d2log?(d) log? (M)

O

Remark 1. One potential practical application of this result is an encoding algorithm for
efficiently representing a vector x € R? with M one-bit measurements of the form sign((g®, x)).
Since the cardinality of S; . is k = d polylog(M), one could store or transmit the indices
associated with S; , using log, (A,f) < d polylog(M) bits in addition to the k bits needed to encode
the one bit measurements associated with S;,. Using standard reconstruction techniques
(see, e.g., [6], [7]), one would then recover x from sign((g?, x)), i € S;, with the error given
in Corollary V.1. This encoding scheme results in a root-exponential decay of the error in the
number of bits used.
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VII. APPENDIX

Lemma VIL1. Fix x=e; and y € $* . Let G e RIS*x*4-V) e as in Lemma IV.5 and = := g, 8"}
Then for any t >0 we have

|||s”y| 1676, z|| K2 max{6, 52}

with probability at least 1 -2exp(—t?). Here, K := maxje{zwd}llg;” Iy, whereie S?,’,{.
Proof. This proof is almost verbatim that of Theorem 4.6.1 in [17] and we only include it here
for completeness. Let .4 c S%~2 be a 1/4-net. By definition

2

|||Sny| IGTG Z :

= sup [ISPYITHGyzl - 2" 2z
P izll2=1

<2sup ISPV Gy zl5 - ZTZZ”;
zeEN

where the last line follows by Lemma 4.4.1 in [17]. We will use a union bound to control this
quantity. To that end, fix ze S4~2. We can expand this random variable as

Vel A~ T
177 1Gy 21 - 2722, = 157017 E 2Tgy gl e- 2" za

ZESTx
The random variable g[ 1]z is sub-gaussian with | g[(i)lT]zllu,2 < maxjep,all g(i) ly, = K since the
entries of g are independent. Therefore, the random variables zTg[(’)Hg[(”lT] z—z!Xz are sub-

exponential with ||zTg[(”1]g[“)lT]z z'%z|ly, = CK?. Using Bernstein’s inequality [17] we get

[P’( ST Y 2T g z-2" 22 25/2)

iesyy

2
SZexp( cmm{;4 KZ}IS I).

Setting &/K? = max{6,6%} and recalling the definition of § := C this bound

)

reduces to

1
( Sny Z zTg[(’)l]g[(’)ﬂz sz EEszaX{5,52})
lESTx

<2exp(-cCld—-1+1%).
To get a uniform bound over the net, we remark that |.4'| <9972, therefore

1
T G )T T 2 2
P(IZIEVX |ST E Z 8 8 %% Lz EEK max{d,0 })

lESTx

<99 22exp (—cC(d —1+1?) < 2exp(—ct?),

provided C in the definition of § is at least log(9)/c. O
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