
Classical and Quantum Gravity

PAPER

New binary pulsar constraints on Einstein-æther
theory after GW170817
To cite this article: Toral Gupta et al 2021 Class. Quantum Grav. 38 195003

 

View the article online for updates and enhancements.

You may also like
Well-posed Cauchy formulation for
Einstein-æther theory
Olivier Sarbach, Enrico Barausse and
Jorge A Preciado-López

-

Thin accretion disk onto slowly rotating
black holes in Einstein-Æther theory
Cheng Liu, Sen Yang, Qiang Wu et al.

-

Existence of new singularities in Einstein-
Aether theory
R. Chan, M.F.A. da Silva and V.H.
Satheeshkumar

-

This content was downloaded from IP address 128.143.1.11 on 02/07/2022 at 14:46

https://doi.org/10.1088/1361-6382/ac1a69
/article/10.1088/1361-6382/ab2e13
/article/10.1088/1361-6382/ab2e13
/article/10.1088/1475-7516/2022/02/034
/article/10.1088/1475-7516/2022/02/034
/article/10.1088/1475-7516/2020/05/025
/article/10.1088/1475-7516/2020/05/025
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvbcIUZCtMZD8LcWJk1eewGv34oHaMRKoi3AaMuTCQHzF24Fy-QXpmLW9fOucxY2xKmgfbo_XprXvN7_AGMOCfOT3piJ_FD7AqH7J-h_m4VWfFXudGWld75mFVA-9M-bxirVznDfkn_hufONIbM26A9YLJ2DtwRZ6bJKtggFWMGYnWlLmj6uvGeDYsq-t5BWKsS8aG8A8RkbCabuRp_UUF9ynJbig34dXf1mZ06FEjZ6odEE_rt6np6pJrW2EF7qLe8TKwByXo65_mile6xfoPMWcp09aU1jmbvi3A6HxNRDQ&sig=Cg0ArKJSzJ13mSe9y8-b&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


Classical and Quantum Gravity

Class. Quantum Grav. 38 (2021) 195003 (38pp) https://doi.org/10.1088/1361-6382/ac1a69

New binary pulsar constraints on
Einstein-æther theory after GW170817

Toral Gupta1,∗ , Mario Herrero-Valea2,3,5 , Diego Blas4 ,
Enrico Barausse2,3,5 , Neil Cornish1 , Kent Yagi6 and
Nicolás Yunes7

1 eXtreme Gravity Institute, Department of Physics, Montana State University,
Bozeman, MT 59717, United States of America
2 INFN, Sezione di Trieste, Via Bonomea 265, 34136 Trieste, Italy
3 IFPU—Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014
Trieste, Italy
4 Theoretical Particle Physics and Cosmology Group, Department of Physics, King’s
College London, Strand, London WC2R 2LS, United Kingdom
5 SISSA, Via Bonomea 265, 34136 Trieste, Italy
6 Department of Physics, University of Virginia, Charlottesville, VA 22904, United
States of America
7 Illinois Center for Advanced Studies of the Universe, Department of Physics,
University of Illinois at Urbana-Champaign, Urbana, IL 61820, United States of
America

E-mail: toralgupta@montana.edu

Received 13 April 2021, revised 23 July 2021
Accepted for publication 3 August 2021
Published 27 August 2021

Abstract
The timing of millisecond pulsars has long been used as an exquisitely precise
tool for testing the building blocks of general relativity, including the strong
equivalence principle and Lorentz symmetry. Observations of binary systems
involving at least 1 ms pulsar have been used to place bounds on the parameters
of Einstein-æther theory, a gravitational theory that violates Lorentz symmetry
at low energies via a preferred and dynamical time threading of the spacetime
manifold. However, these studies did not cover the region of parameter space
that is still viable after the recent bounds on the speed of gravitational waves
from GW170817/GRB170817A. The restricted coverage was due to limitations
in the methods used to compute the pulsar ‘sensitivities’, which parameter-
ize violations of the strong-equivalence principle in these systems. We extend
here the calculation of pulsar sensitivities to the parameter space of Einstein-
æther theory that remains viable after GW170817/GRB170817A. We show that
observations of the damping of the period of quasi-circular binary pulsars and
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of the triple system PSR J0337+1715 further constrain the viable parameter
space by about an order of magnitude over previous constraints.

Keywords: general relativity, neutron stars, gravitational waves

(Some figures may appear in colour only in the online journal)

1. Introduction

Lorentz symmetry has been the foundation of the magnificent edifice of theoretical physics for
more than a century, playing a central role in special and general relativity (GR), as well as in
the quantum theory of fields. Because of its special status, Lorentz invariance has been tested to
exquisite precision in the matter sector via particle physics experiments [45, 49, 50, 54]. More
recently, this experimental program has been extended to the matter-gravity [48], dark matter
[13, 16], and pure-gravity sectors [42, 53], where bounds on Lorentz violations (LVs) have
been historically looser (because of the intrinsic weakness of the gravitational interaction).

Compelling theoretical reasons to seriously consider the possibility of LVs in the purely
gravitational sector were provided by the realization that they could generate a better behav-
ior in the ultraviolet (UV) limit. In particular, Hǒrava [39] showed that by allowing for a
non-isotropic scaling between space and time, one can construct a theory that is power-
counting renormalizable in the UV. Renormalizability beyond power counting (i.e. perturbative
renormalizability) in special (‘projectable’) versions of Hǒrava gravity has also been proven
[10].

The low-energy limit of Hǒrava gravity reduces to ‘khronometric theory’ [15, 43], which
consists of GR plus an additional hypersurface-orthogonal and timelike vector field, often
referred to as the ‘æther’. Because this vector field is hypersurface orthogonal, it selects a
preferred spacetime foliation, which makes LVs manifest. A more general boost-violating low-
energy gravitational theory, however, can be obtained by relaxing the assumption that the æther
be hypersurface-orthogonal, in which case it selects a preferred time threading of the space-
time rather than a preferred foliation. The resulting theory is known as Einstein-æther theory
[46].

Despite allowing for an improved UV behavior, LVs in gravity face long-standing experi-
mental challenges, particularly when it comes to their percolation into the matter sector, where
particle physics experiments are in excellent agreement with Lorentz symmetry. While some
degree of percolation is inevitable, because of the coupling between matter and gravity, mecha-
nisms suppressing it have been put forward, including suppression by a large energy scale [58],
or the effective emergence of Lorentz symmetry at low energies as a result of renormalization
group flows [11, 12, 23] or accidental symmetries [38].

At the same time, purely gravitational bounds on LVs are becoming increasingly com-
pelling. The parameters (‘coupling constants’) of both Einstein-æther and khronometric theory
have been historically constrained by theoretical considerations (absence of ghosts and gradi-
ent instabilities [18, 37, 41], well-posedness of the Cauchy problem [60]), by the absence of
vacuum Cherenkov cascades in cosmic-ray experiments [30]), by solar-system tests [18, 19, 34,
55, 69], by observations of the primordial abundances of elements from Big-Bang nucleosyn-
thesis [22], by other cosmological tests [8], and by precision timing of binary pulsars (where
LVs generically predict violations of the strong equivalence principle) [9, 32, 33, 73, 74]. More
recently, the coincident detection [2, 3] of gravitational waves (GW170817) and gamma rays
(GRB170817A) emitted by the coalescence of two neutron stars and the subsequent kilonova
explosion has allowed extremely strong constraints on the propagation speed of gravitational
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waves, which must equal that of light to within8 10−15 [1], which in turn places even more
stringent bounds on the couplings of both theories [31, 56, 59, 60].

The bounds from the coincident GW170817/GRB170817A observations force us to rethink
the parameter spaces of both Einstein-æther and khronometric theory, as the only currently
allowed regions appear to be ones that were previously thought to be of little interest, and
which were not explored extensively. In the case of khronometric theory, references [9, 59]
found that the couplings that remain viable after GW170817 and GRB170817 produce exactly
no deviations away from the predictions of GR, not only in the Solar System, but also in
binary systems of compact objects, be they black holes (BHs) or neutron stars (NSs), to lead-
ing post-Newtonian (PN) order. Reference [35] extended this result to the quasinormal modes
of spherically symmetric BHs and to fully non-linear (spherical) gravitational collapse, where
again no deviations from the GR predictions are found. It would therefore seem that the most
promising avenue to further test khronometric theory may be provided by cosmological observ-
ables (e.g. Big-Bang nucleosynthesis abundances or CMB physics), where the viable couplings
do produce non-vanishing deviations away from the GR phenomenology.

Like for khronometric theory, the parameter space where detailed predictions for iso-
lated/binary pulsars were obtained in Einstein-æther theory [73, 74] does not include the region
singled out by the combination of the GW170817/GRB170817A bound and existing solar-
system constraints (see reference [60] for a discussion). The goal of this paper is therefore
to extend the previous analysis of binary/isolated-pulsar data by some of us [73, 74] to this
region of parameter space. This will require a significant modification of the formalism that
references [73, 74] utilized to calculate pulsar ‘sensitivities’, i.e. the parameters that quantify
violations of the strong-equivalence principle in these systems. Moreover, we will extend our
analysis to include additional data over that considered in references [73, 74], namely the triple
system PSR J0337+1715 [7]. Overall, we find that observations of the damping of the period
of quasi-circular binary pulsars, and that of the triple system PSR J0337+1715, reduce the
viable parameter space of Einstein-æther theory by about an order of magnitude over previous
constraints.

We will also amend an error (originally pointed out in reference [70]) in the calculation of the
strong-field preferred-frame parameters α̂1 and α̂2 for isolated pulsars, which were presented in
references [73, 74]. While we have checked that this error does not impact the bounds presented
in references [73, 74], we present in appendix A a detailed derivation of α̂1 and α̂2 for possible
future applications, also correcting a few typos present in the original calculation of reference
[70].

This paper is organized as follows. In section 2 we give a succinct introduction to Einstein-
æther theory, including the modified field equations and the current observational bounds on the
coupling constants. In section 3 we introduce the concept of stellar sensitivities as parameters
regulating violations of the strong equivalence principle. Solutions describing slowly mov-
ing stars are derived in section 4, and they are used in section 5 to compute the sensitivities.
Section 6 uses the sensitivities to obtain the constraints on Einstein-æther theory resulting from
observations of binary and triple pulsar systems. We summarize our conclusions in section 7.
Appendix A contains a calculation of the strong-field preferred-frame parameters α̂1 and α̂2

in Einstein-æther theory, fixing an oversight in [73], which was pointed out by [70], and cor-
recting also a few typos present in [70] itself. We will adopt units where c = 1 and a signature
+−−−, in accordance with most of the literature on Einstein-æther theory.

8 See also [24] for looser bounds coming from mergers of black holes.
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2. Einstein æther theory

In order to break boost (and thus Lorentz) symmetry, Einstein-æther theory introduces a
dynamical threading of the spacetime by a unit-norm, time-like vector field U. This vector
field, often referred to as the æther, physically represents a preferred ‘time direction’ at each
spacetime event. Requiring the action to also include the usual spin-2 graviton of GR, to be
quadratic in the æther derivatives, and to feature no direct coupling between the matter and the
æther (so as to enforce the weak equivalence principle, i.e. the universality of free fall, and the
absence of matter LVs at tree level), one obtains the action [44, 46]

S = − 1
16πG

∫ [
R +

1
3

cθθ
2 + cσσμνσ

μν + cωωμνω
μν + caAμAμ

+ λ(UμUμ − 1)
]√

−g d4x + Smat(ψ, gμν), (1)

where R is the four-dimensional Ricci scalar, g the determinant of the metric, G the bare grav-
itational constant (related to the value GN measured locally by GN = G/(1 − ca/2) [22, 42]),
ψ collectively denotes the matter degrees of freedom, λ is a Lagrange multiplier enforcing the
æther’s unit norm, cθ, cσ , cω and ca are dimensionless constants9, and we have decomposed
the æther congruence into the expansion θ, the shear σμν , the vorticity ωμν and the acceleration
Aμ as follows:

Aμ = Uν∇νUμ, (2)

θ = ∇μUμ, (3)

σμν = ∇(νUμ) + A(μUν) −
1
3
θhμν , (4)

ωμν = ∇[νUμ] + A[μUν], (5)

with hμν = gμν − UμUν the projector onto the hyperspace orthogonal to U.
By varying the action with respect to the metric, the æther and the Lagrange multiplier, and

by eliminating the latter from the equations, one obtains the generalized Einstein equations

Eαβ ≡ Gαβ − TÆ
αβ − 8πGTmat

αβ = 0 (6)

and the æther equations

Æμ =

[
∇αJαν −

(
ca −

cσ + cω
2

)
Aα∇νUα

]
hμν = 0, (7)

where Gαβ is the Einstein tensor, the æther stress–energy tensor is

TÆ
αβ = ∇μ

(
J(α

μUβ) − Jμ
(αUβ) − J(αβ)U

μ
)
+

cω + cσ
2

[
(∇μUα)(∇μUβ)

− (∇αUμ)(∇βUμ)
]
+ Uν (∇μJμν)UαUβ −

(
ca −

cσ + cω
2

)

×
[
A2UαUβ − AαAβ

]
+

1
2

Mσρ
μν∇σUμ∇ρUνgαβ , (8)

9 Note that much of the earlier literature on Einstein-æther theory uses a different set of coupling constants ci (i =
1, . . . , 4), which are related to our parameters by c1 = (cω + cσ)/2, c2 = (cθ − cσ)/3, c3 = (cσ − cω)/2 and c4 =
ca − (cσ + cω)/2.
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with

Jα
μ ≡ Mαβ

μν∇βUν ,

Mαβ
μν =

(
cσ + cω

2

)
hαβgμν +

(
cθ − cσ

3

)
δαμδ

β
ν +

(
cσ − cω

2

)
δαν δ

β
μ + caUαUβgμν ,

and the matter stress–energy tensor is defined as usual by

Tαβ
mat ≡ − 2√−g

δSmat

δgαβ
. (9)

As already mentioned, a number of experimental and theoretical results constrain Einstein-
æther theory and the couplings ci. In more detail, perturbing the field equations about
Minkowski space yields propagation equations for spin-0 (i.e. scalar), spin-1 (i.e. vector) and
spin-2 (i.e. tensor gravitons) modes. Their propagation speeds are respectively given by [41]

c2
T =

1
1 − cσ

, (10)

c2
V =

cσ + cω − cσcω
2ca(1 − cσ)

, (11)

c2
S =

(cθ + 2cσ)(1 − ca/2)
3ca(1 − cσ)(1 + cθ/2)

. (12)

In order to ensure stability at the classical level (i.e. no gradient instabilities) and at the quantum
level (i.e. no ghosts) one needs to have c2

T > 0, c2
V > 0 and c2

S > 0 [37, 41]. If we also require
the modes to carry positive energy, we get ca > 0 and cω > 0 [29]. Furthermore, significantly
subluminal graviton propagation would cause ultrarelativistic matter to lose energy to gravi-
tons via a Cherenkov-like process [30]. Since this effect is not observed e.g. in ultrahigh energy
cosmic rays, one must have c2

I � 1 −O(10−15) (with I = T , V, S). More recently, the coinci-
dent detection of a neutron-star merger in GW170817 (gravitational waves) and GRB170817A
(gamma rays) had led to the bound −3 × 10−15 < cT − 1 < 7 × 10−16 [1].

Expanding the field equations through 1PN order leads to the conclusion that the 1PN
dynamics is well described (like in GR) by the parametrized PN (PPN) expansion [55, 69].
However, unlike in GR, the preferred frame parameters α1 and α2 appearing in the PPN
expansion do not vanish, but are given by [34]

α1 = 4
cω(ca − 2cσ) + cacσ

cω(cσ − 1) − cσ
, (13)

α2 =
α1

2
+

3(ca − 2cσ)(cθ + ca)
(2 − ca)(cθ + 2cσ)

. (14)

Solar system experiments require |α1| � 10−4 and |α2| � 10−7 [55, 69]. By saturating
these bounds (i.e. requiring in particular that |α1| � 10−4 but not |α1| � 10−4) and com-
bining them with the constraints on the propagation speeds, one finds cσ ≈ O(10−15), ca ≈
O(10−4), and cθ ≈ 3ca[1 +O(10−3)]. The resulting experimentally viable parameter space,
therefore, is effectively (i.e. to within a fractional width of 10−4 or better in the parameters)
one-dimensional: cσ , ca, cθ ≈ 0, but cω is essentially unconstrained [60].
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Another viable region of the parameter space can be obtained by not saturating the PPN con-
straints [60]. In more detail, one may require |α1| be much smaller than its upper limit, so as to
automatically satisfy the bound onα2 (since α2 ∝ α1 if cσ ≈ 0, as imposed by GW170817 and
GRB170817A). This leads to |ca| � 10−7 and thus to an effectively two-dimensional experi-
mentally viable parameter space (cθ, cω), with the only additional requirement that |cθ| � 0.3 to
ensure that the production of light elements during Big Bang nucleosynthesis gives predictions
in agreement with observations [22].

Both of the viable regions of parameter space identified above were not considered in refer-
ences [73, 74], where neutron-star sensitivities in Einstein-æther theory were first computed.
This is because back when references [73, 74] were written, the strongest constraints available
were the Solar System ones (since the GW170817/GRB170817A constraint was not yet avail-
able). References [73, 74] solved for ca and cθ in terms of cσ , cω , α1 and α2, and fixed the latter
two to their largest allowed values (respectively α1 = 10−4 and α2 = 10−7). Therefore, (i) this
does not include the first region listed above ((cθ, cσ , ca) � 10−4 with cω kept free), which is
obtained by choosing α1 ∝ α2; and (ii) references [73, 74] did not sample accurately enough
the sub-region cσ ≈ 0, α1 � 10−4, α2 � 10−7, since there was no reason to do so at that time
and because the techniques employed broke down in that sub-region (as we will show in the
following).

3. Strong-equivalence principle violations and sensitivities

Most theories extending/modifying GR involve additional degrees of freedom besides the
massless tensor graviton of GR. These additional gravitational polarizations cannot directly
couple with matter significantly, to avoid introducing unwanted fifth forces in particle physics
experiments, and to prevent violations of the weak equivalence principle (and particularly vio-
lations of the universality of free fall for weakly gravitating objects). Nevertheless, effective
couplings between the extra gravitons and matter may be mediated by the metric perturbations
(i.e. by the tensor gravitons present also in GR), which are typically coupled non-minimally to
the extra gravitational degrees of freedom. These effective couplings become important when
the metric perturbations are ‘large’, which is the case for strongly gravitating systems such as
those involving NSs and/or BHs.

A useful way to parametrize this effective coupling is provided by the sensitivity parameters.
Because of the aforementioned effective couplings, the mass of strongly gravitating objects
will be comprised not only of the contributions from matter and the metric (like in GR), but it
will also generally depend on the additional gravitational fields. We can thus describe isolated
objects, and members of a widely separated binary, by a point particle model (like in GR), but
with a non-constant mass depending on the extra fields. Because the mass is a scalar quantity,
it must depend on a scalar constructed from the æther field U, the simplest of which is the
Lorentz factor γ ≡ u · U, where u is the particle’s (i.e. the body’s) four-velocity.

In many practical situations (including the long inspiral of a binary system of compact
objects) one may assume that the relative speed between the æther and the object is small
compared to the speed of light, and thus Taylor-expand the mass μ(γ) around γ = 1:

μ(γ) = m̃

[
1 + σ(1 − γ) +

1
2
σ′(1 − γ)2 + · · ·

]
, (15)

6
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where m̃, σ and σ′ are constant parameters. In particular, the latter two are often referred to as
the ‘sensitivities’ and their derivatives:

σ ≡ −d ln μ(γ)
d ln γ

∣∣∣∣
γ=1

, (16)

σ′ ≡ σ + σ2 +
d2 ln μ(γ)
d(ln γ)2

∣∣∣∣
γ=1

. (17)

In order to understand the effect of the sensitivities and their derivatives on the dynamics
of binary systems, one can derive the equations of motion simply by varying the point particle
action

Spp = −
∑

A

∫
μA(γA)dτA, (18)

where A is an index identifying the objects, and τ is the proper time. This yields the equation
of motion

[μA(γA) − μ′
A(γA)γA]aA

β = −μ′
A(γA)(−uμ

A∇βUA
μ + uμ

A∇μUA
β )

− μ′′
A(γA)γ̇A(UA

β − γAuA
β), (19)

where again the index A identifies the particle under consideration (when used in μ, γ and u) or
at which position the æther field U and its acceleration A are to be computed, the prime denotes
a derivative with respect to the function’s argument, and the overdot represents a derivative
along u (i.e. with respect to the proper time).

Reinstating the dependence on the speed of light c and expanding in PN orders (i.e. for
c →∞), one obtains the 1PN equations of motion for a binary as

dvA

dt
= −mBn

r2

{
GAB − (3GABBAB +DABB)

mB

r

− 1
2

[
2G2

AB + 6GABB(AB) + 2DBAA + GAB(CAB + EAB)
] mA

r

+
1
2

[3BAB − GAB(1 +AA)] v2
A +

1
2

(3B21 + GAB + EAB)v2
B

− 1
2

(
6B(AB) + 2GAB + CAB + EAB

)
vA · vB − 3

2
(GAB + EAB) (n · vB)2

}

+
mBvA

r2
n · {[3BAB + GAB(1 +AA)]vA − 3BABvB}

− 1
2

mBvB

r2
n ·
[(

6B(AB) + 2GAB + CAB + EAB

)
vA −

(
6B(AB) + CAB − EAB

)
vB

]
− 1

2
mBw

r2
n ·
[(
CAB − 6B[AB]+ EAB − 2GABAA) vA −

(
CAB − 6B[AB] − EAB

)
vB

]
,

(20)

7
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where indices A �= B, r ≡ |xA − xB|, n ≡ (xA − xB)/r, vA ≡ dx/dt, and

GAB =
GN

(1 + σA)(1 + σB)
,

AA = − σ′
A

1 + σA
,

BAB = GAB(1 + σA),

DABB = GAB
2(1 + σA),

CAB = GAB [α1 − α2 − 3 (σA + σB) −QAB −RAB] ,

EAB = GAB [α2 +QAB −RAB] ,

QAB = −1
2

(
2 − ca

2cσ − ca

)
(α1 − 2α2)(σA + σB) + 3

(
2 − ca

2cσ + cθ

)
σAσB,

RAB =
1
2

(
8 + α1

cω + cσ

)
[−cω(σA + σB) + (1 − cω)σAσB] .

(21)

Note that we have defined the ‘active’ masses mA ≡ m̃A(1 + σA), in terms of which the
Newtonian acceleration matches the GR result, albeit with a rescaled gravitational constant
GAB. To derive equation (20) we have also used the PN-expanded solutions for the metric and
æther found in [33, 73] (dropping divergent terms due to the point particle approximation, as
usual in PN calculations):

g00 = 1 − 2GNm̃1

r1c2
+

1
c4

[
2G2

Nm̃2
1

r2
1

+
2G2

Nm̃1m̃2

r1r2
+

2G2
Nm̃1m̃2

r1r12

− 3GNm̃1

r1
v2

1 (1 + σ1)

]
+ 1 ↔ 2 +O(1/c6), (22)

g0i = − 1
c3

[
B−

1
GNm̃1

r1
vi

1 + B+
1

GNm̃1

r1
v j

1n j
1ni

1

]
+ 1 ↔ 2 +O(1/c4), (23)

gi j = −
(

1 +
1
c2

2GNm̃1

r1

)
δi j + 1 ↔ 2 +O(1/c4), (24)

U0 = 1 +
1
c2

GNm̃1

r1
+ 1 ↔ 2 +O(1/c4) , (25)

Ui =
1
c3

GNm̃1

r1

(
C−

1 v
i
1 + C+

1 v j
1n j

1ni
1

)
+ 1 ↔ 2 +O(1/c5), (26)

B±
A ≡ ±3

2
− 2 ± 1

4
(α1 − 2α2)

(
1 +

2 − ca

2cσ − ca
σA

)

− 2cω
cω + cσ

σA − 1
4
α1

(
1 +

cω
cω + cσ

σA

)
, (27)

C±
A ≡ 1

4

(
8 + α1

cω + cσ

)
[cω − (1 − cω)σA] ± 2 − ca

2

(
2α2 − α1

2(2cσ − ca)
+

3σA

2cσ + cθ

)
,

(28)

where rA ≡ |x− xA| and nA ≡ (x− xA)/rA.

8
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Note that the æther solution (25)–(26) has space components Ui vanishing at large distances
from the binary, i.e. the equations of motion are valid in a preferred reference frame in which
the æther is asymptotically at rest. The dependence of the dynamics on the velocity w of the
binary’s center of mass with respect to the preferred frame can be reinstated by performing a
boost. If w � c, one then obtains [70]

dvA

dt
= −mBn

r2

{
GAB − (3GABBAB +DABB)

mB

r

− 1
2

[
2G2

AB + 6GABB(AB) + 2DBAA + GAB(CAB + EAB)
] mA

r

+
1
2

[3BAB − GAB(1 +AA)] v2
A +

1
2

(3B21 + GAB + EAB)v2
B

− 1
2

(
6B(AB) + 2GAB + CAB + EAB

)
vA · vB − 3

2
(GAB + EAB) (n · vB)2

+
1
2

(CAB + GABAA)w2 +
1
2

(
CAB − 6B[AB] + EAB+ 2GABAA)vA ·w

+
1
2

(
CAB + 6B[AB] − EAB

)
vB ·w

+
3
2
EAB

[
(w · n)2 + 2(w · n)(vB · n)

]}

+
mBvA

r2
n · {[3BAB + GAB(1 +AA)]vA − 3BABvB + GABAAw}

− 1
2

mBvB

r2
n ·
{(

6B(AB) + 2GAB + CAB + EAB

)
vA

−
(
6B(AB) + CAB − EAB

)
vB + 2EABw

}
− 1

2
mBw

r2
n ·
{(

CAB − 6B[AB] + EAB − 2GABAA

)
vA

−
(
CAB − 6B[AB] − EAB

)
vB − 2 (GABAA − EAB)w

}
,

(29)

with which equation (20) of course agrees for w = 0.
The sensitivities and their derivatives enter into the conservative dynamics of the binary

system at Newtonian and 1PN order, as can be seen explicitly in equations (20) and (29). In
appendix A we will use these equations as starting point for studying in more detail the 1PN
dynamics of binaries in Einstein-æther theory. In doing so, we will also amend the calculation
of the strong-field preferred-frame parameters α̂1 and α̂2 performed in [73], fixing an oversight
pointed out by [70] and correcting also a few typos present in [70] itself10.

The sensitivities and their derivatives, however, also enter the dissipative dynamics. In more
detail the total energy emitted in GWs (including not only tensor but also scalar and vec-
tor æther modes) by a binary in quasi-circular orbits was derived in [33, 73] via a standard

10 The corrections to α̂1 and α̂2 do not significantly affect the final results of [73], since the strong-field preferred-frame
parameters did not play a crucial role in constraining the parameter space of Lorentz-violating gravity in that paper.
The measurements of α̂1 and α̂2 were used mainly to constrain cω , but similar bounds on that coupling constant can
be obtained from the measurement of the damping of the period of PSR J0348+0432 (see figure 7 of [73]).

9
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multipole expansion and reads

Ėb

Eb
= 2

(
G12Gm1m2

r3

){
32
5

(Ψ1 + SΨ2 + S2Ψ3)v2
21

+ (s1 − s2)2

[
ζ2 + 2ζ3[w2 − (w · n)2] +

18
5
Ψ3 w

2 +

(
6
5
Ψ3 + 36ζ1

)
(w · n)2

]}

(30)

where sA ≡ σA/(1 + σA) is the rescaled sensitivity for the Ath body; v21 = v2 − v1 is the
relative velocity of the two bodies; the total (potential and kinetic) energy of the binary is

Eb = −G12m1m2

2r
; (31)

w is the velocity of the binary’s center of mass with respect to the preferred frame; and we
have introduced the definitions

Ψ1 ≡
1
cT

+
2cac2

σ

(cσ + cω − cσcω)2cV
+

3ca(Z − 1)2

2cS(2 − ca)
, (32)

Ψ2 ≡
2(Z − 1)

(ca − 2)c3
S

− 2cσ
(cσ + cω − cσcω)c3

V

, (33)

Ψ3 ≡
1

2c5
Vca

+
2

3ca(2 − ca)c5
S

, ζ1 ≡ 1
9cac5

S(2 − ca)
, (34)

ζ2 ≡ 4
3c3

Sca(2 − ca)
+

4
3cac3

V
, ζ3 ≡ 1

6c5
Vca

, (35)

Z ≡ (α1 − 2α2)(1 − cσ)
3(2cσ − ca)

, S ≡ mBsA + mAsB

mA + mB
. (36)

Note that the dipole flux is proportional to ζ2 and to (s1 − s2)2 ( just like in scalar–tensor the-
ories of the Fierz–Jordan–Brans–Dicke type [26, 28, 72]). Therefore, it may dominate over
GR’s quadrupole emission at low frequencies, depending on the sensitivities and the coupling
parameters of the theory [76].

4. Solutions for slowly moving stars

In order to compute the sensitivities, we start from the observation that the metric and æther
solutions for a single point particle (equations (22)–(26) with m̃2 = 0) depend on the sensitivity
σ already at linear order in the particle’s velocity. Moreover,σ regulates the decay of the metric
and æther components at large radii and enters already at O(1/r). The sensitivity is of course
a free parameter in the metric and æther solutions for a point particle, but it can be determined
by replacing the point particle with a body of finite size. Once a fully non-linear solution for
such a body (e.g. in our case, an NS) has been obtained, one can extract its sensitivity from the
asymptotic fall-off of the metric and æther fields. Obviously, since σ appears at linear order in
velocity, the NS must be moving relative to the preferred foliation. Here, we follow [73] and
consider a star in slow motion with respect to the æther, solve the field equations through linear
order in the star’s velocity, and extract the sensitivities from the asymptotic decay of the fields.

10
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4.1. Metric ansatz

Here, we consider the case of a non-spinning NS at rest with a background æther field moving
relative to it. The system is in a stationary regime, i.e. there is no dependence of the metric and
the æther field on the time coordinate. For this configuration, letting vi be the velocity of the
star relative to the æther, we consider the following ansatz for the metric and the æther

ds2 = eν(r)dt2 −
(

1 − 2M(r)
r

)−1

dr2 − r2(dθ2 + sin2 θ dφ2)

+ 2vV(r, θ)dt dr + 2vS(r, θ)dt dθ +O(v2), (37)

Uμ = eν(r)/2δt
μ + vW(r, θ)δr

μ + vQ(r, θ)δθμ +O(v2), (38)

and we will set GN = 1 from here on. Note that M(r) has dimensions of length and M(r) → M�

as r →∞, with M� thus being the measured mass of the star. Here we have adopted a coordinate
system that is comoving with the fluid elements of the NS, by aligning the time coordinate
vector to the fluid four-velocity uμ [73]. In these comoving coordinates, the fluid elements are
at rest while the æther is moving. The fluid four-velocity field is

uμ = e−ν/2δμt . (39)

The ansatz of equations (37)–(39) depends on M(r) and ν(r) at O(v0) and on four poten-
tials V(r, θ), S(r, θ), W(r, θ) and Q(r, θ) at O(v). However, one can perform a coordinate
transformation of the form

t′ = t + vH(r, θ), (40)

which allows for any one of the four potentials to be set to zero while keeping the ansatz valid
at O(v). Here we choose to set Q = 0 without loss of generality.

4.2. Zeroth order in velocity

From equations (6) and (7) let us derive the field equations at zeroth order in velocity, which
we will solve to construct the background NS solution. The (t, t), (r, r) and (θ, θ) components
of the field equations are the only non-trivial ones and give three independent equations [73]

16
dM
dr

− 4car(r − 2M)
d2 ν

dr2
− car(r − 2M)

(
dν
dr

)2

+ 4ca

(
r

dM
dr

− 2r + 3M

)
dν
dr

= 64πρr2, (41)

car2(r − 2M)

(
dν
dr

)2

+ 8r(r − 2M)
dν
dr

− 16M = 64πr3P, (42)

4r2(r − 2M)
d2ν

dr2
− (ca − 2)r2(r − 2M)

(
dν
dr

)2

−4r

(
r

dM
dr

− r + M

)
dν
dr

− 8r
dM
dr

+ 8M = 64πr3P, (43)

11
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where P(r) and ρ(r) are rescaled NS pressure and density respectively (rescaled because GN =
2G

2−ca
). These can be expressed as

P ≡ 2 − ca

2
P̃, ρ ≡ 2 − ca

2
ρ̃, (44)

with P̃ and ρ̃ representing the pressure and energy density that enter directly in the
stress–energy tensor for the matter field, which we take to be of a perfect fluid form

Tmat
μν =

(
ρ̃+ P̃

)
uμuν − P̃gμν +O(v2). (45)

Note, that there is a bijective correspondence between the original parametrization
(ca, cθ, cω , cσ) and (α1,α2, cω , cσ) that can be derived from equations (13) and (14). As
discussed in section 2, cσ � 10−15 from gravitational wave observations; we thus rewrite
equations (41)–(43) in terms of (α1, α2, cσ , cω). This is justified because the bound on cσ
is much stronger than those on the other parameters, which are constrained by solar-system
and stability requirements (absence of gradient instabilities and vacuum Cherenkov radiation,
and positive energy) to satisfy

α1 < 8α2 < 0 , cω > −α1

2
, (46)

with |α1| � 10−4 and |α2| � 10−7, in the limit cσ → 0. Upon simplification, we get the
modified Tolman–Oppenheimer–Volkoff (TOV) equations

dM
dr

=
1

α1(α1 + 8)r

{
−4

√
r − 2M(α1 + 8)

√
(−α1 + 8)M − 4Pα1πr3 + 4r

−
(
α2

1 + 24α1 + 128
)

M − 16r×
(
α1πr2(α1 + 2)P − 2πr2α1ρ−

α1

2
− 4
)}

, (47)

dν
dr

=
1

α1(r − 2M)r

[
−8

√
r − 2M

√
(−α1 − 8)M − 4Pα1πr3 + 4r + 16r − 32M

]
, (48)

dp
dr

=
1

α1(r − 2M)r
4(P + ρ)

[√
r − 2M

√
(−α1 − 8)M − 4Pα1πr3 + 4r − 2r + 4M

]
. (49)

Modifications to the GR TOV equations can be singled out by expanding the above equations
(41)–(43) in a small coupling approximation, i.e. ca � 1 or α1 � 1 [57, 66, 73].

4.3. First order in velocity

We derive field equations at first order in velocity from equations (6) and (7), which include
the potentials as functions of r and θ, at first order in velocity. We can separate variables in r
and θ using a Legendre decomposition [73] to obtain

V(r, θ) =
∑

n

Kn(r)Pn(cos θ), (50)

S(r, θ) =
∑

n

Sn(r)
Pn(cos θ)

dθ
, (51)

W(r, θ) =
∑

n

Wn(r)Pn(cos θ), (52)

12
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where Pn is the Legendre polynomial of order n. More details on tensor harmonic decomposi-
tion can be found in [65]. By separation of variables, we arrive at O(v) equations, where only
the (t, r) and (t, θ) components of the modified Einstein equations and the r and θ components
of the æther field equations are non-trivial. We are only interested in n = 1 component of Leg-
endre decomposition since these functions determine sensitivities and consequently the change
in orbital period.

Since cσ � 10−15 (cf section 2), we proceed with calculations in the limit cσ → 0 to obtain
[73]

dS1

dr
=

1
α1r(r − 2M)

{
−2S1

√
r − 2M(α1 + 4)

×
√

(−α1 − 8)M − 4Pα1πr3 + 4r − (r − 2M)

×
(

J1eν/2cωα1 − (3α1 + 16)S1 + K1α1(cω − 1)
)}

, (53)

dK1

dr
=

1
cω(r − 2M)(α2

1 + (2 − 2α2)α1 − 16α2)α1(α1 + 8)r

{
2
[
((cω + 1)α1 + 2cω)J1eν/2

− (6α1 + 32)S1 + cωK1α1

]
(α2

1 + (2 − 2α2)α1 − 16α2)(α1 + 8)
√

r − 2M

×
√

(−α1 − 8)M − 4Pα1πr3 + 4r +
[
− (α1 + 8)(r − 2M)α1r

× ((cω + 1)α2
1 − 2cω(α2 − 1)α1 − 16α2cω)

(
∂J1

∂r

)
− 16

(
−1

8

(
3

((
cω +

5
3

)
α3

1

+

((
−2α2 +

14
3

)
cω − 8α2

3
+

8
3

)
α2

1 +

((
−64α2

3
+

16
3

)
cω − 64α2

3

)
α1

− 128α2cω
3

)
(α1 + 8)M

)
+
(
π(α1 + 2)α1r2 ((cω + 1)α2

1 − 2cω(α2 − 1)α1

− 16α2cω ) P − 2πα1r2((cω + 1)α2
1 − 2cω(α2 − 1)α1 − 16α2cω)ρ

+
1
4

(
(α1 + 8)

((
cω +

3
2

)
α3

1 + ((−2α2 + 4)cω − 2α2 + 2)α2
1

+ ((−20α2 + 4)cω − 16α2)α1 − 32α2cω

)))
r

)
J1

]
eν/2

+ 6

(
−2(α1 + 8)2S1

3
+ cωK1α1

)
(α1 + 8) (α2

1 + (2 − 2α2)α1 − 16α2 ) M

− 16

[(
π(α2

1 + (2 − 2α2)α1 − 16α2)(α1 + 4)α1r2P − 11α3
2

8

+ (3α2 − 11)α2
1 + (40α2 − 16)α1 + 128α2

)
(α1 + 8)S1 + cωK1(α2

1

+ (2 − 2α2)α1 − 16α2

)
α1
(
πr2(α1 + 2)P − 2πr2ρ+ α1/4 + 2

)]
r
}

, (54)

13
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d2J1

dr2
=

1√
(−α1 − 8)M − 4Pα1πr3 + 4r(r − 2M)3/2α3

1r2(α1 + 8)
(4

{[
(α1 + 8)

×
(

(α2
1 − 4α1α2 − 32α2)S1 +

(
−α2

1

2
+ cω(α2 − 1)α1 + 8α2cω

)
K1

)
α1re−ν/2

− 12α2
1

((
1

24
α2

1 + α1 +
16
3

)
M +

(
α1πr2(α1 + 2)P − 2πr2α1ρ+

α2
1

24
− 8

3

)
r

)

× r

(
∂J1

∂r

)
+

(
8

(
∂ρ

∂r

)
α3

1πr4 +
1
2

((α1 + 8)×
(
α3

1 + (−8α2 + 56)α2
1

+ (−192α2 + 128)α1 − 1024α2) M) + (8π(α3
1 + (−5α2 + 14)α2

1

+ (−56α2 + 24)α1 − 128α2)α1r2P + 4πα2
1r2
(
α2

1 + (−2α2 + 16)α1 − 16α2

+ 16) ρ+

(
α3

1

2
+ (α2cω− cω − 12)α2

1 + (−32 + (8cω + 32)α2)α1 + 256α2

)

× (α1 + 8)r) J1

]√
r − 2M

√
(−α1 − 8)M − 4Pα1πr3 + 4r

+ 64
((α1

4
+ 2
)

M + Pα1πr3 − r
)

×
[

1
8

(
−S1α1α2r(α1 + 8)2e−ν/2 + α2

1r(α1 + 8)(r − 2M)
∂J1

∂r

)
+ J1

(
3(α1 + 8)

4

×
(
α2

1 +

(
−8α2

3
+

8
3

)
α1 −

64α2

3

)
M +

(
r2πα2

1(α1 + 2)P

+ α2
1πr2(α1 + 2)ρ− 3α3

1

8
+ (α2 − 4)α2

1+ (16α2 − 8)α1 + 64α2

)
r

)]})
, (55)

where we have defined Jn = Wn + e−ν/2Kn [73]. With the above set of equations at hand, the
next section describes the methods of solving these equations at each order in velocity.

5. The calculation of the sensitivities

The sensitivities are calculated by solving the coupled differential equations in equations
(47)–(49) and equations (53)–(55), which are obtained from the modified Einstein and the
æther field equations in a v � 1 expansion at O(v0) and O(v) respectively [73]. In sections
5.1 and 5.2 we describe and apply two methods to solve these equations and find the NS sen-
sitivities. The first method, outlined in section 5.1, was used previously in reference [73], but
we will explain how it leads to unstable solutions in particular regions of parameter space.
A second method outlined in section 5.2 provides stable results in all regions of parameter
space.

The O(v0) solutions are common to both methods, as they both involve solving O(v0) dif-
ferential equations (47)–(49) numerically once in the interior and then in the exterior of the NS.
The initial and boundary conditions to it are obtained by imposing regularity at the NS center,
while imposing asymptotic flatness at spatial infinity respectively. The differential equations
are solved from a core radius (i.e. some small initial radius) to the stellar surface radius, where
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the pressure goes to zero. These numerical solutions at the NS surface are now used as initial
conditions to solve the exterior evolution equations from the stellar surface to an extraction
radius rb. Using continuity and differentiability of the solutions, the asymptotic solutions at
spatial infinity are matched to the numerical solutions evaluated at rb. This gives the observed
mass of the NS and the integration constant corresponding to ν(0) (obtained by solving the
O(v0) differential equations [73]) which will be used in solving the O(v) equations discussed
further.

5.1. Method 1: direct numerical solutions

In this method, the aforementioned O(v) differential equations are solved in two regions, the
interior of the star, and the exterior. The initial conditions at O(v) are obtained by solving
the corresponding differential equations asymptotically about a core radius, while imposing
regularity at the core, and asymptotically about spatial infinity, while imposing asymptotic
flatness [73]. In both cases, the solutions depend on integration constants—C̃ and D̃ in the
interior asymptotic solution and Ã and B̃ in the exterior asymptotic solution—that must be
chosen so as to guarantee that the numerical interior and exterior solutions are continuous and
differentiable at the stellar surface, where pressure becomes significantly smaller than their
core values.

As defined above, the global solution reduces to finding the right constants (Ã, B̃, C̃, D̃),
which in turn is a shooting problem. In practice, reference [73] solved this shooting
problem by first picking two sets of values for interior constants, �c(1) = (C̃(1), D̃(1)) and
�c(2) = (C̃(2), D̃(2)), and then solving the interior equations twice from the core radius rc to
the NS surface R� to find the solutions �f int

(1)(r) = [S(1,int)
1 (r), K(1,int)

1 (r), J(1,int)
1 , J′(1,int)

1 (r)] and
�f int

2 (r) = [S(2,int)
1 (r), K(2,int)

1 (r), J(2,int)
1 (r), J′(2,int)

1 ]. Then, each interior numerical solution is eval-
uated at the stellar surface and used as initial conditions for a numerical evolution in the
exterior, leading to two exterior solutions �f ext

1 (r) = [S(1,ext)
1 (r), K(1,ext)

1 (r), J(1,ext)
1 (r), J′(1,ext)

1 (r)]
and �f ext

2 (r) = [S(2,ext)
1 (r), K(2,ext)

1 (r), J(2,ext)
1 (r), J′(2,ext)

1 (r)].
The global solutions �f glo

1,2 (r) = �f int
1,2(r) ∪ �f ext

1,2 (r) are then automatically continuous and dif-
ferentiable at the surface, but in general they will not satisfy the boundary conditions at spatial
infinity. Because of the linear and homogeneous structure of the differential system, one can
find the correct global solution through linear superposition

�f glo(r; C′, D′) = C′�f glo
1 (r) + D′�f glo

2 (r), (56)

where C′ and D′ are new constants, chosen to guarantee that �f glo satisfies the correct asymptotic
conditions near spatial infinity, which in turn depend on (Ã, B̃), i.e.

�f glo(rb; C′, D′) = �f glo,∞(rb; Ã, B̃), (57)

where rb � R� is the matching radius, �f glo(rb; C′, D′) is given by equation (56) evaluated at r =
rb (which depends on (C′, D′)) and �f glo,∞(rb; Ã, B̃) is the asymptotic solution to the differential
equations near spatial infinity evaluated at the matching radius (which depends on (Ã, B̃)).

With this at hand, one can calculate the NS sensitivities via [73]

σ = 2Ã
α1

α1 + 8
, (58)
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Figure 1. The metric function |S1| is plotted against the radius in the entire numerical
domain, where the radius of the star is at 11.1 km (vertical dashed line). Observe that
both of the trial solutions S(1,glo)

1 and S(2,glo)
1 diverge at spatial infinity. Hence, the global

linearly combined solution S(glo)
1 shows a diverging behavior representing numerical

instabilities in the calculation of sensitivities.

where Ã is the coefficient of 1/r in the near-spatial infinity asymptotic solution of Wext
1 such

that

Wext
1 (r) = Ã

M�

r
+O

(
M2

�

r2

)
, (59)

while we recall that α1 � 10−4 (cf section 2). Because of the latter constraint, it is obvious
that the sensitivities are essentially controlled by σ ≈ Ãα1, so the numerical stability of its
calculation relies entirely on the numerical stability of the calculation of this coefficient. Unfor-
tunately, as we show below, this calculation is not numerically stable in the region of parameter
space we are interested in.

Figure 1 shows S1 as a function of radius, assuming (α1,α2, cω) = (10−4, 4 × 10−7,−0.1),
and setting (rc, rb) = (102, 2 × 107) cm. Observe that both S(1,glo)

1 and S(2,glo)
1 diverge at spatial

infinity, so in order to find an Sglo
1 that is finite at spatial infinity, a very delicate cancellation of

large numbers needs to take place. This cancellation needs to lead to Ãα1 ≈ 0 but in general
Ãα1 �= 0, since σ ≈ Ãα1/4 � 1 �= 0, and precisely by how much Ãα1 deviates from 0 is what
determines the value of the sensitivity. We find in practice that σ is highly sensitive to the
accuracy of the numerical algorithm used to solve for �f glo

(1,2), as well as the choice of rc, rb

and the value of p(R�) that defines the stellar surface. Figure 1 is in the parameter region that
is outside of interest but it indicates how sensitive the calculations are to the aforementioned
cancellation, making it difficult to find numerically stable solutions.
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5.2. Method 2: post-Minkowskian approach

Given that the first method does not allow us to robustly compute the sensitivities in the regime
of interest, we developed a new post-Minkowskian method, which we describe here. In this
method, the background O(v0) equations are solved by direct integration, as done in method
1. The differential equations at O(v), however, are expanded in compactness C and solved
order by order. This is a post-Minkowskian approximation because the compactness always
appears multiplied by G/c2, so in this sense it is a weak-field expansion. NSs are not weak-field
objects, but their compactness is always smaller than ∼1/3 (and usually between [0.1, 0.3]), so
provided enough terms are kept in the series, this approximation has the potential to be valid.
Moreover, and perhaps more importantly, we will show below that such a perturbative scheme
stabilizes the numerical solution for the NS sensitivities.

The procedure presented above is not technically a standard post-Minkowskian series solu-
tion because the background equations (or their solutions) are not expanded in powers of C.
Had we expanded in powers of C everywhere, we would have encountered terms in the differen-
tial equations with derivatives of the equation of state (EoS). Such derivatives would introduce
numerical noise because ‘realistic’ (tabulated) EoSs are not usually smooth functions, poten-
tially introducing steep jumps, see, e.g. [75]. By not expanding theO(v0) differential equations,
we are implicitly adding higher order terms in compactness, so this procedure could be seen
as a resummation technique.

Through this approach, the differential equations at O(v1) turn into n sets of differential
equations for an expansion carried out to O(Cn), with n therefore labeling the compactness
order. In order to derive these equations, however, one must first establish the order of the
background solutions, which can be shown to satisfy

M(r) = O(C), P(r) = O(C2), (60)

ρ(r) = O(C), and ν(r) = O(C), (61)

by looking at the differential equations these functions obey at O(v0). The metric perturbation
functions at O(v1) are then expanded in powers of compactness through

Yi(r) =
n∑

j=1

Yi jε
j, (62)

where Yi ≡ (S1, K1, W1), ε is a bookkeeping parameter of O(C) and j indicates the order of C
to be summed over. We work with W1(r) instead of J1(r) to avoid introducing numerical error
during the conversion between these two functions.

Using these expansions in the differential equations at O(v), and re-expanding them in pow-
ers of compactness, one finds n sets of differential equations. At O(C), the differential system
becomes

dS11

dr
=

2rK11 − 2r (S11 + α1W11) − (4 + α1) M
2r2

, (63)

dK11

dr
=

−1
2cωr2α1

[
8cωπr3α1ρ+ 4cωrα1(K11 − S11) − 4rα2

1W11

+ cω(8α1 + α2
1 − 16α2 − 2α1α2)M − 4cωr2α1W ′

11

− 2r2(α2
1 + cωα

2
1 − 16cωα2 − 2cωα1α2)W ′

11

]
, (64)
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d2W11

dr2
=

2W11

r2
, (65)

where S11(r), K11(r) and W11(r) are metric functions at O(C), and recall that the density ρ(r) is
related to pressure through the EoS as ρ(r) = ρ(P(r)). We note that W11(r) is decoupled from
S11(r) and K11(r), and so we can solve equation (65) separately and analytically in the regions
r � rb and r � rb. The solutions to them are W11(r) = D̃1r2 for r � rb and W∞

11 (r) = Ã1/r for
r � rb, where Ã1 and D̃1 are integration constants. By requiring continuity and differentiability
of metric functions W11(r) and W ′

11(r), we match the solutions at the extraction radius rb. This
fixes the values of two integration constants Ã1 = 0 and D̃1 = 0.

The remaining two equations, namely equations (63) and (64), are solved numerically with
initial conditions obtained using regularity at the NS center and asymptotic flatness at spatial
infinity. At the center, we have

S11(r) = C̃1 −
1

120α1
π
[
(240α1 + 40α2

1 − 128α2 − 16α1α2)ρc

+ (48α1α2 − 72α2
1 − 15α3

1 + 6α2
1α2)pc

]
r2

+
1

1260
π2
[
(−160α1 − 35α2

1 + 80α2 + 10α1α2)ρ2
c

+ (288α2 − 576α1 − 126α2
1 + 36α1α2)p2

c

+ (336α2 − 672α1 − 147α2
1 + 42α1α2)ρc pc

]
r4 +O(r6), (66)

K11(r) = C̃1 −
1

120α1
π
[
(400α1 + 40α2

1 − 384α2 − 48α1α2)ρc

+ (144α1α2 − 96α2
1 − 15α3

1 + 18α2
1α2)pc

]
r2

+
1

1260
π2
[
(400α2 − 240α1 − 35α2

1 + 50α1α2)ρ2
c

+ (1440α2 − 864α1 − 126α2
1 + 180α1α2)p2

c

+ (1680α2 − 1088α1 − 147α2
1 + 210α1α2)ρc pc

]
r4 +O(r6), (67)

where C̃1 is an integration constant11. At spatial infinity, we have

S∞
11(r) = − B̃1

2r3
− 1

2cωrα1

[
Ã1(α2

1 − 2cωα1 − 2α2
1cω + 16cωα2 + 2cωα1α2)

+ cω(8α2 − 6α1 − α2
1 + α1α2)M�

]
+ (16α2 − 8α1 − α2

1 + 2α1α2)
M2

�

64r2

+ (16α2 − 16α1 − 3α2
1 + 2α1α2)

M3
�

192r3

+ (8α2 − 2α1 + α1α2) ln

(
r

M�

)
M3

�

48r3
+O

(
M4

�

r4

)
, (68)

11 Equations (66) and (67) (and also equations (68) and (69)) contain terms higher than O(C) because the background
functions are not expanded in a series of C and thus contain higher order contributions.
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K∞
11(r) =

B̃1

r3
+

4M� + 2Ã1α1 + M�α1

2r
− (α2

1 + 16α2 + 2α1α2)
M2

�

64r2

+ (2α1 − 8α2 − α1α2) ln

(
r

M�

)
M3

�

24r3
+O

(
M4

�

r4

)
, (69)

where B̃1 is an integration constant and M� is the mass of the star.
We next explain how to solve equations (63) and (64) to construct the solution for S11 and

K11. First, homogeneous solutions are given by Shom
11 = Khom

11 = C̃1. Next, one can construct
particular solutions Spart

11 and Kpart
11 by setting C̃1 = 0 and numerically integrate the equations

from rc to R�. We then use the numerically calculated interior solutions, evaluated at R�, as the
initial conditions to solve the exterior evolution equations with zero pressure and density from
R� to rb. The true solutions are simply the sum of the homogeneous and particular solutions,
namely

S11(r) = C̃1 + Spart
11 , (70)

K11(r) = C̃1 + Kpart
11 . (71)

By requiring continuity and differentiability of all metric functions, we match the true numer-
ical solution to the analytic asymptotic solution in equations (68) and (69) at rb. Applying this
matching condition gives the values of B̃1 and C̃1.

Now let us focus on the solution to O(C2) differential equations. The equation for the metric
function W12(r) is

d2W12

dr2
=

2W12

r2
+ 4πrW11ρ

′ − 2πρ

(
− 2K11 + 2S11

+

(
4 + α1 +

2α1

cω

)
W11 − 6rW ′

11

)

− 2πρ(6 + α1)
M
r
− W ′

11

(
4 + α2 +

8α2

α1

)
M
r2

−
(

3K11 − 3S11 − 10W11 − 2α1W11 −
2α1W11

cω

)
M
r3

+

(
5 + α1 +

α2

2
+

4α2

α1

)
M2

r4
, (72)

where ρ′(r) is the derivative of ρ(P(r)) obtained from the EoS. This equation is decoupled from
the remaining metric functions atO(C2), S12 and K12, and can be solved numerically on its own.
The initial condition obtained at the center of the NS is

W12(r) = D̃2r2 +
1

529200α1
π2r4

[
560ρ3

cπr2α1(α1 + 8)(5α1 + 4α2)

− 27p2
cα

2
1 (70(8πpcr2 − 7)α2

1 − 8πpcr2α1(α2 − 422)

+ 49α1(α2 − 62) + 8(49 − 8πpcr2)α2 ) − 252ρc pcα1

×
{

70pcπr2α3
1 + α2

1(70 − pcπr2(α2 − 382))

+ 64(7 − 4πpcr2)α2 − 8α1(5πpcr
2(α2 + 8) − 7(α2 + 10))

}
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− 12ρ2
c

(
350πpcr2α4

1 − 5πpcr
2α3

1(−226 + α2) − 31360α2

− 784α1(−40 + (5 + 8πpcr2)α2)

− 8α2
1(−490 + πpcr2(980 + 103α2))

)]
+O(r6), (73)

where D̃2 is an integration constant. The boundary condition to equation (72) at spatial
infinity is

W∞
12 (r) =

Ã2

r
+

1
320r3α1cω

[
Ã1M�(40r − M�α1) (α2

1 + cω (4α2
1

+ α1(34 − 4α2) − 32α2 ) ) + cω (80M2
�r(α1 + 8)(α1 − α2)

+ M3
�α1(−4α2

1 + 56α2 + α1(−38 + 7α2))
)]

+O
(

M4
�

r4

)
, (74)

where Ã2 is an integration constant. To construct the solution, we first note that the homoge-
neous solution is given by Whom

12 = D̃2r2. Next, we set D̃2 = 0 and find the particular solution
Wpart

12 (r) numerically in the interior of the NS by solving equation (72). This interior solution
evaluated at the NS surface now serves as initial conditions to solve the differential equations
in the exterior up to the boundary radius rb. The correct solution in the entire numerical domain
is then

W12(r) = D̃2r2 + Wpart
12 (r), (75)

where the values of Ã2 and D̃2 are obtained using the matching condition at rb. The equations
for S12 and K12 are solved similar to the way equations (63) and (64) are solved, so we omit a
more detailed description here for brevity. We can use the above method to solve differential
equations at higher order in C.

5.3. Comparison between numerical and analytical approaches

5.3.1. Tabulated APR4 EoS. The sensitivity in the æther theory σ for an isolated NS depends
on the EoS chosen, and here we perform the calculations of the previous section for the APR4
tabulated EoS [4]. The results are representative of what one finds with other EoSs.

Equation (58) gives the expression of sensitivity in terms of the integration constant Ã [73]
where Ã can be expressed as

Ã ≡ 1
M�

n∑
j=2

Ã jε
j, (76)

where n is the order of the compactness expansion, with Ã1 = 0. The coefficients Ã j can
be calculated numerically as described in the previous subsection. Notice that the leading
contribution to Ã (and hence to the sensitivities) is of O(ε), since M� = O(ε).

The calculation of the sensitivity as described above requires one to choose the truncation
order n of the post-Minkowskian expansion. We will choose n by the sensitivities computed
from methods 1 and 2 in a regime of parameter space where method 1 yields stable results [73].
In particular, we will focus on the choice (α1,α2, cω , cσ) = (10−4, 4 × 10−7, 10−4, 0). Figure 2
compares the sensitivities computed with the two methods with this parameter choice. Observe
that as the order of post-Minkowskian approximation increases (i.e. as n increases), the curves
approach the method 1 solution, but in an oscillatory manner. The bottom panel of figure 2
shows the stability of post-Minkowskian method at order n = 3.
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Figure 2. (Top) Sensitivity as a function of compactness using the APR4 EoS, for vari-
ous post-Minkowskian truncation orders at (α1,α2, cω, cσ) = (10−4, 4 × 10−7, 10−4, 0).
At leading order in C, the sensitivity curve overlaps with that computed analytically
in the weak field limit in [32] (equation (77)). As the compactness order is increased,
the sensitivity curve starts to converge toward the solution found with method 1.
(Bottom) Fractional difference between the sensitivities at different order of compact-
ness and those found from method 1. Observe that when n = 3, the truncated post-
Minkowskian series is already an excellent approximation. The vertical dashed line
corresponds to the compactness of a 1M� NS.

In the weak field limit, the sensitivity can be well-approximated as the ratio of the binding
energy to the NS mass (Ω/M∗) through [33]

swf =

(
α1 −

2
3
α2

)
Ω

M�
, (77)

where the stellar binding energy Ω is [32]

Ω = −1
2

∫
d3x ρ(r)

∫
d3x′

ρ(r′)
|x − x′| , (78)

with r = |x| and r′ = |x′|. We can use a Legendre expansion of the Green’s function to evaluate
this integral, and to leading order in C, we find a result that is identical to that computed in the
weak field limit by [32]. This can also be seen numerically in figure 2, where the weak field
curve coincides with O(C1) post-Minkowskian approximation.

5.3.2. Tolman VII EoS. We now focus on the sensitivity of an NS using the Tolman VII EoS.
The latter is an analytic model that accurately describes non-rotating NSs [66] by the energy
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density profile

ρ(r) = ρc

(
1 − r2

R2
�

)
. (79)

The advantage of using the Tolman VII EoS is that the background solution is known ana-
lytically in GR [47, 66]. We expand analytically both the O(v0) and O(v) equations order by
order in compactness. The sensitivity obtained is then

s =
5

21
C (−3α1 + 2α2)

+ 5

(
573α3

1 + α2
1(67669 − 764α2) + 96416α2

2 + 68α1α2(−2632 + 9α2)
252252α1

)
C2

+
1

1801079280cωα2
1

{(4α1)2(8 + α1) (36773030α2
1 − 39543679α1α2

+ 11403314α2
2 ) + cω [− 1970100α5

1 + 13995878400α3
2

+ 640α1α
2
2(−49528371 + 345040α2) + 5α4

1(−19596941 + 788040α2)

+ α3
1(−2699192440 + 440184934α2 − 5974000α2

2)

× 16α2
1α2(1294533212 − 29152855α2 + 212350α2

2) ]} C3 +O(C4). (80)

Note that the above expression is not regular in the limit of α1 → 0 while keeping α2 finite
or cω → 0 while keeping α1 or α2 finite. This is a known feature of Einstein-æther theory,
which recovers GR only when a certain combination of coupling constants is taken to zero at
a specific rate.

With this EoS, the compactness can be expressed as a function on Ω/M� as

C = − 7Ω
5M�

+
35819α1Ω

3

85800M3
�

+O
(
Ω4

M4
�

)
. (81)

Here C and M� are the observed values with æther corrections included. With this at hand, we
can rewrite the sensitivity as a function of Ω to find

s =
(3α1 + 2α2)

3
Ω

M�

+

(
573α3

1 + α2
1(67669 − 764α2) + 96416α2

2 + 68α1α2(9α2 − 2632)
25740α1

)
Ω2

M2
�

+
1

656370000cωα2
1

{− 4α2
1(α1 + 8)

[
36773030α2

1 − 39543679α1α2

+ 11403314α2
2

]
+ cω [1970100α5

1 − 13995878400α3
2

− 640α1α
2
2(−49528371 + 345040α2) − 5α4

1(19548109 + 788040α2)

− 16α2
1α2(1294533212 − 29152855α2 + 212350α2

2)

+ α3
1(2699192440 − 309701434α2 + 5974000α2

2) ]} Ω3

M3
�

+O
(
Ω4

M4
�

)
. (82)
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Figure 3. Top panel shows the plot of sensitivity as a function of binding energy for
different EoS including Tolman VII (equation (82)) valid to O(C3). The bottom panel
shows the relative fractional difference between the EoS from data and the Tolman case,
which represents the EoS variation in the relations. Observe that the universality holds
to better than 3%.

Note that this expression matches identically to that of [33] when working to leading order in
the binding energy.

One may wonder whether the above analytic expression is capable of approximating the
sensitivity when using other EoSs. Figure 3 shows the absolute magnitude of the sensitivity
as a function of Ω computed analytically with equation (82), as well as numerically with six
other EoSs. Here we have chosen to work in a different region of parameter space, namely
(α1,α2, cω) = (−10−4,−4 × 10−7, 10−3), where we obtain a stable smoothly varying sensi-
tivity curve. Observe that the sensitivities differ by less than 3%, exhibiting an approximate
universality already discovered in [73] as a function of compactness. Given these results, in all
future calculations we will use the analytic sensitivities computed with the Tolman VII EoS.

6. Constraints from binary pulsars and triple systems

The majority of millisecond pulsars are found in binary and triple systems. The orbital dynam-
ics of these systems modulate the time of arrival of radio waves and allow for precise measure-
ments of the orbital parameters [27, 40, 63, 64]. In this section, we discuss the use of precise
orbital parameter data to place constraints on the Lorentz-violating Einstein-æther theory. In
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Table 1. Orbital parameters as measured for the binary systems studied in this paper.
Table shows the estimated values of the parameters and the 1-σ uncertainty in the last
digits in parentheses. Here, Ṗb

obs is the observed value of Ṗb.

Pulsar System m1(M�) m2(M�) Pb (days) Ṗb
obs

PSR J1738+0333 [36] 1.46+0.06
−0.05 0.181+0.008

−0.007 0.354 790 739 8724(13) −25.9(3.2) × 10−15

PSR J0348+0432 [6] 2.01(4) 0.172(3) 0.102 424 062 722(7) −0.273(45) × 10−12

PSR J1012+5307 [21, 52] 1.64(0.22) 0.16(0.02) 0.604 672 723 55(3) −1.5(1.5) × 10−14

PSR J0737−3039 [51] 1.3381(7) 1.2489(7) 0.102 252 562 48(5) −1.252(17) × 10−12

GR energy is carried away at quadrupolar order due to propagation of tensor modes whereas in
this theory (and many of other modified theories of gravity), one usually finds radiation from
extra scalar and vector modes which are responsible for energy loss at dipole order, i.e. −1PN
order (cf the term proportional to E in equation (30)) as compared to GR. Hence, energy is
radiated faster than what is predicted in GR. This results in a decrease in the orbital separation
and orbital period (Pb) of the binary. The modified orbital period decay rate (Ṗb) relates to the
total energy of the binary, i.e. equation (30) via

Ṗb

Pb
= −3

2
Ėb

Eb
, (83)

suggesting a strong dependence of Ṗb on the sensitivity of the NS [17]. Since the GR predictions
agree with the observed value of Ṗb within observational uncertainty, this allows for stringent
constraints to be placed on æther theory.

6.1. Observations

Following from equation (30) (with LV terms set to zero) and (83), one can relate the post-
Keplerian parameter Ṗb in GR to the Keplerian parameter Pb via [73](

Ṗb

Pb

)
GR

= −384π
5

22/3

(
π(m1 + m2)

Pb

)5/3 m1m2

(m1 + m2)2

1
Pb

. (84)

Here m1 and m2 are the masses in the binary system. In principle, if we can measure the masses,
orbital periods and the orbital period decay rates with some uncertainty and find that they are
consistent with GR predictions, then we can place constraints on Einstein-æther theory. In this
section we focus on data from the measurements of Keplerian and post Keplerian parameters of
four different pulsar systems PSR J1738+0333, PSR J0348+0432, PSR J1012+5307 and PSR
J0737−3039 (table 1) and a stellar triple system [67]. The first three are pulsar-white dwarf
binaries in orbits withO(10−7) eccentricity and 8.5 h period, 0.17 eccentricity and 4.74 h period
and O(10−7) eccentricity and 14.5 h period respectively. The fourth is the double pulsar binary
system with 0.088 eccentricity and 2.45 h period. Because of the small eccentricity of these
systems, we will ignore it in the following, i.e. we will consider quasi-circular binaries.

6.2. Parameter estimation and Bayesian analysis

Our goal is to constrain the theory parameters using measurements of Ṗb. We discuss briefly the
Bayesian formalism with Markov-chain Monte-Carlo (MCMC) exploration used to calculate
the posteriors on the model parameters (cf section 6.2.1) and derive robust constraints.

For the parameter estimation, we need the expression for the orbital period decay, which
depends on both the relative velocity of the binary constituents v21 and the center-of-mass
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velocity w of the binary’s center of mass with respect to the æther field. A natural choice for
the æther field direction is provided by the cosmic microwave background (i.e. the æther is
expected to be approximately aligned with the cosmological background time direction). In
this case, a typical value for the center-of-mass velocity is w ∼ 10−3 [33], which for binary
pulsar observations is of the same order as v21. If so, the w-dependent corrections in the rate
of change of the binding energy (equation (30)) and orbital period (equation (85)) enter at
the same PN order (0PN) as the quadrupole emission terms of GR, but multiplied by either
(s1 − s2) or powers of it. As such, these w-dependent corrections are negligible for both white
dwarf-pulsar systems (for which the dominant term is the −1PN dipole emission) and also for
the relativistic double pulsar system (for which s1 − s2 ≈ 0 as a result of the similar pulsar
masses, which kills both the dipole emission and the w-dependent corrections to quadrupole
emission). Therefore, our results are independent of the exact value of w as long as that is of
order w ∼ 10−3 or smaller [73].

From the above assumption and using equations (83) and (30), the orbital period decay
rate in Einstein-æther theory is a function of the individual masses (m1, m2),12 pulsar radii
(R�,1, R�,2), orbital period (Pb) and coupling constants (α1,α2, cω) as shown below

Ṗb

Pb
=

1

5(m1 + m2)4Pb

√
α1

(α1−8α2)

√
−cω
α1

α3
1c2

ω

{
3 28/3π

(
π(m1 + m2)

Pb

)5/3

× m1m2

[
− 1

12

(
5α1cω(m1 + m2)2(s1 − s2)2

(
25/6α2

1(α1 + 8)

×
√

α1

(α1 − 8α2)
− 213/3

√
−cω
α1

cω(α1 − 8α2)

)(
Pb

πm

)2/3
)

+ ((s1 − 1)(s2 − 1))2/3 ((α1 + 8)α3
1

(
−4c2

ω(m1 + m2)2

√
−cω
α1

+
√

2α1(m1s2 + m2s1)2
)√ α1

(α1 − 8α2)

+
2
√

−cω
α1

(α1 − 8α2)2c2
ω((m1 + m2)α1 + 8m1s2 + 8m2s1)2

3

)]}
, (85)

where s1 and s2 are functions of C and coupling constants. One may worry that the terms inside
the square roots in the above expression may be negative, leading to a complex orbital decay
rate, but this is not the case because when α1 > 0, then cω � −α1/2, while when α1 < 0, then
cω � −α1/2. As noted in figure 3, sensitivities are independent of the EoS. Here we choose to
work with the Tolman VII EoS since it gives stable analytic solutions for the sensitivities.

There are some phenomenological constraints on the æther coupling constants as discussed
in section 2, i.e. |α1| � 10−4, |α2| � 10−7 (Solar System constraints), α1 < 0, α1 < 8α2 <
0 and cω > −α1/2 (positive energy, absence of vacuum Cherenkov radiation and gradient
instabilities) and cσ � 10−15 (GW constraint)13. Using these pre-existing constraints and by

12 These are the active masses, whose fractional difference from the ‘real’ masses (m̃1, m̃2) is of the order of the
sensitivities and thus negligible. In the following we will therefore typically identify (m1, m2) and (m̃1, m̃2). Note that
this could however introduce correlations not captured by our sufficient statistics approach, but as we show, even large
correlations would have little impact on the results.
13 Note that we cannot use existing bounds on α̂1 [62, 69] and α̂2 [61, 62, 69] as priors. This is because those quantities
depend on the derivatives of the sensitivities (cf appendix A), which are currently unknown.
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Figure 4. Prior and posterior distribution on the model parameters �λ from Ṗb constraints
for PSR J1738+0333. The pre-existing constraints from solar system, Big-Bang nucle-
osynthesis and stability requirements are applied to uniform priors shown in blue where,
for α1 negative it results in a negative α2 and positive cω . The posterior distributions
depend on the Ṗb constraints for PSR J1738+0333. The three shades of contours in
the prior and posterior distribution in the off-diagonal cross-correlation panels represent
1-σ, 2-σ and 3-σ uncertainty on model parameters starting from the center (we only show
1-σ shaded regions for the one-dimensional marginal distributions). There is a small dip
at very small magnitudes of α1, as that is the region where the pre-existing constraints
come into play, while for larger magnitudes the constraints on α1 are automatically sat-
isfied. Observe that the value of α1 is further constrained by a factor of 2 compared to
existing solar system constraints (prior).

determining if the estimated value of Ṗb lies within the range Ṗb
obs ± δṖb

obs (table 1), we
determine the consistency of points in the parameter space with observations.

One important point is that we are not using the pulsar timing data directly [5], but instead
we are using existing constraints on Ṗb, m1 and m2 derived from the primary pulsar timing data
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Figure 5. Joint prior and posterior distribution on α1, α2 and cω from Ṗb constraints for
all four pulsars listed in (table 1). The constraint on α1 is improved by a factor of 2.

as a sufficient statistic. Unfortunately, the published results only quote values for the individual
parameters and their uncertainties, so we do not have access to the joint posterior distributions.
For simplicity we assume that the parameter correlations are negligible. To check the impact of
this assumption, we compared results with zero correlations with a case with 90% correlation
between the parameters, and found that it only changed the results by a maximum of 17%.

6.2.1. Bayesian analysis. We are interested in constructing a posterior distribution on a set of
model parameters �λ = (m1, m2, Pb, R�,1, R�,2, α1, α2, cω) and using an MCMC algorithm
to explore the parameter space. According to Bayes’ theorem, the probability density for
parameters �λ given data D and hypothesis H (the theory) is

P(�λ|D, H) =
P(D|�λ, H)P(�λ|H)

P(D|H)
, (86)

where P(�λ|H) is called the prior which represents the state of knowledge about the parameters
before we analyze the data. P(D|�λ, H) is called the likelihood which describes the probability
of measuring data D given the model H and a set of parameters �λ. P(D|H) is called the model
evidence which represents the overall normalization factor. In practice it is better to work with
log probability densities to better cover the dynamic range of the densities.

We assumed uniform priors on α2 and cω such that −4 × 10−7 � α2 � 4 × 10−7 and
−105 � cω � 105 and a Gaussian prior for α1, m1, m2, Ṗb with mean and standard devia-
tion given by the existing bounds listed in table 1. We use Gaussian priors on R�,1 and R�,2
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Figure 6. Prior and posterior distribution on the model parameters α1, α2 and cω from
Ṗb constraints for PSR J0348+0432, in a scenario where the observational uncertainties
tighten by a factor of 10 and the value of Ṗb matches the GR prediction. It shows that
the GR values are favored and the value of α1 is very closely centered around zero.

with mean and standard deviation given 12.4 ± 1.1 km based on LIGO and NICER measure-
ments [25]. While these bounds are derived assuming GR, the corrections due to LV effects are
sub-dominant compared to those impacting Ṗb (cf e.g. footnote 11). Using lunar laser ranging
experiments, the bounds on α1 were obtained to be α1 = (−0.7 ± 0.9) × 10−4 [55] (cf also
section 2).

The log likelihood function is

ln(P(D|�λ, H)) ∝ −1
2

((
Ṗb/Pb

)obs −
(
Ṗb/Pb

)th
)2

σ2
(Ṗb/Pb)

, (87)

where (Ṗb/Pb)th is the theoretically predicted value of (Ṗb/Pb) from the model. With the
likelihood and the priors in place, we can find the posterior using an MCMC algorithm.

We start the MCMC simulation near the mean values for the model parameters, calculate the
posterior and iterate through these steps. Model parameters are allowed to explore the entire
range of parameter space and that gives the joint posterior distribution on all parameters �λ.
For the proposal distribution we use the prior distribution for a certain set of parameters, and
a relative jump from the current position for the remaining. Proposed jumps are accepted or
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Figure 7. Prior and posterior distribution on the model parameters α1,α2 and cω from Ṗb

constraints for PSR J0348+0432, in a scenario where the uncertainties in measurements
are reduced by a factor of 10, and the value of Ṗb stays at the currently observed value.
The 1-σ uncertainty shows that α1 = 0, i.e. the GR value is disfavoured. It can also be
noted from table 2 that posterior does not include α1 = 0.

rejected based on the Metropolis–Hastings acceptance probability

H = min

(
P(�λnew|H)P(D|�λnew, H)Q(�λold|�λnew)

P(�λold|H)P(D|�λold, H)Q(�λnew|�λold)
, 1

)
. (88)

A random number u ∼ U[0, 1] is drawn, and if H > u the proposed jump is accepted, otherwise
it is rejected. This process is repeated multiple times to ensure convergence.

We begin by considering a single observation from the pulsar-white dwarf system PSR
J1738+0333. Since the sensitivity of a white dwarf (WD) is negligible compared to the NS we
can set s2 = sWD = 0 (thus R�,2 is excluded from �λ) but for a double pulsar binary we should
have s2 �= 0. Figure 4 shows the prior and posterior distribution on the model parameters. We
are recovering our priors on the masses and radii, given that these are well constrained as can be
noted from table 1. The distribution on α1 and α2 is such that α1 < 0 and α2 < 0 from existing
constraints. This pulsar system further constrains the value of parameter α1 by approximately
a factor of 2 while the coupling constants α2 and cω remain unconstrained. Notice that the
posteriors on α2 and cω are flat and very similar to the priors. Therefore, one cannot model
them as Gaussian and construct confidence region, as no information is gained for the values
of these parameters.
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Figure 8. Joint prior and posterior distribution on the model parameters �λ from Ṗb con-
straints for all four pulsars listed in (table 1) and stellar triple system. Observe that inclu-
sion of stellar triple system improves the constraints and parameter α1 is now constrained
by a factor of 10 better than lunar laser ranging experiments.

We then consider constraints on the coupling parameters by stacking all four different binary
systems from table 1 and computing the joint constraints (figure 5). These joint constraints also
restrict the region of α1 by a factor of 2 better than the existing constraints.

In the coming years we expect to have more observations, as the sensitivities of radio tele-
scopes will improve as a result of larger collecting areas (e.g. the square kilometre array (SKA)
project [20, 68]), which will allow for discovering more pulsars. Moreover the longer obser-
vation time (T) will reduce the error in measurements of Ṗb by T−5/2 [14], allowing for more
precise measurements of the orbital parameters. One may wonder, whether we can get tighter
constraints from finding N similar systems or a single system measured with higher signal-
to-noise ratio (SNR). The SNR2 grows linearly with number of sources N and the observing
time T , and quadratically with the effective collecting area of the radio telescope. Significant
improvements in the measurement sensitivity are more likely to come from some combina-
tion of larger telescopes and additional observing time than from discovering large numbers
of systems similar to those known. Figure 6 illustrates the kind of bounds we will get for a
PSR J0348+0432 system if Ṗb

obs matches the GR prediction Ṗb
GR and the uncertainties are

tightened by a factor of 10. The improved constraints on Ṗb translate directly into similarly
improved bounds on α1. We also considered an alternative scenario, in which the uncertainties
in Ṗb improved by a factor of 10, but stayed centered on the current observed value. As shown
in figure 7, this leads to a value for α1 bounded away from zero. In other words, in a scenario
where the observed period derivative stays at the current value while the uncertainty drops by
a factor of ten, we would find that Einstein-æther theory would be favored over GR!

30



Class. Quantum Grav. 38 (2021) 195003 T Gupta et al

Table 2. Our bounds on α1 from different pulsar systems shown in figures 4–8 with
1-σ uncertainty. The first half shows the bounds from existing measurements, while
the second half shows projected future bounds assuming that the measurement error
on Ṗobs

b reduces by a factor of 10 with the central value of Ṗobs
b at the GR predicted value

(−27.3 × 10−14) and at the current measured value (−25.3 × 10−14).

Pulsar system α1

PSR J1738+0333 (−3.975 ± 2.968) × 10−5

Joint binary system (−4.073 ± 2.936) × 10−5

Joint binary + triple system (−1.111 ± 0.674) × 10−5

PSR J0348+0432 (Ṗb
obs = −27.3 × 10−14) (−8.119 ± 4.622) × 10−5

PSR J0348+0432 (Ṗb
obs = −25.3 × 10−14) (−1.729 ± 1.805) × 10−5

6.3. Constraints from the triple system

Next we have constraints coming from a pulsar in a stellar triple system PSR J0337+1715
consisting of an inner millisecond pulsar-white dwarf binary and a second WD in an outer
orbit [7]. Due to the gravitational pull of the outer WD, the pulsar and the inner WD experience
accelerations that differ fractionally. If the strong equivalence principle is violated (as a result
of the sensitivities), the triple system constrains the fractional acceleration difference parameter
δa to (+0.5 ± 1.8) × 10−6 [67]. The relation between δa and the sensitivity parameter σpulsar

(before rescaling) in Einstein-æther theory is [9, 70]

|δa| =
∣∣∣∣ σpulsar

1 + σpulsar/2

∣∣∣∣ ≈ |σpulsar|, (89)

as can be obtained directly from equation (29) (in the Newtonian limit).
We use MCMC simulations in Bayesian analysis similar to that for the Ṗb constraint and

with the likelihood

P(D|�λ, H) ∝ exp

⎛
⎜⎝−1

2

(
σobs

pulsar − σ th
pulsar

)2

σ2
(σpulsar)

⎞
⎟⎠ , (90)

where σobs
pulsar = (+0.5 ± 1.8) × 10−6 from equation (89) and σth

pulsar is given by equation (58),
to constrain the model parameters. Figure 8 shows the joint pulsar and triple system constraints
on the model parameters �λ assuming uniform distribution inα2 and cω . The 95% upper limit on
α1, which was −2.4 × 10−4 (from the prior constraints) has now shifted to α1 =−2.4 × 10−5.
It shows that the preferred frame parameter α1 is constrained by a factor of 10 better than the
lunar laser ranging experiments.

Table 2 shows bounds on α1 from binary and triple systems mentioned in this paper. The
data from joint binary + triple system allows us to put a stringent constraint on α1, which is
an order of magnitude stronger than the bounds from lunar laser ranging experiments [55, 71].

7. Conclusions

We have investigated Einstein-æther theory in the context of binary pulsars and NSs. We
have recalculated the sensitivities in the regime of coupling parameter space that still survives
after the recent measurement of the speed of GWs. This required the development of a new
post-Minkowskian approach that allows for stable numerical evaluation of the sensitivities, in
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addition to the derivation a closed form analytic solution for the Tolman VII EoS. We used
these results to place a constraint on certain coupling constants of Einstein-æther theory using
Bayesian analysis of binary pulsar observations, including recent observations on the triple
system. We find that these data allows for constraints on a certain combination of the cou-
pling constants, α1, of O(10−5), improving current Solar System constraints by one order of
magnitude.

The work carried out here opens the door to several avenues for future research. One such
avenue is to use gravitational wave data directly to place constraints on Einstein-æther the-
ory, now that the sensitivities have been analytically calculated. This can be done today to
leading PN order in the inspiral, and it remains to be seen whether it is enough to lead to inter-
esting constraints. To include the very late inspiral and merger phase, numerical simulations
of coalescing NSs would have to be carried out in Einstein-æther theory. However, since the
parameter space of the theory is already quite well constrained, it is not clear whether stronger
bounds can be achieved with gravitational wave data.

Another avenue for future research concerns computing sensitivities for BHs. This has been
done in khronometric theory [59] but not yet in Einstein-æther theory. Once the BH sensitivities
are in hand, and assuming they do not vanish, one could use the existing GW data for binary
BH mergers to constrain Einstein-æther theory, including the dipole radiation effect in the
gravitational waveform.

One more avenue for future work would be along the lines of improving the analysis in
this paper by directly analyzing binary pulsar data and carrying out a parameter estimation
and model selection study with a GR and a non-GR timing model. For this, it would be ideal
to compute the derivative of the NS sensitivities that enter in the conservative post-Keplerian
parameters, such as the periastron precession and Shapiro time delay.
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Appendix A. Modified EIH technique

In this appendix, we start from the 1PN acceleration (29) and analyze the effect of the 1PN
conservative dynamics on the orbital parameters of a binary of compact objects. We will follow
the osculating-orbits technique of [70], which will lead us to amend the calculation of the
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preferred frame parameters α̂1 and α̂2 presented in [73]. In doing so, we will also correct a few
typos that we found in the expressions of [70].14

The relative acceleration between the two gravitating bodies is obtained by simply letting

a =
dv1

dt
− dv2

dt
, (A.1)

while the position of the center of mass is not accelerated. Thus, we can set Ẋ = X = 0 at
Newtonian order without any loss of generality, getting

x1 =
(m2

m
+O(ε)

)
x, (A.2)

x2 = −
(m1

m
+O(ε)

)
x, (A.3)

where ε ∼ m/r ∼ v2
21 is a book-keeping parameter that counts PN order.

Here the acceleration of every individual body is given by (29). Hereinafter we will borrow
the notation of [70] and thus we define

m = m1 + m2, η =
m1m2

m2
, Δ =

m2 − m1

m
, (A.4)

and the functions of the sensitivities

G = G12, B+ = B(12), B− = B[12], D =
m2

m
D122 +

m1

m
D211,

E = E12, A(n) =

(
m2

m1

)n

A1 −
(
−m1

m

)n
A2. (A.5)

Using this, the relative acceleration can be written in a compact form

a = aL + aPF, (A.6)

where we have separated the purely local contributions and those coming from preferred frame
effects. The former reads

aL =
m
r2

[
n
(

Â1v
2
21 + Â2ṙ2 + Â3

m
r

)
+ ṙB̂v21

]
, (A.7)

where

v21 = ẋ2 − ẋ1, (A.8)

Â1 =
1
2

[
G(1 − 6η) − 3B+ − 3ΔB− − η(C12 + 2E) + GA(3)

]
, (A.9)

Â2 =
3η
2

(G + E), (A.10)

Â3 = D + G
[
2ηG + 3B+ + η(C12 + E) + 3ΔB−

]
, (A.11)

B̂ = G(1 − 2η) + 3B+ + 3ΔB− + ηG + GA(3). (A.12)

14 We have double checked the correctness of our expressions with the authors of [70].
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These expressions agree with those of [70]. However, we find a difference in the acceleration
due to preferred frame effects

aPF =
m
r2

{
−n
[(

α̂1

2
+ 2GA(2)

)
(ω · v21) +

3
2

(
α̂2 + GA(1)

)
(ω · n)2

]

− ω

[
α̂1

2
(n · v21) + α̂2(n · ω)

]
+ GA(2)v21(n · ω)

}
− mω2

2r2

(
C12 + GA(1)

)
n. (A.13)

where we have already specified the generic boost velocity w in (29) to match the velocity of
the preferred frame ω.

This differs from the result of [70] in a sign multiplying the first whole line, as well as in the
last term, which is absent in [70]. Here we have defined the following compact-body effective
PPN parameters

α̂1 = Δ(C12 + E) − 6B− − 2GA(2), α̂2 = E − GA(1). (A.14)

These are the strong field versions of the parameters α1 and α2, which are contained inside
the definition of the calligraphic objects in (A.14), so that α̂1 and α̂2 are implicit functions of
them. They are directly proportional to each other only in the case in which the sensitivities
vanish exactly.

In the absence of PN corrections, the motion of the two-body system describes a Keplerian
orbit, parametrized by x = rn with

n = [− cos Ω cos(ω + f ) − cos ι sin Ω sin(ω + f )]eX + [sin Ω cos(ω + f )

+ cos ι cos Ω sin(ω + f ) ] eY + sin ι sin(ω + f )eZ , (A.15)

where the orbital elements are: inclination ι, longitude of the ascending node Ω and pericenter
angle ω. The element f = ω − φ is the true anomaly, with φ the orbital phase measured from
the ascending node. The reference vectors ei form an orthonormal basis.

When the extra force (A.6) is included, Keplerian orbits are not solutions to the equations of
motion anymore. However, provided that the force is small enough relative to the Newtonian
force, we can use perturbation theory and translate the dependence on time of the motion to
the orbital parameters. This is the method of osculating orbits described in [71], which leads
to a secular variation of the orbital elements under the effect of a. In order to parametrize
this change in terms of the velocity vector of the preferred frame, we decompose the latter by
projecting it onto the orbital plane by defining

ωP = ω · eP, ωQ = ω · eQ, ωZ = ω · z, (A.16)

as well as onto the angular momentum vector

ωh = ω · h = ωZ

√
Gmp. (A.17)

Following the computation in [71], we thus find that the local terms in aL induce a change
only on the pericenter angle ω, which in an orbit changes by

ΔLω =
6πm
Gp

[
GB+ +

1
6

(
G2 −D

)
+

1
6
G
(
6ΔB− + η(2C12 + E) + GA(3)

)]
,

(A.18)
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and is of course independent of ω. Again, this agrees with [70] up to a typographical error
in their result. The rest of secular changes vanish, either because they are identically zero or
because they compensate along the orbit.

On the other hand, the force induced by preferred frame effects produces a secular change
in all orbital parameters

ΔPFa =
2πeωP

(1 − e2)2

(
mp
G

) 1
2 (

α̂1 + 4A(2)G
)

, (A.19)

ΔPFι = πα̂1

(
m
Gp

) 1
2

ωh sin(ω)eF(e) − 2πα̂2ωhωRF(e)

G
√

1 − e2
, (A.20)

ΔPFΩ = −πα̂1

(
m
Gp

) 1
2 ωh

sin(ι)
cos(ω)eF(e)− )

2πα̂2ωhωSF(e)

G sin(ι)
√

1 − e2
, (A.21)

ΔPF� = −πα̂1

(
m
Gp

) 1
2

ωQ

√
1 − e2F(e)

e
− πα̂2(ω2

Pω
2
Q)F(e)2

+
πωQ

e

(
m
Gp

) 1
2

(α̂1 + 4A(2)G), (A.22)

ΔPFe = −πα̂1

(
m
Gp

) 1
2

ωP(1 − e2)F(e) + 2πα̂2ωPωQe
√

1 − e2F(e)2

+ πωP

(
m
Gp

) 1
2

(α̂1 + 4A(2)G), (A.23)

where ΔPF� = ΔPFω + cos(ι)ΔPFΩ and

F(e) =
1

1 +
√

1 − e2
, (A.24)

ωR = ωP cos ω − ωQ

√
1 − e2 sin ω, (A.25)

ωS = ωP sin ω + ωQ

√
1 − e2 cos ω. (A.26)

Out of these deviations, the most relevant one is the variation of the semimajor axis, which
can be related to the change in the period of the orbit by using Kepler’s third law

ΔT
T

=
3
2
Δa
a

. (A.27)

Note however that this change is sub-leading with respect to the change expected from emission
of gravitational radiation in a binary system like the one considered throughout this paper (cf
equation (30)), which is actually the dominant factor.
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[59] Ramos O and Barausse E 2019 Constraints on Hǒrava gravity from binary black hole observations

Phys. Rev. D 99 024034
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