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Recent gravitational wave observations allow us to probe gravity in the strong and dynamical field
regime. In this paper, we focus on testing Einstein-dilation Gauss-Bonnet gravity which is motivated by
string theory. In particular, we use two new neutron star black hole binaries (GW200105 and GW200115).
We also consider GW190814 which is consistent with both a binary black hole and a neutron star black
hole binary. Adopting the leading post-Newtonian correction and carrying out a Bayesian Markov-chain
Monte Carlo analysis, we derive the 90% credible upper bound on the coupling constant of the theory asffiffiffiffiffiffiffiffi
αGB

p ≲ 1.33 km, whose consistency is checked with an independent Fisher analysis. This bound is
stronger than the bound obtained in previous literature by combining selected binary black hole events in
GWTC-1 and GWTC-2 catalogs. We also derive a combined bound of

ffiffiffiffiffiffiffiffi
αGB

p ≲ 1.18 km by stacking
GW200105, GW200115, GW190814, and selected binary black hole events. In order to check the validity
of the effect of higher post-Newtonian terms, we derive corrections to the waveform phase up to second
post-Newtonian order by mapping results in scalar-tensor theories to Einstein-dilation Gauss-Bonnet
gravity. We find that such higher-order terms improve the bounds by 14.5% for GW200105 and 6.9% for
GW200115, respectively.
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I. INTRODUCTION

Recent updates of the gravitational-wave (GW) catalog
(GWTC-3) [1–4] reports, in total, 90 gravitational wave
events from binary black hole (BBH), binary neutron star
(BNS), and neutron star black hole (NSBH) mergers (see
[5–7] for the previous catalogs). These events have been
used to obtain implications on astrophysics, cosmology,
nature of black holes (BHs) and nuclear physics (see
studies on, e.g., population properties of compact objects
[8], Hubble tension [9], stochastic GW background [10],
black hole spectroscopy [11], equations of state of neutron
stars (NSs) [12,13], and possible mode instabilities driven
by NS tidal effects [14–16]). GW events are also ideal
sources to probe strong/dynamical fields of gravity [17–21]
that are difficult to access through other experiments/
observations, including table-top and solar system experi-
ments, or binary pulsar and cosmological observations. For
example, they have been used to probe the mass of the
graviton [17–19], scalar-tensor theories (Brans-Dicke
theory, those with scalarization phenomena proposed by
Damour and Esposito-Farèse, screened modified gravity,

and the time dependence of the scalar field) [18,22,23],
light axion fields sourced by neutron stars [24], and
dynamical Chern-Simons gravity [18,25–28]).
Scalar Gauss-Bonnet (sGB) gravity [29–32] is another

theory beyond general relativity (GR) that has been studied
extensively. In the action, a dynamical scalar field is
coupled to a Gauss-Bonnet (GB) invariant (consisting of
a certain combination of curvature-squared scalars) with a
coupling constant αGB that has a dimension of length
squared. Depending on what kind of coupling one consid-
ers, one recovers a shift-symmetric theory (linear coupling)
[33,34], Einstein-dilation Gauss-Bonnet (EdGB) gravity
[35–38] (exponential coupling) motivated by string theory
and inflation [39,40], and a theory admitting spontaneous
scalarization of BHs and NSs (quadratic coupling is an
example) [41–44].
EdGB gravity has been constrained by GWs from BBHs

that is summarized in Table I, together with other astro-
physical constraints from a BH low-mass x-ray binary
(LMXB) and NS observations. The current upper bound on
the coupling constant

ffiffiffiffiffiffiffiffi
αGB

p
is ∼1 km. For example,

Perkins et al. [26] combined bounds on
ffiffiffiffiffiffiffiffi
αGB

p
from 6

selected BBH events from the GW catalogs GWTC-1 and
GWTC-2 and found the bound

ffiffiffiffiffiffiffiffi
αGB

p ≲ 1.7 km. These GW
bounds are obtained by taking into account the leading
correction to the gravitational waveform phase that enters at
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−1 post-Newtonian (PN) order relative to GR due to the
scalar dipole radiation [18,33]. Such a correction is derived
within the small coupling approximation, where the cou-
pling constant αGB is assumed to be much smaller than the
characteristic curvature scale of a system (e.g., the mass for
a BH) and one keeps only to Oðα2GBÞ. Under this
approximation, EdGB gravity effectively reduces to
shift-symmetric GB gravity with a linear coupling between
the scalar field and the GB invariant.
In this paper, we derive new bounds on EdGB gravity

through GWs from NSBH binaries. Some forecasts on
constraining the theory with such systems were made in
[49] based on a Fisher analysis. The authors showed that
the existing bounds can be improved further for NSBH
binaries with a sufficiently small BH mass. We here derive
new bounds through a Bayesian analysis using GW200105
and GW200115 [50]. We also consider GW190814, which
is consistent with BBH or NSBH, and find bounds on
EdGB gravity for the BBH and NSBH assumptions
separately. We perform Bayesian inference to analyze
the above events by adopting IMRPhenomXPHM wave-
form [51–53] (a phenomenological inspiral-merger-ring-
down waveform for precessing BBHs in GR) as our base
GR waveform and include EdGB corrections to the inspiral
phase. We set a high frequency cutoff as fhigh ¼ 0.018=M
[54] (for the total mass M in a unit of second) on the strain
data, since the EdGB modifications to the waveform within
the PN expansion is only valid for the phase at the inspiral
stage. We also carry out independent Fisher analyses for
cross-checking the results.
We improve previous analyses by deriving and including

EdGB corrections to the waveform phase to higher PN
orders. Recently, Shiralilou et al. [55,56] derived the
waveform valid to 1PN order higher than the leading
tensor/scalar nondipole and scalar dipole emission respec-
tively. We update this by taking the waveform in scalar-
tensor theories (in the Jordan frame) valid to 2PN relative to
the leading for each of dipole and nondipole contributions
[57]. We apply a conformal transformation in scalar-tensor
theories to go from the Jordan frame to the Einstein frame,
find the mapping between the scalar fields in scalar-tensor
theories and EdGB gravity, and use the scalar charges for
BHs and NSs in the latter theory. We checked that this
correctly reproduces the leading −1PN correction in EdGB
gravity known previously [18,33].

We find the following results. First, using the leading
EdGB correction to the phase, we find the 90% credible
upper bound on

ffiffiffiffiffiffiffiffi
αGB

p
as

ffiffiffiffiffiffiffiffi
αGB

p ≲ 1.33 km for GW200115.
This bound is stronger than the bound

ffiffiffiffiffiffiffiffi
αGB

p ≲ 1.7 km in
[26] obtained by combining selected BBHs from GWTC-1
and GWTC-2 catalogs. We also derive combined bounds
by stacking posterior distributions on

ffiffiffiffiffiffiffiffi
αGB

p
from

GW200105, GW200115, and GW190814 (conservatively
assuming it is a NSBH), and BBHs considered in [26], and
find

ffiffiffiffiffiffiffiffi
αGB

p ≲ 1.18 km. These results are also summarized
in Table I. We next study the effect of including higher PN
corrections. We find that such corrections do not make a
significant difference on the bound on

ffiffiffiffiffiffiffiffi
αGB

p
from the case

with the leading correction, but improve the bound by
14.5% for GW200105 and 6.9% for GW200115, respec-
tively. Such a finding is consistent with the analysis in [26].
This paper is organized as follows. We first review EdGB

gravity and corrections to the waveform phase in Sec. II.
We next explain in Sec. III two methods of data analysis
adopted in this paper, namely Bayesian inference through
Markov-chain Monte Carlo (MCMC) and a Fisher analysis.
In Sec. IV, we present our results and conclude in Sec. V.
We use the convention G ¼ c ¼ 1 throughout the paper.

II. EINSTEIN-DILATION
GAUSS-BONNET GRAVITY

Let us first review EdGB gravity within the context of
sGB theory and explain corrections to the gravitational
waveform from GR.

A. Theory

We begin by presenting the action for sGB gravity
[29–32]:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

2
ð∇ϕÞ2þαGBfðϕÞR2

GB

�
þSm: ð1Þ

Here g is the determinant for the metric gμν, R is the Ricci
scalar, ϕ is a scalar field, αGB is the coupling constant
between the scalar field and the metric, Sm is the matter
action, and

R2
GB ¼ RμνσρRμνσρ − 4RμνRμν þ R2; ð2Þ

TABLE I. Astrophysical bounds on EdGB gravity. We show bounds from a LMXB, NSs (∼2 M⊙ NSs), GWs from BBHs, and
NSBHs (this work). The one in brackets comes from GW190814 assuming that it is a BBH, which has some uncertainty. For NSBH, we
present the bound from GW200115 and that by combining NSBHs (GW200115, GW200105, and GW190814; assuming the last one as
a NSBH is a conservative choice) and BBHs from [26].

GW (BBH) GW (NSBH) (this work)

LMXB NS O1–O2 O1–O3 GW200115 Combinedffiffiffiffiffiffiffiffi
αGB

p
(km) 1.9 [30] 1.29 [45] 5.6 [25], 1.85 [46], 4.3 [47] 1.7 [26], 4.5 [48], (0.4) [48] 1.33 1.18
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is the GB invariant. fðϕÞ is an arbitrary function of the
scalar field that determines how it is coupled to the metric.
EdGB gravity is realized by choosing fðϕÞ ¼ e−γϕ for a
constant γ. As shown in [58,59], this theory can be written
in a second-order, hyperbolic form that is well-posed for
numerical relativity evolution within a range of param-
eter space.
String theory predicts even higher order curvature terms

in the action that we do include in the analysis. To justify
this and treat the theory as an effective field theory, wework
in the small coupling approximation scheme (or reduced-
order scheme) where we assume that the GR contribution is
dominant and handle EdGB corrections as small perturba-
tions. In particular, we define a dimensionless coupling
constant

ζ ≡ 16πα2GB
L4

; ð3Þ

where L is the characteristic length of the system and
assume ζ ≪ 1. This technique has been used to find scalar
charges of compact objects [33,60,61], corrections to the
GW phase at the inspiral stage [33], and to carry out
numerical simulations of BBH mergers [62].
Let us study the theory within the small coupling

approximation scheme in more detail. We perturb field
equations in αGB and solve them order by order. Then, ϕ ¼
OðαGBÞ and one can expand fðϕÞ in small ϕ as:

fðϕÞ ¼ fð0Þ þ f0ð0ÞϕþOðϕ2Þ: ð4Þ

The first term is a constant and this does not change the
field equations from the GR ones as the GB invariant is a
topological term and can be rewritten as a total derivative.
Thus, the leading effect comes from the second term where
the scalar field is linearly coupled to the GB invariant. For
this reason, we consider the following action in this paper:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

2
ð∇ϕÞ2 þ αGBϕR

2
GB

�
þ Sm; ð5Þ

where we have absorbed f0ð0Þ into αGB. In this theory, BHs
can have nonvanishing scalar charges [33,60] while NSs do
not [61].
Current astrophysical bounds on

ffiffiffiffiffiffiffiffi
αGB

p
are summarized

in Table I. Besides these, one could use electromagnetic
radiation emitted by gas or stars orbiting BHs. For example,
simulations of the reflection spectrum of thin accretion
disks with present and future x-ray missions show that
current missions cannot distinguish BHs in GR and those in
sGB gravity, while next-generation missions may be able to
distinguish them [63]. Another possibility is to use Solar
System experiments, though they are weaker than the
astrophysical bounds in Table I by six orders of magnitude

[30,64] as the curvature of spacetime in the vicinity of the
Sun is much smaller than that of BHs and NSs.

B. Gravitational waveforms

We next find EdGB corrections to the gravitational
waveform phase. Given that most of the signal-to-noise
ratios (SNRs) for GWs from NSBHs and (small mass)
BBHs come from the inspiral portion, we focus on the
inspiral stage in our analysis. The leading correction to the
phase at the inspiral stage enters at −1PN order due to
the scalar dipole radiation and was derived in [30]. Some of
the higher PN corrections were recently derived in [55,56].
Here, we identified even higher PN corrections using the
waveforms in scalar-tensor theories [57] (see the Appendix
for details of the derivation).
Within the stationary phase approximation [65,66], the

waveform in the Fourier space is given by:

hðfÞ ¼ AðfÞ exp ½iΨðfÞ�; ΨðfÞ ¼ ΨGRðfÞ þ δΨðfÞ:
ð6Þ

Here AðfÞ is the amplitude, ΨGR is the GR phase, and the
EdGB correction to the phase δΨ (up toOðα2GBÞ) is given in
a form

δΨ ¼
X
i

δΨiPN ¼ α2GB
M4

X
i

civ−5þ2i: ð7Þ

Here v ¼ ðπMfÞ1=3 is the relative velocity of the binary
constituents with GW frequency f and the total mass
M ¼ m1 þm2, where m1 and m2 are the masses of the
primary and secondary objects of the system. The coef-
ficients ci up to 2PN order can be found in the Appendix.
We note that corrections at 1.5PN and 2PN terms contain
terms that have not been computed yet and are thus not
fully complete.

III. DATA ANALYSIS

In this paper, we carry out two independent analyses to
find constraints on

ffiffiffiffiffiffiffiffi
αGB

p
. The first method is a MCMC

analysis based on Bayesian inference by using the publicly
available GW data. The second method is a simpler Fisher
analysis that can be used to obtain rough bounds on

ffiffiffiffiffiffiffiffi
αGB

p
to cross check the results from the first method.
Which GW events shall we consider? Since the EdGB

corrections to the phase are proportional to α2GB=M
4, such

corrections become larger for systems with smaller total
masses. If the data is consistent with GR, this translates to a
stronger bound on EdGB gravity. Furthermore, the leading
scalar dipole radiation is proportional to the square of the
difference in the scalar charges between two objects. This
means that we expect to find stronger bounds on

ffiffiffiffiffiffiffiffi
αGB

p
for

systems with smaller mass ratios (q ¼ m2=m1 < 1). For
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these reasons, we will consider the two NSBH events,
GW200105 and GW200115, from O3a, (whose total
masses are 10.9 M⊙ and 7.1 M⊙, and mass ratios are
0.22 and 0.26, respectively [50,67]). We also employ
GW190814 [68] whose mass ratio is small (0.11) and
the secondary mass is m2 ≈ 2.6 M⊙. The system is con-
sistent with both BBH and NSBH, though the probability
of a NS with 2.6 M⊙ may be small [69–71]. Given the
uncertainty in the nature of the secondary object, we
consider both possibilities of GW190814 being a BBH
and a NSBH. We also use GW151226, a BBH with a
relatively small mass, to check our results against those
found previously [25,26].

A. Bayesian inference

To unveil the basic information of compact binary
systems behind GW events, one usually makes use of a
reliable method—Bayesian inference [72,73]. According to
the Bayes’ theorem, a posterior probability pðϑjd;HÞ on
parameters ϑ from data d under a given hypothesis H is
given by:

pðϑjd;HÞ¼pðdjϑ;HÞpðϑjHÞ
pðdjHÞ ¼ pðdjϑ;HÞpðϑjHÞR

dϑpðdjϑ;HÞpðϑjHÞ :

ð8Þ

Here pðdjϑ;HÞ is the likelihood function while pðϑjHÞ is
the prior on ϑ. With a stationary Gaussian noise, the log
likelihood function logpðdjϑ;HÞ can be expressed as:

logpðdjϑ;HÞ ¼ log ᾱ −
1

2

X
k

hdk − hkðϑÞjdk − hkðϑÞi;

ð9Þ

where the index k refers to different detectors and log ᾱ is
the normalization factor while dk and hkðϑÞ are the data and
waveform templates from given detectors. The inner
product between complex functions a and b is defined as:

haðtÞjbðtÞi ¼ 2

Z
fhigh

flow

ã�ðfÞb̃ðfÞ þ ãðfÞb̃�ðfÞ
SnðfÞ

df: ð10Þ

Here � refers to a complex conjugate, SnðfÞ is the power
spectral density (PSD) of given detectors, flow is the low
frequency cutoff of GW data (to be explained later), and
fhigh ¼ 0.018=M [54] is the approximate maximum fre-
quency at the inspiral stage. Notice that fhigh is not a fixed
number but varies among different MCMC realizations.
For our analysis, the parameters are those in GR plus the

EdGB coupling constant
ffiffiffiffiffiffiffiffi
αGB

p
:

ϑ¼ðM;q;a1;a2;θ1;θ2;ϕ1;ϕ2;α;δ;ψ ; ι;ϕref ;tc;DL;
ffiffiffiffiffiffiffiffi
αGB

p Þ:
ð11Þ

Here M ¼ ðm1m2Þ3=5=M1=5 is the detector frame chirp
mass, q ¼ m2=m1ð< 1Þ is the mass ratio, aA are the
dimensionless spin magnitudes while ðθA;ϕAÞ are the polar
and azimuthal angles of the spin angular momentum of the
Ath body, ðα; δÞ are the sky location of the binary (right
ascension and declination), ψ is the polarization angle of
GWs with respect to the earth-centered coordinates, ι is the
inclination angle of the binary’s orbital angular momentum
relative to the detector’s line of sight, ϕref is the reference
phase at the reference frequency, tc is the coalescence time,
and DL is the luminosity distance.
We find posterior distributions on all parameters ϑ for

GW events taken from Gravitational Wave Open Science
Center (GWOSC) [74] as follows. We perform MCMC
samplings through the PyCBC package [75,76] and
emcee_pt sampler [77] with 500 walkers and 3 temps.
We analyze 32 s of data for GW200105 and 64 s of data for
GW200115. Regarding the low frequency cutoff, we set
flow ¼ 20 Hz except for LIGO Livingston for GW200115,
where flow ¼ 25 Hz was used to avoid some excess noise
localized at low frequency [50]. Regarding priors, we
assume a uniform distribution on

ffiffiffiffiffiffiffiffi
αGB

p
with [0, 5] km

for GW200105, GW200115, and GW190814 (BBH), and
[0, 15] km for GW190814 (NSBH). As for spin priors, we
adopt isotropic spin distribution on ðθA;ϕAÞ with a high-
spin prior on magnitude, a1 and a2 ≲ 0.99, for all of the
MCMC analyses.
For the base waveform model in GR, we adopt

IMRPhenomXPHM (that is also used in [48]) from
LALSimulation package [78], which is a phenomenologi-
cal model in the frequency domain that includes spin
precession and higher order multipole radiation modes.
As the ðl; mÞ ¼ ð3; 3Þ mode is found to be non-negligible
for GW200105, GW200115, and GW190814 [50,68], we
include this mode in these events while we only consider
the dominant ðl; mÞ ¼ ð2; 2Þ mode for GW151226. We
adopt IMRPhenomXPHM model that was constructed for
BBHs. As for NSBHs, the tidal effects were found to be
negligible [50] for the events considered in this paper, and
thus it is safe to adopt the same waveform model.

B. Fisher analysis

We next explain the second method for the data analysis,
namely the Fisher information matrix (FIM) method
[65,79–81], which is valid when the SNR is large and
the noise is stationary and Gaussian.
We begin by expanding the log-likelihood function at the

maximum likelihood point ϑML for a given hypothesis H:

logpðdjϑ;HÞ ∝ −
1

2

X
k

hdk − hkðϑÞjdk − hkðϑÞi;

∝ −
1

2

X
k

ΓðkÞ
ij ΔϑiΔϑj; ð12Þ
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where Δϑi ¼ ϑi;ML − ϑi is the error of a given parameter

relative to the value at maximum likelihood point and ΓðkÞ
ij

is the FIM evaluated at the maximum likelihood point ϑML:

ΓðkÞ
ij ¼

�∂hðϑÞ
∂ϑi

���� ∂hðϑÞ∂ϑj

�����
ϑML

; Γij ¼
X
k

ΓðkÞ
ij ; ð13Þ

where the inner product is given in Eq. (10) with the power

spectral density SðkÞn for the kth detector. Notice that the
elements of FIM are partial derivatives of the waveform
template with respect to given parameters. Similar to the
Bayseian inference, one can introduce a prior to find the
posterior distribution on ϑ. We follow [82] and impose a

Gaussian prior, for simplicity, with a standard deviation σð0Þ
ϑi

on each parameter. FIM then becomes

Γ̃ij ¼
1

ðσð0Þ
θi
Þ2
δij þ Γij: ð14Þ

The inverse of the FIM is an estimator of the error
covariance matrix Σij. The standard error is the square root
of the diagonal elements of the covariance matrix. For a
given parameter ϑi, the standard error can be expressed as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðδθiÞ2i

q
¼

ffiffiffiffiffiffi
Σii

p
; Σij ¼ ðΓ̃−1Þij: ð15Þ

Regarding the base waveform in GR, we follow [18] and
use IMRPhenomD instead of IMRPhenomXPHM that was
used for the Bayesian inference analysis (as explained in
Sec. III A). The former is a simpler version of the latter in
the sense that it is valid only for spin-aligned systems (i.e.,
no spin precession) and includes only the dominant mode.
This simplification is justified as we only use the FIM
analysis to cross check the results from the Bayesian
inference which is more robust. Moreover, Perkins et al.
[26] showed that the difference in the waveform models
between IMRPhenomPv2 (a precessing model similar to
IMRPhenomXPHM but only includes the dominant mode)
and IMRPhenomD changes the bound on

ffiffiffiffiffiffiffiffi
αGB

p
only by

∼20%. For simplicity, we use a sky-averaged waveform
(and rescale the amplitude so that the SNRmatches with the
observed one) and the parameters for this second method
are as follows:

ϑ ¼ ðM; q; a1; a2;ϕref ; tc; DL; α2GBÞ: ð16Þ

Notice that we take α2GB as our EdGB parameter instead offfiffiffiffiffiffiffiffi
αGB

p
. This is because the former is what enters directly in

the waveform and if one chooses to use the latter, the Fisher
matrix becomes singular when we take the fiducial value as
αGB ¼ 0 (for the fiducial values of other parameters, we use
those reported by LVC and set ϕref ¼ tc ¼ 0). We impose a

Gaussian prior [82] with the standard deviation of σa1 ¼
σa2 ¼ 1 and σϕref

¼ π.

IV. RESULTS

A. Leading correction

We now present our results. Constraints on
ffiffiffiffiffiffiffiffi
αGB

p
from

various GW events with Bayesian and Fisher analyses are
summarized in Table II.1 Here, we only included the
leading −1PN correction to the waveform phase.
Observe that the bounds from the two analyses for each
GW event agree within a factor of ∼3. Since the phase
corrections are derived within the small coupling approxi-
mation, we need to check whether the bounds presented
here satisfies this approximation. Following [26], we
require

16π
α2GB
m4

≤ 0.5; ð17Þ

where m is the smallest length scale in the binary. We
choose m ¼ m2 (the mass of the smaller BH) for BBH
whilem ¼ m1 (the mass of the BH) for NSBH.2 We present
in Table II the upper limit on

ffiffiffiffiffiffiffiffi
αGB

p
that satisfies the above

bound. Notice that all the Fisher and Bayesian bounds
satisfy the small coupling approximation and thus are
reliable. Notice also that our Fisher and Bayesian results
for GW151226 and GW190814 (BBH) are consistent with
those in [26,48].3 Our results are also roughly consistent
with the forecast made in [49] for bounds on

ffiffiffiffiffiffiffiffi
αGB

p
with

NSBHs derived through a Fisher analysis. For example, the
bound for a BH mass of 8 M⊙ and an SNR of 8 (similar to
GW200115 where the BH mass is 5.7 M⊙ and an SNR of
11.4 [50]) was found to be

ffiffiffiffiffiffiffiffi
αGB

p ≲ 0.4 km with advanced
LIGO’s design sensitivity which has a slightly different
shape for the noise curve than that with O3 detectors.
The most stringent constraint comes from GW190814

(BBH) though the event is still consistent with NSBH and
thus such a bound may not be robust. The reason why the
bound on

ffiffiffiffiffiffiffiffi
αGB

p
is stronger for BBH than NSBH for

GW190814 can be understood as follows. First, notice that
the leading correction to the phase is proportional to
ðm2

1s2 −m2
2s1Þ2=M4 [see Eq. (A7)]. Second, let us consider

1Notice that there are some differences in Bayesian and Fisher
analyses, such as the waveform modeling (PhenomXPHM vs
IMRPhenomD), sGB parameter (

ffiffiffi
α

p
sGB vs α2sGB) and its prior

(uniform vs Gaussian). This may explain why Fisher bounds are
weaker than the Bayesian ones in some cases.

2For simplicity, we use the mass estimates found by LVC
assuming GR while Ref. [26] used the median values of the
masses from posterior distributions including

ffiffiffiffiffiffiffiffi
αGB

p
.

3Perhaps a small discrepancy in the results for GW190814
(BBH) is due to the fact that we vary the coalescence time tc in
our Bayesian inference while it seems that Ref. [48] fixed this
parameter (at least the posterior distribution on this parameter is
not shown in Appendix A of [48]).
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the case m1 ≫ m2 for simplicity. In this case, we find
c−1 ∝ 1 for BBH while c−1 ∝ q4 for NSBH (the scalar
charge s2 is 0 for a NS). Thus, the EdGB correction can be
much larger for BBH than NSBH.
Besides constraints from the events GW151226 and

GW190814 (BBH) which have already been derived in the
previous works [26,48], we here derived bounds from
NSBHs (GW200105, GW200115, and GW190814) for the
first time. We present the posterior distributions for

ffiffiffiffiffiffiffiffi
αGB

p
for these events in Fig. 1. The bound from GW200115 isffiffiffiffiffiffiffiffi
αGB

p ≲ 1.33 km, which is stronger than the bound
obtained in [26] by stacking several BBHs from GWTC-
1 and GWTC-2 catalogs (

ffiffiffiffiffiffiffiffi
αGB

p ≲ 1.7 km). Observe that
the posterior distributions are quite different from Gaussian
centered at

ffiffiffiffiffiffiffiffi
αGB

p ¼ 0, which partially explains the

difference between the Fisher and Bayesian results (see
also Table II, Fig. 2, and Fig. 3 in [26]).
Furthermore, we derive combined bounds by multiply-

ing normalized posterior histograms on
ffiffiffiffiffiffiffiffi
αGB

p 4 from
GW200105, GW200115, GW190814 (with the NSBH
assumption that gives us a more conservative bound),
and combined BBH bounds in [26]. We found a stringent
bound of

ffiffiffiffiffiffiffiffi
αGB

p ≲ 1.18 km through the Bayesian analysis
as shown in Table II and Fig. 1.

B. Effects of higher PN corrections

We next study the effect of higher PN corrections to the
waveform phase by including PN corrections up to 2PN as
presented in the Appendix. Perkins et al. [26] carried out a
similar analysis though such higher PN corrections were
not available at that time. Thus, the authors considered
three different ways to parametrize the unknown 0PN
correction (which is 1PN higher than the leading −1PN
correction) based on the functional forms at 1PN order in
GR and the leading −1PN EdGB corrections. They then
marginalized over such a parameter and concluded that
higher PN corrections do not affect the results much and the
bounds derived with the leading correction are robust. We
check this outcome by using explicit forms of the higher
PN corrections in EdGB gravity.
Figure 2 presents posteriors on

ffiffiffiffiffiffiffiffi
αGB

p
for GW200105

and GW200115 with and without higher PN corrections,
while Fig. 3 shows corresponding corner plots on

ffiffiffiffiffiffiffiffi
αGB

p
,

M and q. Notice that the inclusion of the higher PN
corrections does not affect the posteriors much, especially
for GW200115. The 90% credible upper bound on

ffiffiffiffiffiffiffiffi
αGB

p
improves from the case with the leading correction by

TABLE II. Constraints on
ffiffiffiffiffiffiffiffi
αGB

p
[km] at 90% credible level with Fisher analysis and Bayesian inference from

selected NSBH and BBH events. For GW190814, we consider both NSBH and BBH possibilities due to the
uncertainty in the nature of the secondary object. These constraints are derived by using the leading phase correction
at −1PN order, which are improved by approximately 7–15% if we include higher PN corrections. Our results
for GW190814 (BBH) and GW151226 are consistent with those found in previous work shown in brackets. The last
column shows the bound by combining posteriors from GW200105, GW200115, GW190814 (NSBH), and
the combined posterior from selected BBHs from GWTC-1 and GWTC-2 catalogs obtained in [26]. The last row
shows the upper limits on

ffiffiffiffiffiffiffiffi
αGB

p
that is valid within the small coupling approximation [Eq. (17)]. Observe that all

the bounds from the Fisher and Bayesian analyses are within these upper limits, showing the validity of our
results.

GW200105 GW200115 GW190814 GW151226

CombinedNSBH NSBH NSBH BBH BBH

Fisher 1.55 0.91 7.39 0.90 4.19 0.59
(2.51 [26])

Bayesian 1.90 1.33 2.72 0.37 3.43 1.18
(0.4 [48]) (4.4 [26])

Small coupling limit 4.40 2.94 11.4 1.27 3.81 —

FIG. 1. Posterior probability distributions for
ffiffiffiffiffiffiffiffi
αGB

p
from

selected GW events. We also show an upper bound on
ffiffiffiffiffiffiffiffi
αGB

p
at 90% credible level for each event as vertical lines, which
indicates the result is consistent with GR. The posteriors are
found by including only the leading EdGB correction to the phase
at −1PN order.

4This corresponds to the second method discussed in Sec. IIIE
of [26] for obtaining combined bounds.
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14.5% for GW200105 and 6.9% for GW200115 respec-
tively. These findings are consistent with those in [26] and a
very recent work [83] that investigated the improvement
one obtains when including higher PN order terms.

V. CONCLUSIONS AND DISCUSSION

In this paper, we derived bounds on EdGB gravity using
GWs from NSBH binaries. Using the leading PN correc-
tion, we found

ffiffiffiffiffiffiffiffi
αGB

p ≲ 1.33 km as a 90% credible limit
from GW200115, which is stronger than the bound in [26]
found by combining selected BBHs from GWTC-1 and
GWTC-2 catalogs. We also derived combined bounds by
stacking posterior distributions on

ffiffiffiffiffiffiffiffi
αGB

p
from GW200105,

GW200115, GW190814 and the combined posteriors from
selected BBHs in [26], and found

ffiffiffiffiffiffiffiffi
αGB

p ≲ 1.18 km. We
further derived higher PN corrections in the waveform
phase up to 2PN order from the results in scalar-tensor
theories [57]. Using these, we improved bounds on

ffiffiffiffiffiffiffiffi
αGB

p
for GW200105 and GW200115 from the case with leading
PN correction alone by 14.5% and 6.9% respectively.
The analysis carried out here can easily be extended to

probe other theories of gravity. We looked at constraining
dynamical Chern-Simons gravity [84], which is a parity-
violating quadratic gravity whose leading PN correction to
the phase is derived in [85]. Similar to the case with BBHs
[18,25,26], we were not able to find meaningful bounds
that satisfy the small coupling approximation. For future
work, one could consider, e.g., sGB gravity with the
coupling function fðϕÞ ∝ ϕ2 or fðϕÞ ∝ 1 − e−6ϕ

2

that
admits spontaneous scalarization of BHs [41,43].

FIG. 2. A comparison of the posteriors on
ffiffiffiffiffiffiffiffi
αGB

p
from the

leading −1PN correction and those including higher PN correc-
tions (up to 2PN) for GW200105 (top) and GW200115 (bottom).
Observe that the 90% upper bounds on

ffiffiffi
α

p
GB are improved by

14.5% for GW200105 and 6.9% for GW200115, respectively.

FIG. 3. Posterior probability distributions for the EdGB coupling constant
ffiffiffiffiffiffiffiffi
αGB

p
, the chirp mass M, and the mass ratio q from

GW200105 (left) and GW200115 (right). We compare the marginal posterior distributions for the case with the leading EdGB correction
at −1PN order (blue) and the case including higher PN orders up to 2PN (orange). The purple shaded regions indicate the posterior
probabilities of the latter case and the solid lines represent the 90% credible regions for the two cases. The vertical dashed lines show the
one-sided 90% confidence interval for

ffiffiffiffiffiffiffiffi
αGB

p
and the two-sided 90% credible intervals for M and q.
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APPENDIX: EdGB CORRECTIONS TO
GRAVITATIONAL WAVEFORMS

In this appendix, we explain how to map the waveform
(for nonspinning BBHs) in scalar-tensor theories [57] to
that in EdGB gravity. The former is valid to 2PN order
higher than the leading for each of tensor and scalar
emission.
The waveform in scalar-tensor theories is derived in the

Jordan frame while EdGB gravity is in the Einstein frame.
Therefore, we first turn the former into the Einstein frame.
This can be realized by using the mapping provided in
Appendix A of [57]. After this transformation, the wave-
form is given in terms of the scalar charge αA and its
derivative βA for the Ath body.
The next step is to find these charges in EdGB gravity

and substitute this into the waveform. We can compute
these following [86] which uses a slightly different con-
vention for sGB gravity:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2ð∇φÞ2 þ αGBf̄ðφÞR2
GB� þ Sm:

ðA1Þ

One can perform the following rescaling in the scalar field
φ and the identification of the function f̄ðφÞ to recover the
action in Eq. (5):

f̄ðφÞ ¼ 2
ffiffiffiffiffiffiffiffi
16π

p
φ; φ ¼

ffiffiffiffiffiffiffiffi
16π

p

2
ϕ: ðA2Þ

From this, αA and βA for a nonrotating BH to leading order
in αGB are given by:

αBHA ¼ −
αGBf̄0ðφ0Þ

2m2
A

¼ −
ffiffiffiffiffiffiffiffi
16π

p
αGB

m2
A

; ðA3Þ

βBHA ¼ −
α2GBf̄

0ðφ0Þ2
2m2

A
¼ −

32πα2GB
m2

A
; ðA4Þ

where φ0 is the asymptotic value of the scalar field φ at
infinity. When substituting these into the waveform expres-
sion, the terms with βA enter at Oðα4GBÞ and are negligible.
For αA, we add the spin dependence as:

αBHA ¼ −
ffiffiffiffiffiffiffiffi
16π

p
sAαGB

m2
A

; ðA5Þ

where the spin dependent factor is given by: [18,61]

sA ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2A

p
− 1þ χ2A

χ2A
: ðA6Þ

This reduces to sBHA → 1 in the limit χA → 0. For NSs,
αNSA ¼ Oðα3GBÞ and is negligible while βNSA has not been
computed. Though we expect the αGB dependence to be the
same as BH and ignore such terms in the waveform.
Using these charge expressions in the dominant har-

monics (l ¼ m ¼ 2) of the waveform and keeping only to
Oðα2GBÞ, EdGB corrections to the waveform can be
expressed as in Eq. (7) with the coefficients given as
follows:

c−1 ¼ −
5π

448

ðm2
1s2 −m2

2s1Þ2
η5M4

; ðA7Þ

c0 ¼ −
5π

43008

ð659þ 728ηÞðm2
1s2 −m2

2s1Þ2
η5M4

þ 5π

8600

s1s2
η3

;

ðA8Þ

c0.5 ¼
75π2

448

ðm2
1s2 −m2

2s1Þ2
η5M4

; ðA9Þ
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c1 ¼ −
5π

48384

ðm2
1s2 þm2

2s1Þ2ð535þ 924ηÞ
η5M4

−
5π

2016

s1s2ð743þ 924ηÞ
η3

−
25π

576

ðm2
1s2 −m2

2s1Þ2
η5M4

�
12497995

1016064
−
11ðm1 −m2Þðm2

1s2 þm2
2s1Þ

2Mðm2
1s2 −m2

2s1Þ
þ 15407η

1440
þ 165η2

16

�
; ðA10Þ

c1.5 ¼
π2

2

ðm2
1s2 −m2

2s1Þ2
η5M4

−
3fGB3
32η

; ðA11Þ

c2 ¼
5π

32514048

1

η5M5
½ðm5

1s
2
2 þm5

2s
2
1Þð−4341025þ 65553264η − 684432η2Þ

þ ηM2ðm3
1s

2
2 þm3

2s
2
1Þð20044511þ 65553264η − 684432η2Þ

þ 42η2M5s1s2ð1029619 − 36387504η − 7970256η2Þ� − 15fGB4
64η

: ðA12Þ

Here η≡m1m2=M2 is the symmetric mass ratio while
fGB3 and fGB4 represent our ignorance of the correction to
the tensor non-dipole emission in EdGB gravity at 1.5PN
and 2PN orders.5 The above corrections can be mapped to
the parametrized post-Einsteinian (PPE) framework
[47,87,88] of

δΨ ¼
X
i

βPPEi v−5þ2i; ðA13Þ

with

βPPEi ¼ α2GB
M4

ci: ðA14Þ

The leading −1PN term (c−1 or βPPE−1 ) derived here agrees
with those found in [18,33].
Figure 4 presents each PN correction term in the phase

against the GW frequency f for GW200115, together with
the leading GR term. We chose

ffiffiffiffiffiffiffiffi
αGB

p ¼ 1.33 km that is the
90% credible limit found through our Bayesian inference in
Table II. Notice that the EdGB corrections are subdominant
to GR by at least an order of magnitude. Notice also that the
leading EdGB correction at −1PN order dominates higher
PN contributions at f ≲ 200 Hz and the latter becomes
only important when the frequency becomes high (though
the noise becomes larger as the frequency becomes higher),
which explains why higher PN corrections do not affect the
bound on

ffiffiffiffiffiffiffiffi
αGB

p
much. It is interesting to note that for

f ≳ 200 Hz, the EdGB phase is dominated by the con-
tribution at 1.5PN order, though the phase is still incom-
plete at this order (we have set the unknown contributions
fGB3 and fGB4 to 0 in Fig. 4).

Let us comment on up to which PN order the above
waveform corrections are complete. The αGB dependence
in the above corrections enter only through the scalar
charges αA. There are other contributions to the waveform
where αGB appears explicitly though such contributions
enter at 3PN order and are negligible for our purpose.6 For
nonspinning binaries, they are complete up to 1PN order.
The expressions at 1.5PN and 2PN include currently
unknown fGB3 and fGB4 but they also have other missing
contributions, such as the scalar dipole radiation at 1.5PN
and 2PN orders (which correspond to 2.5PN and 3PN
relative to the leading −1PN contribution) and the correc-
tion to the binding energy or Kepler’s law at 3PN that
couples to the −1PN dipole radiation and enter at 2PN in
the waveform. For spinning binaries, the waveform is
complete only up to 0PN order as the effect of spins are
only included through the scalar charges αA. Missing
contributions include e.g., a spin-orbital coupling in the
binding energy at 1.5PN order that couples with the leading
dipole radiation to enter at 0.5PN in the waveform.
We end by comparing the 0PN corrections found here

with different functional forms considered in [26]. Using
Eqs. (A7) and (A8), the 0PN correction to the phase can be
expressed as:

δΨ0PN ¼ 659þ 728η

96
v2δΨ−1PN þ 5π

16

s1s2
η3

α2GB
M4

v−5: ðA15Þ

The first term is similar to one of the functional forms
considered in [26]:

5We have replaced fSTi in [57] to ðα2GB=M4ÞfGBi for i ¼ 3, 4.

6We count the PN order in powers of v=cwhile Shilarirou et al.
[55,56] counts in powers of 1=c. With the latter counting, the αGB
dependence other than scalar charges enters at 1PN.
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δΨðPNSY;1Þ
0PN ¼ 5

756
ð743þ 924ηÞγu2δΨ−1PN; ðA16Þ

where γ is a constant that does not depend on binary
parameters, u≡ ðπMfÞ1=3 and the η dependence is taken
from that in the phase at 1PN order in GR. The η
dependence in the two expressions,however, are different.
The second term in Eq. (A15) is similar to another
functional form considered in [26]:

ΨðPNSY;2Þ
0PN ¼ 16π

α2GB
M4

γu−5; ðA17Þ

though again, the expressions are different. This is because
if one maps the second term in Eq. (A15) to Eq. (A17), γ
depends on binary parameters through η and sA.
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