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Gravitational-wave (GW) memory effects produce permanent shifts in the GW strain and its time integrals
after the passage of a burst of GWs. Their presence is closely tied to the symmetries of asymptotically flat
spacetimes and the corresponding fluxes of conserved charges conjugate to these symmetries. While the
phenomenology of GW memory effects (particularly for compact-binary mergers) is now well understood in
general relativity, it is less well understood in the many modifications to general relativity. We recently,
however, computed asymptotically flat solutions, symmetries, conserved quantities, and GWmemory effects
in one such modified theory with an additional scalar degree of freedom, Brans-Dicke theory. In this paper,
we apply our results from this earlier work to compute the GW memory effects from compact binaries in the
post-Newtonian approximation. In addition to taking the post-Newtonian limit of these effects, wework in the
approximation that the energy and angular momentum losses through scalar radiation are small compared to
the energy and angular momentum losses through (tensor) gravitational radiation. We focus on the tensor (as
opposed to scalar) GW memory effect, which we compute through Newtonian order, and the small
differences induced by the radiation of scalar waves at this order. Specifically, we compute the nonlinear parts
of the tensor displacement and spin GW memory effects produced during the inspiral of quasicircular,
nonprecessing binaries in Brans-Dicke theory. Because the energy radiated through the scalar dipole moment
appears as a negative post-Newtonian order-effect, then in this approximation, the displacement memory has
a logarithmic dependence on the post-Newtonian parameter and the spin memory has a relative minus-one-
post-Newtonian-order correction; these corrections, however, are ultimately small because they are related to
the total energy and angular momentum radiated in the scalar field, respectively. At Newtonian order, the
scalar radiation also gives rise to a sky pattern of the memory effect around an isolated source that differs from
that of the memory effect in general relativity.

DOI: 10.1103/PhysRevD.104.104010

I. INTRODUCTION

Following the first detection of gravitational waves
(GWs) in 2015 [1], Advanced LIGO and Virgo have
discovered almost 50 binary-merger events over their first
two and a half observing runs [2,3]. These events allowed
general relativity (GR) to be studied and tested in the
dynamical and strong-field regime of the theory that had
not been well constrained prior to LIGO and Virgo’s
observations. The results of these tests of GR are summa-
rized in a number of papers, for example [4–10], which
have all found the observed GWs to be consistent with the
predictions of GR, within the statistical (and systematic)
errors of the measurements. There remain GW effects that
are still too weak to be extracted from the detector’s noise,
but which hold promise for revealing some of the more

subtle nonlinear and dynamical effects in GR. One such
class of strong-field effects (which will be the subject of
this paper) go by the name of gravitational-wave memory
effects, because these effects are characterized by lasting
changes in the GW strain and its time integrals that develop
over the full history of the evolution of the system [11–13].
Although these effects have not yet been observed, they
could be detected in a population of binary-black-hole
mergers measured by the Advanced LIGO and Virgo
detectors over an observation period of several years
[14–16]; they could also be detected from an individual
event by the space-based detector LISA [17,18], third-
generation ground-based detectors like Einstein Telescope
or Cosmic Explorer [19], or pulsar timing arrays [20].
In GR, gravitational-wave memory effects are closely

related to the symmetry group of asymptotically flat space-
times, the Bondi-Metzner-Sachs (BMS) group [21–23] and
its generalizations. We remind the reader that the BMS group
is a semidirect product of an infinite-dimensional group of
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supertranslations (which are a kind of “angle-dependent”
translations around an isolated source) and the Lorentz group.
The charges conjugate to these symmetries are the relativistic
angular momentum for the Lorentz symmetries [and angular
momentum can be split into an intrinsic and a center-of-mass
(CM)part,which correspond to the rotations andLorentz boots
symmetries, respectively] and the supermomentum for the
supertranslations symmetries (see, e.g., [24–27]). There are
more recent, and larger, symmetry algebras studied in which
the Lorentz symmetries are extended to include all the
conformal Killing vectors of the 2-sphere [28–30] (not just
thegloballydefinedones) or all smoothdiffeomorphismsof the
2-sphere [31,32]. In the first case the symmetries are called
superrotations, and in the second, they are called super-Lorentz
transformations; with the appropriate notion of supertransla-
tions, they form the extended and generalized BMS algebras,
respectively. The conserved charges corresponding to super-
rotations (and also the super Lorentz transformations) were
called superspin and super CMwhen decomposed into the two
parts of opposite parities [33–35].
As GWs are radiated from a spacetime, fluxes and hence

changes in the charges of the (generalized) BMS algebra
generate GW memory effects. The displacement memory
effect is produced by changes in the supermomentum charges,
and the preferred shear-free frames before and after the burst
of GWs are related by a supertranslation (see, e.g., [33,36]);
the memory can be measured by nearby freely falling and
comoving observers, who experience a lasting relative dis-
placement. Memory effects associated with changes in the
super-Lorentz charges and their fluxes are called the spin and
CM GW memory effects [34,35,37].1 These memory effects
are related to time integrals of the GW strain [34,35,37], and
they could bemeasuredbynearby freely falling observerswith
an initial relative velocity [39]. The (generalized) BMS flux
balance laws provide a useful way to approximately compute
theGWmemory effects starting fromgravitationalwaveforms
without the GW memory effect, and this technique has been
applied for the displacement, spin, and CM GW memory
effects (see Refs. [35,35,40–45]).
The extent to which the relationship between symmetries,

conserved quantities, and memory effects might hold in
modified theories of gravity is not immediately apparent.
First, modified theories of gravity often admit additional
polarizations of GWs [46–48], and it is natural to suppose
there would be memory effects associated with the additional
polarizations (and there are such effects [49–52]). Second,
the asymptotic fall-off conditions on the fields in the

modified gravity theory (i.e., what one defines as an
asymptotically flat solution) could conceivably differ from
those in GR. Different boundary conditions could lead to
different symmetry algebras and conserved quantities; this
could in turn change both the types of possible memory
effects and their relations to fluxes of conserved quantities.
It was with these considerations in mind that we recently
investigated asymptotic symmetries, conserved quantities,
and memory effects in one specific modified theory of
gravity: Brans-Dicke (BD) theory [53].
BD theory, is a so-called scalar-tensor theory in which a

massless scalar field is coupled nonminimally to gravity
(namely, there is a product of the scalar field and Ricci
scalar in the theory’s action). Scalar-tensor theories appear
in the context of string theory and in phenomenological
models used to explain the late-time acceleration of the
Universe [54–56] as well as cosmic inflation [57,58]. The
massless scalar field leads to an additional “breathing”
polarization of GWs in BD theory; for a freely falling ring
of particles, this breathing mode produces a relative
contraction and expansion in the plane transverse to the
direction of GW propagation.
Recently, we (in Ref. [50]) and Hou and Zhu (in Ref. [49])

independently studied BD theory in the Bondi-Sachs frame-
work. In addition to arriving at similar boundary conditions
for asymptotically flat solutions in BD theory, we both
showed that the symmetry group of asymptotically flat
spacetimes in such a theory is the same as the (extended
or generalized) BMS group. In Ref. [50], we observed that in
addition to the GW memory effects present in GR, there are
two more memory effects in BD theory related to the
breathing-mode polarization. We will adopt the nomencla-
ture used in Ref. [51], which calls the GWmemory effects in
the tensor polarizations by the name “tensor”memory effects
and those associated with the breathing polarization by
“scalar” memory effects.2 We [50], as well as Hou and Zhu
[61], derived the conserved charges associated with the BMS
symmetries using the Wald-Zoupas prescription, and we
determined that the charges included contributions coming
from the scalar field.
Because Ref. [50] (and Refs. [49,61]) provided the

necessary framework in which to compute and interpret
the GW memory effects in BD theory, we now turn to
applying the results of Ref. [50] to construct the GW
memory waveform from compact binary systems (as one
application of this formalism). We will focus on the memory
effects that appear in the tensor polarizations of the GWs,

1Note that the spin and CM GW memory effects are not
related to a super-Lorentz transformation between certain
canonical reference frames before and after a burst of GWs.
There is a memory effect dubbed a refraction (or velocity-kick)
memory that does correspond to a super-Lorentz transition
between early time and late times [38], but such solutions do not
preserve the asymptotically flat boundary conditions of Bondi
and Sachs [21,22].

2The terminology “scalar” and “tensor” memory effects also
has been used after Du and Nishizawa [51] by Satishchandran
and Wald [59] in the context of GR to refer to different classes of
“ordinary” memory effects (in the sense of Ref. [60]); since we
work in BD theory, and we compute “null” memory effects
throughout this paper, we think the sense in which we use this
naming should be clear (with this footnote as an attempt to dispel
any potential lingering ambiguities).
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because we can use the BMS flux balance laws to construct
nonlinear memory effects based on linearized (or nonlinear)
waveforms that do not include the memory effects. The
procedure in BD theory is closely analogous to that used in
GR [35,35,40–45]. The two new memory effects in the
scalar polarizations of the GWs are related to shifts in the
scalar field and its time integral. It was recently shown in
Ref. [62] that the scalar memory effects are closely related to
the large gauge symmetries of 2-form theory that was shown
in Ref. [63] to be dual to the scalar field theory. The
symplectic flux of the scalar field is linear in the field and in
the large gauge transformation; as a result, we cannot use the
flux balance laws to construct a nonlinear memory of the
scalar waves as one can for the tensor waves via the BMS
flux-balance laws (one must instead solve the scalar field
equation directly to determine the scalar memory effect).
Since our focus is on the application of the BMS balance
laws in BD theory to determine the GW memory effects, we
will focus here on computing the tensor memory effects in
BD theory, which differ from those of GR due to the
emission of scalar radiation.
In BD theory, tensor GWmemory effects are generated by

energy and angular momentum fluxes of both tensor and
scalar radiation. Because solar-system experiments [64] and
pulsar observations [65,66] have constrained the amount of
scalar radiation in BD theory, we assume that the scalar
radiation leads to energy and angular momentum fluxes that
are small compared to the leading quadrupole fluxes of
tensor GWs in GR. Note, however, that the scalar field’s
fluxes appear at a lower post-Newtonian (PN) than the tensor
GW fluxes do (see, e.g., Ref. [67] for a review of the post-
Newtonian, as well as the multipolar post-Minkowskian,
expansion). For a fixed value of the small (dimensionless)
inverse coupling parameter in BD theory, there is thus a
smallest PN parameter at which our approximation of the
smaller scalar-field fluxes holds. To compute GW memory
effects in BD theory at Newtonian order, we will need to
include higher-PN-order terms (in the frequency evolution
and Kepler’s law, for example) than we would need to go to
Newtonian order in the calculation in GR. In addition, we
will also truncate our results at a finite, but smallest PN
parameter, which is the smallest value for which our
approximation holds (unlike in GR, in which we can take
the PN parameter to zero).3

We computed our memory effects using the oscillatory
waveforms computed in, e.g., [68–70] after verifying that we
can relate the waveforms computed in harmonic coordinates
in these references to our Bondi-Sachs quantities. The
memory effects that we compute in BD theory, have small
terms (proportional to the small BD parameter) that appear at
a PN order less than the leading Newtonian order. We can
relate part of our results to a part of the waveform computed
by Lang in Ref. [68,69] using the direct integration of the
relaxed Einstein equations for the scalar and tensor wave-
forms up to 1.5PN and 2PN orders, respectively. Lang found
no scalar GW memory effects, but he computed a (heredi-
tary) tensor GW memory effect formally at 1.5PN order that
arises from the flux of energy radiated in the scalar waves.
Upon integrating this 1.5PN term for compact-binary source
in our approximation, this term leads to a memory effect that
depends logarithmically on the PN parameter (this is
analogous to how a formally 2.5PN order term in GR,
when integrated for compact binaries, leads to a Newtonian-
order effect in the waveform [71,72]). If we compare our
result in the Bondi-Sachs framework with Lang’s harmonic-
coordinate expression, the two terms agree. The BMS flux
balance laws are not as helpful for verifying the absence of
scalar memory effects at 1.5PN order.
Our BMS flux-balance approach allows us to compute

the Newtonian-order tensor waveforms—which have not
been computed before, as far as we are aware—that should
appear if the work of Lang [68] were extended to 2.5PN
order. We find that because of the dipole emission, the
Newtonian-order GW memory effects sourced by the
tensor-GW energy flux has contributions from current
quadrupole, mass octopole, and mass hexadecapole
moments. These higher multipole moments produce GW
memory waveforms that have a different dependence on the
inclination angle than the tensor GW memory effect in GR
at the equivalent PN order. The Newtonian GW memory
effect generated by the scalar field’s energy flux also has a
different dependence on inclination angle from that sourced
by the tensor GWs. The inclination-angle dependence of
the GW memory effect has been shown to be something
that can be tested with second- and third-generation
ground-based GW detectors [73].
The rest of the paper is organized as follows. In Sec. II,

we present a few elements of BD theory in harmonic and
Bondi coordinates. Section III lists the oscillatory radiative
mass and current multipole moments for a quasicircular,
nonspinning compact-binary inspiral (Sec. III A); it reviews
the derivation of Kepler’s law, the evolution of the orbital
frequency, and the phase of GWs in BD theory at the
necessary PN orders in our approximation (Sec. III B);
and it presents scalar multipole moments generated by an
inspiraling quasicircular, nonspinning compact binary
(Sec. III C). In Sec. IV, we compute the nonlinear dis-
placement and spin GW memory waveforms in BD theory
from the BMS fluxes. We conclude in Sec. V. We give

3Note, of course, that we could also compute the memory
effects from a PN parameter of zero up to the small PN parameter
at which the fluxes of scalar and tensor radiation have comparable
magnitudes, if we assume that the radiated fluxes are dominated
by the scalar emission. This, in fact, is the approximation used in
Ref. [68,69], for example. However, because memory effects are
most important when the fluxes are large, this early-time (or
small-PN-parameter) regime is not expected to produce a
significant GW memory effect, and we do not compute it in
this paper.
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additional results in two appendices in which we show
the coordinate transformations that relate the Bondi coor-
dinates to harmonic coordinates including relations
between the metric functions in two coordinates systems
(Appendix A), and we argue that the ordinary parts of the
GW memory effects are subleading compared to null
memory effects in BD theory (Appendix B).
Throughout this paper, we use units in which c ¼ 1, and

we also set the asymptotic value of the gravitational
constant in BD theory to 1. We use Greek indices
(μ; ν;…) to denote four-dimensional spacetime indices,
and uppercase Latin indices ðA;B; C;…Þ for indices on the
2-sphere, and lowercase Latin indices (i; j; k;…) for the
spatial indices in quasi-Cartesian harmonic coordinates.

II. WAVEFORM IN HARMONIC AND
BONDI COORDINATES

In this section, we discuss briefly the Bondi-Sachs
framework [21,22] and the harmonic-gauge waveform in
post-Newtonian theory, both of which we will use to
compute the GW memory waveform. Specifically, in
Sec. II A, we discuss BD theory in harmonic coordinates
and decompose the GW strain into radiative multipole
moments. In Sec. II B, we present BD theory in the Bondi-
Sachs framework and again perform a multipole decom-
position of the radiative data. The last part of this section
(Sec. II C) relates the multipole moments of the shear tensor
in Bondi coordinates to the radiative mass and current
multipole moments of the harmonic-gauge waveform; it
then does the same for the multipole expansion of the scalar
waveform in Bondi coordinates and harmonic coordinates.
We require both coordinate systems and frameworks,

because the nonlinear and null GW memory effects are
straightforward to compute through the BMS balance laws
in the Bondi approach, but it is more challenging to relate
the Bondi-Sachs framework to a specific solution of a
Cauchy initial-value problem. In the harmonic-gauge PN
approach, the scalar and tensor GW waveforms already
have been computed generally and for specific compact-
binary sources in, e.g., [68,69]; however, the GW memory
effects are of a sufficiently high PN order in PN theory that
they have not been fully computed in BD theory. After
relating the harmonic-gauge waveform to the shear in the
Bondi-Sachs framework, we can then determine the GW
memory waveforms using the balance laws (and thereby
avoiding high PN-order calculations).
Throughout this paper, we treat BD theory in the Jordan

frame [53], in which the action takes the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
λ

16π
R −

ω

16π
gμν

ð∂μλÞð∂νλÞ
λ

�
: ð2:1Þ

Here gμν is the Jordan-frame metric,R is the Ricci scalar of
gμν, λ is a massless scalar field with a nonminimal coupling

to gravity, and ω is a coupling constant called the BD
parameter. In this section and subsequent ones, we set the
gravitational constant at infinity to unity, i.e.,

G0 ¼
4þ 2ω

3þ 2ω

1

λ0
¼ 1; ð2:2Þ

where λ0 is the constant value that λ approaches in the limit
of infinite distances from an isolated source.

A. Waveform in harmonic coordinates

We will denote our quasi-Cartesian harmonic-gauge
coordinates by Xμ, and we will use the notation X0 ¼ t
for the time coordinate and Xi (for i ¼ 1; 2; 3) for the
spatial coordinates. We will denote the Euclidean distance

from the origin at fixed t by R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XiXjδij

q
. The tensor

GWs in BD theory are described by the transverse-trace-
lesss (TT) components of the metric perturbation, h̃TTij , and
the scalar GWs are encapsulated in the scalar field λ. Both
fields can be obtained from the metric at order 1=R, in an
expansion in inverse R, from the spatial components of the
spacetime metric gij. The metric is more conveniently
written in terms of the metric perturbation h̃ij and its trace h̃
rather than the TT part. For extracting the GWs, we need
only the part of the spacetime metric that is linear in the
fields λ and h̃ij at linear order 1=R. We write the metric in
this approximation as in Ref. [68],

gij ¼ δij þ h̃ij −
1

2
h̃δij −

�
λ

λ0
− 1

�
δij: ð2:3Þ

The scalar GWs are present in the 1=R part of λ, which we
expand as

λ ¼ λ0 þ
Ξðũ; yAÞ

R
þOðR−2Þ: ð2:4Þ

We have written the scalar field in terms of ũ ¼ t − R, the
retarded time in harmonic coordinates, and the angles
yA ≡ ðι;φÞ. The angle ι is the polar angle and φ is the
azimuthal angle of a spherical polar coordinate system.4 We
expand the TT projection of h̃ij in terms of second-rank
electric-parity and magnetic-parity tensor spherical harmon-

ics (TðeÞ;lm
ij and TðbÞ;lm

ij , respectively; see, e.g., [74]) as [67]

h̃TTij ¼ 1

R

X
l;m

½UlmðũÞTðeÞ;lm
ij þ VlmðũÞTðbÞ;lm

ij �: ð2:5Þ

4For compact binary sources, ι is the inclination angle between
the orbital angular momentum of the binary (assumed to be along
the Z axis) and φ is the azimuthal angle as measured from the
X axis.
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The sum runs over integer values of l and m with l ≥ 2 and
−l ≤ m ≤ l. The coefficients Ulm and Vlm are two sets of
radiative multipole moments which are called the mass and
current moments, respectively. Because h̃TTij is real, the mass
and current moments satisfy the following properties under
complex conjugation:

Ūlm ¼ ð−1ÞmUl;−m; V̄lm ¼ ð−1ÞmVl;−m: ð2:6Þ

We use an overline to denote the complex conjugate.
We will also use the complex gravitational waveform h

which is composed of the plus and cross polarizations as
follows:

h ¼ hþ − ih×: ð2:7Þ

We use the conventions for the polarization tensors eþij and
e×ij given in Ref. [72] or [75] to construct the polarizations

hþ ¼ h̃ijTTe
þ
ij and h× ¼ h̃ijTTe

×
ij. We expand h as in terms of

spin-weighted spherical harmonics sYlm with spin weight
s ¼ −2:

h ¼
X
l;m

hlmðũÞð−2YlmÞ: ð2:8Þ

For a nonspinning planar binary, the modes hlm are related
to the mass and current multipole moments by (see,
e.g., [67])

hlm ¼
8<
:

1ffiffi
2

p
R
Ulm ðlþm is evenÞ;

− iffiffi
2

p
R
Vlm ðlþm is oddÞ: ð2:9Þ

B. Waveform and metric in Bondi coordinates

We use ðu; r; xAÞ to denote Bondi coordinates. The
coordinate u is the retarded time, r is an areal radius,
and xA are coordinates on a 2-sphere cross sections of
constant u and r (where A ¼ 1; 2). We expand λ as a series
in 1=r as

λðu; r; xAÞ ¼ λ0 þ
λ1ðu; xAÞ

r
þOðr−2Þ: ð2:10Þ

The metric in Bondi gauge satisfies the conditions grr ¼ 0,
grA ¼ 0, and the determinant of the metric on the 2-sphere
cross sections scaled by r−4 is independent of r (and u). We
imposed a set of asymptotic boundary conditions on the
nonzero components of the metric in Bondi gauge in
Ref. [50] and postulated a Taylor series expansion of the
scalar field and metric on the 2-sphere cross sections in 1=r.
This allowed us to solve the field equations of BD theory to
obtain the following solution for the line element [50]:

ds2 ¼ −
�
1þ

_λ1
λ0
−
1

r

�
2Mþ λ1

λ0
þ 3λ1
2λ20

_λ1

��
du2

− 2

�
1 −

λ1
λ0r

�
dudrþ r2

�
qAB þ 1

r
cAB

�
dxAdxB

þ
�
ðFcAF −

ðAλ1
λ0

þ 1

r

�
−4LA þ 1

3
cABðCcBC

−
1

3λ0

�
2λ1ðBcAB þ cABðBλ1 −

1

λ0
ðAλ21

���
dudxA

þ…: ð2:11Þ

The ellipsis at the end of the equation indicates higher order
terms in powers of 1=r that we are neglecting (the terms are
of order 1=r2 except for the term proportional to dxAdxB,
which is of order unity, because of the r2 term multiplying
the expression). In Eq. (2.11), we have introduced M and
LA which are (related to) functions of integration in BD
theory that are the analogues of the Bondi mass aspect
and angular momentum aspect in GR [50]. The two-
dimensional metric qAB is the unit-sphere metric and ðA

is the covariant derivative compatible with qAB. We will
raise and lower 2-sphere indices (such as A and B) with the
metrics qAB and qAB, respectively. The overhead dot means
a partial derivative with respect to the retarded time u. The
symmetric trace-free tensor cAB is called the shear tensor,
and is related to the GW strain. The time-derivative of cAB
is a symmetric trace-free tensor known as the news tensor:

NAB ¼ ∂ucAB: ð2:12Þ

It is not constrained by the asymptotic field equations in
BD theory, and it contains information about the tensor
GWs. In GR, if the news tensor vanishes it means the
corresponding region of spacetime contains no GWs [24].
We will also expand cAB in spherical harmonics as

cAB ¼
X
l;m

ðcðeÞ;lmTðeÞ;lm
AB þ cðbÞ;lmT

ðbÞ;lm
AB Þ: ð2:13Þ

The tensor spherical harmonics can be defined from the
scalar spherical harmonics

TðeÞ;lm
AB ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 2Þ!
ðlþ 2Þ!

s
ð2ðAðB − qABĐ2ÞYlm; ð2:14aÞ

TðbÞ;lm
AB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − 2Þ!
ðlþ 2Þ!

s
ϵCðAðBÞðCYlm; ð2:14bÞ

or instead in terms of spin-weighted spherical harmonics
and a complex null dyad on the unit 2-sphere of mA and its
complex conjugate m̄A (see, e.g., [74]):
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TðeÞ;lm
AB ¼ 1ffiffiffi

2
p ð−2YlmmAmB þ 2Ylmm̄Am̄BÞ; ð2:15aÞ

TðbÞ;lm
AB ¼ −

iffiffiffi
2

p ð−2YlmmAmB − 2Ylmm̄Am̄BÞ: ð2:15bÞ

The dyad is normalized such that mAm̄A ¼ 1.

C. Relation between Bondi- and
harmonic-gauge quantities

We construct a coordinate transformation between har-
monic and Bondi gauges in Appendix A that brings the
harmonic metric at order 1=R to a Bondi-gauge metric at an
equivalent order. The procedure used is similar to that
recently outlined in Ref. [76], but it is adapted to BD theory
(rather than GR) and it is accurate only to the first nontrivial
order in 1=R. This coordinate transformation leads to a
simple relationships between cAB and h̃

TT
ij , first, and λ1 and Ξ,

second:

cABðu; xAÞ ¼ Rh̃TTij ðt − R; yAÞ∂Ani∂Bnj; ð2:16aÞ

λ1ðu; xAÞ ¼ Ξðt − R; yAÞ: ð2:16bÞ

The spatial vector ni is the unit vector pointing radially
outward at fixed t in harmonic coordinates (i.e., in the
direction of propagation for outgoing GWs). The full
transformation between the spherical polar coordinates R
and yA ¼ ðι;φÞ constructed from the quasi-Cartesian har-
monic coordinates and Bondi coordinates is given in
Appendix A; we list here the relevant leading-order parts
of the transformation needed to relate u to t − R, r to R, and
xA to yA in Eq. (2.16):

u ¼ t − R −
2M
λ0

logðRÞ þOðR−1Þ; ð2:17aÞ

r ¼ RþOðR0Þ; xA ¼ yA þOðR−2Þ: ð2:17bÞ

The second-rank tensor spherical harmonics on the unit
2-sphere in spherical and Cartesian coordinates are related
by the following transformation:

TðeÞ;lm
AB ¼ TðeÞ;lm

ij ∂Ani∂Bnj; ð2:18aÞ

TðbÞ;lm
AB ¼ TðbÞ;lm

ij ∂Ani∂Bnj: ð2:18bÞ

Combining the expressions (2.5), (2.13), and (2.16a), we
find that the multipole moments of the strain and shear are
related by

cðeÞ;lm ¼ Ulm; cðbÞ;lm ¼ Vlm; ð2:19Þ

as was given in Ref. [35] (though there the relationship was
derived through a different argument involving the
Riemann tensor in linearized gravity). The relation
(2.19) allows us to express the multipole moments of
the shear tensor in terms of multipole moments of the
harmonic-gauge TT strain tensor, once the difference
between the retarded times in harmonic and Bondi coor-
dinates in Eq. (2.17a) is taken into account.

III. POST-NEWTONIAN RADIATIVE
MULTIPOLE MOMENTS

In this section, we compute expressions for the radiative
multipole moments Ulm and Vlm, as well as the scalar
multipole moments which we will define herein. We
obtain the moments for nonspinning, quasicircular bina-
ries. We denote the total mass byM ¼ m1 þm2 (wherem1

and m2 are the individual masses), the symmetric mass-
ratio by η ¼ m1m2=M2, and orbital separation by a. We
also introduce the parameters ξ ¼ 1=ð2þ ωÞ and
x ¼ ðπMfÞ2=3, where f is the GW frequency. We will
work in the approximation in which ξ ≪ x, which corre-
sponds to assuming that the BD modifications to the
waveforms and the dynamics are small corrections to the
corresponding quantities in GR. Given that the Shapiro-
delay measurement in the solar system bounds the BD
parameter to be ω > 4 × 104 [64] (a similar bound has
been derived from the pulsar triple system PSR J0337þ
1715 [66]), this implies that our approximation is valid
when x ≫ 2.5 × 10−5. In this paper, we will compute GW
memory waveforms through Newtonian order, and we
keep BD terms that are linear in ξ. We then retain only the
terms in the radiative multipole moments at the appro-
priate powers of x and ξ to obtain Newtonian-order-
accurate memory waveforms. Because we always work to
linear order in ξ, we do not include error terms of Oðξ2Þ in
our expressions (they should be considered to be implied).
We do, however, include such error terms in the PN
parameter x, because the power of x that constitutes a
“Newtonian-order quantity” is not the same for the various
quantities that we consider in the next two sections.
We will need radiative mass and current multipole

moments at a higher PN order than those required for
computing 0PN memory effects in GR. Specifically, in
GR, one only requires the mass quadrupole moment at
Newtonian order—i.e., OðxÞ—to obtain the Newtonian-
order memory effects. In BD theory, we will need several
additional terms. First, we must compute the BD correc-
tion linear in ξ to the mass quadrupole moment. Second,
we will need the 1PN or Oðx2Þ GR terms of the mass
quadrupole moment, because they multiply −1PN terms
present in the GW phase and in the frequency evolution to
contribute to Newtonian-order memory effects. Third, we
require the current quadrupole and mass octupole
moments which begin at 0.5PN order or Oðx3=2Þ.
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Fourth, we must include the current octopole and mass
hexadecapole moments at 1PN or Oðx2Þ. We do not need
to compute the linear in ξ BD corrections to the Oðx3=2Þ
andOðx2Þ radiative multipole moments, however, because
the Newtonian-order GW memory effects produced by
them would be quadratic in ξ. For scalar multipole
moments, we require the dipole with relative 1PN cor-
rections [up to Oðx3=2Þ], the quadrupole at OðxÞ and the
octopole, which begins at Oðx3=2Þ. The scalar field
moments are all linear in ξ.

A. Radiative mass and current multipole moments

We first give the expression of lowest-order radiative
mass multipole moment U22. We decompose U22 into two
parts

U22 ¼ U0
22 þ U1;GR

22 ; ð3:1Þ

where U0
22 is the Newtonian-order part of U22, which

includes the BD corrections to linear order in ξ, and U1;GR
22

consists of the 1PN terms in U22 in GR. We can obtain the
moment U22 from the expression for h̃TTij in BD theory in
Eqs. (7.1) and (7.2a) of Ref. [68] by contracting h̃TTij with

T̄ij
ðeÞ;22 and integrating over the 2-sphere. We find that to

linear order in ξ,

U0
22 ¼ −8

ffiffiffiffiffiffi
2π

5

r
ηMxe−iϕ

�
1 −

ξ

2
−
2

3
G

�
; ð3:2Þ

where

G ¼ ξðs1 þ s2 − 2s1s2Þ: ð3:3Þ

The variables s1 and s2 denote the sensitivities (see, e.g.,
[70]) of the binary components. The quantity G is related to
the modified gravitational constant in BD theory by

G ¼ 1 − G : ð3:4Þ

The GW phase is denoted ϕðxÞ, and it differs from the
phase of the l ¼ 2,m ¼ �2modes of the waveform in GR;
we give the expression for the phase in Eq. (3.18) below.
We use the 1PN GR terms from the review article [67].
Putting these two results together, we have the following
expression for U22:

U22 ¼ −8
ffiffiffiffiffiffi
2π

5

r
ηMxe−iϕ

×

��
1 −

ξ

2
−
2

3
G

�
þ
�
55η

42
−
107

42

�
x

�
þOðx5=2Þ:

ð3:5aÞ

The term proportional to x in the square bracket is the
1PN GR term taken from [67].
As we will show in Sec. IV, to compute the GW memory

waveform at Newtonian order, we need the radiative
current quadrupole moment and several radiative mass
octopole and hexadecapole moments. To work to linear
order in ξ, we can use the GR amplitudes of the moments
(though we use the phase with the BD corrections). This
allows us to take the amplitudes from the expressions
given, e.g., in the review [67]:

V21 ¼
8

3

ffiffiffiffiffiffi
2π

5

r
ηδmx3=2e−iϕ=2 þOðx5=2Þ; ð3:5bÞ

U33 ¼ 6i

ffiffiffiffiffiffi
3π

7

r
ηδmx3=2e−3iϕ=2 þOðx5=2Þ; ð3:5cÞ

V32 ¼ i
8

3

ffiffiffiffiffi
π

14

r
Mηð1 − 3ηÞx2e−iϕ þOðx5=2Þ; ð3:5dÞ

U31 ¼ −
2i
3

ffiffiffiffiffi
π

35

r
ηδmx3=2e−iϕ=2 þOðx5=2Þ; ð3:5eÞ

U42 ¼ −
8

63

ffiffiffiffiffiffi
2π

p
Mηð1 − 3ηÞx2e−iϕ þOðx5=2Þ: ð3:5fÞ

We use the notation δm ¼ ðm1 −m2Þ. We give an expres-
sion for the phase ϕðxÞ in the next subsection.

B. Kepler’s law, frequency evolution, and GW phase

Before computing the phase, we first give an expression
for Kepler’s law, which we will need to compute the scalar
multipole moments and the frequency evolution as well as
the phase. To obtain a Newtonian-order accurate GW
memory waveform, we need to have an expression for
Kepler’s law at 1PN order. This higher order is needed,
because when evaluating the integrals involved in comput-
ing the GW memory effect, there are −1PN terms arising
from dipole radiation in the energy flux, which multiply
1PN terms in the GW frequency’s evolution and give rise to
Newtonian-order terms in the waveform. The two-body
equations of motion of nonspinning compact objects in BD
theory has been computed in Ref. [77]. For circular orbits,
the relative acceleration is proportional to the orbital
frequency squared, Ω2, and the relative separation to
1PN order. Working to linear order in ξ, the results of
Eqs. (1.4) and (1.5a) of Ref. [77] show that Kepler’s law in
BD theory (in this approximation) is

Ω2 ¼ M
a3

�
1 − G −

M
a
ð1 − 2G Þð3 − ηÞ −M

a
Gγ̄

�
: ð3:6Þ

We have introduced the parameter
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γ̄ ¼ −G−1ξð1 − 2s1Þð1 − 2s2Þ; ð3:7Þ

in the equation above and G is defined in Eq. (3.4).
Let us now compute the evolution of the GW frequency.

We again need a 1PN-order-accurate expression, which, in
full generality, contains many terms. Because we work to
linear order in ξ, the only 1PN terms that we need to obtain
a Newtonian-order expression for the GW memory wave-
forms are the GR terms in _f (i.e., the 1PN terms without ξ).5

We can then write the expression for _f ¼ df=dt in the
following form:

_f ¼ _f0 þ _f1;GR; ð3:8Þ

where _f0 is the BD expression to Newtonian order and
linear order in ξ, and _f1;GR is ξ ¼ 0 (or GR) limit of the
1PN terms. We first compute _f0 using results from
Ref. [77], and then we add to it the terms _f1;GR taken
from Ref. [78]. To compute _f0, we first use the binding
energy of a binary in BD theory from Eq. (6.14) of
Ref. [77], which is valid to 1PN order:

Eb ¼
1

2
μv2−μ

GM
a

þ 3

8
μð1− 3ηÞv4

þ 1

2
μ
GM
a

ð3þ 2γ̄þ ηÞv2þ 1

2
μð1− 2G Þ

�
M
a

�
2

: ð3:9Þ

We used μ ¼ ηM to denote the reduced mass. We will next
express the binding energy in terms of the PN parameter
x ¼ ðπMfÞ2=3. To do this it is useful to have the expres-
sions for M=a and v2 written in terms of x:

M
a

¼ x

�
1þ 1

3
G þ

�
1 −

1

3
G

��
1 −

1

3
η

�
xþ 1

3
Gγ̄x

�
þOðx3Þ; ð3:10aÞ

v ¼ ffiffiffi
x

p �
1 −

1

3
G − ð1 − G Þ

�
1 −

1

3
η

�
x −

1

3
Gγ̄x

�
þOðx5=2Þ: ð3:10bÞ

We can then substitute Eq. (3.10) into Eq. (3.9) to obtain

Eb ¼ −
1

2
μx

�
1 −

2

3
G −

1

12

�
1 −

4

3
G

�
ð9þ ηÞx − 2

3
Gγ̄x

�
þOðx3Þ: ð3:11Þ

The rate of change of energy radiated in GWs in BD
theory through Newtonian order is given by a −1PN term
plus a Newtonian term. If we define

S ¼ s1 − s2 ð3:12Þ

and we make use of expressions (6.16) and (6.19) given in
Ref. [77], then linearizing their expression in ξ, we have

_EGW ¼ 32

5
η2x5

�
5ξS2

48x
þ 1 −

7

3
G þ 5

12
Gγ̄

−
5

72
ξS2ð3þ 2ηÞ

�
þOðx11=2Þ: ð3:13Þ

Imposing energy balance _Eb ¼ − _EGW (the change in the
binding energy is equal to the energy radiated by the GWs)
and using the chain rule to write _f ¼ ðdf=dEbÞ _Eb, we can
write the Newtonian-order frequency derivative _f0 as a
function of the PN parameter x as

_f0 ¼
96η

5πM2
x11=2

�
1þ ξ

�
5S2

48x
þF

��
; ð3:14Þ

where we defined

F ¼ −
5

12
−
5

6
ðs1 þ s2Þ þ

5

144
ð51þ 7ηÞs1s2

−
5

288
ð3þ 7ηÞðs21 þ s22Þ: ð3:15Þ

Finally, including the GR frequency evolution at 1PN [78]
to _f0, we find

_f ¼ 96ηx11=2

5πM2

�
1þ ξ

�
5S2

48x
þF

�
−
�
743

336
þ 11

4
η

�
x

�
þOðx7Þ: ð3:16Þ

We previously introduced a waveform phase variable
ϕðxÞ, which we will now compute explicitly. For comput-
ing the GW memory waveforms, we will again need an
expression for the GW phase through 1PN order; however,
because we are working to linear order in ξ, we will only
need the terms without ξ at 1PN order in the phase
(analogously to our calculation of _f). The GW phase is
typically obtained by integrating the GW frequency with
respect to time from some appropriate starting time. For
calculations of the GW memory waveform, it is more
useful to write the phase as a function of x. By using the
chain rule, we can then write the time integral of the
frequency in terms of an integral with respect to the PN
parameter x as follows:

5The−1PN term that multiplies the 1PN term in this calculation
is linear in ξ, which implies that the BD modification to _f at 1PN
enters at higher order in ξ in the GW memory waveforms.
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ϕðxÞ ¼ 2π

Z
x

xi

f
_f

df
dx0

dx0; ð3:17Þ

where the frequency f and the derivatives _f and df=dx are
functions of x. We have also introduced an initial PN
parameter xi that should be greater than ξ, so that our
approximation of ξ ≪ x holds. From _f in Eq. (3.16), we
find that the GW phase is given by

ϕðxÞ − ϕc ¼ −
1

16ηx5=2

�
1 − ξ

�
F þ 25S2

336x

�

þ 5

3

�
x −

1

8
ξS2

��
743

336
þ 11

4
η

��
þOðx−1Þ:

ð3:18Þ

We defined a constant ϕc, the phase at coalescence, which
is chosen such that the phase at xi vanishes. The terms in
the second line of Eq. (3.18) come from the product of a
−1PN term multiplying a 1PN term, which produces a
Newtonian-order effect on the phase (specifically, it is the
scalar dipole radiation in BD theory that gives rise to the
−1PN-order effects). We discuss the scalar radiation in
more detail in the next subsection.

C. Scalar multipole moments

We expand λ1 in terms of the scalar spherical harmonics

λ1 ¼
X
l;m

λ1ðlmÞYlm; ð3:19Þ

and the corresponding coefficients in the expansion are the
scalar multipole moments λ1ðl;mÞ. Specifically, we compute
expressions for the scalar moments λ1ð11Þ, λ1ð22Þ, and λ1ð31Þ
in terms of the PN parameter x, which we will then use to
derive the tensor GW memory effect sourced by the fluxes
of the scalar field. These three moments are those needed to
compute the GW memory effects at Newtonian order. The
relevant part of the scalar field λ1 had been computed
previously in Ref. [69,70], and we give the expression to
1PN order above the leading dipole radiation and to linear
order in ξ:

λ1 ¼ ηMλ0ξ

��
−2Sþ M

2a

�
3Γ

δm
M

þ 10Sη

��
vini

þΓ
�
ðviniÞ2 −

M
a
ðni12niÞ2

�
−
�
Γ
δm
M

þ 2ηS

�

×

�
ðviniÞ3 −

7

2

M
a
ðviniÞðni12niÞ2

��
: ð3:20Þ

Above we introduced the quantities

Γ ¼ 1 − 2ðm1s2 þm2s1Þ=M; ð3:21Þ

the unit vector ni pointing radially outward in the direction
of the GW’s propagation, the unit separation vector ni12
between the binary’s components, and the relative velocity
vector vi ¼ vi1 − vi2 of the binary’s masses. In terms of ι and
φ (the polar and the azimuthal angles, respectively, in the
CM frame of the binary) and the GW phase ϕ, the two unit
vectors and the relative velocity vector take the form Eq.

ni ¼ ðsin ι cosφ; sin ι sinφ; cos ιÞ; ð3:22aÞ

ni12 ¼fcos½ϕðuÞ=2�; sin½ϕðuÞ=2�; 0g; ð3:22bÞ

vi¼f−vsin½ϕðuÞ=2�;vcos½ϕðuÞ=2�;0g: ð3:22cÞ

For the magnitude of the velocity, v, we need only the GR
limit of the expression (zeroth-order in ξ) at 1PN order in x
in Eq. (3.10).
We wrote the phase as ϕðuÞ as a shorthand for ϕ½xðuÞ� in

Eq. (3.18), so as to emphasize the retarded-time depend-
ence of the phase. The multipole moments can be extracted
through the integral

λ1ðlmÞ ¼
Z

d2Ωλ1Ȳlmðι;φÞ: ð3:23Þ

Using Eqs. (3.19)–(3.22) and the GR limit of Eq. (3.10), we
find that the harmonic components of λ1 can be written as

λ1ð11Þ ¼ −2i
ffiffiffiffiffiffi
2π

3

r
λ0ξηM

ffiffiffi
x

p
e−iϕ=2

×

�
S −

x
15

�
12Γ

δm
M

þ Sð15þ 34ηÞ
��

þOðx2Þ;

ð3:24aÞ

λ1ð22Þ ¼ −2
ffiffiffiffiffiffi
2π

15

r
λ0ξΓηMxe−iϕ þOðx2Þ; ð3:24bÞ

λ1ð31Þ ¼ −
i
10

ffiffiffiffiffi
π

21

r
λ0ξ

�
Γ
δm
M

þ 2ηS

�
ηMx3=2e−iϕ=2

þOðx2Þ: ð3:24cÞ

Equations (3.5) and (3.24) are all the sets of radiative
moments that we will need to compute the GW memory
effects in the next section.

IV. MEMORY EFFECTS

In this section, we compute the displacement and spin
GW memory effects produced by a quasicircular compact-
binary inspiral. The displacement and spin memory effects
are both constructed from the shear tensor cAB, and they
have sky patterns with opposite parities. It is then useful to
first decompose the shear tensor into electric- and mag-
netic-parity parts as follows:
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cAB ¼ 1

2
ð2ðAðB − qABĐ2ÞΘþ ϵCðAðBÞðCΨ; ð4:1Þ

where Đ2 ≡ ðAðA is the Laplacian operator on the unit
2-sphere. We compute the displacement and spin GW
memory effects using the BMS flux-charge balance laws
that were computed in BD theory in Ref. [50]. We focus on
the nonlinear GW memory effects and the null memory
associated with the stress-energy tensor of the scalar waves.
We can compute these effects using low-PN-order oscillatory
waveforms and the BMS balance laws, whereas if we were to
try to compute them directly through the relaxed Einstein
equations in harmonic gauge, we would need to compute the
gravitational waveform at a higher PN order in BD theory
than has been completed thus far. We also argue that the
ordinary parts of the GW memory effects will be of a higher
PN order than the nonlinear and null parts in Appendix B.

A. Spherical harmonics and angular integrals

We will compute multipole moments of the GW memory
effects, starting from the oscillatory tensor and scalar waves
expanded in terms of the multipole moments in Eqs. (3.5) and
(3.24), respectively. Evaluating these multipole moments
involves computing angular integrals involving products of
three spherical harmonics of different types (scalar, vector,
and tensor). We instead follow the strategy in, e.g., [34,35], in
which the vector and tensor harmonics are recast in terms of
spin-weighted spherical harmonics. The angular integrals
then involve products of three spin-weighted spherical
harmonics (we use the conventions for the spherical har-
monics in Ref. [35]). We also use the notation for the integral
of three spin-weighted spherical harmonics in Ref. [34]

Blðs0; l0; m0; s00; l00; m00Þ

≡
Z

d2Ωðs0Yl0m0 Þðs00Yl00m00 Þðs0þs00Ȳlðm0þm00ÞÞ; ð4:2Þ

which can be written in terms of Clebsch-Gordan coefficients
(denoted by hl0; m0; l00; m00jl; m0 þm00i) as was shown, e.g.,
in Ref. [79] (though using the conventions of [35]):

Blðs0;l0;m0;s00;l00;m00Þ¼ ð−1Þlþl0þl00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 þ1Þð2l00 þ1Þ

4πð2lþ1Þ

s

×hl0;s0;l00;s00jl;s0 þs00i
×hl0;m0;l00;m00jl;m0 þm00i: ð4:3Þ

The multipolar expansion of the nonlinear memory
effects in terms of the radiative moments Ulm and Vlm
has the same form as in GR, which is given in Ref. [35].
However, we will need to perform a new multipolar
expansion of the null memory effects from the stress-
energy tensor of the scalar field. For this expansion, we will
need the vector spherical harmonics

TðeÞ;lm
A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ðAYlm; ð4:4aÞ

TðbÞ;lm
A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ϵABðBYlm: ð4:4bÞ

In terms of the spin-weighted spherical harmonics and a
complex dyad mA on the unit 2-sphere, we can write the
vector spherical harmonics as

TðeÞ;lm
A ¼ 1ffiffiffi

2
p ð−1YlmmA − 1Ylmm̄AÞ; ð4:5aÞ

TðbÞ;lm
A ¼ iffiffiffi

2
p ð−1YlmmA þ 1Ylmm̄AÞ; ð4:5bÞ

where mAmA ¼ m̄Am̄A ¼ 0 and mAm̄A ¼ 1.

B. Displacement memory effects

Supermomentum conservation requires that the change
in the “potential” Θ that is associated with the electric part
of the shear tensor, ΔΘ, must have its change between two
retarded times and satisfy the following relationship [50]:Z

d2ΩαĐ2ðĐ2 þ 2ÞΔΘ

¼
Z

dud2Ωα
�
NABNAB þ 6þ 4ω

ðλ0Þ2
ð∂uλ1Þ2

�

þ 8

Z
d2Ωα

�
ΔM −

1

4λ0
Đ2Δλ1

�
: ð4:6Þ

The supermomentum is the charge conjugate to a BMS
supertranslation symmetry and αðxAÞ is the function that
parametrizes the supertranslation symmetry. The first two
terms inside the square brackets on the right-hand side of
Eq. (4.6) produce the null memory (i.e., the memory sourced
by massless fields) with the first term being the nonlinear
(Christodoulou) memory. Both ΔM and Đ2Δλ1 generate
ordinary memory [50], but we argue in Appendix B that the
ordinary memory is a higher-PN-order effect. We will then
focus on just the null memory, and we will derive separately
the contributions from the energy flux of tensor and scalar
waves, respectively. We denote the nonlinear (tensor) part by
ΔΘT and the null part from the scalar field by ΔΘS. The full
memory effect is then the sum of the two components:

ΔΘ ¼ ΔΘT þ ΔΘS: ð4:7Þ

While ΔΘ is the quantity most straightforwardly con-
strained by supermomentum conservation, it is the change
in the strain Δh that is perhaps the more typical gravita
tional-wave observable. It is thus useful to relate the
potential ΔΘ to the strain Δh. To do this, we will first
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introduce the following notation for just the electric part of
the change in the shear:

ΔcAB;ðeÞ ¼
1

2
ð2ðAðB − qABĐ2ÞΔΘ: ð4:8Þ

We expand ΔΘ in scalar spherical harmonics

ΔΘ ¼
X
l;m

ΔΘlmYlmðι;φÞ; ð4:9Þ

where l ≥ 2 (and −l ≤ m ≤ l); the l ≤ 1 harmonics are in
the kernel of the operator 2ðAðB − qABĐ2. By substituting

Eq. (4.9) into Eq. (4.8) and using the definition of TðeÞ;lm
AB in

Eq. (2.14a), we can relate ΔΘlm to ΔcðeÞ;lm via Eq. (2.13),

ΔcðeÞ;lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
2ðl − 2Þ!

s
ΔΘlm: ð4:10Þ

The above equation will be necessary when we construct
the waveform from ΔΘlm. Specifically, we can compute the
waveform by combining Eqs. (2.9), (2.19), and (4.10) in
Eq. (2.8) to obtain

ΔhðdispÞ ¼ 1ffiffiffi
2

p
R

X
l;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
2ðl − 2Þ!

s
ΔΘlm−2Ylm: ð4:11Þ

We will denote the memory waveform ΔhðdispÞ as a sum of
the tensor-sourced, Δhðdisp;TÞ, and scalar-sourced Δhðdisp;SÞ
contributions as follows:

ΔhðdispÞ ¼ Δhðdisp;TÞ þ Δhðdisp;SÞ: ð4:12Þ

We first compute Δhðdisp;TÞ followed by Δhðdisp;SÞ.

1. Displacement memory effect from the
energy flux of tensor GWs

The expression for the “moments” of ΔΘT with respect
to αðxCÞ have the same general form as in GR,Z

d2ΩαðxCÞĐ2ðĐ2þ2ÞΔΘT¼
Z

uf

ui

du
Z

d2ΩαðxCÞNABNAB;

ð4:13Þ

but there is a subtlety related to the limits of integration (ui
and uf) in the retarded-time integral over u. Because we
work in an approximation in which ξ ≪ x, the lower limit
ui must start at a PN parameter xi for which xi ≫ ξ. This
differs from the corresponding convention in GR, in the
limit ui → −∞ is often taken (in which it is assumed that
xi → 0). The upper limit, uf is a retarded time at which the
corresponding PN parameter xf, is sufficiently large that

the PN approximation (at the order at which we work) starts
to require higher-PN-order terms to remain accurate.
The multipolar expansion of ΔΘT proceeds exactly as in

GR (and we note just a few features of the calculation here;
see Ref. [35] for further details). We can first replace the
function αðxCÞ with the complex conjugate of a scalar
spherical harmonic, Ȳlm. We then use Eqs. (2.12), (2.13),
(2.15), and (4.9), and the expression for the moments ΔΘT

lm

in terms of the radiative moments _Ulm and _Vlm is the same
as that derived in GR in Ref. [35]:

ΔΘT
lm ¼ 1

2

ðl − 2Þ!
ðlþ 2Þ!

X
l0;l00;m0;m00

Blð−2; l0; m0; 2; l00; m00Þ

×
Z

uf

ui

du½sl;ðþÞ
l0;l00 ð _Ul0m0 _Ul00m00 þ _Vl0m0 _Vl00m00 Þ

þ2isl;ð−Þl0;l00
_Ul0m0 _Vl00m00 �: ð4:14Þ

We however, introduced the coefficients

sl;ð�Þ
l0;l00 ¼ 1� ð−1Þlþl0þl00 ð4:15Þ

that were used in Ref. [34] to make the notation more
compact. As in Ref. [35], the sum runs over l0; l00 ≥ 2 and l
must be in the range jl0 − l00j ≤ l ≤ jl0 þ l00j so that the
coefficients Blð−2; l0; m0; 2; l00; m00Þ given in Eq. (4.3) are
nonzero. The azimuthal indices must be related by m ¼
m0 þm00 for the coefficients Blð−2; l0; m0; 2; l00; m00Þ to be
nonzero. Because we focus on the leading GW memory
effects in the nonoscillatory (m ¼ 0) part of the waveform,
this will further restrict m0 and m00 to have equal magni-
tudes and opposite signs: m0 ¼ −m00. While the abstract
expression for ΔΘT

lm in terms of radiative multipole
moments has exactly the same form as that in GR, the
time-derivatives of the radiative multipole moments _Ul0m0

and _Vl0m0 in BD theory differ from the corresponding
moments in GR. This leads to a number of order ξ terms in
the expression for the GW memory effect that we will
compute below.
Next, we will summarize how we compute the memory

waveforms, including which radiative multipoles we need
and at what PN-order accuracy we require these multipole
moments. For concreteness, let us first focus on products
of the mass moments _Ul0m0 _Ul00m00 in Eq. (4.14); the argu-
ments will apply to products of current moments and to
products of mass and current moments. We perform the
integral over u by using the chain rule to recast the integral
over u in terms of an integral over x

Z
du _Ul0m0 _Ul00m00 ¼

Z
d
dx

Ul0m0
d
dx

Ul00m00 _xdx; ð4:16Þ
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as was outlined in, e.g., [72]. In GR, the Newtonian-order
memory waveform can be calculated from just Ul0m0 ¼
U22 and Ul00m00 ¼ U2;−2 (and similarly Ul0m0 ¼ U2;−2 and
Ul00m00 ¼ U22), with U22 evaluated at Newtonian order, as
well. In BD theory, however, both _x and dϕ=dx (the latter
term coming from dUlm=dx) have contributions from the
dipole moments of the scalar field, and these effects enter
at −1PN order relative to the GR result (and they are
proportional to ξ). To obtain the full result at the
Newtonian order requires the 1PN contributions to U22,
_x, and dϕ=dx. Because the −1PN terms of _x and dϕ=dx
are proportional to ξ, we only need the parts of the 1PN
terms in U22, _x, and dϕ=dx that are independent of ξ to
compute ΔΘT

lm. Hence, the BD corrections to the 1PN
terms in Eqs. (3.5), (3.16), and (3.18) were not given. The
−1PN term in _x also requires that we compute the part of
the GW memory waveform sourced by products of the
other radiative multipole moments in Eq. (3.5) to obtain a
Newtonian-order-accurate result; in GR, these moments
all give rise to higher-PN corrections to the GW memory
effect.
Considering the radiative multipoles described above,

we can then compute the multipole moments ΔΘT
l0 of the

GWmemory effect from Eq. (4.14). Because the memory is
electric-type, only even l moments are nonvanishing for
nonspinning compact binaries. When written in terms of
the relevant radiative moments Ulm and Vlm, the moments
ΔΘT

l0 are given by

ΔΘT
20 ¼

1

168

ffiffiffi
5

π

r Z
uf

ui

duð2j _U22j2

− j _V21j2 þ
ffiffiffi
7

p
ℑ½

ffiffiffi
2

p
_̄U31

_V21

þ
ffiffiffi
5

p
_̄U22

_V32� þ
ffiffiffi
5

p
ℜ½ _̄U42

_U22�Þ; ð4:17aÞ

ΔΘT
40 ¼

1

23760
ffiffiffi
π

p
Z

uf

ui

du

�
11

7
j _U22j2 −

44

7
j _V21j2

− 21j _U33j2 − 7j _U31j2 þ
324

ffiffiffi
5

p

7
ℜ½ _̄U42

_U22�

þ 22ffiffiffi
7

p ℑ½2
ffiffiffi
5

p
_̄U22

_V32 þ 5
ffiffiffi
2

p
_̄V21

_U31�
�
; ð4:17bÞ

ΔΘT
60 ¼ −

1

36960
ffiffiffiffiffiffiffiffi
13π

p
Z

uf

ui

duðj _U33j2

þ 15j _U31j2 − 4
ffiffiffi
5

p
ℜ½ _̄U42

_U22�Þ: ð4:17cÞ

Next, we use Eqs. (3.5a)–(3.5f), and (3.16)–(3.18) to
perform the integral over u and to write the moments in

terms of x. With the identity ðδm=MÞ2 ¼ 1–4η, we can
write the moments as

ΔΘT
20 ¼

2
ffiffiffiffiffiffi
5π

p

21
MηΔx

�
1 −

4

3
G −

5ξS2

48Δx
ln
�
xf
xi

�

−ξ
�
1þF þ S2

�
1915

96768
þ 665η

1152

���
; ð4:18aÞ

ΔΘT
40 ¼

ffiffiffi
π

p
1890

MηΔx
�
1 −

4

3
G −

5ξS2

48Δx
ln

�
xf
xi

�

−ξ
�
1þF þ S2

�
−
737045

709632
þ 143395η

25344

���
;

ð4:18bÞ

ΔΘT
60 ¼ −

ffiffiffiffiffi
π

13

r
5MηS2ξΔx
178827264

ð−839þ 3612ηÞ: ð4:18cÞ

We use the notation Δx ¼ xf − xi, where xi and xf
correspond to the PN parameter x evaluated at an early
retarded time ui and a final time uf during the inspiral,
respectively. The terms outside the curly braces in
Eq. (4.18) in the expressions for ΔΘT

20 and ΔΘT
40 are

equal to the equivalent results in GR. To simplify the
notation, we do not include the PN error terms in
Eqs. (4.18) or (4.20), which are both are O½Δðx3=2Þ�,
where Δðx3=2Þ ¼ x3=2f − x3=2i .
Finally, we will construct the displacement memory

waveform from the ΔΘl0 in Eq. (4.18). To do this, it is
helpful to have the expressions for the spin-weighted
spherical harmonics

−2Y20ðι;φÞ ¼
1

4

ffiffiffiffiffiffi
15

2π

r
sin2ι; ð4:19aÞ

−2Y40ðι;φÞ ¼
3

16

ffiffiffiffiffi
10

π

r
sin2ιð7cos2ι − 1Þ; ð4:19bÞ

−2Y60ðι;φÞ ¼
1

64

ffiffiffiffiffiffiffiffiffiffi
1365

π

r
sin2ιð33cos4ι − 18cos2ιþ 1Þ:

ð4:19cÞ

Substituting Eqs. (4.18) and (4.19) into Eq. (4.11), we
obtain the displacement memory waveform due to the
energy flux from tensor GWs in BD theory. We find the
waveform only contains the plus polarization, and at
Newtonian order, it is given by
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Δhðdisp;TÞþ ¼ ηMΔx
48R

sin2ιð17þ cos2ιÞ
�
1 −

4

3
G −

5ξS2

48Δx
ln

�
xf
xi

�
− ξð1þFÞ − ξS2

�
81145

73728
−
65465

18432
η

�

þξS2
�
20975

172032
−
1075

2048
η

�
cos2ι

�
þMηS2ξΔx

R
sin2ι

�
783875

2064384
−
35575

24576
η

�
: ð4:20Þ

The expression in front of the square brackets on the first
line of Eq. (4.20) is the same as the Newtonian-order
waveform for the memory effect in GR. The terms within
the square bracket highlight a number of corrections
introduced into the memory waveform amplitude in BD
theory. These include effects related to the change in the
amplitude of the l ¼ 2, m ¼ �2 modes (the ξ and G terms)
and changes in the frequency evolution (the F term). In
particular, there is a change in the scaling of the memory
with the PN parameter that is proportional to lnðxf=xiÞ,
which arises because of scalar dipole radiation. At the end
of the first and on the second line of Eq. (4.20) are a number
of terms arising from 1PN-order products of multipole
moments coupling to the −1PN term in the frequency
evolution (or _x); the terms on the second line lead to a small
(order ξ) difference to the sky pattern of the memory effect
between BD theory and GR.

2. Displacement memory effect from the
energy flux of scalar radiation

The displacement memory effect also has a contribution
from the integral of the energy flux of the scalar radiation.
Its effect can be computed from the terms proportional to
ð∂uλ1Þ2 in Eq. (4.6):Z

d2ΩαðxCÞĐ2ðĐ2 þ 2ÞΔΘS

¼ 6þ 4ω

ðλ0Þ2
Z

uf

ui

du
Z

d2ΩαðxCÞð∂uλ1Þ2: ð4:21Þ

Expanding λ1 and ΔΘS in scalar spherical harmonics as in
Eqs. (3.19) and (4.9), respectively, and choosing α ¼ Ȳlm,
we can determine the multipole moments ΔΘS

lm in terms of
the multipole moments λ1ðlmÞ and the integrals of three
spherical harmonics defined in Eq. (4.2). The result is

ΔΘS
lm ¼ ðl − 2Þ!

ðlþ 2Þ!
6þ 4ω

ðλ0Þ2
X

l0;m0;l00;m00
Blð0; l0; m0; 0; l00; m00Þ

×
Z

uf

ui

du _λ1ðl0m0Þ _λ1ðl00m00Þ; ð4:22Þ

where l ≥ 2 and l0; l00 ≥ 1 (and m, m0, and m00 must satisfy
m ¼ m0 þm00). Because λ1 is proportional to ξ, one might
be concerned that ΔΘS will be an Oðξ2Þ effect and be

negligible in our approximation. Note, however, that
3þ 2ω ¼ 2=ξ − 1, which implies that ΔΘS is an OðξÞ
effect; thus, the integrand can be one order higher in ξ and
still produce an effect at linear order in ξ.
We will now discuss which scalar multipole moments

contribute to the displacement memory waveform and the
accuracies at which we need the different moments to obtain
a Newtonian-order-accurate GWmemory waveform, at linear
order in ξ. The 1PN scalar multipole moments λ1ðlmÞ that are
computed from Eq. (3.20) are at least OðξÞ; thus, to linear
order in ξ, we can treat 6þ 4ω as 4=ξ. We will evaluate the
integral over u in Eq. (4.22) by converting it to an integral
over x (as was done in Sec. IV B 1), but unlike in Sec. IV B 1
we need to keep only the GR contribution in _x, which scales
as x5. Similarly, when computing dϕ=dx, we again need to
retain just the GR contribution that goes as x−7=2. The scalar
field has a radiative dipole moment, which from Eq. (3.24a),
goes as x−1=2. The leading-order part of the integrand
(proportional to _λ1ð11Þ _λ1ð1;−1Þ) scales as 1=x rather than
Oðx0Þ as in GR; in this sense, the integrand is a −1PN
order.6 This product of dipole terms will also contribute to the
waveform at 0PN order because of the Oðx3=2Þ terms in
λ1ð11Þ; see Eq. (3.24a). To work to linear order in ξ, we do not
need to go to a higher PN order for λ1ð11Þ. Similar arguments
show that the remaining scalar moments in Eq. (3.24)
(namely, λ1ð22Þ and λ1ð31Þ) are the ones that are needed to
compute Newtonian-order accurate moments of ΔΘS

l0.
We then first list the integrals of the relevant moments

λ1ðlmÞ that contribute to ΔΘS
l0 at Newtonian order:

ΔΘS
20 ¼ −

1

42
ffiffiffiffiffiffi
5π

p
λ20ξ

Z
uf

ui

duð7j_λ1ð11Þj2 þ 10j_λ1ð22Þj2

− 6
ffiffiffiffiffi
14

p
ℜ½_λ1ð11Þ _̄λ1ð31Þ�Þ; ð4:23aÞ

ΔΘS
40 ¼

1

630
ffiffiffi
π

p
λ20ξ

Z
uf

ui

duðj_λ1ð22Þj2

− 2
ffiffiffiffiffi
14

p
ℜ½_λ1ð11Þ _̄λ1ð31Þ�Þ: ð4:23bÞ

6Note, however, when the integrand is integrated, it will again
give rise to a logarithm in x rather than being proportional to x, as
in GR. We will refer to this effect sometimes as a −1PN term,
since it comes from such an effect in the integrand, and since log
terms do not enter into the PN order counting of a term.
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As we did with the memory sourced by the tensor energy
flux, we first substitute the expressions for the scalar
moments in Eq. (3.24) into Eq. (4.23) and evaluate the
integrals in terms of x by using Eqs. (3.16)–(3.18). This
gives the following results:

ΔΘS
20 ¼ −

Mηξ
ffiffiffiffiffiffi
5π

p

144

�
S2 ln

�
xf
xi

�

þΔx
�
8

7
Γ2 −

23

14
SΓ

δm
M

þ S2
�
71

336
−
157

84
η

���
;

ð4:24aÞ

ΔΘS
40 ¼

Mηξ
ffiffiffi
π

p
Δx

30240

�
8Γ2 − Γ

δm
M

þ 2S2η

�
: ð4:24bÞ

The PN error terms in Eqs. (4.24) or (4.25) are again
O½Δðx3=2Þ�, which we dropped, to simplify the expressions.
We then substitute (4.24) into Eq. (4.11), and with the

expressions for the spin-weighted spherical harmonics in
Eq. (4.19), we arrive at the following equation for the
displacement memory waveform sourced by the scalar
energy flux:

Δhðdisp;SÞþ ¼ −
5ηMξ

192R
sin2ι

�
S2 ln

�
xf
xi

�

þ Δx
�
6

5
Γ2 −

33

20
SΓ

δm
M

þ S2
�
71

336
−
113

60
η

�

−
1

20

�
8Γ2 − SΓ

δm
M

− 2S2η
�
cos2ι

��
: ð4:25Þ

There are terms in Eq. (7.2e) of [68] which, after perform-
ing the integration over time in our approximation, produce
a −1PN term in the waveform; this term agrees with the
first line of Eq. (4.25). The Newtonian-order terms require
going to a higher PN order than was computed in Ref. [68],
but the BMS balance laws allow us to determine these
expressions.
Because the total GW memory Δhdisp is a sum of the

scalar and tensor contributions, as given in Eq. (4.12), then
the scalar-sourced contribution will produce an additional
correction to the amplitude and the sky pattern beyond the
corrections given in Eq. (4.20) for the tensor-sourced part
of the memory effect.

C. GW spin memory effect

The GW spin memory effect is a lasting offset in the time
integral of the magnetic part of the shear tensor. It can be
constrained through the evolution equation for the Bondi
angular momentum aspect, or equivalently the magnetic
part of the flux of the super Lorentz charges. To compute
the spin memory effect, it is helpful to denote the time
integral of the potential Ψ, which gives rise to the magnetic
part of cAB in Eq. (4.1), as ΔΣ:

ΔΣ ¼
Z

Ψdu: ð4:26Þ

We leave off the limits of integration for convenience,
though we will later restore these limits when we compute
the spin memory in the PN limit. The generalized BMS
balance law for the super angular momentum was given in
Ref. [50], and analogously to the computation in GR (see,
e.g., [33]), a term involving Eq. (4.26) was needed to ensure
that the balance law was satisfied. The form of the balance
law can be written asZ

d2ΩγĐ2ðĐ2þ2ÞΔΣ¼−
64π

λ0
ðΔQðγÞþΔJ ðγÞÞ; ð4:27aÞ

where YA ¼ ϵABðBγ is a smooth, magnetic-parity vector
field on the 2-sphere, and where we have defined

ΔJ ðγÞ ¼
λ0
64π

Z
dud2ΩϵADðDγ

�
ðAðcBCNBCÞ

þ 2NBCðAcBC − 4ðBðcACNBCÞ

þ 4ωþ 6

ðλ0Þ2
ð∂uλ1ðAλ1 − λ1ðA∂uλ1Þ

�
; ð4:27bÞ

ΔQðγÞ ¼
λ0
8π

Z
d2ΩϵADðDγ½−3ΔLA

−
1

4λ0
ΔðcABðBλ1 − λ1ðBcABÞ�: ð4:27cÞ

The net flux is denoted by ΔJðγÞ, the change in the charges
is denoted by ΔQðγÞ, and the left-hand side of Eq. (4.27a)
(which is related to the spin memory effect) is the additional
term required for the balance law to be satisfied.
Analogously to the displacement memory, the contribution
of ΔQðγÞ to Eq. (4.27a) is referred to as ordinary spin
memory, andΔJðγÞ is the null spin memory (which contains
a nonlinear part). We will focus on the null contribution to
Eq. (4.27a) here, as we argue in Appendix B that the
ordinary contribution to the spin memory is likely to be a
higher PN effect than the null memory is.
As we did with the change in ΔΘ related to the

displacement memory effect, we will split ΔΣ into a
sum of its contributions from the angular momentum flux
of tensor and scalar radiation. We denote these two
contributions by

ΔΣ ¼ ΔΣT þ ΔΣS; ð4:28Þ

and we compute these two contributions separately below.
In addition, while the spin-weight-zero quantity ΔΣ is the

most convenient quantity to compute from the balance law
(4.27a), the shear cAB or strain h are the more commonly
used quantities in gravitational waveform modeling and data
analysis. We thus relate ΔΣ to a time integral of the shear;
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specifically, we denote the change in the time integral of the
magnetic-parity part of the shear tensor byZ

cAB;ðbÞdu ¼ ϵCðAðBÞðCΔΣ: ð4:29Þ

Expanding ΔΣ in terms of scalar spherical harmonics

ΔΣ ¼
X
l;m

ΔΣlmYlmðι;φÞ ð4:30Þ

(with l ≥ 2 and −l ≤ m ≤ l), then we can relate the multi-
pole moments ΔΣlm to the time integrals of the radiative
current moments Vlm via Eqs. (4.29), (2.14b), and (2.13).
The result is that

Z
Vlmdu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
2ðl − 2Þ!

s
ΔΣlm: ð4:31Þ

Equation (4.31) allows us to compute the time integral of the
strain from ΔΣlm.

1. Spin memory effect from the angular momentum
flux of tensor GWs

The null part of the spin memory effect in Eqs. (4.27a)
and (4.27b), that is sourced by the tensor GWs can be
computed from the following expression:

Z
d2ΩγĐ2ðĐ2 þ 2ÞΔΣT

¼
Z

uf

ui

du
Z

d2ΩϵADðDγ½ðAðcBCNBCÞ

þ 2NBCðAcBC − 4ðBðcACNBCÞ�: ð4:32Þ

It has the same form as the analogous expression in GR. It
can then be recast into the same form as in Eq. (3.23) of
[33] by using the identities in Appendix C of [33]. This
expression was then the starting point for the multipolar
expansion of the spin memory effect given in [35]. We
reproduce the result from [35] below; however, we first

introduce, in addition to sl;ð�Þ
l0;l00 in Eq. (4.15), the following

coefficients (defined in [34]) to make the expression more
concise:

cll0m0;l00m00 ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0 − 1Þðl0 þ 2Þ

p
Blð−1; l0; m0; 2; l00; m00Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl00 − 2Þðl00 þ 3Þ

p
Blð−2; l0; m0; 3; l00; m00Þ:

ð4:33Þ

The expression for the moments ΔΣlm can then be derived
through a lengthy calculation outlined in [35], and the
result is given by

ΔΣT
lm ¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ðl − 2Þ!

ðlþ 2Þ!
X
m0;m00l0 ;l00 ;

cll0m0;l00m00

Z
uf

ui

du½isl;ð−Þl0;l00 ðUl0m0 _Ul00m00 − _Ul0m0Ul00m00 þ Vl0m0 _Vl00m00 − _Vl0m0Vl00m00 Þ

−sl;ðþÞ
l0;l00 ðUl0m0 _Vl00m00 þ _Vl0m0Ul00m00 − _Ul0m0Vl00m00 − Vl0m0 _Ul00m00 Þ�: ð4:34Þ

To compute the spin memory effect at Newtonian order, we need precisely the same set of radiative multipole moments
Ulm and Vlm that were used to compute the displacement memory effect in Sec. IV B 1. We then compute the spin memory
effect following the same procedure in Sec. IV B 1 by first writing the needed moments of ΔΣlm in terms of integrals of the
relevant radiative moments Ulm and Vlm:

ΔΣT
30 ¼ −

1

720
ffiffiffiffiffiffi
7π

p
Z

uf

ui

du

�
ℑ½9ð _̄U22U22 − 2 _̄V21V21Þ þ 7ð _̄U31U31 − _̄U33U33Þ þ 11

ffiffiffi
5

p
ð _̄U22U42 þ _̄U42U22Þ�

þℜ

�
5

ffiffiffiffiffi
35

p
ð _̄V32U22 − _̄U22V32Þ − 5

ffiffiffi
7

2

r
ð _̄V21U31 − _̄U31V21Þ

��
; ð4:35aÞ

ΔΣT
50 ¼

1

5040
ffiffiffiffiffiffiffiffi
11π

p
Z

uf

ui

du

�
ℑ

�
5ð _̄U33U33 þ 5 _̄U31U31Þ −

38ffiffiffi
5

p ð _̄U22U42 þ _̄U42U22Þ
�

þℜ

�
2

ffiffiffi
7

5

r
ð _̄U22V32 − _̄V32U22Þ þ 2

ffiffiffiffiffi
14

p
ð _̄V21U31 − _̄U31V21Þ

��
: ð4:35bÞ

As in Sec. IVB 1, we then use Eqs. (3.5a)–(3.5f), and
(3.16)–(3.18) to evaluate the integrals in Eqs. (4.35a)–(4.35b)
and to write the expression for the moments ΔΣ30 and ΔΣ50

in terms of x. Unlike in Sec. IV B 1, the integrand does
not depend on _x, when written as an integral over x,
because there is only one time derivative of the radiative
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multipole moments. The result of this integration is
given by

ΔΣT
30 ¼

ffiffiffi
π

7

r
ηM2

10

�
−
5ξS2

144
Δðx−3=2Þ þ Δðx−1=2Þ

�
1 −

4

3
G

− ð1þFÞξþ 5ð47796ηþ 5003ÞS2ξ
435456

��
; ð4:36aÞ

ΔΣT
50 ¼ −

ffiffiffiffiffi
π

11

r
ηM2ξS2

12192768
ð21588η − 4117ÞΔðx−1=2Þ;

ð4:36bÞ

where we have defined Δðx−1=2Þ ¼ x−1=2f − x−1=2i and sim-

ilarly for Δðx−3=2Þ. The PN error terms in Eqs. (4.36) and
(4.39) are both expected to be of order logðxf=xiÞ, which
would arise from Oð1=xÞ terms in the u integral. We did not
write these terms out explicitly, so as to simplify the notation.
In GR, the only term that appears in the Newtonian-order

spin-memory waveform is Δðx−1=2Þ times the coefficient
outside the curly braces in Eq. (4.35a). The remaining terms
in ΔΣ30 and the entire expression for ΔΣ50 appear in the
BD-theory waveform at Newtonian order because of the −1

PN term in dϕ=dx and the additional radiative multipole
moments that contribute in BD theory, but not in GR.
Finally, we construct the time-integrated strain from the

moments ΔΣl0 in Eqs. (4.36a)–(4.36b). Using Eqs. (2.8),
(2.9), (2.19), and (4.31), we can write the relation between
the time integral of h and a general ΔΣlm as

Z
uf

ui

hðspinÞdu ¼ −i
2R

X
l;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
ΔΣlmð−2YlmÞ: ð4:37Þ

Because the modes ΔΣl0 that produce the time-integrated
strain hðspinÞ in Eqs. (4.36a) and (4.36b) are real, then from
Eq. (2.7) it follows that the spin memory enters in the cross
mode polarization of GWs (as it does in GR [35]). Finally
substituting Eqs. (4.36a)–(4.36b) into (4.37), and using the
expressions for the spin-weighted spherical harmonics

−2Y30ðι;φÞ ¼
1

4

ffiffiffiffiffiffiffiffi
105

2π

r
sin2ι cos ι; ð4:38aÞ

−2Y50ðι;φÞ ¼
1

8

ffiffiffiffiffiffiffiffiffiffi
1155

2π

r
sin2ι cos ιð3cos2ι − 1Þ; ð4:38bÞ

we obtain for the time-integrated strain

Z
uf

ui

duhðspin;TÞ× ¼ 3ηM2

8R
sin2ι cos ι

�
−
5ξS2

144
Δðx−3=2Þ þ

�
1 −

4

3
G − ð1þFÞξ − ξS2

�
3365

6912
ηþ 1915

27648

��
Δðx−1=2Þ

þξS2
�
20585

580608
−
1285

6912
η

�
Δðx−1=2Þcos2ι

�
: ð4:39Þ

The expression for the u integral of hðspin;TÞ× is written such
that the angular dependence and coefficient 3ηM2=ð8RÞ
outside of the curly braces coincides with the expression in
GR at Newtonian order. Within the curly braces there are
several sorts of terms: (i) the first term proportional to
Δðx−3=2Þ is a −1PN term arising from the dipole term in the
phase, but which has the same angular dependence as the
spin memory effect in GR; (ii) the terms in the square
bracket (aside from the factor of unity that reproduces the
GR expression for the spin memory) are small BD correc-
tions (proportional to ξ) that modify the amplitude of the
waveform without changing its x or ι dependence; and
(iii) the final terms on the second line are those which have
the same x dependence, but a different angular dependence
from the GR expression (and are again proportional to ξ).

2. Spin memory effect from the angular momentum
flux of the scalar radiation

The angular momentum flux from the scalar radiation
produces a second contribution to the spin memory effect.

Its contribution can be obtained from the scalar field terms
in the balance law in Eq. (4.27a),

Z
d2ΩγĐ4ðĐ2 þ 2ÞΔΣS ¼ −

6þ 4ω

ðλ0Þ2
Z

uf

ui

d2ΩduϵABðBγ

× ð_λ1ðAλ1 − λ1ðA _λ1Þ: ð4:40Þ

The multipolar expansion of ΔΣ can be obtained by
assuming γ is equal to the spherical harmonic Ȳlm, and
then using the multipolar expansion of λ1 in Eq. (3.19).
After relating the gradients and curls of spherical harmonics
in this expansion to the electric- and magnetic-parity vector
harmonics in Eqs. (4.4a)–(4.4b) and then employing the
relationship between these vector harmonics and the spin-
weighted spherical harmonics in Eqs. (4.5a)–(4.5b),we can
derive the moments ΔΣlm in terms of moments λ1ðlmÞ (and
their time derivatives and complex conjugates) and the
coefficients Blðs0; l0; m0; s00; l00; m00Þ given in Eq. (4.2). The
resulting expression is given below:
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ΔΣS
lm ¼ ið2ωþ 3Þ

λ20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ðl − 2Þ!

ðlþ 2Þ!
X

l0;m0;l00;m00
sl;ð−Þl0;l00

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l00ðl00 þ 1Þ

p
Blð0; l0; m0; 1; l00; m00Þ

×
Z

uf

ui

duð_λ1ðl0m0Þλ1ðl00m00Þ − λ1ðl0m0Þ _λ1ðl00m00ÞÞ: ð4:41Þ

The coefficient sl;ð−Þl0;l00 is defined in Eq. (4.15).
The moments of λ1ðlmÞ that contribute to the Newtonian-

order spin memory effect are the same moments needed to
compute the scalar-sourced displacement memory effect in
Sec. IV B 2. The only nonvanishing moment of ΔΣ at this
order then is ΔΣ30, and to linear order in ξ it is given by

ΔΣS
30 ¼ −

1

30ξðλ0Þ2
1ffiffiffiffiffiffi
7π

p
Z

uf

ui

duℑ

�
_λ1ð22Þλ̄1ð22Þ

−
ffiffiffi
7

2

r
ð_λ1ð11Þλ̄1ð31Þ − λ1ð11Þ _̄λ1ð31ÞÞ

�
: ð4:42Þ

We can then use the expressions for the scalar-field
multipole moments in Eq. (3.24) to evaluate the integrals
and write them in terms of x (analogously to what was done
for the tensor-GW part of the spin memory effect), and we
find it is given by

ΔΣS
30¼

ffiffiffi
π

p
ηM2ξ

1440
ffiffiffi
7

p
�
2ηS2þΓS

δm
M

−8Γ2

�
Δðx−1=2Þ: ð4:43Þ

It is then straightforward to use Eq. (4.37) to write the
retarded-time integral of the spin memory waveform
generated by scalar angular momentum flux as

Z
uf

ui

duhðspin;SÞ× ¼ ηM2ξ

384R

�
2ηS2 þ Γ

δm
M

S − 8Γ2

�

× Δðx−1=2Þsin2ι cos ι: ð4:44Þ

The PN error terms in Eqs. (4.43) and (4.44) are both
expected to be of order logðxf=xiÞ, which would arise from
Oð1=xÞ terms in the u integral.
The full retarded-time integral of the spin memory

waveform is hðspinÞ× ¼ hðspin;SÞ× þ hðspin;TÞ× . It then adds small
correction linear in ξ to Eq. (4.39) that changes the
amplitude but does not alter the x or ι dependence of
the effect.

V. CONCLUSIONS

In this paper, we computed the displacement and spin
GW memory effects generated by nonprecessing, quasi-
circular binaries in BD theory. We worked in the PN
approximation, and the expressions that we computed are
accurate to leading Newtonian order in the PN parameter x,
and they include the leading-order corrections in the BD

parameter ξ. Our calculations relied upon using the BMS
balance laws associated with the asymptotic symmetries in
BD theory (which are the same as in GR). These balance
laws permit us to determine the tensor GWmemory effects,
but the scalar GW memory effects associated with the
breathing polarization are not constrained through these
balance laws. We further focused on the null contributions
to the tensor GW memory effects, because we estimated
that the ordinary (linear) memory effects would contribute
at a higher PN order than the null (including the nonlinear)
memory effects.
Using the BMS balance laws has the advantage that we

can determine the memory effects in BD theory to a higher
PN order than had been previously done through the direct
integration of the relaxed Einstein equations in harmonic
gauge. However, the balance laws take as input radiative and
nonradiative data at large Bondi radius and this data must be
obtained through some other method. Specifically, in the
context of this paper in PN theory, we needed to take as input
the oscilliatory scalar and tensor GWs computed in harmonic
gauge in BD theory in Ref. [69]. This required us to compute
a coordinate transformation between harmonic and Bondi
gauges at leading order in the inverse distance to the source,
so that we could relate the radiative GW data in these two
different coordinate choices (and formalisms). There were
relatively simple transformations that allowed us to relate the
Bondi shear tensor to the transverse-traceless components of
GW strain, and these relations were particularly simple when
expressed in terms of the radiative multipole moments of the
shear and strain tensors. There were similar expressions
relating the scalar field at leading order in inverse distance in
the two coordinate systems and the corresponding multipole
moments of the scalar field. With these relationships
between the multipolar expansions of the scalar field and
the shear tensor in harmonic and Bondi gauges, we could
then use the BMS balance laws to compute the GWmemory
effects.
The tensor GW memory effects in BD theory have

several noteworthy differences from the corresponding
effects in GR at the equivalent PN order. First, because
of scalar dipole radiation in BD theory, there are relative
−1PN-order terms in the memory effects in BD theory. The
−1PN term in the displacement memory waveform comes
from two sources in the supermomentum balance law:
(i) directly from the energy flux of scalar radiation and
(ii) indirectly from the energy flux in tensor radiation
(specifically through dipole contributions to the frequency
evolution and the GW phase). The spin memory waveform,
however, has a relative −1PN correction from GR arising
from only the energy flux of the tensor waves (the scalar-
sourced part of the energy flux gives rise to a contribution at
the same leading order as in GR, and it comes from
products of dipole and octupole moments, as well as
quadrupole moments with themselves). The absence and
presence of the −1PN term from the scalar radiation in the
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spin and displacement memory effects, respectively, arises
because of the different lowest multipole term in the sky
pattern of the effects: the spin memory effect begins with
the l ¼ 3, m ¼ 0 mode, whereas the displacement memory
has an l ¼ 2, m ¼ 0 mode.
A second noteworthy feature is that the computation of

Newtonian-order memory effects in BD theory requires
radiative multipole moments of the strain at higher PN
orders than are required in GR (in which the leading-order
effects can be computed from just the l ¼ 2, m ¼ �2
radiative mass quadrupole moments). Because there are
−1PN terms in the GW phase and the evolution of the GW
frequency, computing the Newtonian GW memory effects
requires higher-PN-order radiative multipole moments
(including the current quadrupole, the mass and current
octupoles, and the mass hexadecapole). These higher-order
mass and current multipole moments also give rise to a sky
pattern of the GW memory effect in BD theory that differs
from the sky pattern of the effect in GR. In addition, the
presence of dipole radiation required us to include 1PN
corrections to the GW phase and frequency time derivative
to compute the memory effects to Newtonian order (though
we only required the GR limit of these 1PN corrections
when working to linear order in the BD parameter ξ).
Finally, let us conclude by commenting on potential

applications of the calculations of GW memory effects
given in this paper. Because the calculations herein have
shown that the memory effect in BD theory differs from
that in GR, it is natural to ask if these differences could be
detected. Given the challenges of detecting the memory
effect in GR with LIGO and Virgo [15,16,80] and the fact
that the PN corrections are small, it would be more natural
to consider whether next-generation gravitational-wave
detectors—such as the space-based detector LISA [81]
or ground-based detectors like the Einstein Telescope or
Cosmic Explorer [82,83]—could constrain BD theory
through a measurement of the GW memory effect. The
constraints could come from searching for differences in
the leading-order amplitude of the effect, in the time
dependence of the accumulation of the memory effect
(through the different dependence on the PN parameter x),
or in the sky pattern of memory effects in BD theory (the
latter being similar to the hypothesis test described in
Ref. [73]). Because memory effects accumulate most
rapidly during the merger of compact binaries, having
waveforms that go beyond the PN approximation and
include the merger and ringdown would be important for
producing the most accurate constraints. Nevertheless, we
use the PN results to give order-of-magnitude estimates for
the prospects of detecting any BD effects in the memory
waveforms.
The BD corrections to the GW memory waveforms

computed in this paper depend on the BD parameter ξ and
the sensitivities of the binary’s components. The depend-
ence on the sensitivities is such that for binary black holes,

which have binary components with sensitivities equal to
one half in BD theory, the Newtonian GW memory
waveform for binary black holes is equivalent to the
waveform in GR after rescaling the black-hole masses
by ð1 − ξ=2Þ. The fact that there exists a constant redefi-
nition of the mass that produces the same waveform as in
GR implies that the difference is not observable, as was
previously noted in Refs. [68,70,77] in PN theory. This also
implies that observations of GWs from supermassive
binary black holes by the LISA detector, although possibly
high in signal to noise [81], may not be able detect or
constrain features of BD theory.
Mixed black-hole neutron-star binaries, however, will

have observable effects, because the objects have different
sensitivities. From Eqs. (4.20), (4.25), (4.39), and (4.44), it
follows that the leading PN BD correction is Oðξ=ΔxÞ
smaller than the leading PN GR memory effects.7 Given the
current lower bound on ξ and taking the final PN parameter
xf to be PN parameter at the frequency of the innermost
stable circular orbit, the −1PN BD corrections are Oð10−4Þ
times smaller in amplitude than the 0PN GRmemory effects.
While we have not performed a detailed signal-to-noise
calculation, this does make it appear challenging to detect
the effects if present. However, it is difficult to provide an
accurate estimate for the signal-to-noise of the BD memory
effects for the following reasons. First, to the best of our
knowledge, there has not been a systematic study of the
signal to noise for GW memory effects arising from black-
hole neutron-star binaries, even in GR. Second, memory
effects accumulate most rapidly during the merger of
compact binaries, during which the PN approximation
becomes less valid and numerical simulations of the merger
and ringdown are required to produce accurate waveforms.
We thus leave a quantitative assessment of the detection
prospects of the GW memory effects in BD theory for
future work.
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APPENDIX A: COORDINATE
TRANSFORMATIONS FROM HARMONIC

GAUGE TO BONDI GAUGE

In this appendix, we construct a coordinate transforma-
tion between harmonic coordinates to linear order in 1=R
and Bondi coordinates at an equivalent order in 1=r for a
radiating spacetime in BD theory. The procedure is similar
to that recently described in Ref. [76] in GR, but we do not
work to all orders in 1=r as in Ref. [76]. Rather, we work
only to an order in 1=r so that we can relate the radiative
data in harmonic gauge (h̃TTij and Ξ) to the corresponding
radiative data in Bondi gauge (cAB and λ1) and compute
the GW memory effects from PN waveforms in harmonic
gauge.
We will denote the harmonic-gauge metric by gðHÞμν which

we write in quasi-Cartesian coordinates Xμ ¼ ðX0; XiÞ,
where X0 ¼ t and Xi ¼ ðX; Y; ZÞ. We find it convenient

to define R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XiXjδij

q
to be the harmonic-gauge distance

from the origin, and yA ¼ ðι;φÞ to be spherical polar
coordinates with cos ι ¼ Z=R and tanφ ¼ Y=X. The com-
ponents of the metric can then be written in the form

gðHÞ
00 ¼ −1þ 2AM

R
þ 1

R
H00ðt − R; yAÞ; ðA1aÞ

gðHÞ
0i ¼ 1

R
H0iðt − R; yAÞ; ðA1bÞ

gðHÞ
ij ¼ δij þ

2BM
R

δij þ
1

R
Hijðt − R; yAÞ: ðA1cÞ

We have written the metric in the CM rest frame of the
system, and we have split the Oð1=RÞ part of the metric in
terms of the constant mass monopole momentM and all the
time-dependent, higher-order multipole moments in Hμν.
We have also introduced constants A and B [defined in
Eq. (A3)] which are needed so that the metric satisfies the
modified Einstein’s equations in the static limit (at the
leading nontrivial order in 1=R). To specify a solution, we
also need an expression for the scalar field, which we give
in the Jordan frame, and which we denote by λ. We will
again expand it in terms of a static monopole moment and
time-dependent, higher-order multipole moments as fol-
lows:

λ ¼ λ0

�
1þ ψðt − R; yAÞ þ 2CM

R

�
: ðA2Þ

The monopole term is the Oð1=RÞ piece proportional to
2λ0CM and ψ contains the higher-order, time-dependent
moments. The third coefficient C is again needed to satisfy
the field equations in the static limit. The expressions for
the constants A, B, and C were previously determined in
Refs. [68,70,84] and are given by

A ¼ ωþ 2 − κ

ωþ 2
; ðA3aÞ

B ¼ ωþ 1þ κ

ωþ 2
; ðA3bÞ

C ¼ 1 − 2κ

2ωþ 4
: ðA3cÞ

We introduced the variable κ ¼ ðm1s1 þm2s2Þ=M in the
equations above. The coefficients also satisfy the relation-
ships A − B ¼ 2C and Aþ B ¼ 2=λ0.
The harmonic gauge conditions lead to relationships

between the components of the quantitiesHμν and ψ . These
relationships are more conveniently expressed in terms of a
quantity H̃μν, which is related to Hμν and ψ by

Hμν ¼ H̃μν −
1

2
H̃ημν − ψημν: ðA4Þ

The gauge conditions are given by

H̃00 ¼ ninjH̃ij; H̃0i ¼ −njH̃ij: ðA5Þ

We have defined ni ¼ Xi=R ¼ ∂iR above, and it reduces to
the expression n⃗≡ ðsin ι cosφ; sin ι sinφ; cos ιÞ when writ-
ten in terms of ι and φ.8

Our procedure for transforming from harmonic gauge to
Bondi gauge follows some aspects of the work [76] in GR,
in which Bondi coordinates were determined in terms as
functions of harmonic-gauge quantities. In our case, how-
ever, we consider BD theory, we work only to linear order
in 1=R in harmonic coordinates, and we determine the
corresponding Bondi coordinates in an expansion in 1=R,
such that Bondi gauge is imposed to one order in 1=r
beyond the leading-order metric. To perform the coordinate
transformation, it is useful to work with the components of
the inverse metric. In harmonic gauge, these components
are given by

gμνðHÞ ¼ ημνðHÞ −
1

R
½Hμν þ 2MðAδμ0δν0 þ Bδμi δ

ν
jδ

ijÞ�
þOðR−2Þ; ðA6Þ

whereHμν is related toHμν by raising indices with η
μν
ðHÞ. We

aim to put the metric in Bondi form, in which the nonzero
components of the inverse Bondi metric are given by

8The conditions in Eq. (A5) can be derived by first making the
definitions given, e.g., in Refs. [70,77], of a conformally rescaled
metric g̃μν ¼ λgμν, then defining h̃μν to be h̃μν ¼ ημν −

ffiffiffiffiffiffi
−g̃

p
g̃μν,

and imposing the harmonic gauge condition ∂νh̃
μν ¼ 0. When the

harmonic gauge condition is imposed at leading order in 1=R,
then the conditions in Eq. (A5) can be obtained up to integration
constants that we set to zero [so as to maintain the static solution
of Einstein’s equations in Eqs. (A1) and (A2)].
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gurðBÞ ¼ −1 −
λ1
λ0r

þOðr−2Þ; ðA7aÞ

grrðBÞ ¼ 1þ ∂uλ1
λ0

þ 1

r

�
λ1
λ0

− 2Mþ λ1∂uλ1
2λ20

�
þOðr−2Þ; ðA7bÞ

grAðBÞ ¼
1

2r2

�
ðBcAB −

ðAλ1
λ0

�
þOðr−3Þ; ðA7cÞ

gABðBÞ ¼
1

r2
qAB −

1

r3
cAB þOðr−4Þ; ðA7dÞ

(and where guuðBÞ ¼ guAðBÞ ¼ 0). For simplicity, we will sum-

marize Eq. (A7) as

gμνðBÞ ¼ ημνðBÞ −
1

r
hμνðBÞ; ðA8Þ

where the quantity ημνðBÞ consists of the Oðr0Þ pieces of gurðBÞ
and grrðBÞ, the Oðr−1Þ part of grAðBÞ (which vanishes) and the

Oðr−2Þ part of gABðBÞ; the quantity hμνðBÞ consists of the

coefficients of the relative 1=r corrections to the compo-
nents of ημνðBÞ.
We perform the coordinate transformation in two stages

for illustrative purposes (one could perform it in one stage
as in Ref. [76], but the two-stage process here allows us to
highlight the different roles of the different terms in the
transformation more easily). The first stage imposes the
gauge conditions on the inverse Bondi metric that guuðBÞ and
guAðBÞ vanish to the accuracy in 1=r at which we work, it also
makes r an areal radius, and finally, it relates the Bondi-
coordinate retarded time u to the harmonic-gauge retarded
time t − R. It can be thought of as a “finite” gauge
transformation, in the sense that it is needed to relate the
background metrics ημνðBÞ and ημνðHÞ, which differ by a large

(not perturbative in 1=r) coordinate transformation. The
second stage, which can be treated as perturbative in 1=r,
then sets the metric following the first transformation into a
Bondi-gauge metric that satisfies the modified Einstein
equations of BD theory.
The first stage, the finite part of the coordinate trans-

formation expresses a set of coordinates xα ¼ ðu; r; xAÞ in
terms of harmonic gauge coordinates Xα ¼ ðt; XiÞ, though,
it is expressed more easily in terms of the spherical polar
coordinates ðt; R; yAÞ constructed from harmonic coordi-
nates as follows:

u ¼ t − R −
2M
λ0

lnR; ðA9aÞ

r ¼ Rþ BM −
ψ

2
; ðA9bÞ

xA ¼ yA: ðA9cÞ

The coordinates ðu; r; xAÞ resemble, but are not precisely
Bondi coordinates at the order in 1=r at which we work,
because they do not enforce all of the required properties of
the Bondi-gauge metric. We will thus write this “inter-
mediate” metric as gμνðIÞ, and it can be computed from the

harmonic-gauge metric using the transformation law for the
components of a rank-two contravariant tensor:

gμνðIÞ ¼ gαβðHÞ
∂xμ
∂Xα

∂xν
∂Xβ : ðA10Þ

A somewhat lengthy, but otherwise straightforward calcu-
lation shows that this metric can be written in the form

gμνðIÞ ¼ ημνðBÞ −
1

r
hμνðIÞ; ðA11Þ

where ηðBÞμν is the leading order part of the inverse Bondi
metric in Eq. (A7) when ∂uΞ ¼ ∂uλ1. The coefficients of
the relative 1=r corrections to ημνðBÞ we denoted by hμνðIÞ, and
they are given by

hrrðIÞ ¼
2M
λ0

ð∂uψÞ2 −
�
H̃
2
− 2BM þ ψ

�
∂uψ

þHijninj þ 2BM þOðr−1Þ; ðA12aÞ

hurðIÞ ¼ −
M
λ0

∂uψ þ Ξ
λ0

þ H̃
2
þOðr−1Þ; ðA12bÞ

rhrAðIÞ ¼ −
�
H0iðAni −

1

2
ðAψ

�
þOðr−1Þ; ðA12cÞ

huuðIÞ ¼ Oðr−1Þ; ðA12dÞ

huAðIÞ ¼ Oðr−2Þ; ðA12eÞ

r2hABðIÞ ¼ HijðAniðBnj þ ψqAB þOðr−1Þ: ðA12fÞ

To arrive at Eq. (A12), we used the conditions in Eq. (A5)
and we expressed ∂tψ in terms of ∂uψ (and other terms)
using the derivatives of the first two lines in Eq. (A9) and
the chain rule:

∂tψ ¼ ∂uψ −
M
rλ0

ð∂uψÞ2: ðA13Þ

Note that nonlinear terms involving ψ appear here and
elsewhere in hrrI , because the coordinate transformations in
Eqs. (A9a)–(A9c) involve ψ at order OðR0Þ.
The metric is similar to a Bondi-Sachs form to the order

in 1=r at which we work, in the sense that the Bondi gauge
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conditions guuðIÞ ¼ guAðIÞ ¼ 0 are satisfied at this order and the

right-hand side of Eq. (A12f) is traceless with respect to
qAB (thereby being consistent with the determinant con-
dition of Bondi gauge). Note, however, that the ur, rr, and
rA components of hμνðIÞ do not satisfy the modified Einstein

equations in Bondi-Sachs gauge, as they are not consistent
with the form of the inverse metric in Eq. (A7). The metric
can be put into Bondi gauge with a perturbative (in 1=r)
coordinate transformation, as we describe next.
We will parametrize the perturbative coordinate trans-

formation in terms of a vector ξμ which effects the
coordinate transformation xμ → xμ þ ξμ. This coordinate
transformation will take the part of the metric hμνðIÞ=r and

bring it to the Bondi-Sachs form hμνðBÞ=r, through the

transformation

1

r
hμνðBÞ ¼

1

r
hμνðIÞ þ Lξ⃗η

μν
ðBÞ; ðA14Þ

where Lξ⃗ is the Lie derivative along ξ⃗. To solve for the
perturbative gauge vector that generates this transforma-
tion, we first write the components of ξμ as

ξμ ¼ 1

r
ðξuð1Þ; ξrð1Þ; ξAð1Þ=rÞ; ðA15Þ

where the functions ξμð1Þ depend on u and xA (not r). These

lead to a set of partial differential equations for the ξμð1Þ that
can be integrated by requiring that hμνðIÞ be transformed into

Bondi-Sachs form. Before giving the full details of this
procedure, it is worth noting that given the form of the
components of the vector ξμ in Eq. (A15), the radiative data
λ1 and cAB can be related to harmonic-gauge data and the
finite coordinate transformation (A9) without needing the
full expression for ξμ in (A15).
For the scalar field, because in both harmonic and Bondi

gauges, the field has an expansion of the form λ ¼ λ0 þ
Oðr−1Þ [where λ0 is constant and the coefficient of the
Oðr−1Þ term is denoted Ξðt − R; yAÞ in harmonic coordi-
nates and λ1ðu; xAÞ in Bondi coordinates], then the trans-
formation parametrized by ξμ in Eq. (A15) will not change
Ξ or λ1. Thus, one must have that

λ1ðu; xAÞ ¼ Ξðt − R; yAÞ; ðA16Þ

where u is related to t − R (and xA to yA) by the trans-
formations in Eq. (A9). For cAB, a direct calculation shows
that Lξ⃗η

AB
ðBÞ is of order r

−4 for ξμ in Eq. (A15). This implies

that

cAB ¼ HijðAniðBnj þ ψqAB: ðA17Þ

Using the definition of H̃μν in Eq. (A4), the harmonic gauge
conditions in (A5), and the fact that qAB ¼ δijðAniðBnj,
this equation can be recast as

cAB ¼ H̃ijðAniðBnj −
1

2
H̃qAB: ðA18Þ

After using Eq. (A5) again, it follows that cAB is related to
just the transverse-traceless part of H̃ij as

cABðu; xAÞ ¼ H̃TT
ij ðt − R; yAÞðAniðBnj; ðA19Þ

where again u is related to t − R and xA to yA by the
transformations in (A9).
For our purposes of relating the radiative data in Bondi

coordinates to that in harmonic coordinates, Eqs. (A16) and
(A19) provide the solution. However, for completeness we
do compute the form of the required gauge vector ξμ needed
to complete the transformation from harmonic to Bondi
coordinates. The components of the gauge vector in
Eq. (A15) can be constrained from the ur, rA, and rr
components of Eq. (A14), which state, respectively,

∂uξ
u
ð1Þ ¼ hruðBÞ − hruðIÞ; ðA20aÞ

∂uξ
A
ð1Þ ¼ rðhrAðBÞ − hrAðIÞÞ; ðA20bÞ

2∂uξ
r
ð1Þ þ ξuð1Þð∂uÞ2ðλ1=λ0Þ ¼ hrrðBÞ − hrrðIÞ: ðA20cÞ

By substituting the relationships in Eqs. (A16) and (A19) into
Eq. (A7), extracting the relevant components of hμνðBÞ, and
using the expressions for hμνðIÞ in Eq. (A12), it is straightfor-

ward to integrate the first two lines in Eq. (A20) to obtain
expressions for ξuð1Þ and ξ

A
ð1Þ. Once ξ

u
ð1Þ has been determined,

integrating the final line of Eq. (A20) to determine ξrð1Þ is also,
in principle, straightforward. There is one subtlety in this
procedure: hrrðBÞ involves the Bondi mass aspect M, which

has not yet been determined from metric quantities in
harmonic gauge. Because the mass aspect satisfies the
conservation equation [50]

∂uM ¼ −
1

8
NABNAB þ 1

4
ðAðBNAB

− ð3þ 2ωÞ 1

4λ20
ð∂uλ1Þ2 þ

1

4λ0
Đ2∂uλ1; ðA21Þ

it is possible to integrate this equation and express M in
terms of harmonic-gauge quantities using Eqs. (A16) and
(A19). (To simplify the notation, however, we will not write
this out in detail below, and we will write this quantity just as
M.) The result of performing these integrations and using the
harmonic gauge conditions in Eq. (A5) is that the compo-
nents of the vector ξμ are given by
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ξu ¼ −
1

2r

Z
dtH̃ þ M

λ20r
Ξ; ðA22aÞ

ξr ¼ −
1

2r

Z
dt

�ξuð1Þ
λ0

∂2
uΞþ 2M

λ30
ð∂uΞÞ2 − 2Mþ H̃00

−
1

2

Ξ
λ20

∂uΞ −
�
1

2
H̃ −

2M
λ0

��
1þ ∂uΞ

λ0

��
; ðA22bÞ

ξA¼−
1

r2

Z
dt

�
1

2
ðBðH̃TT

ij ð
AniðBnjÞþHijniðAnj

�
: ðA22cÞ

This transformation, along with the finite transformation in
Eq. (A9), brings the metric into the form in Eq. (A7), in
which λ1 and cAB are related to the harmonic-gauge
quantities Ξ and H̃TT

ij by Eqs. (A16) and (A19).

APPENDIX B: ESTIMATES OF ORDINARY
MEMORY EFFECTS IN BRANS-DICKE THEORY

1. Ordinary displacement memory effect

The contribution to the ordinary memory effect comes
from the charge rather than the flux terms in Eq. (4.6), i.e.,:

Z
d2ΩαĐ2ðĐ2þ2ÞΔΘO¼8Δ

Z
d2Ωα

�
M−

1

4λ0
Đ2λ1

�
:

ðB1Þ

Expanding ΔM, ΔΘO, and Δλ1 in spherical harmonics, the
moments ΔΘO are given by

ΔΘO
lm ¼ ðlþ 2Þ!

ðl − 2Þ!
�
8ΔMlm þ 2

λ0
lðlþ 1ÞΔλ1ðlmÞ

�
: ðB2Þ

We would like to estimate if the quantity ΔΘO
lm is of a

similar PN order to the nonlinear and null parts of the
memory ΔΘT

lm and ΔΘS
lm that were computed in Sec. IV B

for any of the specific values of l ¼ 2, 4, or 6 and m ¼ 0.
To do so, we will focus on the moment ΔΘO

20 for simplicity
(the other three moments will have the same, or a higher
PN order).
One natural way to compute the ordinary memory would

be to directly evaluate the moments Δλ1ð20Þ and ΔM20.
Using Eq. (3.20), we can show thatΔλ1ð20Þ is at leastOðx2Þ;
thus, the scalar field’s contribution to the memory effect is
of a higher PN order than the Newtonian order at which we
work. We do not have an independent expression forΔM20

that would allow us to directly compute ΔΘO
20 (although we

already verified that the contribution from theΔλ1ð20Þ is of a
higher PN order). Instead, we can compute ΔΘO

20 directly
from the waveform that were already computed in
Eqs. (7.1) and (7.2a) of Ref. [68] to verify that ΔM20

would not contribute at Newtonian order. Specifically, we

contract the Newtonian-order expression with the polari-
zation tensors eijþ − ieij×, multiply by the spin-weighted
spherical harmonic −2Ȳ20 to obtain U20 and then rescale it
to obtain ΔΘO

20. We find that the Newtonian-order result
vanishes, and there is thus no Newtonian-order ordinary
displacement memory.

2. Ordinary spin memory effect

The ordinary part of the spin memory effect can be
computed from Eq. (4.27a) with just the term (4.27c) on the
right-hand side:

Z
d2ΩγĐ2ðĐ2 þ 2ÞΔΣ0 ¼ −8Δ

Z
d2ΩϵADðDγ

�
−3LA

−
1

4λ0
ðcABðBλ1 − λ1ðBcABÞ

�
:

ðB3Þ

The terms cABðBλ1 − λ1ðBcAB on second line of the
equation will not contribute at Newtonian order for the
spin memory effect (i.e., at order x−1=2), because both cAB
and λ1 involve non-negative powers of x in the PN
expansion, so their product will not be a negative power
of x. The only term that could contribute to the spin
memory effect comes from the change in the angular
momentum aspect, LA.
We do not have an expression for LA in terms of

harmonic-gauge metric functions, which (analogously to
the case of the mass aspect and ordinary displacement
memory effect) prohibits a direct calculation of the ordinary
spin memory effect. In addition, it is not possible to directly
check the time integral of the waveform, because the
Newtonian-order terms in the spin memory effect arise
from formally 2.5PN-order terms in the waveform that are
then integrated with respect to retarded time; however,
the waveform has only been computed to 2PN order in
Ref. [68]. While we cannot then be certain that the ordinary
memory terms do not contribute at the same order because
of additional nonlinear terms in the near zone, we can
estimate the size of the effect in linearized theory.
The ordinary spin memory effect would arise at the

lowest PN order from changes in ΔΣO
30, which is propor-

tional to the retarded time integral of the radiative moment
V30. Because at leading PN order, V30 is related to three
time derivatives of the source current octopole J30, then
ΔΣO

30 should be proportional to J̈30. By dimensional
analysis, J30 is proportional to Mva3 (or see, e.g., [67]);
thus, J̈30 scales as Mva _a2. This scales with the PN
parameter as ξx9=2 þ x11=2, which would be a 6PN correc-
tion to the nonlinear and null effects. We thus anticipate
from these arguments in linearized theory that the ordinary
part of the spin memory will be small.
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