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Abstract

Background

Infectious disease risk is driven by three interrelated components: exposure, hazard, and
vulnerability. For schistosomiasis, exposure occurs through contact with water, which is
often tied to daily activities. Water contact, however, does not imply risk unless the environ-
mental hazard of snails and parasites is also present in the water. By increasing reliance on
hazardous activities and environments, socio-economic vulnerability can hinder reductions
in exposure to a hazard. We aimed to quantify the contributions of exposure, hazard, and
vulnerability to the presence and intensity of Schistosoma haematobium re-infection.

Methodology/Principal findings

In 13 villages along the Senegal River, we collected parasitological data from 821 school-
aged children, survey data from 411 households where those children resided, and ecologi-
cal data from all 24 village water access sites. We fit mixed-effects logistic and negative
binomial regressions with indices of exposure, hazard, and vulnerability as explanatory vari-
ables of Schistosoma haematobium presence and intensity, respectively, controlling for
demographic variables. Using multi-model inference to calculate the relative importance of
each component of risk, we found that hazard (w; _ 0.95) was the most important component
of S. haematobium presence, followed by vulnerability (3> w; = 0.91). Exposure (3> w; = 1.00)
was the most important component of S. haematobium intensity, followed by hazard (3 w; =
0.77). Model averaging quantified associations between each infection outcome and indices
of exposure, hazard, and vulnerability, revealing a positive association between hazard and
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infection presence (OR = 1.49, 95% Cl 1.12, 1.97), and a positive association between
exposure and infection intensity (RR 2.59-3.86, depending on the category; all 95% Cls
above 1)

Conclusions/Significance

Our findings underscore the linkages between social (exposure and vulnerability) and envi-
ronmental (hazard) processes in the acquisition and accumulation of S. haematobium infec-
tion. This approach highlights the importance of implementing both social and
environmental interventions to complement mass drug administration.

Author summary

While the impacts of natural hazards tend to be described in terms of social determinants
such as exposure and vulnerability, the risk for infectious disease is often expressed in
terms of environmental determinants without fully considering the socio-ecological pro-
cesses that put people in contact with infective agents of disease. In the case of schistoso-
miasis, risk is determined by human interactions with freshwater environments where
schistosome parasites circulate between people and aquatic snails. In this study, we quan-
tified the relative contributions of exposure, hazard, and vulnerability to schistosome re-
infection among schoolchildren in an endemic region of northern Senegal. We find that
hazard and vulnerability influence whether a child becomes infected, while exposure and
hazard influence the burden of worms once infection is acquired. Increasing numbers of
worms is known to be positively associated with increasing severity of disease. Our find-
ings underscore the importance of evaluating social and environmental determinants of
disease simultaneously; omitting measures of exposure, hazard or vulnerability may limit
our understanding of risk.

Introduction

When a natural hazard like a flood or hurricane is imminent, risk managers and first respond-
ers must account for the exposure and vulnerability of affected populations, conditions and
processes that are dynamic in both space and time [1]. Precious resources will be misplaced if
authorities help families whose homes have not flooded, because those resources will have
been diverted away from families who have been exposed to the impacts of the hazard. Simi-
larly, vulnerable families with a reduced capacity to anticipate, respond to, or recover from, the
impacts of a natural hazard will require more assistance than less vulnerable families [1]. An
effective response to natural disasters, as a result, requires evaluation of where a natural hazard
overlaps with exposure, and how vulnerability mediates exposure and its impacts in time and
space.

In contrast to the risk of natural disasters, the risk of infectious disease is often defined in
terms of its environmental determinants [2-4]. Risk of insect-borne diseases like Lyme disease
and malaria are often described in terms of ‘entomological risk,” such as the density of infected
nymphal ticks (for Lyme disease) [5] or the probability of an infective mosquito bite (for
malaria) [6]. Similarly, wildlife biodiversity-representing the size of the natural reservoir of
potentially zoonotic pathogens—is used as a proxy for spillover risk [7]. While these measures
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reflect important components of pathogen transmission, their focus on the source of the dis-
ease-causing agent overlooks the socio-ecological processes that connect those infectious
agents with susceptible people, thereby facilitating transmission and determining risk. Envi-
ronmental metrics represent a single component of infectious disease risk: hazard [6, 8].
Meanwhile, exposure and vulnerability reflect the roles of human behavior and social struc-
tures in transforming hazard into risk: exposure describes contact between a person and a
pathogen (e.g., exposure to a hazard), while vulnerability determines the extent to which peo-
ple can anticipate, adapt to, and potentially mitigate the impacts of infection [6, 9].

These three components of risk—exposure, hazard, and vulnerability—operate in concert
rather than isolation. They comprise the breadth of socio-ecological conditions that put and
keep people in contact with infectious agents of disease. Few studies address all three compo-
nents simultaneously, but those that do show how human interaction with the environment
transforms the presence of a hazard into risk for infection and disease. For example, account-
ing for both entomological risk (i.e., hazard) and exposure explained Lyme disease incidence
in New York when entomological risk alone did not [5]. In East Africa, incorporating social
vulnerability and entomological risk into a spatially-explicit risk assessment of malaria showed
how different interventions could be targeted to different places with different needs [10, 11].
Across disease systems, insights about the relative contributions of exposure, hazard and vul-
nerability can inform which interventions to employ to mitigate risk and where, when, and
how to implement them.

The risk for schistosomiasis—a disease caused by parasitic trematodes from the genus Schis-
tosoma-can also be divided into these three distinct components. Human schistosomes com-
plete a two-host transmission cycle between humans and specific species of freshwater snails.
People become infected through contact with freshwater where schistosomes’ free-living infec-
tive larval stage (called cercariae) emerge from infected snails and burrow into human skin.
Schistosome hazard is often described as ‘malacological risk,” and quantified using ecological
indicators of snail populations within a water source [12-14]. Similarly, exposure to schisto-
somes is often approximated by studying human water contact behavior because the process
of cercariae burrowing into skin upon contact cannot be directly observed [15-17]. Even so,
exposure to surface water on its own does not imply risk for infection [18, 19], as the hazard of
infected snails in a water source, and the circulation of parasites through the snail population
is what renders water contact harmful [6]. Lastly, vulnerability determines whether a person
can avoid or mitigate the schistosome hazard in their surroundings, either by reducing expo-
sure to or contamination of water bodies [20, 21], or seeking treatment for infection [22]. The
relative disadvantage of certain groups may make risk mitigation difficult, obliging people to
remain in contact with parasite-laden water even if they are aware of the risk [6].

Approximately 200 million people are infected with schistosomes worldwide, making schis-
tosomiasis second only to malaria in the global burden of parasitic disease [23, 24]. Schisto-
some infections are treatable with the antiparasitic drug praziquantel. Since the 1980s, mass
drug administration (MDA) campaigns employing praziquantel have been the central strategy
of schistosomiasis control, displacing the snail control interventions of the preceding decades
[25, 26]. These MDA programs have played an important role in reducing morbidity due to
schistosomiasis, but because praziquantel does not prevent new infections, the benefits of
MDA have not been realized universally across all contexts [27]. The identification of persis-
tent hotspots—or settings whose prevalence and intensity of infection remains high despite
repeated rounds of treatment-has underscored the need for interventions that control trans-
mission and complement the morbidity control achieved by MDA [28-30]. Controlling trans-
mission will require both ecological and social points of intervention, whose identification and
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implementation can be informed by understanding the relative contributions of hazard, expo-
sure, and vulnerability in the risk for acquiring and accumulating schistosome infections.

In this mixed methods study, we combined parasitological, ecological, and socio-economic
data from 13 villages in the lower basin of the Senegal River to better understand the relative
contribution of exposure, hazard, and vulnerability to the burden of urogenital schistosomiasis
(caused by Schistosoma haematobium) in an endemic region of northern Senegal. In this set-
ting, the construction of a dam and irrigation infrastructure has reduced the region’s suscepti-
bility to drought and famine, while simultaneously facilitating schistosome transmission. Prior
to dam construction, the transmission of S. haematobium occurred at low levels on a seasonal
basis, but the disease has since become hyperendemic with perennially high prevalence and
intensity of infection [31-33]. Dam construction also coincided with the introduction and
rapid spread of S. mansoni, an intestinal schistosome, which remains co-endemic with S. hae-
matobium [34, 35]. Simultaneously, agricultural livelihoods have shifted from traditional flood
recession and rainfed cultivation to more intensively irrigated crops [36]. The social and envi-
ronmental changes in this setting have collectively affected exposure, hazard, and vulnerability
to schistosome infection.

Using these data from this setting, we compared the relative contributions of exposure, haz-
ard and vulnerability as explanatory variables of both presence and intensity of S. haemato-
bium infection. We then quantified the magnitude and precision of the association between
infection outcomes and indices of each component of risk as well as demographic characteris-
tics, whose importance has been demonstrated in this and other settings [37-39]. Using a mix
of survey, interview, and ecological data to assess the relative contributions of exposure, haz-
ard, and vulnerability to schistosomiasis risk, we identify the circumstances under which eco-
logical, infrastructural, and behavioral interventions can complement mass drug
administration in campaigns to control and eliminate schistosomiasis.

Methods
Ethics statement

This study received approval from the National Committee of Ethics for Health Research from
the Republic of Senegal (Protocol #SEN14/33) as well as the Institutional Review Boards of the
University of California, Santa Barbara (Protocol #19-17-0676) and Stanford University (Pro-
tocol #43130). Children were enrolled in the parasitology study after providing assent along-
side written informed consent from the child’s parent or guardian. All interview and survey
respondents provided verbal informed consent.

Study area and population

This study used cross-sectional, mixed methods data collected in 2017 and 2018 as part of a
longitudinal study of schistosome infection in school-aged (5-15 years) children. Primary data
collection included parasitological examinations of urine samples screening for S. haemato-
bium infections, survey data from the residents and heads of households where those children
reside, and interview and ecological data from water access sites in their corresponding vil-
lages. Sixteen villages along the lower Senegal River, its tributaries, and the Lac de Guiers in
northwest Senegal were selected for participation in the longitudinal study; these villages were
representative of the rural, high-transmission sites common in the region (see appendix of
[33] for details on village selection; Fig 1). Briefly, the criteria used to select villages included
proximity to freshwater, presence of water access sites, presence of a school with sufficient
enrollment in target primary school grades, a non-zero prevalence of self-reported infection,
and accessibility in the rainy season [33]. Of these 16 study villages, six were located along the
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Fig 1. The lower basin of the Senegal River, where parasitological, socio-economic, and ecological data were collected
from 821 school-aged children in 411 households and 24 water access points in 13 villages. Three villages (shown in white
circles) were excluded from this analysis because they were sites of a vegetation removal intervention in 2017 that may have
affected hazard indices.

https://doi.org/10.1371/journal.pntd.0009806.9001

Senegal River and its tributaries while ten were located on the shores of Lac de Guiers. Three
of these 16 villages (one on the river and two on the lake) were excluded from this analysis
because a vegetation removal intervention took place in these sites in 2017, potentially influ-
encing hazard indices (Fig 1)

School-aged children were recruited from grades 1-3 in each village school, and each stu-
dent provided urine samples for determining S. haematobium infection presence and intensity
in January-March 2018. In July 2018, we attempted to reach all the households where students
enrolled in the school-based parasitology study lived and administer a questionnaire about
household demographics and water contact behavior.

Data collection

Parasitology data collection. Through schools in all 16 villages, a total of 1,480 school-
aged children was enrolled at baseline in February—April 2016. Of those, 1,301 remained
enrolled during the third year of follow-up in January-March 2018 and successfully produced
one urine sample on each of two testing days. After excluding children living in the three vil-
lages where the vegetation removal intervention occurred in 2017, parasitological data were
available for 821 children in 13 villages (SI Fig). At baseline and the subsequent two years,
urine samples were analyzed by urine filtration for S. haematobium infection [40]. Following
sample collection, all children were treated at school (with parental consent) with two rounds
of praziquantel administration at 40 mg/kg. Because the cross-sectional data used in this study
were embedded in a large longitudinal study in the same villages, infection data collected in
January-March 2018, which were used as outcome variables in this study, reflect re-infection
following treatment over the course of the preceding year [41-43].

Household survey data collection. Household-level survey data were collected at the
beginning of the rainy season in July 2018, following parasitological data collection for that
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year. In all 16 villages, we aimed to reach all households with children enrolled in the school-
based parasitology study. Of the 1,301 students enrolled in the parasitology study, we reached
the households (n = 524) of 1,216 students (93.5%; S1 Fig). The household survey instrument
included six main modules (S1 Table). The modules used in this analysis included: (1) individ-
ual-level demographic information, (2) individual-level, two-week recall of contact with sur-
face water for six primary domestic and occupational chores requiring contact with water, (3)
average frequency of each water contact activity reported at the household level, (4) socio-eco-
nomic indicators, such as reported access to improved water and sanitation infrastructure and
(5) geographic coordinates of household locations. The collection of water contact data in the
survey was designed to elicit information on water contact behavior over the course of a typical
week.

Body surface area interview data collection. In 15 villages, brief interviews were con-
ducted with village residents, usually at village water access sites in August 2016. In each inter-
view, respondents were asked how much of the body typically comes into contact with water
for each of six common water contact activities: (1) washing laundry, (2) washing dishes, (3)
collecting water, (4) irrigating fields, (5) washing or watering livestock and (6) fishing from
shore [39]. Responses for each activity were registered on a diagram used to measure burn size
[44]. Two interviews were conducted in each village-one with an adult man and one with an
adult woman-for a total of 30 interviews and 210 activity-specific observations (30 interviews
X 7 water contact activities).

Ecological data collection. Snail surveys were performed at 32 water access sites in all 16
study villages, the details of which are described elsewhere [33]. Briefly, randomized snail sam-
pling was stratified by three microhabitat types (emergent vegetation, non-emergent vegeta-
tion, and open water/mud bottom), such that sampling effort within a site was proportionate
to the relative area of each microhabitat. Imagery from Google Earth and an unmanned aerial
vehicle (drone) was used to identify site boundaries and designate fifteen random sampling
points within each microhabitat. At each point, exhaustive sampling for snails occurred within
a quadrat (76.2 cm x 48.26 cm x 48.26 cm; area = 0.3677 square meters). The snails collected
from each quadrat were placed into labeled vials and returned to the laboratory for identifica-
tion and infection screening via shedding and dissection assays. Molecular identification of
schistosome cercariae shed from captured snails in the laboratory distinguished human-infect-
ing schistosome species from species that affect non-human animals. Data from the 24 water
access sites that were not part of the vegetation removal intervention were included in the
analysis.

Data availability. A village-level summary of all variables used in this analysis is available
online [45].

Data analysis

Infection metrics. Infections with S. haematobium were determined to be present when
any of the samples collected from an individual student contained at least one S. haematobium
egg. Infection intensity was quantified by taking the median egg count (per 10 mL urine)
across the samples collected from each student at both parasitological sampling visits. Medians
were taken because the distributions of infection intensity were strongly right-skewed and
included a large number of zeroes, reflecting a negative binomial distribution.

Exposure indices. Exposure indices were calculated using data from three sources: (1)
individual- and household-level survey data, (2) body surface area interviews and (3) a previ-
ous study of water contact behavior in a similar setting [39]. These indices aggregated reported
water contact across the six water contact activities described above, including in the body
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surface area interview form and the water contact module in the household survey. Whether
or not a person performed a given activity in the preceding two weeks was recorded as binary
individual-level variables in the household survey. The average frequency of each activity was
reported at the household level in the survey, while duration and extent of contact were drawn
from literature-based estimates and body surface area interviews, respectively (S2 Table).
Exposure indices based on these activity-specific data incorporated varying degrees of com-
plexity, including weekly frequency-only estimates, weekly time exposed and weekly time
exposed adjusted for mean body surface area exposure.

Two indices measured frequency of contact with water. One index [F (raw)] was a categori-
cal variable derived directly from a single survey question, where each child was asked to recall
the number of visits made to a water access point in the preceding seven days. The second [F
(sum)] was a numeric variable derived from activity-specific measures collected through the
survey at the individual and household levels. Individual-level water contact data indicated
whether each member of the household had performed each activity in surface water (e.g.,
lake, river, irrigation canals) in the preceding two weeks. Dichotomous responses were regis-
tered for all members of the household. Response categories for frequency of each water con-
tact activity were collected at the household level (e.g., one value per household) and converted
to numeric values representing times per week (e.g., a reported frequency of once per day was
converted to a numeric value of 7 times per week). The numeric values of household-level
activity frequency were multiplied by indicators of individual-level activity to generate esti-
mated weekly contacts by activity for all children in the data set:

F(sum) = 3 . (activity performed) * (frequency) (1)

Total time exposed per week (FD) was calculated by multiplying the weekly frequency of an
activity by the estimated duration of that activity, as calculated from direct observations in
another study in a similar setting [39]. The product of frequency and duration was then
summed across all activities for each child to generate an estimated total time (in minutes) of
contact with water over the course of a week.

FD =3 i (activity performed) x (frequency) x (duration) (2)

Total exposure time per week was then adjusted by estimated body surface area in contact
with water for a given activity (FDB). We used data from body surface area interviews (52
Table) to estimate how much of the body came into contact with water for each activity. For
each observation, the percent of body surface area (%BSA) was summed for each body seg-
ment reported as exposed for that activity using published values for burn size estimation [44].
Mean %BSA for each activity was calculated across all interview respondents. Activity-specific
estimates of body surface area exposed (in square meters) were calculated by multiplying
mean %BSA by an estimated total body surface area for children under 14 years of age [46].
Estimated body surface area exposure required for each activity was multiplied by the total
time exposed for that activity, giving a BSA-adjusted time per week.

FDB =} ..., (activity performed) x (frequency) + (duration) * (body surface) (3)
Hazard indices. Hazard indices were calculated from ecological field data collected at the
24 water access points in the same 13 villages where parasitology and household survey data
were collected. A previous study in this setting found that area of suitable snail habitat (e.g.,
area covered by non-emergent aquatic vegetation) was the best environmental predictor of
presence and intensity of S. haematobium infection [33]. We developed six hazard indices

based on area of snail habitat, which varied by (1) season, (2) spatial relationship and (3) level
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of data aggregation. Two hazard variables captured the area of suitable snail habitat (1) for the
peak transmission season preceding parasitological data collection for each water access point
(July-August 2017; peak) and (2) summed across the three ecological data collection periods
in the year preceding parasitological data collection (May-June 2017, July-August 2017 and
January 2018; year). Summing habitat area across the year represents an integrated hazard
metric across the three dominant climatic seasons in the region. We primarily used data from
the water access site nearest to each household, based on straight-line distance, but two addi-
tional hazard variables captured the spatial relationship between households and the nearest
water access sites by scaling peak and year hazard indices by the distance between a child’s
household and the nearest water access site. Two final hazard variables aggregated peak and
year indices to the village level, where the area of suitable snail habitat during the transmission
peak and the entire year were summed across all water points in a village.

Vulnerability indices. Vulnerability indices were calculated from the household survey
data and focused on access (or lack thereof) to water and sanitation infrastructure at the house-
hold level (S1 Table). Two survey questions concerned water sources: (1) what is the principal
source of water used by members of the household for drinking? and (2) what is the principal
source of water used for doing laundry? Responses to these two questions were used to calcu-
late the extent to which each household depended on surface water for household needs (e.g.,
surface water is used for neither drinking water nor laundry; surface water is used for either
drinking water or laundry; or, surface water is used for both drinking water and laundry). This
variable was also dichotomized (e.g., a household used surface water for any activity versus no
activities).

Two additional survey questions concerned sanitation infrastructure: (1) what type of toilet
is primarily used by members of this household? and (2) is this toilet shared with other house-
holds? Responses to these two questions were used to calculate a three-level variable describing
sanitation access (e.g., private toilet, shared toilet, no toilet). A dichotomous version of this var-
iable was also calculated (e.g., private toilet versus shared or no toilet). This dichotomous cate-
gorization was chosen because few households reported having no toilet.

A final index of vulnerability was an index of socio-economic status (SES) derived from
data on durable assets and household conditions reported in the household survey [47, 48].
Principal components analysis was performed using the prcomp() function in the stats package
(version 3.5.1) in R [49]. Loadings for individual variables in the first principal component
were used to calculate a numeric socio-economic score for each household. Numeric scores
were then divided into quintiles.

Statistical analysis. We used mixed-effects logistic and negative binomial regression
models to assess exposure, hazard, and vulnerability indices as explanatory variables of S. hae-
matobium infection presence (i.e., infected versus uninfected) and intensity (i.e., number of
eggs detected per 10mL urine), respectively. In all models, we controlled for key social and
demographic covariates: age and sex of the child, village location (i.e., river versus lake) and
village population size. We also included random intercepts (households nested within vil-
lages) to account for the hierarchy in the data. Mixed effects logistic regression was performed
using the Ime4 package (version 1.1-21) [50], while mixed effects negative binomial regression
was performed using the glmmTMB package (version 1.0.1) [51] in R (version 3.5.1) [49].

We used information-criterion (IC)-based model selection and multi-model inference to
determine the relative importance of each component of risk [52]. For each outcome, we first
fit a set of exposure-only, hazard-only, and vulnerability-only models. The Akaike Information
Criterion (AIC) was used to discern the best-fitting index (or indices) of each component of
risk. We retained all variables in exposure-only, hazard-only and vulnerability-only models
whose AAIC was less than 2 across the models in a given group [52]. This subset of variables
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was then used to fit models that included various combinations of the three components of
risk: (1) exposure and hazard (E-H), (2) exposure and vulnerability (E-V), (3) hazard and vul-
nerability (H-V) and (4) all three: exposure, hazard, and vulnerability (E-H-V). Because fewer
indices of exposure, hazard and vulnerability were used in these combination models of infec-
tion presence (based on AIC for exposure-, hazard-, and vulnerability- only models), we fit a
set of 28 candidate models with the presence of S. haematobium as the outcome and 47 candi-
date models with intensity of S. haematobium re-infection as the outcome. Regression diag-
nostics indicated no problem with multicollinearity in models combining indices of exposure,
hazard, and vulnerability (S2 Fig).

For both sets of models, we calculated AIC, AAIC and Akaike weights (w;) [52]. The sum of
Akaike weights across the exposure, hazard and vulnerability components of risk was used to
quantitatively assess their relative importance across the full set of candidate models for both
presence and intensity outcomes [52]. Additionally, for each index of exposure, hazard and
vulnerability, we calculated model-averaged estimates of the magnitude and precision of the
association with both infection outcomes using the AICcmodavg package in R [53]. Odds
ratios (OR) and rate ratios (RR) with 95% confidence intervals (95% Cls) were estimated for
presence and intensity outcomes, respectively.

Results
Characteristics of the study population

Of the 821 school-aged children with complete information across the parasitological, survey
and ecological data sets, the mean age was 9.3 years and approximately half (414/821; 50.4%)
were male (Table 1). On average, these children lived within 521 meters of a water access point
on the Senegal River, a tributary, or the Lac de Guiers, which contained between zero and
149,775 square meters of suitable snail habitat in the peak transmission season. Approximately
half of the households where these children lived relied on surface water collected from water

Table 1. Demographic characteristics of the overall study population, and stratified by sex.

Variable Overall Males Females
Observations [n] 821 414 407
Age (years) [mean (SD)] 9.3(3.1) 9.2(2.2) 9.3(3.8)
Distance to water point (m) [mean (SD)] 521.6 (505.3) 522.2 (530.6) 521.0 (475.5)

Water point habitat area (m?) [mean (range)] 38,857 (0-149775) | 38,898 (0-100,361) 38,815 (0-149,775)

Surface water dependence [n (%)]

Neither drinking nor laundry 400 (48.7) 211 (51.0) 189 (46.4)
Either drinking or laundry 265 (32.3) 129 (31.2) 136 (33.4)
Both drinking and laundry 156 (19.0) 74 (17.9) 82 (20.1)
Sanitation facility [n (%)]
Private toilet 679 (82.7) 342 (82.6) 337 (82.8)
Shared toilet 134 (16.3) 68 (16.4) 66 (16.2)
No toilet 8(0.9) 4(0.9) 4(1.0)
Asset-based wealth index [n (%)]
I quintile (Lowest) 133 (16.2) 76 (18.4) 57 (14.5)
24 quintile 116 (14.1) 57 (13.7) 59 (14.5)
3rd quintile 150 (18.3) 82 (19.8) 68 (16.7)
4™ quintile 201 (24.5) 100 (24.2) 101 (24.8)
5% quintile (highest) 221 (26.9) 99 (23.9) 122 (30.0)

https://doi.org/10.1371/journal.pntd.0009806.t001
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Table 2. Descriptive analysis of outcome variables (presence and intensity of S. haematobium infection) in the
overall study population and stratified by sex.

Variable Overall Males Females
Observations [n] 821 414 407
Infection presence [infected n (%)] 548 (66.7) 302 (72.9) 246 (60.4)
Infection intensity [GM (SD)] 49 (117.4) 6.4 (66.8) 3.7 (152.0)

GM = geometric mean eggs/10mL urine

https://doi.org/10.1371/journal.pntd.0009806.t002

access points for at least one household need, and most households (82.6%) reported primarily
using private sanitation infrastructure (Table 1).

The burden of S. haematobium among this study population was high. The overall preva-
lence was 66.7% and was slightly higher among boys (72.9%) than girls (60.4%) (Table 2). The
geometric mean of S. haematobium infection intensity was 4.9 eggs per 10 mL urine
(SD =117.4) overall, 6.4 eggs per 10 mL urine (SD = 66.8) for boys and 3.7 eggs per 10 mL
urine (SD = 152.0) for girls (Table 2).

When asked about contact with surface water generally, more than one-third (39.1%) of
school-aged children reported no visits to village water access sites in the preceding seven
days. Approximately one-quarter (26.7%) visited once or twice a week and the remainder
(34.3%) reported more frequent visits (Table 3). When prompted to recall activity-specific
contact with surface water (e.g., doing laundry or washing livestock), the average sum of total
weekly contacts across all activities was much higher (mean = 8.5 times per week, SD = 10.9).
The weekly frequency of some of these activities (e.g., bathing and dish washing) exceeded that
reported from the single survey question prompting seven-day recall of all visits to the water
access point (Table 3).

Bathing was assumed to involve contact with the entire body surface, while shore fishing
(47.6%) and water collection (45.3%) involved the next greatest body surface area in contact

Table 3. Descriptive analysis of exposure indices calculated from individual-level responses to water contact ques-
tions in the household survey, overall and stratified by sex.

Variable Overall Males Females
Categorical frequency [n (%)]
No visits per week 321(39.1) 145 (33.0) 176 (43.2)
1-2 visits per week 219 (26.7) 121 (29.2) 98 (24.1)
3-6 visits per week 68 (8.3) 33 (8.0) 35 (8.6)
7 visits per week 173 (21.1) 95 (22.9) 78 (19.2)
7+ visits per week 40 (4.9) 20 (4.8) 20 (4.9)
Weekly activity-specific frequency [mean (SD)]
Bathing 4.7 (5.2) 4.6 (5.1) 4.8(5.3)
Water collection 1.4 (3.4) 1.0 (2.9) 1.8 (3.9)
Dishes 12(3.3) 0.1 (1.0) 2.2(4.3)
Laundry 0.7 (1.9) 0.1 (0.7) 1.3 (2.5)
Livestock 0.3 (1.5) 0.5 (1.9) 0.1 (0.9)
Irrigation 0.2 (1.2) 0.2 (1.2) 0.1(1.3)
Fishing 0.1(0.8) 0.1(0.8) 0.03 (0.7)
Numeric frequency [mean (SD)] 8.5 (10.9) 6.6 (7.5) 104 (13.2)
Total weekly time exposed [mean (SD)] 87.3(111.4) 66.0 (74.6) 109.0 (135.9)
BSA-adjusted weekly time exposed [mean (SD)] 74.5 (83.4) 65.6 (71.7) 83.5(93.0)

https://doi.org/10.1371/journal.pntd.0009806.t003
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with water (S2 Table). Irrigation (22.5%) was the activity with the least body surface area
exposed (52 Table). Using the reported duration of activity-specific water contact, we esti-
mated that the school-aged children in this setting spend, on average, 87.3 minutes

(SD = 111.4) in contact with surface water per week, an estimate that is higher for girls
(mean = 109.0 minutes, SD = 135.9) than boys (mean = 66.0 minutes, SD = 74.6). Adjusting
weekly total duration of contact by total body surface exposed during a specific activity
reduced this overall estimate slightly to 74.5 m*-minutes, with similar variation between boys
(mean = 65.6 m2-minutes, SD = 71.7) and girls (mean = 83.5 mZ-minutes, SD = 93.0).

While survey data indicate that dependence on surface water is not evenly distributed
across the quintiles of the asset-based SES index (Kruskal-Wallis test, X?=14.0,df = 4, P-
value = 0.007), we find that those who do depend on surface water for at least one household
task are relatively evenly distributed across SES quintiles (S3 Table). For example, almost a
third of the households (29.8%) that use surface water for either drinking or laundry are in the
highest SES quintile. We find a similar pattern for dependence on surface water for both drink-
ing and laundry: almost a quarter of households (21.8%) in the highest SES quintile rely on
surface water for both chores, which is identical to the proportion of households in the lowest
SES quintile with the same reliance on surface water (S3 Table).

Best-fitting indices of exposure, hazard, and vulnerability

Four exposure indices, six hazard indices, and five vulnerability indices were considered in a
set of mixed-effects logistic regression models of S. haematobium infection presence (n = 28)
and a set of mixed-effects negative binomial regression models of S. haematobium infection
intensity (n = 47; Table 4). The full comparison of model fit, including the Akaike weight (w;)

Table 4. Summary of the indices of exposure, hazard and vulnerability that were compared in a set of 28 mixed effects logistic regression models of S. haematobium
infection presence and a set of 47 mixed effects negative binomial regression models of S. haematobium infection intensity and the number (%) of models in each
set in which each variable appeared.

Variable Description Models (n (%))
Presence | Intensity
Exposure F (raw) Categorical frequency of visits to water access point in previous seven days, derived from single survey question 4(14.2) | 20 (43.5)
F (sum) Numeric frequency of weekly contacts with water, based on individual-level binary indicators for seven common 4(14.2) 1(2.2)
water contact activities and average household-level frequencies, both of which were collected through the
household survey
FD Weekly time exposed (in minutes) derived from activity-specific survey data, as in F (sum), combined with 4(14.2) 1(2.2)
literature-derived data on duration of exposure [39]
FDB Weekly time exposed adjusted for mean body surface area exposed for each of seven common water contact 4(14.2) 1(2.2)
activities, data estimated from body surface area interviews
Hazard areaPeak Area of snail habitat at the water access site nearest to household during peak season 1(3.6) 8(17.4)
areaYear Area of snail habitat at the water access site nearest to household summed over year 1(3.6) 8(17.4)
areaPeak_d | Area of snail habitat at the water access site nearest to household during the peak season, adjusted by the distance 1(3.6) 8(17.4)
between the site and the household
areaYear_d | Area of snail habitat at the water access site nearest to child’s household summed over year, adjusted by the distance | 10 (35.7) | 8 (17.4)
between the site and the household
areaPeakV | Area of snail habitat summed across all water points in a village during the peak season 1(3.6 1(2.2)
areaYearV | Area of snail habitat summed across all water points in a village and across year 1(3.6 1(2.2)
Vulnerability | surface Dependence on surface water for household needs derived from survey data: (0) neither laundry or drinking, (1) 10 (35.7) | 1(2.2)
either laundry or drinking or (2) both laundry and drinking
surfaceYN | Dichotomous version of surface water dependence for any versus no activities 1(3.6) | 10(21.7)
sanitation | Primary sanitation infrastructure used by members of a household: (0) none, (1) shared toilet, (2) private toilet 1(3.6) | 10(21.7)
privateSan | Dichotomous version of sanitation, where members of a household use either a private toilet or shared/no toilet 1(14.2) | 10(21.7)
assetindex | Quintiles of an asset-based SES index created using principal components analysis 1(3.6) 1(2.2)
https://doi.org/10.1371/journal.pntd.0009806.t004
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for each individual model, is summarized in S4 Table for presence models and in S5 Table for
intensity models. Data in Table 4 summarize each variable used to approximate exposure, haz-
ard, or vulnerability as well as the number of models that variable appeared in for each out-
come. For infection presence, all four exposure-only models were within a AAIC of 2. For
infection intensity, the categorical frequency of water point visits (F (raw)) outperformed all
three numeric indices of exposure (numeric frequency [F (sum)], total time exposed [FD] and
BSA-adjusted time exposed [FDB]). The exposure-only model of infection intensity containing
the F (raw) index had the lowest AIC of the four exposure-only models, with the AAIC for the
next best-fitting model of infection intensity far exceeding the threshold of 2 (AAIC = 16.52;
S5 Table). As a result, we retained all four indices of exposure for models of infection presence,
each of which appeared in a total of four of the 28 (14.2%) presence models. In contrast, the
categorical frequency of water access site visits was the only index of exposure retained in sub-
sequent models of infection intensity, appearing in a total of 20 of 47 (43.5%) models in that
set (Table 4).

A single index of hazard-the area of snail habitat at the water access site nearest to a child’s
household summed over the three climatic seasons of ecological data collection, adjusted by
the distance between the site and the household (areaYear_d)-had a AAIC < 2 compared to
other hazard-only models of S. haematobium presence (54 Table). As a result, areaYear_d was
the only index of hazard to appear in more than one model of S. haematobium presence
(Table 4). In contrast, five indices of hazard had a AAIC < 2 compared to other hazard-only
models of S. haematobium intensity (S5 Table). These variables included the area of snail habi-
tat at the water access site nearest to a child’s household during the peak transmission season
(areaPeak) as well as area summed over the entire year (areaYear). The distance-adjusted ana-
logs of these variables (areaPeak_d and areaYear_d) were also retained as was the area of snail
habitat summed across all water points in a village and across the full year (areaYearV). These
five indices of hazard were retained in subsequent models that combined hazard with other
components of risk, such that all five appear in multiple models of S. haematobium intensity
(Table 4).

One index of vulnerability-categorical dependence on surface water (surface)-best fit for
the S. haematobium presence data (e.g., AAIC < 2 among vulnerability-only models; S4
Table). This variable was retained for subsequent models that combined components of risk
and appeared in ten (35.7%) of the 28 presence models (Table 4). In contrast, binary depen-
dence on surface water (surfaceYN) as well as categorical and binary variables for sanitation
infrastructure (sanitation and privateSan, respectively) all had AAIC < 2 among vulnerability-
only models of S.haematobium intensity (S4 Table). Each appeared in ten (21.7%) of the 47
intensity models (Table 4).

Relative importance of exposure, hazard, and vulnerability

Across these sets of candidate models, no single model emerged as the best-fitting model of
presence or intensity of S. haematobium re-infection (S4 and S5 Tables). The largest w; for
mixed effects logistic regression models of S. haematobium presence was 0.28. A total of five
models were classified as having substantial support (AAIC < 2) [52]. Four of these five models
included all three components of risk while the fifth (and best-fitting model) contained indices
of hazard and vulnerability (Table 5)

The largest w; for mixed-effects negative binomial regression models of S. haematobium
intensity was 0.08, with 18 models classified as having substantial support [52]. Half (9 /18) of
the intensity models with substantial support included indices of all three components of risk.
An index of exposure was included in all the best models of re-infection intensity, including
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Table 5. Inclusion of indices of exposure (E), hazard (H) and vulnerability (V) in models of S. haematobium pres-
ence and intensity models with substantial support (AAIC <2).

No. E H \4 AIC AAIC Wi Iw;
Presence models with substantial support (from S4 Table)

24 X X 837.37 0 0.28 0.28
26 X X X 838.32 0.96 0.18 0.46
27 X X X 838.57 1.21 0.16 0.62
28 X X X 838.89 1.52 0.13 0.75
25 X X X 839.21 1.84 0.11 0.86
Intensity models with substantial support (from S5 Table)

1 X 5494.29 0 0.08 0.08
16 X X 5494.41 0.12 0.08 0.15
19 X X 5494.46 0.17 0.08 0.22
42 X X X 5494.46 0.17 0.07 0.30
22 X X 5494.49 0.20 0.07 0.37
18 X X 5494.86 0.57 0.06 0.42
43 X X X 5494.86 0.57 0.06 0.48
40 X X X 5494.95 0.66 0.06 0.54
36 X X X 5494.98 0.68 0.06 0.59
21 X X 5495.21 0.92 0.05 0.64
17 X X 5495.30 1.01 0.05 0.69
20 X X 5495.50 1.21 0.04 0.73
41 X X X 5495.70 1.41 0.04 0.77
38 X X X 5495.81 1.52 0.04 0.81
37 X X X 5495.95 1.66 0.03 0.84
39 X X X 5496.16 1.87 0.03 0.87
46 X X X 5496.19 1.90 0.03 0.90
23 X X 5496.23 1.94 0.03 0.93

X indicates whether a variable from a given component of risk was included in the model; AIC = Akaike information

criterion; w; = Akaike weight; ¥ w; = sum of Akaike weights across models in a set

https://doi.org/10.1371/journal.pntd.0009806.t005

an exposure-only model which had the lowest AIC of all models of re-infection intensity
(Table 5).

We used the sum of Akaike weights (Zw;) across each set of candidate models for each out-
come to quantify the relative importance of each component of risk (Table 6). We found that
hazard was the most important component of risk for re-infection presence in school-aged
children (Xw; = 0.95). The relative importance of hazard for S. haematobium presence was fol-
lowed by vulnerability (Xw; = 0.91) and then exposure (Xw; = 0.66; Table 6). The relative
importance of each component of risk differed for models of S. haematobium re-infection
intensity, where exposure (measured as categorical frequency of contact with surface water)
was the most important metric (Xw; = 1.00), followed by hazard (Xw; = 0.77) and then vulnera-
bility (Zw; = 0.63).

Table 6. Sum of Akaike weights (Zw;) as a measure of relative importance of the three components of risk for S. haematobium infection presence and intensity.

Infection presence

Infection intensity

https://doi.org/10.1371/journal.pntd.0009806.t006

Iwi
Exposure Hazard Vulnerability
0.66 0.95 0.91
1.00 0.77 0.63
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Fig 2. Model-averaged point estimates and 95% confidence intervals for association between infection outcomes and each component of risk. Top:
Associations between S. haematobium infection presence and components of risk are estimated by logistic regression and measured with odds ratios. Bottom:
Association between S. haematobium infection intensity and components of risk are estimated by negative binomial regression and measured with rate ratios.
In both panels, indices of exposure (E) are represented by black triangles, indices of hazard (H) by turquoise circles, indices of vulnerability (V) by blue
squares and demographic control variables (D) by orange diamonds.

https://doi.org/10.1371/journal.pntd.0009806.9g002

Model-averaged estimates

We used model averaging to calculate the magnitude and precision of the association between
both infection outcomes and all indices of exposure, hazard and vulnerability that appeared in
more than one model across the full set of candidate models and the demographic control vari-
ables used in each model (Fig 2). For the infection presence outcome, we found that the odds
of infection increased with distance-adjusted area of snail habitat at the nearest water point to
a child’s household summed over the year preceding infection data collection. The association
corresponds with a 45% increase in the odds of infection with each square meter of snail habi-
tat over the course of an entire year, with a confidence interval contained entirely above the
null value of 1 (Distance-adjusted habitat area over year; OR = 1.49, 95% CI 1.12, 1.97).
Associations between infection presence and indices of vulnerability were less precise, with
many confidence intervals including the null value of 1 (Fig 2). When comparing children
whose households relied on surface water for multiple household tasks to those who relied on
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surface water for no household tasks, we found an almost nine-fold increase in the odds of
infection with a confidence interval entirely above the null value of 1 (Categorical surface water
use [2 activities vs 0]; OR = 8.67, 95% CI 1.67, 45.60). A similar association comparing house-
holds’ use of surface water for a single activity was also positive, but its confidence interval
crossed the null (Categorical surface water use [1 activity vs 0]; OR = 1.34, 95% CI 0.84, 2.14).

All levels of the categorical exposure index suggest a positive association with infection
presence (categorical frequency [F (raw)]), but only one level (Categorical frequency [3-6
times/week vs none]) had a confidence interval that did not include the null value of 1
(OR =2.18,95% CI 1.03, 4.66). Remaining levels of categorical exposure (1-2 times/week vs
none, 7 times/week vs none and >7 times/week versus none) cannot be considered statistically
different from the null (Fig 2). All three numeric indices of exposure had point estimates
slightly below 1 (e.g., 0.9) with confidence intervals that included in the null value (Fig 2).

Two of the four demographic control variables had significant associations with infection
presence (Fig 2). Children living in lake villages were five times more likely to be infected com-
pared to children living in river villages (Village location; OR = 5.37, 95% CI 1.14, 25.28). The
odds of infection were 54% lower among girls compared to boys (Child sex; OR = 0.46, 95% CI
0.33, 0.63) and younger children were less likely to be infected than older children (Child age;
OR =0.78, 95% CI 0.63, 0.96). Village population size was not associated with infection pres-
ence (Village population; OR = 1.16, 95% CI 0.64, 2.10).

For the infection intensity outcome, we found that the median number of eggs detected in
urine samples increased for all levels of exposure (Categorical frequency [F (raw)]; Fig 2).
These point estimates ranged from a 2.59- to 3.86-fold increase in egg burden among children
reporting any exposure compared to those reporting no exposure. Confidence intervals for all
estimates were entirely above the null value of 1 (95% Cls: [1-2x/week vs none] 1.52, 4.44, [3-
6x/week vs none] 1.88, 8.00, [7x/week vs none] 1.55, 5.70, [>7x/week vs none 1.22, 7.77; Fig 2).
The directionality of the associations between infection intensity and indices of vulnerability
are like those for infection presence (e.g., above 1 for surface water use, below 1 for sanitation
infrastructure), but with point estimates closer to the null and wider confidence intervals that
include the null value of 1 (Fig 2).

The measures of association between infection intensity and hazard are mixed: distance-
scaled and village-level indices have point estimates less than 1 while raw values of habitat area
(i.e., not scaled by distance) for the nearest water point to a child’s home are greater than 1.
The confidence intervals for all associations between S. haematobium infection intensity and
hazard indices include the null value of 1. Associations between infection intensity and demo-
graphic control variables were similar to the associations described for these variables with
presence outcomes (Fig 2).

Discussion

We found that components of risk describing exposure, hazard, and vulnerability all had some
importance in explaining the occurrence of S. haematobium in school-aged children in this
endemic setting in the lower Senegal River Basin. Based on the sums of Akaike weights calcu-
lated across both sets of models, however, hazard and vulnerability were the most important
components of S. haematobium infection presence, while exposure and hazard were the most
important components of S. haematobium infection intensity. These differences highlight the
distinct factors that influence whether someone becomes infected versus whether they accu-
mulate a large worm burden, with implications for the design of schistosomiasis control and
elimination programs and guidelines.
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The importance of hazard and vulnerability to the infection presence outcome reflects the
conditions that influence whether a person acquires an infection or not. Any exposure may
lead to infection, making additional exposure irrelevant to this binary outcome once a person
becomes infected. But hazard in the environment, or the number of infected snails emitting
cercariae from a certain amount of available habitat, is more likely to increase the risk of infec-
tion so long as some exposure is happening. Vulnerability through the household activities
that involve regular water contact, like dependence on surface water, for example, ensures
some baseline level of exposure.

Similarly, the importance of exposure and hazard to infection intensity reflects the condi-
tions that influence the accumulation of worms. The intensity of infection is theoretically pro-
portional to exposure, with each new adult worm the result of a separate infection event [54].
While this has not always borne out empirically [18, 39], our data agree with the theoretical
expectation that more exposure leads to higher intensity infection. Such accumulation of
worms is important because it can lead to severe morbidity. A study in Uganda found the prev-
alence of liver fibrosis to be five times greater in people who had lived in the S. mansoni-
endemic area since birth compared to those with just a 10-year residency, leading the authors
to conclude that the duration of exposure over time is an important risk factor for developing
the severe morbidity resulting from prolonged high-intensity infections [55]. Another study in
China found that water contact itself was not associated with infection intensity but, similar to
our findings, accounting for both water contact and a measure of cercarial risk did [19].

While the recognition that schistosomiasis risk is determined by the convergence of social
(exposure and vulnerability) and environmental factors (hazard) is not new [56-59], few stud-
ies comprehensively address all three components of risk for schistosomiasis specifically or for
infectious diseases generally. Studies employing mathematical models have jointly addressed
social and environmental determinants of schistosomiasis [60-62], while empirical studies
often focus on one [12, 13, 63] or the other [16, 64, 65]. Our results allow us to think more con-
cretely about how to choose interventions and thereby target schistosomiasis control. Reduc-
ing exposure through behavior change interventions that minimize contact with water is likely
to contribute more to morbidity control (e.g., reductions in infection intensity) than transmis-
sion control (e.g., reductions in infection presence). Reducing vulnerability through the provi-
sion and use of piped water infrastructure will give people an alternative to surface water,
allowing them to avoid risky exposures and thus, lower infection intensity. Reducing hazard in
the environment through snail control interventions will be essential to reducing transmission
and the likelihood of acquiring and accumulating infections from the environment. Under-
standing the interplay between different components of risk in a specific setting can facilitate
the design of effective and efficient context-specific control strategies.

In this study, we used primary data sets collected by three distinct teams under the same
project in the same study villages: (1) collection, processing and diagnosis of S. haematobium
infection from urine samples collected from school-aged children on a yearly basis with associ-
ated treatment with praziquantel, (2) exhaustive sampling of snail populations and their habi-
tats in the water access sites in all villages, and (3) socio-economic surveys in all the
households where school-aged children in the parasitology study lived. All three data streams,
combined with data on the spatial relationship between water access sites and surveyed house-
holds, were important for explaining patterns of infection in children. Our results underscore
the importance of interdisciplinary and mixed methods research when addressing complex
socio-environmental problems like the transmission of schistosomiasis and other infectious
diseases.
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Measures of exposure, hazard, and vulnerability

We learned how different measures of exposure, hazard and vulnerability fit the infection data.
The simplest exposure index, which used seven-day recall of visits to a surface freshwater
access point, fit infection intensity data better than did more complex exposure metrics that
included information on the reported frequency, duration and extent of contact experienced
for specific activities. There are several potential explanations for this finding. This simple
index was derived from a single survey question that was posed specifically for the children
enrolled in the parasitology study. In contrast, the activity-specific estimates were derived
from a survey module that prompted individual-level information from all members of that
household. Because of the volume of information that respondents were asked to provide (e.g.,
whether a person performed each of six water contact activities for all members of the house-
hold), the accuracy and precision of the activity-specific responses may have suffered.

Other studies have found weak or no association with exposure measures that account for
multiple aspects of exposure. One study in a similar setting in northern Senegal found all of
their exposure indices to be correlated with each other but not with the presence or intensity
of S. mansoni infection [18]. In the study from which we drew data on activity-specific dura-
tion of water contact, a relationship between water contact and intensity of S. mansoni infec-
tion was only detected after accounting for body surface area and the time of day of exposure
[39]. In a study of S. haematobium infection in Zanzibar, a set of exposure indices that incor-
porated varying combinations of frequency, duration and body surface area were found to be
positively associated with infection, but the strength of the association decreased with the com-
plexity of the exposure index used [66]. Moreover, the distinct ecologies of schistosome species
and their intermediate snail hosts and the methods used to measure water contact may con-
found the true relationship between water contact and infection.

Similarly, malacological hazard data often have weak or no association with infection. In
one study in China, a single infected snail was found among 7,000 snails collected in a setting
where prevalence of S. japonicum infection in people exceeded 25% [67]. Prevalence of human
infection of 30-40% has been observed in lake regions of East Africa where snails have been
found to occur in very low numbers [68, 69]. An ecological study of snail ecology in Senegal-
the one from which ecological data in this study is drawn-found the area of snail habitat to be
a superior predictor of human infection compared to seemingly more proximate predictors
including density of infected snails [33]. The current study builds on these findings by match-
ing individual-level infection to the water access site nearest to the household (in addition to
village-level metrics used in the previous study) and accounting for the spatial relationship
between the household and the water access site.

Given the shortcomings of previous studies on water contact and snail ecology, we found
that accounting for the spatial relationship between people and the environmental hazard
improved the fit of S. haematobium presence models. Hazard indices scaled by the distance to
the nearest water point fitted the infection presence data better than the other hazard indices,
though this was not the case for infection intensity data. Previous studies have found the prox-
imity to water access points to be an important explanatory variable of schistosome infection
in endemic settings [66, 70-73]. Another found that water contact was only related to re-infec-
tion after accounting for the spatial distance between people and the hazard in their environ-
ment [19]. Such proximity may be an important aspect of vulnerability that makes it difficult
to avoid exposure to hazardous water.

Similarly, hazard indices that dealt with the site nearest to the child’s household fit the infec-
tion presence data better than village-level aggregations of snail habitat. This finding contra-
dicts studies that found schistosomiasis to be associated with human behavior and snail
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ecology primarily at the community level [74-76]. However, because water contact activity for
most people tends to occur at just one or two sites [75, 76] and since distance to water is com-
monly associated with infection [71, 72], it is possible that the distance-adjusted hazard indices
capture the hazard where exposure is most likely to occur for people living in a given
household.

Measures of association between components of risk and infection

We found that no single model best approximated either the presence or intensity of S. haema-
tobium infection. Rather, a set of models comprised the evidence for our conclusions. Without
a single best-approximating model, we used model averaging to generate point estimates and
confidence intervals of the association between our two infection outcomes and all explanatory
variables appearing in both model sets.

Associations between demographic control variables and infection were consistent
across the two outcomes. These variables—particularly child sex and village location-had
the strongest relationship with infection of all variables included in all models. This finding
speaks to the importance of demographics in the dynamics of S. haematobium infection
[77, 78] and the need for analyses that examine heterogeneity across sex and geographic
strata [76, 79].

We found that exposure was associated with an increase in both infection presence and
intensity, although the confidence interval for the association with infection presence included
the null value. Consistent with our relative importance findings, these estimates support the
notion that the amount of exposure influences the accumulation of worm burden more than
the acquisition of infection. The substantial support we found for vulnerability as an explana-
tory variable of infection presence may approximate the presence (rather than amount) of
exposure. Given the lifespan of adult schistosomes in the human host (3-10 years) [77, 80, 81],
a single infection resulting from a single exposure may be present in the body for years until a
person is treated.

Even though model-averaging found indices of vulnerability to have wide confidence inter-
vals, there was suggestive evidence of a dose-response between the odds of infection and the
number of activities for which a household uses surface water. Children living in households
that relied on surface water for multiple activities were more likely to be infected than those
whose households relied on surface water for a single activity. While this may be the result of a
lack of alternative sources of water (such as wells or piped water), it is also important to note
that water contact activities often have social value [82], making the use of surface water for
social activities like laundry a matter of preference. It is also possible that available alternative
sources of water may not be suitable for particular activities, making surface water preferable
in some cases [65, 83].

The asset-based SES index was the poorest index of vulnerability (AAIC = 9.48 and 6.40
among vulnerability-only presence and intensity models, respectively), outperformed by indi-
ces that represented access to, and use of, water and sanitation infrastructure. It is possible that
SES is a relatively poor predictor of infection because there is not much variability in owner-
ship of durable assets across our study population. Similarly, while the household dependence
on surface water is not evenly distributed across SES quintiles, we found similar proportions of
households in the highest and lowest SES quintiles that use surface water for at least some
household needs. It is easy to assume that dependence on surface water will be highly corre-
lated with SES, but that may not be the case when decisions to continue using surface water
are made for other reasons. Similarly, because our study focuses on children who go to school
and play with each other, the influence of SES on infection outcomes may not be as
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pronounced as they would be among adults, for whom occupation and household factors are
stronger determinants of exposure. Consequently, SES, as we measured it, may not be a strong
determinant of water contact or S. haematobium infection.

Finally, our measures of hazard were improved by accounting for snail habitat in the water
access site nearest to the household, and in the case of models of S. haematobium presence, the
best metric accounted for distance between households and the nearest water point. These
methodological insights highlight the important role of spatial relationships in schistosomiasis
risk and the value of incorporating spatial data and analysis into future research.

Limitations

The limitations of this study are grounded in the challenge of measuring behavioral and eco-
logical phenomena that are dynamic in both space and time. In using multiple methods to
measure water contact behavior, specifically, we struck a balance between collecting complete
information across the many facets of water contact behavior and collecting data from enough
participants to fit statistical models. To do this, we supplemented individual-level information
on regular water contact activities for all participants with household-level survey data on fre-
quency of contact, literature-based estimates on duration of contact and interview data on
body surface area exposure.

While incorporating frequency, duration and body surface area into exposure indices was
meant to triangulate around the different dimensions of water contact, we note that the com-
plex metrics were often outperformed by a simple metric of exposure derived from a single
survey question. The poor fit of the complex exposure indices may reflect our use of aggregated
data on frequency, duration and extent of exposure to the household and village levels, as they
may obscure important individual-level heterogeneities [54, 84]. Ultimately, logistics limited
our ability to capture water contact behavior comprehensively and precisely for hundreds of
children across more than a dozen villages, each with its own complex landscape of water con-
tact. Because we did not record individual episodes of water contact for each participant, we
were also not able to determine the time of day when water contact occurred, a key criterion
for exposure based on the chronobiology of cercarial release from snails [85, 86].

The issues implicit in the choice of methods for measuring water contact (e.g., recall and/or
social desirability bias for questionnaire-based studies and failure to capture contact at other
sites for studies based on direct observations at a single site) may be resolved in future studies
by combining questionnaire-based or activity diary methods with the use of wearable GPS
data loggers to collect more accurate and precise data on the spatial and temporal dynamics of
water contact behavior. Such methods have been used in China [87], Uganda [82] and Camer-
oon [88] and have been found to be widely acceptable [89].

Finally, this study examines the convergence of the processes of exposure, hazard, and vul-
nerability for just one of the two schistosome species that circulate and cause disease in this set-
ting. S. mansoni is co-endemic, circulating within different species of snail intermediate hosts
with distinct habitat associations. The human behaviors associated with contamination of the
environment also differ for S. mansoni compared to S. haematobium. For these reasons, the
particularities of S. mansoni transmission may not be governed by the same relationships
between exposure, hazard, and vulnerability.

Conclusion

In summary, we find that hazard, as measured by the area of snail habitat in the water
access point nearest a household, and vulnerability, in terms of surface water use and access
to sanitation at the household level, contribute most to the acquisition of S. haematobium
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infections. In contrast, exposure, approximated by a self-reported categorical frequency of
contact with surface water per week, and hazard contribute most to the accumulation of S.
haematobium parasites in school-age children, and thus to infection intensity. Together,
our findings underscore the importance of all three components of risk, which act together
across time and space to facilitate the acquisition and accumulation of S. haematobium
infections in an endemic setting with high incidence of post-treatment re-infection. They
highlight how interventions to complement MDA may be strategically deployed to reduce
the risk of post-treatment re-infection.

While our data are specific to the context in which we collected them, the insights about the
interaction among different components of risk and their impact on different metrics of infec-
tion may apply in other endemic settings and generate new knowledge about the processes
that lead to the occurrence of persistent hotspots. Such an approach is critical to both control-
ling the severe morbidity of schistosomiasis, reducing the transmission of parasites in the envi-
ronment and achieving elimination in endemic regions. Moreover, building a more holistic
understanding of infectious disease risk will improve our ability to intervene at the point
where a source of infection and a susceptible person meet.
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